Performance evaluation on extended neural network localization algorithm on 5 g new radio technology

With the rapid growth of fifth-generation (5G) networks, there is an increasing demand for high-precision localisation, achieving which is a major challenge in real-time applications in dynamic and noisy environments. Signal noise and incomplete data, including time difference of arrival (TDoA), ang...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 15; číslo 1; s. 15354 - 26
Hlavní autoři: R, Deebalakshmi, Markkandan, S, Arjunan, Vinodh Kumar
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 02.05.2025
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the rapid growth of fifth-generation (5G) networks, there is an increasing demand for high-precision localisation, achieving which is a major challenge in real-time applications in dynamic and noisy environments. Signal noise and incomplete data, including time difference of arrival (TDoA), angle of arrival (AoA), and frequency of arrival (FoA), often limit traditional methods from achieving improved localization. This research proposes an advanced hybrid localisation method combining Extended Kalman Filter (EKF) and Extended Neural Network (ENN) with HackRF-based software-defined radios (SDRs) to improve the real-time localization in 5G environments. The method achieves a better localization accuracy by using EKF for noise reduction and ENN for localization data fusion and combining FoA, AoA, and TDoA measurements. Experiments using real-time 5G signal data show that the proposed EKF-ENN fusion outperforms the existing methods. It obtains an AoA mean of 0.08 radians (SD = 0.014 rad), a TDoA mean of 0.020 s (SD = 0.003 s), and a FoA mean of 0.49 Hz (SD = 0.09 Hz). Its Mean Squared Error (MSE) of 1.06e 6 and Signal-to-Noise Ratio (SNR) of 11.7 dB show that it attains better performance than existing ones. Its increased localisation accuracy and signal processing efficiency qualifies it for real-time usage in next-generation wireless networks.
AbstractList With the rapid growth of fifth-generation (5G) networks, there is an increasing demand for high-precision localisation, achieving which is a major challenge in real-time applications in dynamic and noisy environments. Signal noise and incomplete data, including time difference of arrival (TDoA), angle of arrival (AoA), and frequency of arrival (FoA), often limit traditional methods from achieving improved localization. This research proposes an advanced hybrid localisation method combining Extended Kalman Filter (EKF) and Extended Neural Network (ENN) with HackRF-based software-defined radios (SDRs) to improve the real-time localization in 5G environments. The method achieves a better localization accuracy by using EKF for noise reduction and ENN for localization data fusion and combining FoA, AoA, and TDoA measurements. Experiments using real-time 5G signal data show that the proposed EKF-ENN fusion outperforms the existing methods. It obtains an AoA mean of 0.08 radians (SD = 0.014 rad), a TDoA mean of 0.020 s (SD = 0.003 s), and a FoA mean of 0.49 Hz (SD = 0.09 Hz). Its Mean Squared Error (MSE) of 1.06e and Signal-to-Noise Ratio (SNR) of 11.7 dB show that it attains better performance than existing ones. Its increased localisation accuracy and signal processing efficiency qualifies it for real-time usage in next-generation wireless networks.
With the rapid growth of fifth-generation (5G) networks, there is an increasing demand for high-precision localisation, achieving which is a major challenge in real-time applications in dynamic and noisy environments. Signal noise and incomplete data, including time difference of arrival (TDoA), angle of arrival (AoA), and frequency of arrival (FoA), often limit traditional methods from achieving improved localization. This research proposes an advanced hybrid localisation method combining Extended Kalman Filter (EKF) and Extended Neural Network (ENN) with HackRF-based software-defined radios (SDRs) to improve the real-time localization in 5G environments. The method achieves a better localization accuracy by using EKF for noise reduction and ENN for localization data fusion and combining FoA, AoA, and TDoA measurements. Experiments using real-time 5G signal data show that the proposed EKF-ENN fusion outperforms the existing methods. It obtains an AoA mean of 0.08 radians (SD = 0.014 rad), a TDoA mean of 0.020 s (SD = 0.003 s), and a FoA mean of 0.49 Hz (SD = 0.09 Hz). Its Mean Squared Error (MSE) of 1.06e 6 and Signal-to-Noise Ratio (SNR) of 11.7 dB show that it attains better performance than existing ones. Its increased localisation accuracy and signal processing efficiency qualifies it for real-time usage in next-generation wireless networks.
Abstract With the rapid growth of fifth-generation (5G) networks, there is an increasing demand for high-precision localisation, achieving which is a major challenge in real-time applications in dynamic and noisy environments. Signal noise and incomplete data, including time difference of arrival (TDoA), angle of arrival (AoA), and frequency of arrival (FoA), often limit traditional methods from achieving improved localization. This research proposes an advanced hybrid localisation method combining Extended Kalman Filter (EKF) and Extended Neural Network (ENN) with HackRF-based software-defined radios (SDRs) to improve the real-time localization in 5G environments. The method achieves a better localization accuracy by using EKF for noise reduction and ENN for localization data fusion and combining FoA, AoA, and TDoA measurements. Experiments using real-time 5G signal data show that the proposed EKF-ENN fusion outperforms the existing methods. It obtains an AoA mean of 0.08 radians (SD = 0.014 rad), a TDoA mean of 0.020 s (SD = 0.003 s), and a FoA mean of 0.49 Hz (SD = 0.09 Hz). Its Mean Squared Error (MSE) of 1.06e6 and Signal-to-Noise Ratio (SNR) of 11.7 dB show that it attains better performance than existing ones. Its increased localisation accuracy and signal processing efficiency qualifies it for real-time usage in next-generation wireless networks.
With the rapid growth of fifth-generation (5G) networks, there is an increasing demand for high-precision localisation, achieving which is a major challenge in real-time applications in dynamic and noisy environments. Signal noise and incomplete data, including time difference of arrival (TDoA), angle of arrival (AoA), and frequency of arrival (FoA), often limit traditional methods from achieving improved localization. This research proposes an advanced hybrid localisation method combining Extended Kalman Filter (EKF) and Extended Neural Network (ENN) with HackRF-based software-defined radios (SDRs) to improve the real-time localization in 5G environments. The method achieves a better localization accuracy by using EKF for noise reduction and ENN for localization data fusion and combining FoA, AoA, and TDoA measurements. Experiments using real-time 5G signal data show that the proposed EKF-ENN fusion outperforms the existing methods. It obtains an AoA mean of 0.08 radians (SD = 0.014 rad), a TDoA mean of 0.020 s (SD = 0.003 s), and a FoA mean of 0.49 Hz (SD = 0.09 Hz). Its Mean Squared Error (MSE) of 1.06e6 and Signal-to-Noise Ratio (SNR) of 11.7 dB show that it attains better performance than existing ones. Its increased localisation accuracy and signal processing efficiency qualifies it for real-time usage in next-generation wireless networks.With the rapid growth of fifth-generation (5G) networks, there is an increasing demand for high-precision localisation, achieving which is a major challenge in real-time applications in dynamic and noisy environments. Signal noise and incomplete data, including time difference of arrival (TDoA), angle of arrival (AoA), and frequency of arrival (FoA), often limit traditional methods from achieving improved localization. This research proposes an advanced hybrid localisation method combining Extended Kalman Filter (EKF) and Extended Neural Network (ENN) with HackRF-based software-defined radios (SDRs) to improve the real-time localization in 5G environments. The method achieves a better localization accuracy by using EKF for noise reduction and ENN for localization data fusion and combining FoA, AoA, and TDoA measurements. Experiments using real-time 5G signal data show that the proposed EKF-ENN fusion outperforms the existing methods. It obtains an AoA mean of 0.08 radians (SD = 0.014 rad), a TDoA mean of 0.020 s (SD = 0.003 s), and a FoA mean of 0.49 Hz (SD = 0.09 Hz). Its Mean Squared Error (MSE) of 1.06e6 and Signal-to-Noise Ratio (SNR) of 11.7 dB show that it attains better performance than existing ones. Its increased localisation accuracy and signal processing efficiency qualifies it for real-time usage in next-generation wireless networks.
With the rapid growth of fifth-generation (5G) networks, there is an increasing demand for high-precision localisation, achieving which is a major challenge in real-time applications in dynamic and noisy environments. Signal noise and incomplete data, including time difference of arrival (TDoA), angle of arrival (AoA), and frequency of arrival (FoA), often limit traditional methods from achieving improved localization. This research proposes an advanced hybrid localisation method combining Extended Kalman Filter (EKF) and Extended Neural Network (ENN) with HackRF-based software-defined radios (SDRs) to improve the real-time localization in 5G environments. The method achieves a better localization accuracy by using EKF for noise reduction and ENN for localization data fusion and combining FoA, AoA, and TDoA measurements. Experiments using real-time 5G signal data show that the proposed EKF-ENN fusion outperforms the existing methods. It obtains an AoA mean of 0.08 radians (SD = 0.014 rad), a TDoA mean of 0.020 s (SD = 0.003 s), and a FoA mean of 0.49 Hz (SD = 0.09 Hz). Its Mean Squared Error (MSE) of 1.06e6 and Signal-to-Noise Ratio (SNR) of 11.7 dB show that it attains better performance than existing ones. Its increased localisation accuracy and signal processing efficiency qualifies it for real-time usage in next-generation wireless networks.
ArticleNumber 15354
Author R, Deebalakshmi
Markkandan, S
Arjunan, Vinodh Kumar
Author_xml – sequence: 1
  givenname: Deebalakshmi
  surname: R
  fullname: R, Deebalakshmi
  organization: School of Computing, SRM Institute of Science and Technology
– sequence: 2
  givenname: S
  surname: Markkandan
  fullname: Markkandan, S
  email: markkandan.s@vit.ac.in
  organization: School of Electronics Engineering (SENSE), Vellore Institute of Technology
– sequence: 3
  givenname: Vinodh Kumar
  surname: Arjunan
  fullname: Arjunan, Vinodh Kumar
  organization: Cognizant(USA)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40316598$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1TAQhSNUREvpC7BAWbIJ-DfXXiFUFahUCRawtib2JDcXxy520lKehmfhyfBtStVusCyNZX_njDwzz6uDEANW1UtK3lDC1dssqNSqIUw2um03vJFPqiNGhGwYZ-zgwfmwOsl5R8qSTAuqn1WHgnDaFvlRhV8w9TFNECzWeAV-gXmMoS4bf84YHLo64JLAlzBfx_S99tGCH3-tHPghpnHeTnuF_PN7KNh1ncCNsZ7RbkP0cbh5UT3twWc8uYvH1bcPZ19PPzUXnz-en76_aKxo27mRnbbArNx0aEEK3ilKlLJkA65E0olObbiVrSMOEAvjBJaPKNdbq4EiP67OV18XYWcu0zhBujERRnN7EdNgIM2j9Wh6x1nvNCNtqwSjWiuqJaFOCuCkB1283q1el0s3obMY5lKFR6aPX8K4NUO8MrRUXsmWF4fXdw4p_lgwz2Yas0XvIWBcsuH7rEIyRQr66mGy-yz_GlUAtgI2xZwT9vcIJWY_EGYdCFMGwtwOhJFFxFdRLnAYMJldXFIoHfif6i8lnrsx
Cites_doi 10.1109/ACCESS.2022.3169267
10.1145/3393667
10.1109/JSEN.2018.2880180
10.1016/j.comnet.2022.109041
10.1007/s11277-021-08209-5
10.1109/ACCESS.2024.3384625
10.1109/TITS.2020.2997472
10.1109/JIOT.2023.3234123
10.1186/s13638-020-1641-8
10.3390/s23031311
10.1109/PIMRC50174.2021.9569299
10.1109/TVT.2020.2987039
10.1109/LCOMM.2024.3357285
10.1109/TWC.2021.3061985
10.1109/TGRS.2024.3463003
10.1109/ACCESS.2023.3323634
10.1007/s12204-023-2686-8
10.1016/j.simpat.2022.102543
10.1007/s11277-024-11257-2
10.1109/TMTT.2022.3194563
10.1109/TIM.2022.3196748
10.1109/TIM.2021.3126847
10.1109/JIOT.2024.3435958
10.1109/TVT.2024.3421383
10.1016/j.adhoc.2023.103177
10.1109/LWC.2022.3190423
10.1109/OJSP.2023.3249121
10.3390/s21238086
10.1109/OJVT.2021.3078551
10.1109/COMST.2022.3177305
10.1109/TITS.2020.3032645
10.1109/ICL-GNSS49876.2020.9115530
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1038/s41598-025-96673-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - NZ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 26
ExternalDocumentID oai_doaj_org_article_fd32fd92066842199819501d54a30fa9
PMC12048563
40316598
10_1038_s41598_025_96673_5
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c466t-5b9ca2c57beca543b81088c07ad0880b4b873c56d0daeeecad4e3168dfcc9a1e3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001480669100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:03:35 EDT 2025
Tue Nov 04 02:03:22 EST 2025
Fri Sep 05 17:15:57 EDT 2025
Mon Jul 21 05:31:18 EDT 2025
Sat Nov 29 07:57:19 EST 2025
Sat May 03 01:19:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 5G
Extreme Learning Machine
Localization
Extended Kalman Filter
HackRF
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-5b9ca2c57beca543b81088c07ad0880b4b873c56d0daeeecad4e3168dfcc9a1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/fd32fd92066842199819501d54a30fa9
PMID 40316598
PQID 3199845280
PQPubID 23479
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_fd32fd92066842199819501d54a30fa9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12048563
proquest_miscellaneous_3199845280
pubmed_primary_40316598
crossref_primary_10_1038_s41598_025_96673_5
springer_journals_10_1038_s41598_025_96673_5
PublicationCentury 2000
PublicationDate 2025-05-02
PublicationDateYYYYMMDD 2025-05-02
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References M Hoffmann (96673_CR17) 2020; 2020
96673_CR29
T Yang (96673_CR10) 2021; 21
B Wang (96673_CR25) 2022; 11
B Li (96673_CR27) 2023; 4
K Shamaei (96673_CR20) 2021; 20
Z Abu-Shaban (96673_CR16) 2020; 69
C Yang (96673_CR26) 2023; 23
M Elsanhoury (96673_CR7) 2022; 10
H Obeidat (96673_CR1) 2021; 119
J Bauer (96673_CR11) 2020; 1
O Altay (96673_CR13) 2024; 136
E Sippel (96673_CR22) 2021; 2
96673_CR31
96673_CR30
96673_CR33
A Pourkabirian (96673_CR9) 2023; 145
96673_CR35
96673_CR34
SM Asaad (96673_CR8) 2022; 212
96673_CR15
B Lashkari (96673_CR5) 2018; 19
J Vanhoof (96673_CR6) 2012
Z Liu (96673_CR12) 2023; 10
Y Ruan (96673_CR23) 2022; 71
G Wainer (96673_CR24) 2022; 118
Q Zheng (96673_CR3) 2021; 70
H Kim (96673_CR18) 2020; 23
A Al-Hourani (96673_CR32) 2024; 28
K Lin (96673_CR19) 2020; 22
96673_CR21
A Shastri (96673_CR4) 2022; 24
SN Shoudha (96673_CR28) 2023; 11
R Sharma (96673_CR14) 2023
HC Yen (96673_CR2) 2022; 70
References_xml – volume: 10
  start-page: 44413
  year: 2022
  ident: 96673_CR7
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2022.3169267
– volume: 1
  start-page: 1
  issue: 4
  year: 2020
  ident: 96673_CR11
  publication-title: ACM Trans. Internet Th.
  doi: 10.1145/3393667
– volume: 19
  start-page: 2408
  issue: 7
  year: 2018
  ident: 96673_CR5
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2880180
– volume: 212
  start-page: 109041
  year: 2022
  ident: 96673_CR8
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2022.109041
– volume: 119
  start-page: 289
  year: 2021
  ident: 96673_CR1
  publication-title: Wireless Pers. Commun.
  doi: 10.1007/s11277-021-08209-5
– ident: 96673_CR31
  doi: 10.1109/ACCESS.2024.3384625
– volume: 22
  start-page: 5232
  issue: 8
  year: 2020
  ident: 96673_CR19
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.2997472
– volume: 10
  start-page: 9782
  issue: 11
  year: 2023
  ident: 96673_CR12
  publication-title: IEEE Internet Th. J.
  doi: 10.1109/JIOT.2023.3234123
– volume: 2020
  start-page: 31
  issue: 1
  year: 2020
  ident: 96673_CR17
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/s13638-020-1641-8
– volume: 23
  start-page: 1311
  issue: 3
  year: 2023
  ident: 96673_CR26
  publication-title: Sensors
  doi: 10.3390/s23031311
– volume-title: High-level synthesis for real-time digital signal processing
  year: 2012
  ident: 96673_CR6
– ident: 96673_CR21
  doi: 10.1109/PIMRC50174.2021.9569299
– volume: 69
  start-page: 6388
  issue: 6
  year: 2020
  ident: 96673_CR16
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.2987039
– volume: 28
  start-page: 622
  issue: 3
  year: 2024
  ident: 96673_CR32
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2024.3357285
– volume: 20
  start-page: 4716
  issue: 7
  year: 2021
  ident: 96673_CR20
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2021.3061985
– ident: 96673_CR35
  doi: 10.1109/TGRS.2024.3463003
– volume: 11
  start-page: 112470
  year: 2023
  ident: 96673_CR28
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2023.3323634
– ident: 96673_CR33
  doi: 10.1007/s12204-023-2686-8
– volume: 118
  start-page: 102543
  year: 2022
  ident: 96673_CR24
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2022.102543
– volume: 136
  start-page: 289
  issue: 1
  year: 2024
  ident: 96673_CR13
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-024-11257-2
– volume: 70
  start-page: 4511
  issue: 10
  year: 2022
  ident: 96673_CR2
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2022.3194563
– volume: 71
  start-page: 1
  year: 2022
  ident: 96673_CR23
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3196748
– volume: 70
  start-page: 1
  year: 2021
  ident: 96673_CR3
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3126847
– ident: 96673_CR29
  doi: 10.1109/JIOT.2024.3435958
– ident: 96673_CR30
  doi: 10.1109/TVT.2024.3421383
– volume: 145
  start-page: 103177
  year: 2023
  ident: 96673_CR9
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2023.103177
– volume: 11
  start-page: 1980
  issue: 9
  year: 2022
  ident: 96673_CR25
  publication-title: IEEE Wire. Commun. Lett.
  doi: 10.1109/LWC.2022.3190423
– volume: 4
  start-page: 117
  year: 2023
  ident: 96673_CR27
  publication-title: IEEE Open J. Signal Process.
  doi: 10.1109/OJSP.2023.3249121
– volume: 21
  start-page: 8086
  issue: 23
  year: 2021
  ident: 96673_CR10
  publication-title: Sensors
  doi: 10.3390/s21238086
– volume: 2
  start-page: 207
  year: 2021
  ident: 96673_CR22
  publication-title: IEEE Open J. Veh. Technol.
  doi: 10.1109/OJVT.2021.3078551
– volume: 24
  start-page: 1708
  issue: 3
  year: 2022
  ident: 96673_CR4
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2022.3177305
– volume: 23
  start-page: 3180
  issue: 4
  year: 2020
  ident: 96673_CR18
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3032645
– ident: 96673_CR15
  doi: 10.1109/ICL-GNSS49876.2020.9115530
– start-page: 1
  volume-title: Adaptive Power Quality for Power Management Units using Smart Technologies
  year: 2023
  ident: 96673_CR14
– ident: 96673_CR34
SSID ssj0000529419
Score 2.459666
Snippet With the rapid growth of fifth-generation (5G) networks, there is an increasing demand for high-precision localisation, achieving which is a major challenge in...
Abstract With the rapid growth of fifth-generation (5G) networks, there is an increasing demand for high-precision localisation, achieving which is a major...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 15354
SubjectTerms 639/166
639/766/25
Extended Kalman Filter
Extreme Learning Machine
HackRF
Humanities and Social Sciences
Localization
multidisciplinary
Science
Science (multidisciplinary)
Title Performance evaluation on extended neural network localization algorithm on 5 g new radio technology
URI https://link.springer.com/article/10.1038/s41598-025-96673-5
https://www.ncbi.nlm.nih.gov/pubmed/40316598
https://www.proquest.com/docview/3199845280
https://pubmed.ncbi.nlm.nih.gov/PMC12048563
https://doaj.org/article/fd32fd92066842199819501d54a30fa9
Volume 15
WOSCitedRecordID wos001480669100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals - NZ
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFD7orsK-iPetl6GCb1q2ubXJoyu7KLhDEYXxKaS57A5oR2a6iv_G3-Iv8yTtzO6o6ItQUmjTNsl3kpMm53wH4CnnAbViMEWgJBSclrxQlTKFtbL1RAYqbYpa8qaeTuVspppLob6iTdhADzw03EFwjAanIuu45DR6hMXApcQJblgZTHLdK2t16WdqYPWmihM1esmUTB6sUFNFbzIqIiFlzQqxpYkSYf-fZpm_G0v-smOaFNHxTbgxziDzF0PJb8EV392G60NMyW93wDcXrgD5BZd3jsd6wTuPJJb4im4wAc-TPhv9MXPz8XSxnPdnn-IT4sf3U8z2NV8aN1_k_WYd_i68Pz569_JVMcZSKCyvqr4QrbKGWlEjZkZw1kqC44sta-PwXLa8lTWzonKlM95jHsd9jGnlgrXKEM_uwU636Pw-5JQ4xNS3rS8db4k0XDqFAlkFRAT7fwbP1u2qPw-UGTptdTOpBxQ0oqATClpkcBibfpMz0l2nCygEehQC_S8hyODJGjiN3SPueZjOL85XmsXMXFBZZnB_AHLzKY4DWoXFyUBuQbxVlu073fwsUXCTyHcsKpbB87U06LHzr_5S2Qf_o7IPYY9GMY5Wl_QR7PTLc_8Yrtkv_Xy1nMDVelanVE5g9_Bo2rydpL6B6QltYlpjutu8Pmk-_AT34xQD
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+on+extended+neural+network+localization+algorithm+on+5+g+new+radio+technology&rft.jtitle=Scientific+reports&rft.au=R%2C+Deebalakshmi&rft.au=Markkandan%2C+S&rft.au=Arjunan%2C+Vinodh+Kumar&rft.date=2025-05-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=15354&rft_id=info:doi/10.1038%2Fs41598-025-96673-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon