The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity
The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor T...
Uložené v:
| Vydané v: | Cell metabolism Ročník 22; číslo 3; s. 418 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.09.2015
|
| Predmet: | |
| ISSN: | 1932-7420, 1932-7420 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans. |
|---|---|
| AbstractList | The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans.The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans. The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans. |
| Author | Broeders, Evie P M Mottaghy, Felix Roumans, Kay H M Deprez, Benoit Schaart, Gert Nascimento, Emmani B M Tailleux, Anne Brans, Boudewijn van Marken Lichtenbelt, Wouter D Schrauwen, Patrick Havekes, Bas Bouvy, Nicole D Staels, Bart Charton, Julie Kouach, Mostafa |
| Author_xml | – sequence: 1 givenname: Evie P M surname: Broeders fullname: Broeders, Evie P M organization: Department of Human Biology and Human Movement Sciences, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands; Department of General Surgery, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands – sequence: 2 givenname: Emmani B M surname: Nascimento fullname: Nascimento, Emmani B M organization: Department of Human Biology and Human Movement Sciences, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands – sequence: 3 givenname: Bas surname: Havekes fullname: Havekes, Bas organization: Department of Endocrinology, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands – sequence: 4 givenname: Boudewijn surname: Brans fullname: Brans, Boudewijn organization: Department of Nuclear Medicine, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands – sequence: 5 givenname: Kay H M surname: Roumans fullname: Roumans, Kay H M organization: Department of Human Biology and Human Movement Sciences, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands – sequence: 6 givenname: Anne surname: Tailleux fullname: Tailleux, Anne organization: University of Lille, Institut Pasteur de Lille, Inserm UMR 1011, EGID, 59000 Lille, France – sequence: 7 givenname: Gert surname: Schaart fullname: Schaart, Gert organization: Department of Human Biology and Human Movement Sciences, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands – sequence: 8 givenname: Mostafa surname: Kouach fullname: Kouach, Mostafa organization: University of Lille, Centre Universitaire de Mesures et d'Analyses, 59000 Lille, France – sequence: 9 givenname: Julie surname: Charton fullname: Charton, Julie organization: University of Lille, Institut Pasteur de Lille, Inserm UMR1177, Biostructures and Drug Discovery, 59000 Lille, France – sequence: 10 givenname: Benoit surname: Deprez fullname: Deprez, Benoit organization: University of Lille, Institut Pasteur de Lille, Inserm UMR1177, Biostructures and Drug Discovery, 59000 Lille, France – sequence: 11 givenname: Nicole D surname: Bouvy fullname: Bouvy, Nicole D organization: Department of General Surgery, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands – sequence: 12 givenname: Felix surname: Mottaghy fullname: Mottaghy, Felix organization: Department of Nuclear Medicine, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands; Nuclear Medicine, University Hospital Aachen, 52072 Aachen, Germany – sequence: 13 givenname: Bart surname: Staels fullname: Staels, Bart organization: University of Lille, Institut Pasteur de Lille, Inserm UMR 1011, EGID, 59000 Lille, France – sequence: 14 givenname: Wouter D surname: van Marken Lichtenbelt fullname: van Marken Lichtenbelt, Wouter D organization: Department of Human Biology and Human Movement Sciences, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands – sequence: 15 givenname: Patrick surname: Schrauwen fullname: Schrauwen, Patrick email: p.schrauwen@maastrichtuniversity.nl organization: Department of Human Biology and Human Movement Sciences, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands. Electronic address: p.schrauwen@maastrichtuniversity.nl |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26235421$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUEtLw0AYXKRiH_oHPEiOXhK_3U02m2Nbqi0URKjnsI-vdEuSrdlE7b-30gqeZhhmhmHGZND4Bgm5p5BQoOJpn5gau4QBzRLIEwB2RUa04CzOUwaDf3xIxiHsAbjgBb8hQyYYz1JGR-Rts8No5iqMpsbZaL7Dxlv030ez85UzZ3XVmBZVwBAt-1o10az1X000te7gA0YbF0L_m-_cp-uOt-R6q6qAdxeckPfnxWa-jNevL6v5dB2bVIgullQLK0EzjjIrJNNS5NrmVFpmjWZUKiZPyzlwzjEFWygjETIuCs1ytdVsQh7PvYfWf_QYurJ2wWBVqQZ9H0qaQ5GDzICerA8Xa69rtOWhdbVqj-XfDewHHYhgcw |
| CitedBy_id | crossref_primary_10_3390_nu14102097 crossref_primary_10_3389_fnut_2024_1393575 crossref_primary_10_3390_cells8040373 crossref_primary_10_1016_j_molmet_2024_101931 crossref_primary_10_3389_fendo_2020_00633 crossref_primary_10_1016_j_phrs_2015_12_007 crossref_primary_10_1177_1756284819858470 crossref_primary_10_3945_ajcn_116_144972 crossref_primary_10_1038_s42255_021_00409_4 crossref_primary_10_1371_journal_pone_0149458 crossref_primary_10_3389_fcell_2022_836741 crossref_primary_10_3390_nu13051450 crossref_primary_10_1016_j_ecoenv_2025_118922 crossref_primary_10_1016_j_phytochem_2024_114162 crossref_primary_10_1111_hepr_13001 crossref_primary_10_1038_s41575_018_0011_z crossref_primary_10_1016_j_mce_2017_01_018 crossref_primary_10_3389_fphys_2019_00038 crossref_primary_10_1016_j_jcmgh_2025_101546 crossref_primary_10_1002_hep_30908 crossref_primary_10_1016_j_mce_2020_110869 crossref_primary_10_1093_toxsci_kfy271 crossref_primary_10_1111_dom_12946 crossref_primary_10_3390_ph18091247 crossref_primary_10_1016_j_bbrc_2023_02_070 crossref_primary_10_4155_tde_2023_0034 crossref_primary_10_1016_j_biopha_2021_112078 crossref_primary_10_1016_j_cmet_2021_04_009 crossref_primary_10_1016_j_jbc_2023_105617 crossref_primary_10_1016_j_tice_2016_08_001 crossref_primary_10_1016_j_jhep_2016_01_025 crossref_primary_10_1002_hep_28709 crossref_primary_10_1016_j_jep_2025_120266 crossref_primary_10_1007_s00018_022_04658_8 crossref_primary_10_3390_cancers13246389 crossref_primary_10_1111_hepr_13473 crossref_primary_10_1371_journal_pone_0182297 crossref_primary_10_1007_s13679_019_00334_4 crossref_primary_10_1210_er_2018_00275 crossref_primary_10_3390_nu12123709 crossref_primary_10_1007_s12011_023_03854_2 crossref_primary_10_1016_j_nbd_2024_106428 crossref_primary_10_1038_s41589_021_00861_z crossref_primary_10_1038_s41538_022_00156_0 crossref_primary_10_1002_nbm_3583 crossref_primary_10_1016_j_jare_2024_11_003 crossref_primary_10_5409_wjcp_v11_i3_221 crossref_primary_10_1016_j_nut_2022_111723 crossref_primary_10_3389_fphys_2016_00646 crossref_primary_10_1093_bbb_zbae133 crossref_primary_10_3390_nu11112837 crossref_primary_10_3390_nu12092598 crossref_primary_10_1016_j_pharmthera_2022_108238 crossref_primary_10_1038_s42255_022_00559_z crossref_primary_10_1126_scitranslmed_adg2773 crossref_primary_10_1155_2021_4847941 crossref_primary_10_3389_fendo_2023_1224396 crossref_primary_10_1146_annurev_physiol_022724_105443 crossref_primary_10_3389_fphys_2017_01047 crossref_primary_10_1007_s11695_020_04638_6 crossref_primary_10_1186_s40064_016_3029_0 crossref_primary_10_1002_oby_22062 crossref_primary_10_1016_j_biopha_2021_111320 crossref_primary_10_3389_fcimb_2021_634780 crossref_primary_10_1002_dmrr_3594 crossref_primary_10_1038_s41467_024_53673_9 crossref_primary_10_1038_s41387_022_00229_9 crossref_primary_10_1111_1750_3841_15951 crossref_primary_10_15252_embr_202255664 crossref_primary_10_1002_lt_24628 crossref_primary_10_3389_fendo_2022_1014901 crossref_primary_10_3390_ijms222111738 crossref_primary_10_1080_17446651_2020_1720511 crossref_primary_10_1016_j_suc_2020_12_010 crossref_primary_10_1093_ajcn_nqx025 crossref_primary_10_1210_endocr_bqab059 crossref_primary_10_1242_jeb_165381 crossref_primary_10_1016_j_redox_2022_102452 crossref_primary_10_1053_j_gastro_2017_01_055 crossref_primary_10_1038_nm_4365 crossref_primary_10_1136_bmjdrc_2017_000469 crossref_primary_10_1016_j_molmet_2018_05_016 crossref_primary_10_1016_j_beem_2016_08_002 crossref_primary_10_1074_jbc_RA118_002733 crossref_primary_10_1016_j_beem_2016_08_003 crossref_primary_10_1016_j_mam_2017_04_001 crossref_primary_10_1124_dmd_118_081547 crossref_primary_10_1016_j_beem_2016_08_005 crossref_primary_10_1515_hmbci_2017_0017 crossref_primary_10_3389_fcimb_2022_774335 crossref_primary_10_3389_fendo_2022_908868 crossref_primary_10_3390_jcm10215024 crossref_primary_10_1124_mol_117_109900 crossref_primary_10_3389_fmicb_2022_853566 crossref_primary_10_59717_j_xinn_life_2024_100093 crossref_primary_10_1038_s41580_018_0044_8 crossref_primary_10_1016_j_carbpol_2022_119862 crossref_primary_10_15252_embr_201846404 crossref_primary_10_1007_s11154_019_09512_0 crossref_primary_10_1007_s12975_022_01096_3 crossref_primary_10_1016_j_drudis_2025_104386 crossref_primary_10_1016_j_lfs_2021_120152 crossref_primary_10_3389_fmicb_2024_1341938 crossref_primary_10_3390_cells11060968 crossref_primary_10_3390_microorganisms12040764 crossref_primary_10_3390_metabo15090583 crossref_primary_10_1016_j_jff_2024_106287 crossref_primary_10_1038_nm_4357 crossref_primary_10_1016_j_metabol_2019_07_003 crossref_primary_10_1016_S2213_8587_16_30155_3 crossref_primary_10_1038_s44161_025_00637_x crossref_primary_10_1530_EJE_17_0966 crossref_primary_10_1128_mSystems_00058_19 crossref_primary_10_1016_j_prp_2025_156073 crossref_primary_10_1007_s11739_023_03343_3 crossref_primary_10_1194_jlr_M064709 crossref_primary_10_1016_j_jece_2021_107078 crossref_primary_10_1038_s41574_021_00562_6 crossref_primary_10_1093_ejendo_lvae034 crossref_primary_10_1186_s40168_020_00821_0 crossref_primary_10_1016_j_phrs_2023_106983 crossref_primary_10_1016_j_ijbiomac_2024_134607 crossref_primary_10_1038_s41598_020_78419_7 crossref_primary_10_1128_mSystems_00465_20 crossref_primary_10_1016_j_foodres_2022_111941 crossref_primary_10_1186_s13098_022_00880_3 crossref_primary_10_1016_j_foodchem_2023_136540 crossref_primary_10_2337_dbi17_0007 crossref_primary_10_1186_s43556_022_00091_2 crossref_primary_10_1038_s41580_021_00350_0 crossref_primary_10_1039_D1FO00671A crossref_primary_10_1016_j_micres_2025_128309 crossref_primary_10_1002_j_2040_4603_2018_tb00046_x crossref_primary_10_1016_j_mam_2019_07_001 crossref_primary_10_1016_j_molmet_2018_01_023 crossref_primary_10_3390_ijms26094240 crossref_primary_10_1210_clinem_dgaa960 crossref_primary_10_1016_j_foodres_2022_110971 crossref_primary_10_1016_j_jnutbio_2023_109358 crossref_primary_10_1016_j_tem_2024_08_002 crossref_primary_10_2337_db16_0040 crossref_primary_10_3390_nu12010079 crossref_primary_10_1002_ptr_7517 crossref_primary_10_1186_s40360_020_00422_5 crossref_primary_10_3389_fgene_2019_00972 crossref_primary_10_3389_fendo_2023_1148954 crossref_primary_10_3389_fimmu_2023_1285357 crossref_primary_10_3892_etm_2021_10423 crossref_primary_10_1111_joim_12527 crossref_primary_10_2337_db18_0462 crossref_primary_10_1016_j_cmet_2016_07_014 crossref_primary_10_1080_19490976_2024_2390136 crossref_primary_10_3389_fendo_2022_1025706 crossref_primary_10_1080_10408398_2021_1997905 crossref_primary_10_1016_j_clinthera_2022_08_009 crossref_primary_10_3389_fendo_2020_00222 crossref_primary_10_3390_antiox13010008 crossref_primary_10_3389_fphys_2019_01192 crossref_primary_10_1007_s11434_016_1051_9 crossref_primary_10_1097_MNH_0000000000000374 crossref_primary_10_1371_journal_pone_0228932 crossref_primary_10_1016_j_bbagen_2016_09_024 crossref_primary_10_1016_j_yjmcc_2020_10_014 crossref_primary_10_3389_fcvm_2025_1572948 crossref_primary_10_1016_j_cmet_2021_12_011 crossref_primary_10_1016_j_apsb_2021_12_011 crossref_primary_10_1530_JOE_17_0557 crossref_primary_10_1002_hep_29199 crossref_primary_10_1016_j_cellsig_2023_110901 crossref_primary_10_1142_S0192415X24500137 crossref_primary_10_1016_j_bbalip_2022_159257 crossref_primary_10_1097_MOL_0000000000000508 crossref_primary_10_1007_s11427_023_2353_0 crossref_primary_10_1055_s_0041_1723752 crossref_primary_10_2337_db23_0520 crossref_primary_10_3390_ani12202762 crossref_primary_10_1681_ASN_2018030271 crossref_primary_10_1074_jbc_RA120_016203 crossref_primary_10_1016_j_ebiom_2017_09_035 crossref_primary_10_3389_fendo_2017_00267 crossref_primary_10_3389_fmicb_2020_585066 crossref_primary_10_3389_fendo_2023_1090039 crossref_primary_10_1002_mco2_171 crossref_primary_10_1016_j_tem_2017_11_002 crossref_primary_10_3390_metabo10030100 crossref_primary_10_4093_dmj_2019_0043 crossref_primary_10_1007_s11901_020_00547_5 crossref_primary_10_1016_j_molmet_2018_04_004 crossref_primary_10_3390_microorganisms12081674 crossref_primary_10_1016_j_metabol_2020_154429 crossref_primary_10_1097_MED_0000000000000235 crossref_primary_10_1111_liv_15098 crossref_primary_10_1038_s41420_020_00347_2 crossref_primary_10_1210_endrev_bnac015 crossref_primary_10_3390_ijms23020639 crossref_primary_10_1002_mnfr_202400147 crossref_primary_10_1007_s11154_019_09523_x crossref_primary_10_1016_j_mce_2018_12_006 crossref_primary_10_1039_D3FO02063K crossref_primary_10_1016_j_molmet_2024_102071 crossref_primary_10_1186_s12951_025_03190_8 crossref_primary_10_1186_s12986_022_00694_0 crossref_primary_10_1016_j_biochi_2022_07_006 crossref_primary_10_1016_j_beem_2021_101493 crossref_primary_10_1016_j_bbalip_2018_05_004 crossref_primary_10_1002_hep_28689 crossref_primary_10_1016_j_peptides_2023_170962 crossref_primary_10_1111_apha_14065 crossref_primary_10_1172_JCI131126 crossref_primary_10_3390_biology10080726 crossref_primary_10_1016_j_bbalip_2018_05_012 crossref_primary_10_3390_nu12020472 crossref_primary_10_1016_j_bbalip_2018_05_014 crossref_primary_10_1038_s41467_018_06769_y crossref_primary_10_3389_fmicb_2025_1559178 crossref_primary_10_1007_s00394_019_02052_y crossref_primary_10_1097_MOL_0000000000000296 crossref_primary_10_1093_advances_nmy067 crossref_primary_10_1007_s13238_017_0378_6 crossref_primary_10_1016_j_crfs_2025_101081 crossref_primary_10_1016_j_suc_2025_07_001 crossref_primary_10_3390_cells10113030 crossref_primary_10_1128_jb_00479_24 crossref_primary_10_3892_etm_2024_12716 crossref_primary_10_1186_s13098_017_0299_9 crossref_primary_10_1210_clinem_dgac659 crossref_primary_10_1210_clinem_dgae399 crossref_primary_10_1084_jem_20171965 crossref_primary_10_1016_j_apsb_2018_09_007 crossref_primary_10_1007_s12672_022_00504_2 crossref_primary_10_2337_db17_1538 crossref_primary_10_3390_metabo10110475 crossref_primary_10_1007_s13238_020_00804_9 crossref_primary_10_1210_endocr_bqad068 crossref_primary_10_1016_j_tifs_2021_01_055 crossref_primary_10_1016_j_mam_2019_04_001 crossref_primary_10_1016_j_jsbmb_2019_03_005 crossref_primary_10_1039_D1FO04387K crossref_primary_10_1371_journal_pone_0179226 crossref_primary_10_3389_fendo_2020_00275 crossref_primary_10_3389_fphys_2018_01908 crossref_primary_10_1016_j_plipres_2022_101210 crossref_primary_10_1177_09645284211056663 crossref_primary_10_3390_antibiotics13050392 crossref_primary_10_3390_nu12072124 crossref_primary_10_1016_j_ijbiomac_2023_124259 crossref_primary_10_1152_japplphysiol_00021_2017 crossref_primary_10_1172_JCI136476 crossref_primary_10_3390_ijms241814052 crossref_primary_10_1016_j_expneurol_2020_113504 crossref_primary_10_1530_JOE_17_0503 crossref_primary_10_3892_etm_2017_5232 crossref_primary_10_1631_jzus_B1900158 crossref_primary_10_1038_s12276_025_01411_6 crossref_primary_10_1002_j_2040_4603_2020_tb00108_x crossref_primary_10_3390_gidisord6010005 crossref_primary_10_3389_fendo_2015_00158 crossref_primary_10_1111_jdi_13499 crossref_primary_10_1038_s41467_024_52622_w crossref_primary_10_1111_dom_12585 crossref_primary_10_1038_s41388_020_1349_6 crossref_primary_10_1016_j_ebiom_2020_102766 crossref_primary_10_3390_ijms26146547 crossref_primary_10_3390_ijms23169448 crossref_primary_10_1016_j_cmet_2016_05_005 crossref_primary_10_1016_j_pcad_2018_07_002 crossref_primary_10_1007_s13679_017_0283_6 crossref_primary_10_1530_JOE_18_0598 crossref_primary_10_1186_s12918_019_0705_z crossref_primary_10_1002_cbin_10946 crossref_primary_10_1016_j_tcb_2021_11_009 crossref_primary_10_3389_fimmu_2024_1448116 crossref_primary_10_1016_S2468_1253_23_00357_6 crossref_primary_10_3390_fermentation9010050 crossref_primary_10_15829_1728_8800_2021_2860 crossref_primary_10_3390_antiox11112285 crossref_primary_10_3390_nu14234950 crossref_primary_10_1016_j_jcjd_2017_02_002 crossref_primary_10_1097_XCE_0000000000000074 crossref_primary_10_1038_nm_4185 crossref_primary_10_1016_j_bcp_2018_12_018 crossref_primary_10_1038_s41467_017_02068_0 crossref_primary_10_1007_s00125_022_05829_9 crossref_primary_10_3389_fendo_2023_1215772 crossref_primary_10_1016_j_jhep_2021_02_011 crossref_primary_10_3390_biom15081140 crossref_primary_10_1210_clinem_dgab773 crossref_primary_10_3389_fphar_2017_00468 crossref_primary_10_1016_j_livres_2023_09_002 crossref_primary_10_1038_ijo_2017_7 crossref_primary_10_5534_wjmh_220224 crossref_primary_10_1016_j_cell_2017_01_025 crossref_primary_10_1146_annurev_animal_021419_083852 crossref_primary_10_1016_j_tem_2023_08_002 crossref_primary_10_1111_brv_12389 crossref_primary_10_4252_wjsc_v11_i3_180 crossref_primary_10_2337_db17_1502 crossref_primary_10_1038_s41574_024_01067_8 crossref_primary_10_3390_pharmaceutics13081184 crossref_primary_10_3389_fphys_2019_00374 crossref_primary_10_1016_j_immuni_2016_09_008 crossref_primary_10_1016_j_tem_2019_07_020 crossref_primary_10_1016_j_biochi_2016_12_006 crossref_primary_10_3390_ijms222413440 crossref_primary_10_1210_clinem_dgz025 crossref_primary_10_1210_en_2017_00288 crossref_primary_10_1002_1873_3468_13070 crossref_primary_10_1038_s41575_023_00867_z crossref_primary_10_1016_j_mce_2021_111403 crossref_primary_10_1111_obr_12963 crossref_primary_10_3389_fendo_2023_1239276 crossref_primary_10_1016_j_gene_2024_148421 |
| ContentType | Journal Article |
| Copyright | Copyright © 2015 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2015 Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.cmet.2015.07.002 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1932-7420 |
| ExternalDocumentID | 26235421 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDT AAEDW AAKRW AAKUH AALRI AAMRU AAVLU AAXUO ABJNI ABMAC ACGFO ACGFS ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFTJW AGHFR AGKMS AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 NPM O-L O9- OK1 P2P RIG ROL RPZ SES SSZ TR2 UNMZH 7X8 AAYWO ABDGV ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP EFKBS |
| ID | FETCH-LOGICAL-c466t-81b6d80b23e85982b867bd718d2dcb218a2842030333e40d9ac8e05369b27afb2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 351 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360453900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-7420 |
| IngestDate | Sat Sep 27 21:52:31 EDT 2025 Thu Apr 03 06:59:05 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Copyright © 2015 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c466t-81b6d80b23e85982b867bd718d2dcb218a2842030333e40d9ac8e05369b27afb2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.cmet.2015.07.002 |
| PMID | 26235421 |
| PQID | 1709708501 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1709708501 pubmed_primary_26235421 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-Sep-01 20150901 |
| PublicationDateYYYYMMDD | 2015-09-01 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-Sep-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell metabolism |
| PublicationTitleAlternate | Cell Metab |
| PublicationYear | 2015 |
| SSID | ssj0036393 |
| Score | 2.6192746 |
| Snippet | The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 418 |
| SubjectTerms | Adipocytes, Brown - drug effects Adipocytes, Brown - metabolism Adipose Tissue, Brown - drug effects Adipose Tissue, Brown - metabolism Administration, Oral Adult Cells, Cultured Chenodeoxycholic Acid - administration & dosage Chenodeoxycholic Acid - blood Chenodeoxycholic Acid - pharmacology Energy Metabolism - drug effects Female Humans Receptors, G-Protein-Coupled - metabolism Signal Transduction - drug effects Young Adult |
| Title | The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26235421 https://www.proquest.com/docview/1709708501 |
| Volume | 22 |
| WOSCitedRecordID | wos000360453900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjx_VhfRPBabJJum5xkFRcvLiussLfSTFLcg-1qV9F_7yTp6kkQvPTQB5SZycyXmcl8hFyAdENQcKWZQqookYpFkhUCbVmAQv8HhQFPNpENh3IyUaM24da0bZULn-gdtanB5cgvWRarzM1XY1ezl8ixRrnqakuhsUw6AqGMa-nKJt9VBIHRV4SqMqLIhMftoZnQ3wXP1vVSsp4f3unTKr9ATB9qBpv__cktstGCTNoPVrFNlmy1Q9YC7eTnLnlA26DX6A5oH6aG3jzZqja2_vCucArhLjoO169uG-rz_NTv12nfTGd1Y-nY6wvfDOQTe-RxcDu-uYtaaoUIkjSdoz50amSsubDSjfDTMs20wThluAGNYb_AsMVRjUIIm8RGFSAdiUSqNM-KUvN9slLVlT0kVOJTY0Fq3HkkmiltEkQFoEqQsmQFdMn5QlY5mq6rRxSVrd-a_EdaXXIQBJ7PwoyNnCMs6yWcHf3h62Oy7vQYOr9OSKfEhWtPySq8z6fN65m3CbwOR_dfO-G_KA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Bile+Acid+Chenodeoxycholic+Acid+Increases+Human+Brown+Adipose+Tissue+Activity&rft.jtitle=Cell+metabolism&rft.au=Broeders%2C+Evie+P+M&rft.au=Nascimento%2C+Emmani+B+M&rft.au=Havekes%2C+Bas&rft.au=Brans%2C+Boudewijn&rft.date=2015-09-01&rft.issn=1932-7420&rft.eissn=1932-7420&rft.volume=22&rft.issue=3&rft.spage=418&rft_id=info:doi/10.1016%2Fj.cmet.2015.07.002&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7420&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7420&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7420&client=summon |