Smart deep learning model for enhanced IoT intrusion detection

Growing volumes and sensitivities of information in the growing IoT require strong cybersecurity measures to adequately counter increasingly sophisticated cyberattacks. Machine learning-based anomaly detection has the potential to be a viable solution through abnormal network traffic behavior identi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 20577 - 23
Hlavný autor: Alsubaei, Faisal S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 01.07.2025
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Growing volumes and sensitivities of information in the growing IoT require strong cybersecurity measures to adequately counter increasingly sophisticated cyberattacks. Machine learning-based anomaly detection has the potential to be a viable solution through abnormal network traffic behavior identification that foretells intrusions. Existing approaches, however, are usually hampered by the inability to effectively counter the sophisticated and evolving nature of such threats, especially in preprocessing optimization and hyperparameter tuning, which typically adopt conventional machine learning and deep learning models. This paper addresses these limitations with large preprocessing steps followed by hyperparameter tuning of machine learning XGBoost and deep learning Sequential Neural Network (OSNN) algorithms through Grid Search for their best values to improve multiclass intrusion detection across varied datasets. These deep models were then augmented with a variety of various filters, kernels, activation functions, and regularization techniques in an attempt to boost them in detecting complex, multiclass intrusion patterns. The proposed system was tested comprehensively on three challenging datasets: NSL-KDD, UNSW-NB15, and CICIDS2017. The optimized XGBoost model worked exceptionally well on the NSL-KDD dataset with very high accuracy (99.93%), F1-score (99.84%), MCC (99.86%), and a very low FPR (0.0004). The optimized SNN model also performed well on the NSL-KDD dataset with an accuracy of 99.0% and an AUC of 1.00. Also, the OSNN model performed very well on UNSW-NB15 dataset with an accuracy of 96.80% and a loss of 0.0777, as well as on the CICIDS-2017 dataset with an accuracy of 99.53% and a loss of 0.0236. This superb performance of the OSNN model can be explained by the careful optimization of hyperparameters like strong activation functions (ReLU, GeLU, LeakyReLU), learning rates, dropout rates, and regularization techniques that enable it to learn intricate intrusion patterns efficiently using various datasets. These results highlight the potential of our proposed method to enhance intrusion detection, system integrity, fraud prevention, and ultimately optimize overall network performance.
AbstractList Growing volumes and sensitivities of information in the growing IoT require strong cybersecurity measures to adequately counter increasingly sophisticated cyberattacks. Machine learning-based anomaly detection has the potential to be a viable solution through abnormal network traffic behavior identification that foretells intrusions. Existing approaches, however, are usually hampered by the inability to effectively counter the sophisticated and evolving nature of such threats, especially in preprocessing optimization and hyperparameter tuning, which typically adopt conventional machine learning and deep learning models. This paper addresses these limitations with large preprocessing steps followed by hyperparameter tuning of machine learning XGBoost and deep learning Sequential Neural Network (OSNN) algorithms through Grid Search for their best values to improve multiclass intrusion detection across varied datasets. These deep models were then augmented with a variety of various filters, kernels, activation functions, and regularization techniques in an attempt to boost them in detecting complex, multiclass intrusion patterns. The proposed system was tested comprehensively on three challenging datasets: NSL-KDD, UNSW-NB15, and CICIDS2017. The optimized XGBoost model worked exceptionally well on the NSL-KDD dataset with very high accuracy (99.93%), F1-score (99.84%), MCC (99.86%), and a very low FPR (0.0004). The optimized SNN model also performed well on the NSL-KDD dataset with an accuracy of 99.0% and an AUC of 1.00. Also, the OSNN model performed very well on UNSW-NB15 dataset with an accuracy of 96.80% and a loss of 0.0777, as well as on the CICIDS-2017 dataset with an accuracy of 99.53% and a loss of 0.0236. This superb performance of the OSNN model can be explained by the careful optimization of hyperparameters like strong activation functions (ReLU, GeLU, LeakyReLU), learning rates, dropout rates, and regularization techniques that enable it to learn intricate intrusion patterns efficiently using various datasets. These results highlight the potential of our proposed method to enhance intrusion detection, system integrity, fraud prevention, and ultimately optimize overall network performance.Growing volumes and sensitivities of information in the growing IoT require strong cybersecurity measures to adequately counter increasingly sophisticated cyberattacks. Machine learning-based anomaly detection has the potential to be a viable solution through abnormal network traffic behavior identification that foretells intrusions. Existing approaches, however, are usually hampered by the inability to effectively counter the sophisticated and evolving nature of such threats, especially in preprocessing optimization and hyperparameter tuning, which typically adopt conventional machine learning and deep learning models. This paper addresses these limitations with large preprocessing steps followed by hyperparameter tuning of machine learning XGBoost and deep learning Sequential Neural Network (OSNN) algorithms through Grid Search for their best values to improve multiclass intrusion detection across varied datasets. These deep models were then augmented with a variety of various filters, kernels, activation functions, and regularization techniques in an attempt to boost them in detecting complex, multiclass intrusion patterns. The proposed system was tested comprehensively on three challenging datasets: NSL-KDD, UNSW-NB15, and CICIDS2017. The optimized XGBoost model worked exceptionally well on the NSL-KDD dataset with very high accuracy (99.93%), F1-score (99.84%), MCC (99.86%), and a very low FPR (0.0004). The optimized SNN model also performed well on the NSL-KDD dataset with an accuracy of 99.0% and an AUC of 1.00. Also, the OSNN model performed very well on UNSW-NB15 dataset with an accuracy of 96.80% and a loss of 0.0777, as well as on the CICIDS-2017 dataset with an accuracy of 99.53% and a loss of 0.0236. This superb performance of the OSNN model can be explained by the careful optimization of hyperparameters like strong activation functions (ReLU, GeLU, LeakyReLU), learning rates, dropout rates, and regularization techniques that enable it to learn intricate intrusion patterns efficiently using various datasets. These results highlight the potential of our proposed method to enhance intrusion detection, system integrity, fraud prevention, and ultimately optimize overall network performance.
Growing volumes and sensitivities of information in the growing IoT require strong cybersecurity measures to adequately counter increasingly sophisticated cyberattacks. Machine learning-based anomaly detection has the potential to be a viable solution through abnormal network traffic behavior identification that foretells intrusions. Existing approaches, however, are usually hampered by the inability to effectively counter the sophisticated and evolving nature of such threats, especially in preprocessing optimization and hyperparameter tuning, which typically adopt conventional machine learning and deep learning models. This paper addresses these limitations with large preprocessing steps followed by hyperparameter tuning of machine learning XGBoost and deep learning Sequential Neural Network (OSNN) algorithms through Grid Search for their best values to improve multiclass intrusion detection across varied datasets. These deep models were then augmented with a variety of various filters, kernels, activation functions, and regularization techniques in an attempt to boost them in detecting complex, multiclass intrusion patterns. The proposed system was tested comprehensively on three challenging datasets: NSL-KDD, UNSW-NB15, and CICIDS2017. The optimized XGBoost model worked exceptionally well on the NSL-KDD dataset with very high accuracy (99.93%), F1-score (99.84%), MCC (99.86%), and a very low FPR (0.0004). The optimized SNN model also performed well on the NSL-KDD dataset with an accuracy of 99.0% and an AUC of 1.00. Also, the OSNN model performed very well on UNSW-NB15 dataset with an accuracy of 96.80% and a loss of 0.0777, as well as on the CICIDS-2017 dataset with an accuracy of 99.53% and a loss of 0.0236. This superb performance of the OSNN model can be explained by the careful optimization of hyperparameters like strong activation functions (ReLU, GeLU, LeakyReLU), learning rates, dropout rates, and regularization techniques that enable it to learn intricate intrusion patterns efficiently using various datasets. These results highlight the potential of our proposed method to enhance intrusion detection, system integrity, fraud prevention, and ultimately optimize overall network performance.
Abstract Growing volumes and sensitivities of information in the growing IoT require strong cybersecurity measures to adequately counter increasingly sophisticated cyberattacks. Machine learning-based anomaly detection has the potential to be a viable solution through abnormal network traffic behavior identification that foretells intrusions. Existing approaches, however, are usually hampered by the inability to effectively counter the sophisticated and evolving nature of such threats, especially in preprocessing optimization and hyperparameter tuning, which typically adopt conventional machine learning and deep learning models. This paper addresses these limitations with large preprocessing steps followed by hyperparameter tuning of machine learning XGBoost and deep learning Sequential Neural Network (OSNN) algorithms through Grid Search for their best values to improve multiclass intrusion detection across varied datasets. These deep models were then augmented with a variety of various filters, kernels, activation functions, and regularization techniques in an attempt to boost them in detecting complex, multiclass intrusion patterns. The proposed system was tested comprehensively on three challenging datasets: NSL-KDD, UNSW-NB15, and CICIDS2017. The optimized XGBoost model worked exceptionally well on the NSL-KDD dataset with very high accuracy (99.93%), F1-score (99.84%), MCC (99.86%), and a very low FPR (0.0004). The optimized SNN model also performed well on the NSL-KDD dataset with an accuracy of 99.0% and an AUC of 1.00. Also, the OSNN model performed very well on UNSW-NB15 dataset with an accuracy of 96.80% and a loss of 0.0777, as well as on the CICIDS-2017 dataset with an accuracy of 99.53% and a loss of 0.0236. This superb performance of the OSNN model can be explained by the careful optimization of hyperparameters like strong activation functions (ReLU, GeLU, LeakyReLU), learning rates, dropout rates, and regularization techniques that enable it to learn intricate intrusion patterns efficiently using various datasets. These results highlight the potential of our proposed method to enhance intrusion detection, system integrity, fraud prevention, and ultimately optimize overall network performance.
ArticleNumber 20577
Author Alsubaei, Faisal S.
Author_xml – sequence: 1
  givenname: Faisal S.
  surname: Alsubaei
  fullname: Alsubaei, Faisal S.
  email: fsalsubaei@uj.edu.sa
  organization: Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40596059$$D View this record in MEDLINE/PubMed
BookMark eNp9UctOHDEQtCKi8PyBHKI5chlitx9rX0AIkWQlpBwCZ8tr9yyzmrU39gwSf49hCIJLLFlutauqH3VI9mKKSMhXRs8Y5fp7EUwa3VKQLVVc8VZ-IgdAhWyBA-y9i_fJSSkbWo8EI5j5QvYFlUbVe0DO_2xdHpuAuGsGdDn2cd1sU8Ch6VJuMN676DE0y3Tb9HHMU-lTrPAR_VijY_K5c0PBk9f3iNz9uL69-tXe_P65vLq8ab1QamyFU8BDh9qBUo5zEeRCUlBY25ew8hQRDAMEITQPK8lY551mHDqBAYzmR2Q564bkNnaX-9r1o02uty-JlNe2jtH7AW23AGU4Ewu9UEKHlal0KQJz2jHPOK1aF7PWblptMXisY7nhg-jHn9jf23V6sAyASWFYVTh9Vcjp74RltNu-eBwGFzFNxdalKy4Vk8_Fvr0v9lblnwMVADPA51RKxu4Nwqh9dtrOTtu6KvvitJWVxGdSqeC4xmw3acqxOvA_1hO7sajU
Cites_doi 10.1109/ACCESS.2021.3119621
10.1007/s00366-021-01393-9
10.1109/INMIC50486.2020.9318106
10.1109/ACCESS.2022.3182333
10.1007/s00500-015-1942-8
10.1038/s41583-023-00705-w
10.1109/SIU.2016.7496029
10.1109/SURV.2010.032210.00054
10.1016/j.teler.2024.100130
10.1016/j.scs.2020.102275
10.1016/j.cose.2020.101752
10.1007/s13198-021-01558-1
10.1109/CISDA.2009.5356528
10.3390/electronics10151854
10.1007/s11042-023-17372-9
10.1109/eIT53891.2022.9813983
10.3390/info10110356
10.1016/j.phycom.2015.11.004
10.1080/01495933.2023.2236489
10.1109/ACCESS.2017.2762418
10.1016/j.sciaf.2020.e00497
10.1109/PST52912.2021.9647828
10.1080/17455030.2023.2189485
10.1109/ACCESS.2020.3034015
10.1080/09599916.2022.2070525
10.1007/978-3-030-70569-5_18
10.3390/app12010136
10.1016/j.petrol.2021.109520
10.1049/iet-ifs.2019.0294
10.1007/978-3-030-27192-3_9
10.1109/ICAML54311.2021.00019
10.1109/ACCESS.2021.3057654
10.1016/j.cose.2021.102585
10.3390/s23020890
10.1609/aaai.v30i1.10287
10.1007/s11276-020-02321-3
10.1016/j.vehcom.2022.100471
10.1016/j.procs.2024.04.072
10.1080/25751654.2021.1918932
10.1109/SURV.2013.102913.00020
10.1109/ACCESS.2020.2972627
10.1016/j.compeleceng.2023.108731
10.1016/j.eswa.2023.122181
10.3390/info12020050
10.32604/cmes.2022.020724
10.1016/j.cose.2025.104417
10.1007/s41870-022-01115-4
10.1007/s13042-024-02465-0
10.1007/s00521-017-3128-z
10.1109/TNSM.2020.3032618
10.1007/978-3-030-04212-7_53
10.3390/sym15030568
10.32628/CSEIT195215
10.1016/j.compeleceng.2022.108410
10.1016/j.dss.2024.114351
10.1016/j.jksuci.2020.10.013
10.32604/cmc.2023.032617
10.1007/978-3-030-81462-5_26
10.1109/ICASID.2019.8925239
10.1109/ACCESS.2022.3221400
10.1016/j.procs.2020.03.438
10.1016/j.comnet.2020.107247
10.1109/ISCAS.2019.8702583
10.1109/ACCESS.2019.2923640
10.1109/JIOT.2021.3060878
10.1016/j.energy.2022.126174
10.1007/978-3-031-54547-4_8
10.1016/j.eij.2025.100666
10.1080/08839514.2023.2166222
10.1007/s11277-022-10155-9
10.1002/ett.4150
10.1109/TPAMI.2021.3117837
10.1016/j.iot.2025.101519
10.1016/j.sciaf.2020.e00500
10.1007/978-981-16-8664-1_30
10.1109/ACCESS.2023.3266979
10.1016/B978-0-12-810408-8.00016-X
10.1007/978-3-030-04503-6_14
10.1109/ACCESS.2019.2928048
10.1109/ACCESS.2022.3190416
10.1109/WINCOM.2016.7777224
10.1016/j.seta.2022.102852
10.3389/fncel.2023.1220030
10.1109/ACCESS.2019.2905633
10.1109/BigDataSecurity-HPSC-IDS.2019.00062
10.1007/978-3-030-06158-6_9
10.1016/j.comcom.2022.12.010
10.1109/JPROC.2021.3067593
10.1109/ICC45855.2022.9838780
10.1109/AIC57670.2023.10263974
10.1038/s41598-018-27169-8
10.32604/cmc.2022.019127
10.1080/17455030.2022.2091807
10.36548/jismac.2020.4.002
10.1109/LCN48667.2020.9314858
10.14569/IJACSA.2020.0110670
10.1016/j.cose.2024.104109
10.1007/s00500-020-04963-z
10.2174/1872212112666180402122150
10.1109/LSENS.2018.2879990
10.1080/14751798.2020.1857911
10.1109/JIOT.2020.2996590
10.3390/sym13101764
10.1109/MIS.2014.92
10.1109/ICSSIT48917.2020.9214206
10.1029/2018WR022643
10.1016/j.neunet.2020.08.001
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1038/s41598-025-06363-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 23
ExternalDocumentID oai_doaj_org_article_f7269314787648db998354d1a8a1c130
PMC12215491
40596059
10_1038_s41598_025_06363_5
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c466t-4a623dfe8a266a334d575026e02552bc0ee2912e24483db511fca8132f4ed2983
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001522986200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:35:22 EST 2025
Tue Nov 04 02:04:53 EST 2025
Tue Aug 26 08:57:45 EDT 2025
Sat Jul 05 01:30:32 EDT 2025
Sun Nov 09 14:48:02 EST 2025
Wed Jul 02 02:43:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Intrusion detection systems (IDS)
Optimized sequential neural network
Optimized XGBoost
Cyber security
Intrusion detection
Internet of things (IoT)
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-4a623dfe8a266a334d575026e02552bc0ee2912e24483db511fca8132f4ed2983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/f7269314787648db998354d1a8a1c130
PMID 40596059
PQID 3226356150
PQPubID 23479
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_f7269314787648db998354d1a8a1c130
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12215491
proquest_miscellaneous_3226356150
pubmed_primary_40596059
crossref_primary_10_1038_s41598_025_06363_5
springer_journals_10_1038_s41598_025_06363_5
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References B Kaur (6363_CR72) 2023
N AL-Nomasy (6363_CR47) 2025; 154
W-C Shi (6363_CR46) 2020; 24
Y Zhou (6363_CR53) 2020; 174
S Iqbal (6363_CR86) 2021; 9
M Abdel-Basset (6363_CR32) 2021; 8
Z Wu (6363_CR30) 2022; 10
M Sajid Farooq (6363_CR9) 2023; 74
P Kumar (6363_CR49) 2025; 148
M Davies (6363_CR78) 2021; 109
CU Om Kumar (6363_CR43) 2023; 129
Z Gholami Doborjeh (6363_CR76) 2018; 8
H Bostani (6363_CR108) 2017; 21
6363_CR48
S Shaheen (6363_CR73) 2021; 4
6363_CR45
T Kim (6363_CR92) 2022; 10
EH Houssein (6363_CR77) 2021; 9
FH Almasoud y (6363_CR109) 2020; 167
6363_CR41
6363_CR40
IA Fares (6363_CR52) 2025; 30
W Lo (6363_CR28) 2022; 35
6363_CR42
J Toldinas (6363_CR34) 2021; 10
E Jaw (6363_CR54) 2021; 13
A Henry (6363_CR7) 2023; 23
OA Sarumi (6363_CR110) 2020; 9
D Nedeljkovic (6363_CR11) 2022; 114
SK Smmarwar (6363_CR24) 2022; 104
W He (6363_CR82) 2020; 132
J Lehman (6363_CR83) 2014; 29
BA Tama (6363_CR99) 2019; 31
6363_CR70
D Upadhyay (6363_CR57) 2021; 18
S Sharma (6363_CR55) 2019; 13
S Ahmed (6363_CR60) 2023; 37
6363_CR6
6363_CR1
6363_CR2
6363_CR67
6363_CR66
6363_CR69
SM Kasongo (6363_CR90) 2020; 92
I Moric (6363_CR74) 2023; 42
A Sarkar (6363_CR4) 2023; 15
6363_CR16
6363_CR15
6363_CR14
6363_CR13
6363_CR96
SK Smmarwar (6363_CR18) 2022; 54
6363_CR98
6363_CR97
H Alqahtani (6363_CR26) 2024
6363_CR93
ND K S NP (6363_CR65) 2022; 10
C Wang (6363_CR8) 2023; 15
J Johnson (6363_CR75) 2020; 36
Y Qiu (6363_CR63) 2022; 38
Y Xiao (6363_CR36) 2019; 10
E Aguilar Madrid (6363_CR59) 2021; 12
BA Tama (6363_CR107) 2019; 7
6363_CR85
SM Kasongo (6363_CR95) 2019; 7
T-N Hoang (6363_CR37) 2024; 238
6363_CR87
V Hnamte (6363_CR91) 2023; 11
6363_CR102
X Ding (6363_CR58) 2023; 264
6363_CR80
6363_CR101
S Dr (6363_CR31) 2020; 2
6363_CR100
M Catillo (6363_CR51) 2025; 30
E Bou-Harb (6363_CR56) 2014; 16
JO Mebawondu (6363_CR12) 2020; 9
R Dong (6363_CR88) 2020; 14
G Geeta Kocher (6363_CR27) 2022; 54
A Doerig (6363_CR84) 2023; 24
G Kumar (6363_CR29) 2023; 134
6363_CR39
SK Smmarwar (6363_CR19) 2024; 14
R Abdulhammed (6363_CR3) 2019; 3
6363_CR33
R Khalid (6363_CR71) 2020; 61
6363_CR35
O Alkadi (6363_CR44) 2021; 8
T Su (6363_CR104) 2020; 8
S Pan (6363_CR68) 2022; 208
M Mehmood (6363_CR10) 2022; 70
Y Han (6363_CR79) 2022; 44
SK Smmarwar (6363_CR25) 2023; 108
S Hosseini (6363_CR103) 2020; 26
6363_CR23
6363_CR22
C Yin (6363_CR89) 2017; 5
K Budholiya (6363_CR61) 2022; 34
Z Hu (6363_CR106) 2020; 8
A Shaikh (6363_CR38) 2022
AK Dey (6363_CR50) 2024; 235
6363_CR21
A Hjort (6363_CR62) 2022; 39
X Gao (6363_CR105) 2019; 7
6363_CR20
I Ullah (6363_CR64) 2021; 12
C Shen (6363_CR81) 2018; 54
SM Kasongo (6363_CR94) 2023; 199
A Adeel (6363_CR5) 2016; 19
A Sperotto (6363_CR17) 2010; 12
References_xml – volume: 9
  start-page: 140628
  year: 2021
  ident: 6363_CR77
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3119621
– volume: 38
  start-page: 4145
  year: 2022
  ident: 6363_CR63
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-021-01393-9
– ident: 6363_CR40
  doi: 10.1109/INMIC50486.2020.9318106
– volume: 10
  start-page: 64375
  year: 2022
  ident: 6363_CR30
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2022.3182333
– volume: 21
  start-page: 2307
  year: 2017
  ident: 6363_CR108
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1942-8
– volume: 24
  start-page: 431
  year: 2023
  ident: 6363_CR84
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-023-00705-w
– ident: 6363_CR45
  doi: 10.1109/SIU.2016.7496029
– volume: 12
  start-page: 343
  year: 2010
  ident: 6363_CR17
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/SURV.2010.032210.00054
– volume: 14
  start-page: 100130
  year: 2024
  ident: 6363_CR19
  publication-title: Telemat Inf. Rep.
  doi: 10.1016/j.teler.2024.100130
– volume: 61
  start-page: 102275
  year: 2020
  ident: 6363_CR71
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102275
– volume: 92
  start-page: 101752
  year: 2020
  ident: 6363_CR90
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2020.101752
– year: 2022
  ident: 6363_CR38
  publication-title: Int. J. Syst. Assur. Eng. Manag
  doi: 10.1007/s13198-021-01558-1
– ident: 6363_CR13
  doi: 10.1109/CISDA.2009.5356528
– volume: 10
  start-page: 1854
  year: 2021
  ident: 6363_CR34
  publication-title: Electronics
  doi: 10.3390/electronics10151854
– year: 2023
  ident: 6363_CR72
  publication-title: Multimed Tools Appl.
  doi: 10.1007/s11042-023-17372-9
– ident: 6363_CR42
  doi: 10.1109/eIT53891.2022.9813983
– volume: 10
  start-page: 356
  year: 2019
  ident: 6363_CR36
  publication-title: Information
  doi: 10.3390/info10110356
– volume: 19
  start-page: 106
  year: 2016
  ident: 6363_CR5
  publication-title: Phys. Commun.
  doi: 10.1016/j.phycom.2015.11.004
– volume: 54
  start-page: 1503
  year: 2022
  ident: 6363_CR27
  publication-title: Adv. Eng. Sci.
– volume: 42
  start-page: 621
  year: 2023
  ident: 6363_CR74
  publication-title: Comp. Strateg
  doi: 10.1080/01495933.2023.2236489
– volume: 5
  start-page: 21954
  year: 2017
  ident: 6363_CR89
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2017.2762418
– volume: 9
  start-page: e00497
  year: 2020
  ident: 6363_CR12
  publication-title: Sci. Afr.
  doi: 10.1016/j.sciaf.2020.e00497
– ident: 6363_CR39
  doi: 10.1109/PST52912.2021.9647828
– ident: 6363_CR85
  doi: 10.1080/17455030.2023.2189485
– volume: 8
  start-page: 195741
  year: 2020
  ident: 6363_CR106
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.3034015
– volume: 39
  start-page: 338
  year: 2022
  ident: 6363_CR62
  publication-title: J. Prop. Res.
  doi: 10.1080/09599916.2022.2070525
– ident: 6363_CR69
  doi: 10.1007/978-3-030-70569-5_18
– volume: 12
  start-page: 136
  year: 2021
  ident: 6363_CR64
  publication-title: Appl. Sci.
  doi: 10.3390/app12010136
– volume: 208
  start-page: 109520
  year: 2022
  ident: 6363_CR68
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109520
– volume: 14
  start-page: 166
  year: 2020
  ident: 6363_CR88
  publication-title: IET Inf. Secur.
  doi: 10.1049/iet-ifs.2019.0294
– ident: 6363_CR15
  doi: 10.1007/978-3-030-27192-3_9
– ident: 6363_CR35
  doi: 10.1109/ICAML54311.2021.00019
– volume: 9
  start-page: 27085
  year: 2021
  ident: 6363_CR86
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3057654
– volume: 114
  start-page: 102585
  year: 2022
  ident: 6363_CR11
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2021.102585
– volume: 23
  start-page: 890
  year: 2023
  ident: 6363_CR7
  publication-title: Sensors
  doi: 10.3390/s23020890
– ident: 6363_CR6
  doi: 10.1609/aaai.v30i1.10287
– volume: 26
  start-page: 4149
  year: 2020
  ident: 6363_CR103
  publication-title: Wirel. Networks
  doi: 10.1007/s11276-020-02321-3
– volume: 35
  start-page: 100471
  year: 2022
  ident: 6363_CR28
  publication-title: Veh. Commun.
  doi: 10.1016/j.vehcom.2022.100471
– volume: 235
  start-page: 757
  year: 2024
  ident: 6363_CR50
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2024.04.072
– volume: 4
  start-page: 141
  year: 2021
  ident: 6363_CR73
  publication-title: J. Peace Nucl. Disarm
  doi: 10.1080/25751654.2021.1918932
– volume: 16
  start-page: 1496
  year: 2014
  ident: 6363_CR56
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/SURV.2013.102913.00020
– volume: 8
  start-page: 29575
  year: 2020
  ident: 6363_CR104
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.2972627
– volume: 108
  start-page: 108731
  year: 2023
  ident: 6363_CR25
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2023.108731
– volume: 238
  start-page: 122181
  year: 2024
  ident: 6363_CR37
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122181
– volume: 12
  start-page: 50
  year: 2021
  ident: 6363_CR59
  publication-title: Information
  doi: 10.3390/info12020050
– ident: 6363_CR70
– volume: 134
  start-page: 89
  year: 2023
  ident: 6363_CR29
  publication-title: Comput. Model. Eng. Sci.
  doi: 10.32604/cmes.2022.020724
– volume: 154
  start-page: 104417
  year: 2025
  ident: 6363_CR47
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2025.104417
– volume: 15
  start-page: 423
  year: 2023
  ident: 6363_CR4
  publication-title: Int. J. Inf. Technol.
  doi: 10.1007/s41870-022-01115-4
– year: 2024
  ident: 6363_CR26
  publication-title: Int. J. Mach. Learn. Cybern
  doi: 10.1007/s13042-024-02465-0
– volume: 31
  start-page: 955
  year: 2019
  ident: 6363_CR99
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3128-z
– volume: 18
  start-page: 1104
  year: 2021
  ident: 6363_CR57
  publication-title: IEEE Trans. Netw. Serv. Manag
  doi: 10.1109/TNSM.2020.3032618
– ident: 6363_CR96
  doi: 10.1007/978-3-030-04212-7_53
– volume: 15
  start-page: 568
  year: 2023
  ident: 6363_CR8
  publication-title: Symmetry (Basel)
  doi: 10.3390/sym15030568
– ident: 6363_CR1
  doi: 10.32628/CSEIT195215
– volume: 104
  start-page: 108410
  year: 2022
  ident: 6363_CR24
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.108410
– ident: 6363_CR48
  doi: 10.1016/j.dss.2024.114351
– volume: 34
  start-page: 4514
  year: 2022
  ident: 6363_CR61
  publication-title: J. King Saud Univ. - Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2020.10.013
– volume: 74
  start-page: 2607
  year: 2023
  ident: 6363_CR9
  publication-title: Comput. Mater. Contin
  doi: 10.32604/cmc.2023.032617
– ident: 6363_CR21
  doi: 10.1007/978-3-030-81462-5_26
– ident: 6363_CR16
  doi: 10.1109/ICASID.2019.8925239
– volume: 10
  start-page: 119357
  year: 2022
  ident: 6363_CR92
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2022.3221400
– volume: 167
  start-page: 1230
  year: 2020
  ident: 6363_CR109
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.438
– volume: 174
  start-page: 107247
  year: 2020
  ident: 6363_CR53
  publication-title: Comput. Networks
  doi: 10.1016/j.comnet.2020.107247
– ident: 6363_CR97
  doi: 10.1109/ISCAS.2019.8702583
– volume: 7
  start-page: 82512
  year: 2019
  ident: 6363_CR105
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2923640
– volume: 8
  start-page: 12251
  year: 2021
  ident: 6363_CR32
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3060878
– volume: 264
  start-page: 126174
  year: 2023
  ident: 6363_CR58
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126174
– ident: 6363_CR22
  doi: 10.1007/978-3-031-54547-4_8
– volume: 30
  start-page: 100666
  year: 2025
  ident: 6363_CR52
  publication-title: Egypt. Inf. J.
  doi: 10.1016/j.eij.2025.100666
– ident: 6363_CR67
  doi: 10.1080/08839514.2023.2166222
– volume: 129
  start-page: 783
  year: 2023
  ident: 6363_CR43
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-022-10155-9
– ident: 6363_CR93
  doi: 10.1002/ett.4150
– volume: 44
  start-page: 7436
  year: 2022
  ident: 6363_CR79
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3117837
– volume: 30
  start-page: 101519
  year: 2025
  ident: 6363_CR51
  publication-title: Internet Things
  doi: 10.1016/j.iot.2025.101519
– volume: 9
  start-page: e00500
  year: 2020
  ident: 6363_CR110
  publication-title: Sci. Afr.
  doi: 10.1016/j.sciaf.2020.e00500
– ident: 6363_CR20
  doi: 10.1007/978-981-16-8664-1_30
– volume: 11
  start-page: 37131
  year: 2023
  ident: 6363_CR91
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2023.3266979
– ident: 6363_CR101
  doi: 10.1016/B978-0-12-810408-8.00016-X
– ident: 6363_CR14
  doi: 10.1007/978-3-030-04503-6_14
– volume: 7
  start-page: 94497
  year: 2019
  ident: 6363_CR107
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2928048
– volume: 10
  start-page: 75158
  year: 2022
  ident: 6363_CR65
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2022.3190416
– ident: 6363_CR102
  doi: 10.1109/WINCOM.2016.7777224
– volume: 54
  start-page: 102852
  year: 2022
  ident: 6363_CR18
  publication-title: Sustain. Energy Technol. Assessments
  doi: 10.1016/j.seta.2022.102852
– ident: 6363_CR80
  doi: 10.3389/fncel.2023.1220030
– volume: 7
  start-page: 38597
  year: 2019
  ident: 6363_CR95
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2905633
– ident: 6363_CR98
  doi: 10.1109/BigDataSecurity-HPSC-IDS.2019.00062
– ident: 6363_CR100
  doi: 10.1007/978-3-030-06158-6_9
– volume: 199
  start-page: 113
  year: 2023
  ident: 6363_CR94
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2022.12.010
– volume: 109
  start-page: 911
  year: 2021
  ident: 6363_CR78
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3067593
– ident: 6363_CR33
  doi: 10.1109/ICC45855.2022.9838780
– ident: 6363_CR23
  doi: 10.1109/AIC57670.2023.10263974
– volume: 8
  start-page: 8912
  year: 2018
  ident: 6363_CR76
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27169-8
– volume: 70
  start-page: 91
  year: 2022
  ident: 6363_CR10
  publication-title: Comput. Mater. Contin
  doi: 10.32604/cmc.2022.019127
– volume: 37
  start-page: 2166222
  year: 2023
  ident: 6363_CR60
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2023.2166222
– ident: 6363_CR87
  doi: 10.1080/17455030.2022.2091807
– volume: 2
  start-page: 190
  year: 2020
  ident: 6363_CR31
  publication-title: J. ISMAC
  doi: 10.36548/jismac.2020.4.002
– ident: 6363_CR41
  doi: 10.1109/LCN48667.2020.9314858
– ident: 6363_CR2
  doi: 10.14569/IJACSA.2020.0110670
– volume: 148
  start-page: 104109
  year: 2025
  ident: 6363_CR49
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2024.104109
– volume: 24
  start-page: 16605
  year: 2020
  ident: 6363_CR46
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-04963-z
– volume: 13
  start-page: 142
  year: 2019
  ident: 6363_CR55
  publication-title: Recent. Pat. Eng.
  doi: 10.2174/1872212112666180402122150
– volume: 3
  start-page: 1
  year: 2019
  ident: 6363_CR3
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2018.2879990
– volume: 36
  start-page: 422
  year: 2020
  ident: 6363_CR75
  publication-title: Def. Secur. Anal.
  doi: 10.1080/14751798.2020.1857911
– volume: 8
  start-page: 9463
  year: 2021
  ident: 6363_CR44
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2996590
– volume: 13
  start-page: 1764
  year: 2021
  ident: 6363_CR54
  publication-title: Symmetry (Basel)
  doi: 10.3390/sym13101764
– volume: 29
  start-page: 56
  year: 2014
  ident: 6363_CR83
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2014.92
– ident: 6363_CR66
  doi: 10.1109/ICSSIT48917.2020.9214206
– volume: 54
  start-page: 8558
  year: 2018
  ident: 6363_CR81
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR022643
– volume: 132
  start-page: 108
  year: 2020
  ident: 6363_CR82
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.08.001
SSID ssj0000529419
Score 2.4531765
Snippet Growing volumes and sensitivities of information in the growing IoT require strong cybersecurity measures to adequately counter increasingly sophisticated...
Abstract Growing volumes and sensitivities of information in the growing IoT require strong cybersecurity measures to adequately counter increasingly...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 20577
SubjectTerms 639/166
639/705
692/1807
Cyber security
Humanities and Social Sciences
Internet of things (IoT)
Intrusion detection
Intrusion detection systems (IDS)
multidisciplinary
Optimized sequential neural network
Optimized XGBoost
Science
Science (multidisciplinary)
Title Smart deep learning model for enhanced IoT intrusion detection
URI https://link.springer.com/article/10.1038/s41598-025-06363-5
https://www.ncbi.nlm.nih.gov/pubmed/40596059
https://www.proquest.com/docview/3226356150
https://pubmed.ncbi.nlm.nih.gov/PMC12215491
https://doaj.org/article/f7269314787648db998354d1a8a1c130
Volume 15
WOSCitedRecordID wos001522986200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFH8aFKRd0DZgyxiVJ-0GEfgjiXNBAtRqHKgi6KRyspzYpj0sRbQg8d_v2UkRBQSXHfIOieWP93P83pPt3wP4VWqLK79xcUK5D1C0jLVJTcylsE6mmZFGh2QT2WAgR6O8eJLqy58Ja-iBG8UduIylOaeeQyYV0pQYHvBEGKqlphUuwH71Ra_nSTDVsHqzXNC8vSVzyOXBDC2Vv03GkhitcsrjZMkSBcL-17zMl4cln-2YBkPU_wQbrQdJjpuef4YPtv4C601OyYdNOLr8i4Mixtob0qaEuCYh3w1B_5TYehz2_MnZdEgmtb9ygchg8Xk4k1VvwZ9-b3j6O26TJMSVSNN5LDQ6MMZZqdHUas6FQQcMAyvrgwVWVofWspwyi2ZcclOif-UqLTEGdcIahsrchtV6WttvQHhZCsRHUOcoViNKmmIVVeVcVlaZcBHsLRSmbhouDBX2sLlUjXoVNqqCelUSwYnX6WNJz2MdXiC6qkVXvYduBD8XiCic934zQ9d2ejdTuBB5aj30ZyP42iD02JTwOYXwiUAuYbfUl-Uv9WQcuLUpY560jkawv4BZtX_17I3Bfv8fg92BjyzMT38Y-Aes4hSwu7BW3c8ns9surGSjLEjZhc5Jb1BcdMOkR3nOCi8zlJ3i7Ly4-gdAvgGq
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+deep+learning+model+for+enhanced+IoT+intrusion+detection&rft.jtitle=Scientific+reports&rft.au=Alsubaei%2C+Faisal+S&rft.date=2025-07-01&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=20577&rft_id=info:doi/10.1038%2Fs41598-025-06363-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon