The Power of Generative AI: A Review of Requirements, Models, Input–Output Formats, Evaluation Metrics, and Challenges

Generative artificial intelligence (AI) has emerged as a powerful technology with numerous applications in various domains. There is a need to identify the requirements and evaluation metrics for generative AI models designed for specific tasks. The purpose of the research aims to investigate the fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future internet Jg. 15; H. 8; S. 260
Hauptverfasser: Bandi, Ajay, Adapa, Pydi Venkata Satya Ramesh, Kuchi, Yudu Eswar Vinay Pratap Kumar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.08.2023
Schlagworte:
ISSN:1999-5903, 1999-5903
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Generative artificial intelligence (AI) has emerged as a powerful technology with numerous applications in various domains. There is a need to identify the requirements and evaluation metrics for generative AI models designed for specific tasks. The purpose of the research aims to investigate the fundamental aspects of generative AI systems, including their requirements, models, input–output formats, and evaluation metrics. The study addresses key research questions and presents comprehensive insights to guide researchers, developers, and practitioners in the field. Firstly, the requirements necessary for implementing generative AI systems are examined and categorized into three distinct categories: hardware, software, and user experience. Furthermore, the study explores the different types of generative AI models described in the literature by presenting a taxonomy based on architectural characteristics, such as variational autoencoders (VAEs), generative adversarial networks (GANs), diffusion models, transformers, language models, normalizing flow models, and hybrid models. A comprehensive classification of input and output formats used in generative AI systems is also provided. Moreover, the research proposes a classification system based on output types and discusses commonly used evaluation metrics in generative AI. The findings contribute to advancements in the field, enabling researchers, developers, and practitioners to effectively implement and evaluate generative AI models for various applications. The significance of the research lies in understanding that generative AI system requirements are crucial for effective planning, design, and optimal performance. A taxonomy of models aids in selecting suitable options and driving advancements. Classifying input–output formats enables leveraging diverse formats for customized systems, while evaluation metrics establish standardized methods to assess model quality and performance.
AbstractList Generative artificial intelligence (AI) has emerged as a powerful technology with numerous applications in various domains. There is a need to identify the requirements and evaluation metrics for generative AI models designed for specific tasks. The purpose of the research aims to investigate the fundamental aspects of generative AI systems, including their requirements, models, input–output formats, and evaluation metrics. The study addresses key research questions and presents comprehensive insights to guide researchers, developers, and practitioners in the field. Firstly, the requirements necessary for implementing generative AI systems are examined and categorized into three distinct categories: hardware, software, and user experience. Furthermore, the study explores the different types of generative AI models described in the literature by presenting a taxonomy based on architectural characteristics, such as variational autoencoders (VAEs), generative adversarial networks (GANs), diffusion models, transformers, language models, normalizing flow models, and hybrid models. A comprehensive classification of input and output formats used in generative AI systems is also provided. Moreover, the research proposes a classification system based on output types and discusses commonly used evaluation metrics in generative AI. The findings contribute to advancements in the field, enabling researchers, developers, and practitioners to effectively implement and evaluate generative AI models for various applications. The significance of the research lies in understanding that generative AI system requirements are crucial for effective planning, design, and optimal performance. A taxonomy of models aids in selecting suitable options and driving advancements. Classifying input–output formats enables leveraging diverse formats for customized systems, while evaluation metrics establish standardized methods to assess model quality and performance.
Audience Academic
Author Adapa, Pydi Venkata Satya Ramesh
Bandi, Ajay
Kuchi, Yudu Eswar Vinay Pratap Kumar
Author_xml – sequence: 1
  givenname: Ajay
  orcidid: 0000-0003-2434-736X
  surname: Bandi
  fullname: Bandi, Ajay
– sequence: 2
  givenname: Pydi Venkata Satya Ramesh
  surname: Adapa
  fullname: Adapa, Pydi Venkata Satya Ramesh
– sequence: 3
  givenname: Yudu Eswar Vinay Pratap Kumar
  surname: Kuchi
  fullname: Kuchi, Yudu Eswar Vinay Pratap Kumar
BookMark eNptUctuEzEUHaEitZRu-gUjsUOkeDx-jNlFUR-RWhVVZW3d2Nepo4mdejwp7PgH_rBfgtOAQAh7ca_OPefI1-dNdRBiwKo6bchZ2yry0fmGk45QQV5VR41SasIVaQ_-6g-rk2FYkXJaRYWQR9XX-wesP8cnTHV09SUGTJD9Fuvp_FM9re9w6_FpN7rDx9EnXGPIw4f6JlrsS52HzZifv_-4HXNp6ouY1rCbn2-hH4tRDPUN5uRNwSDYevYAfY9hicPb6rWDfsCTX_W4-nJxfj-7mlzfXs5n0-uJYULkCSWMLBxSKwXtmGgtOrMwsmusWzArO2COGymF40BEq7jjTChOwIKVihLTHlfzva-NsNKb5NeQvukIXr8AMS01pOxNj1ohdigXVBJpmAUGHQcFFFnDqWMOite7vdcmxccRh6xXcUyhPF_TjksiulY1hXW2Zy2hmPrgYk5gyrW49qZE5nzBp2UhJiVpSBGQvcCkOAwJnTY-v3xeEfpeN0Tv8tV_8i2S9_9Ifm_2H_JPLlinWQ
CitedBy_id crossref_primary_10_1097_JS9_0000000000001583
crossref_primary_10_1108_JEEE_10_2024_0485
crossref_primary_10_1080_17517575_2024_2427024
crossref_primary_10_2478_mcj_2024_0002
crossref_primary_10_1109_ACCESS_2024_3397775
crossref_primary_10_3389_feduc_2025_1565938
crossref_primary_10_3390_su16209066
crossref_primary_10_3390_fire8080293
crossref_primary_10_1016_j_qref_2025_101977
crossref_primary_10_1371_journal_pone_0328926
crossref_primary_10_1007_s10115_025_02550_y
crossref_primary_10_1080_10437797_2024_2340931
crossref_primary_10_3390_electronics14132717
crossref_primary_10_3390_app142412050
crossref_primary_10_3390_app15031484
crossref_primary_10_1039_D5DD00159E
crossref_primary_10_1108_LHT_03_2024_0158
crossref_primary_10_1016_j_coco_2025_102548
crossref_primary_10_3390_app15116019
crossref_primary_10_3389_fpsyg_2024_1387948
crossref_primary_10_3390_rel16081083
crossref_primary_10_1016_j_ssaho_2025_101838
crossref_primary_10_2478_picbe_2024_0240
crossref_primary_10_1109_TCCN_2025_3558992
crossref_primary_10_1080_08874417_2024_2409252
crossref_primary_10_1186_s13321_023_00798_6
crossref_primary_10_30785_mbud_1649820
crossref_primary_10_3390_electronics14142800
crossref_primary_10_1016_j_heliyon_2024_e38008
crossref_primary_10_1108_TG_01_2024_0022
crossref_primary_10_1057_s41599_025_04731_0
crossref_primary_10_1080_08874417_2024_2417672
crossref_primary_10_1016_j_premed_2025_100003
crossref_primary_10_1002_spe_3389
crossref_primary_10_1007_s11831_025_10260_5
crossref_primary_10_1080_17460441_2025_2499122
crossref_primary_10_1002_mp_17473
crossref_primary_10_1177_01655515241297329
crossref_primary_10_20879_acr_2025_22_006
crossref_primary_10_1007_s10462_025_11219_5
crossref_primary_10_1016_j_jbusres_2025_115320
crossref_primary_10_3390_en17164132
crossref_primary_10_1002_acp_70088
crossref_primary_10_1016_j_sftr_2025_101206
crossref_primary_10_1515_nanoph_2025_0049
crossref_primary_10_1017_dce_2025_10014
crossref_primary_10_1080_10447318_2024_2400379
crossref_primary_10_1145_3769106
crossref_primary_10_3390_app14188203
crossref_primary_10_3390_a18030155
crossref_primary_10_3390_fi16110413
crossref_primary_10_1016_j_crtox_2025_100232
crossref_primary_10_1055_s_0044_1782663
crossref_primary_10_1109_JIOT_2025_3546016
crossref_primary_10_18267_j_aip_235
crossref_primary_10_3390_bdcc9010015
crossref_primary_10_1016_j_biomaterials_2025_123704
crossref_primary_10_1177_14780771251352960
crossref_primary_10_1016_j_procs_2025_04_628
crossref_primary_10_25304_rlt_v33_3377
crossref_primary_10_3389_fpsyg_2025_1628471
crossref_primary_10_1016_j_acalib_2025_103082
crossref_primary_10_1016_j_jretconser_2024_104009
crossref_primary_10_2174_0113894501322734241008163304
crossref_primary_10_1097_MS9_0000000000003368
crossref_primary_10_1038_s41746_024_01409_w
crossref_primary_10_3389_fdata_2024_1400024
crossref_primary_10_1109_JSEN_2024_3480932
crossref_primary_10_1016_j_engappai_2025_110090
crossref_primary_10_14801_jkiit_2025_23_8_183
crossref_primary_10_3390_app15169057
crossref_primary_10_3390_electronics13244874
crossref_primary_10_1080_0142159X_2025_2533401
crossref_primary_10_1016_j_jmrt_2025_04_163
crossref_primary_10_1177_09610006241295802
crossref_primary_10_3390_electronics13244876
crossref_primary_10_1016_j_telpol_2025_103033
crossref_primary_10_1109_LSENS_2024_3470748
crossref_primary_10_1109_MC_2024_3382073
crossref_primary_10_1515_iwp_2024_2054
crossref_primary_10_55056_etq_788
crossref_primary_10_3390_socsci13090475
crossref_primary_10_1007_s10845_025_02604_6
crossref_primary_10_32604_cmes_2024_052256
crossref_primary_10_1080_2331186X_2025_2560059
crossref_primary_10_3389_fpubh_2025_1649342
crossref_primary_10_1016_j_nxmate_2024_100275
crossref_primary_10_1007_s12530_025_09722_9
crossref_primary_10_1080_12460125_2024_2410042
crossref_primary_10_3390_electronics13173509
crossref_primary_10_1007_s10462_025_11281_z
crossref_primary_10_3390_forecast7010003
crossref_primary_10_1007_s10639_025_13441_8
crossref_primary_10_1109_ACCESS_2024_3461874
crossref_primary_10_1007_s44366_025_0067_6
crossref_primary_10_1109_ACCESS_2024_3491373
crossref_primary_10_1016_j_compbiolchem_2025_108586
crossref_primary_10_1109_JIOT_2024_3450653
crossref_primary_10_1007_s10462_025_11338_z
crossref_primary_10_1080_00098655_2025_2493717
crossref_primary_10_1177_00220345241255593
crossref_primary_10_1038_s41598_025_95106_7
crossref_primary_10_1186_s13104_024_06920_7
crossref_primary_10_3390_admsci15020066
crossref_primary_10_1123_kr_2024_0081
crossref_primary_10_1097_CIN_0000000000001149
crossref_primary_10_3390_electronics13244980
crossref_primary_10_3390_fi17010008
crossref_primary_10_1016_j_procs_2025_04_002
crossref_primary_10_1016_j_scs_2025_106826
crossref_primary_10_1108_MD_10_2023_1968
crossref_primary_10_3390_su16124929
crossref_primary_10_1007_s10661_024_13514_0
crossref_primary_10_1177_21582440251368594
crossref_primary_10_3389_frai_2024_1407905
crossref_primary_10_1016_j_apenergy_2025_125296
crossref_primary_10_1007_s11196_024_10199_z
crossref_primary_10_1016_j_actphy_2025_100115
crossref_primary_10_1108_IMDS_08_2024_0773
crossref_primary_10_29216_ueip_1607837
crossref_primary_10_1016_j_jwpe_2025_108273
crossref_primary_10_1016_j_imu_2024_101500
crossref_primary_10_1038_s41598_025_03805_y
crossref_primary_10_1177_13694332251353614
crossref_primary_10_1016_j_mtcomm_2025_112800
crossref_primary_10_1007_s42524_025_4147_6
crossref_primary_10_3389_feduc_2024_1414758
crossref_primary_10_1016_j_artmed_2025_103137
crossref_primary_10_1002_cjce_25452
crossref_primary_10_2196_59792
crossref_primary_10_3390_j7010003
crossref_primary_10_1080_13675567_2025_2497537
crossref_primary_10_1016_j_inffus_2025_103599
crossref_primary_10_3390_electronics13204014
crossref_primary_10_1108_AJIM_08_2024_0653
crossref_primary_10_15407_scine21_02_064
crossref_primary_10_1007_s10772_024_10136_2
crossref_primary_10_1016_j_tws_2025_113739
crossref_primary_10_1080_10447318_2025_2518333
crossref_primary_10_1145_3761820
crossref_primary_10_3390_jmse12122134
crossref_primary_10_1038_s41598_025_96869_9
crossref_primary_10_1109_ACCESS_2025_3547433
crossref_primary_10_1080_10632921_2025_2473902
crossref_primary_10_3390_electronics13010106
crossref_primary_10_37772_2309_9275_2025_1_24__3
crossref_primary_10_1007_s13369_025_10526_x
crossref_primary_10_3390_electronics14173476
crossref_primary_10_1109_ACCESS_2024_3385107
crossref_primary_10_1016_j_modpat_2024_100663
crossref_primary_10_1038_s41746_025_01900_y
crossref_primary_10_1134_S0361768824700737
crossref_primary_10_1007_s10639_025_13584_8
crossref_primary_10_1186_s41239_024_00453_6
crossref_primary_10_1080_16258312_2025_2520737
crossref_primary_10_1016_j_procs_2024_09_568
crossref_primary_10_1109_ACCESS_2024_3498893
crossref_primary_10_54097_dx4jft92
crossref_primary_10_1016_j_heliyon_2024_e25388
crossref_primary_10_14201_eks_31942
crossref_primary_10_1007_s43681_024_00649_6
crossref_primary_10_1080_10494820_2025_2465439
crossref_primary_10_3390_children12030359
crossref_primary_10_1016_j_compcom_2024_102895
crossref_primary_10_1016_j_techsoc_2024_102566
crossref_primary_10_1007_s11517_025_03429_4
crossref_primary_10_1186_s12909_024_06592_8
crossref_primary_10_46467_TdD40_2024_156_175
crossref_primary_10_7717_peerj_cs_2421
crossref_primary_10_1038_s41467_025_60763_9
crossref_primary_10_3390_math13172795
crossref_primary_10_1016_j_cjche_2025_05_013
crossref_primary_10_1016_j_compositesa_2025_108897
crossref_primary_10_1016_j_compeleceng_2025_110481
crossref_primary_10_3390_j7030017
crossref_primary_10_1007_s12559_025_10469_3
crossref_primary_10_1016_j_jafr_2025_101787
crossref_primary_10_1080_07366981_2024_2439628
crossref_primary_10_1080_15391523_2024_2447727
crossref_primary_10_1016_j_ijhcs_2025_103471
crossref_primary_10_1007_s13132_024_02152_z
crossref_primary_10_1080_14479338_2025_2504428
crossref_primary_10_1080_10528008_2025_2507682
crossref_primary_10_3390_su16229963
crossref_primary_10_1108_IJIS_10_2024_0296
crossref_primary_10_1016_j_jmb_2025_169181
crossref_primary_10_1365_s40702_025_01166_8
crossref_primary_10_1111_jcal_70117
crossref_primary_10_3390_s24072256
crossref_primary_10_1111_gcb_70226
crossref_primary_10_1109_MC_2024_3401085
crossref_primary_10_3389_frai_2025_1615113
Cites_doi 10.1109/ICCV51070.2023.01322
10.1016/j.knosys.2019.104927
10.1109/CVPR.2018.00828
10.1145/3592094
10.1109/CVPR.2018.00824
10.1109/JAS.2017.7510583
10.1109/CVPR.2017.463
10.1109/CVPR52729.2023.01366
10.21437/Interspeech.2017-1620
10.18653/v1/2022.acl-long.499
10.1109/CVPR.2018.00143
10.1145/3219819.3219977
10.1145/3528223.3530094
10.1109/WACV.2018.00028
10.1093/ehjopen/oead007
10.18653/v1/2021.emnlp-main.47
10.1007/978-3-030-11021-5_5
10.1145/3394486.3403104
10.1117/12.2559429
10.3390/s20113106
10.18653/v1/2020.findings-emnlp.139
10.1021/acs.jmedchem.1c00927
10.1109/CVPR.2019.00861
10.18653/v1/2022.inlg-main.25
10.1109/ICIP.2017.8296650
10.3390/fi15060192
10.18653/v1/2022.findings-emnlp.116
10.1109/ICCV.2017.267
10.1162/tacl_a_00324
10.1145/3343031.3350944
10.1109/CVPR52729.2023.00037
10.1109/TIP.2019.2895768
10.1016/j.drudis.2022.103439
10.1016/j.patcog.2021.108098
10.1016/j.xcrm.2022.100794
10.1016/j.ijinfomgt.2023.102642
10.3390/info12020055
10.1016/j.cosrev.2020.100285
10.1126/science.abq1158
10.1109/CVPR52688.2022.01103
10.1109/UEMCON51285.2020.9298135
10.1109/TASLP.2023.3288409
10.1007/s00521-020-04941-4
10.1109/ICCV.2017.244
10.1109/ICCV.2017.364
10.1109/CVPR52688.2022.00246
10.1109/IJCNN52387.2021.9533461
10.1007/978-3-030-00928-1_11
10.2139/ssrn.3864965
10.18653/v1/2020.inlg-1.14
10.1109/ACCESS.2019.2901930
10.1145/3503161.3547855
10.1186/s13321-019-0404-1
10.1007/978-3-319-10602-1_48
10.1109/ICCV.2017.629
10.1007/978-3-319-77380-3_51
10.1007/978-3-030-21568-2_11
10.1109/CVPR52688.2022.01750
10.1109/ACCESS.2019.2905015
10.18653/v1/2021.emnlp-main.685
10.14778/3231751.3231757
10.1145/3597151
10.1109/CVPR.2018.00854
10.1109/ICCV48922.2021.00209
10.1007/978-3-031-20047-2_21
10.1109/TASLP.2021.3133208
10.1016/j.neucom.2019.12.032
10.1162/tacl_a_00166
10.1109/CVPR.2015.7298935
10.1109/ACCESS.2018.2886814
10.1109/CVPR.2017.19
10.1109/CVPR.2018.00577
10.1109/ICCV.2017.608
10.1007/s12021-018-9377-x
10.21437/Interspeech.2021-469
10.1109/CVPR.2017.632
10.1109/ICASSP49357.2023.10095889
10.18653/v1/2023.findings-acl.308
10.1007/978-3-319-46487-9_43
10.1145/3422622
10.1109/CVPR.2019.00453
10.18653/v1/2022.emnlp-main.26
10.1145/3123266.3127905
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/fi15080260
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1999-5903
ExternalDocumentID oai_doaj_org_article_9ee8e7b2707c4da4a85a9a2e4152f4fa
A762477010
10_3390_fi15080260
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID -DT
.4I
5VS
7WY
8FE
8FG
8FL
AADQD
AAFWJ
AAKPC
AAYXX
ABDBF
ABUWG
ACIHN
ADBBV
ADMLS
AEAQA
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
EAP
EBS
EJD
ESX
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K60
K6V
K6~
K7-
KQ8
M0C
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
RNS
TR2
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c466t-2040bfe2d7628463defcbc781dfb4d78a4f5c776f5a06395f546950adad7920c3
IEDL.DBID DOA
ISICitedReferencesCount 235
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001055830900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-5903
IngestDate Tue Oct 14 18:59:08 EDT 2025
Sat Nov 01 15:15:38 EDT 2025
Tue Nov 04 18:38:35 EST 2025
Tue Nov 18 22:16:36 EST 2025
Sat Nov 29 07:12:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-2040bfe2d7628463defcbc781dfb4d78a4f5c776f5a06395f546950adad7920c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2434-736X
OpenAccessLink https://doaj.org/article/9ee8e7b2707c4da4a85a9a2e4152f4fa
PQID 2857068391
PQPubID 2032396
ParticipantIDs doaj_primary_oai_doaj_org_article_9ee8e7b2707c4da4a85a9a2e4152f4fa
proquest_journals_2857068391
gale_infotracacademiconefile_A762477010
crossref_citationtrail_10_3390_fi15080260
crossref_primary_10_3390_fi15080260
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Future internet
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_94
ref_137
ref_93
ref_136
ref_92
ref_139
ref_138
ref_90
Hong (ref_66) 2022; 41
ref_12
ref_131
ref_99
ref_130
ref_10
ref_98
ref_133
ref_97
ref_132
ref_96
ref_135
ref_95
ref_134
ref_17
ref_15
Fonseca (ref_40) 2021; 30
ref_126
ref_128
ref_127
Ding (ref_77) 2021; 34
ref_129
ref_25
ref_120
ref_22
ref_122
ref_121
ref_124
ref_123
ref_29
ref_28
ref_26
ref_72
ref_159
ref_158
ref_70
Raffel (ref_39) 2020; 21
Harshvardhan (ref_11) 2020; 38
ref_151
ref_79
ref_150
Samuelson (ref_173) 2023; 66
ref_78
ref_153
ref_152
ref_76
ref_155
ref_74
ref_157
ref_73
Liu (ref_27) 2023; 9
ref_160
Goodfellow (ref_44) 2020; 63
Cao (ref_8) 2019; 7
Tong (ref_19) 2021; 64
ref_83
ref_82
ref_147
ref_81
ref_80
ref_149
Jin (ref_13) 2020; 2020
Maziarka (ref_125) 2020; 12
ref_140
Wang (ref_6) 2017; 4
ref_89
ref_142
ref_88
ref_141
ref_87
ref_144
ref_86
ref_143
ref_85
ref_146
ref_84
ref_145
Zeng (ref_21) 2022; 3
Zhou (ref_156) 2018; 2018
Meila (ref_166) 2021; Volume 139
Hayashi (ref_154) 2019; 186
ref_50
Brown (ref_5) 2020; 33
ref_58
ref_57
ref_172
ref_56
ref_55
ref_54
ref_53
Dwivedi (ref_23) 2023; 71
Jain (ref_51) 2020; 32
ref_59
Alayrac (ref_109) 2022; 35
ref_61
ref_60
ref_169
Marchandot (ref_71) 2023; 3
ref_69
ref_162
ref_68
Fang (ref_36) 2019; 7
ref_67
ref_164
ref_163
ref_65
ref_64
ref_165
ref_63
ref_168
ref_62
ref_167
Park (ref_52) 2018; 11
Jiang (ref_75) 2020; 8
ref_171
ref_170
ref_115
ref_114
ref_117
ref_116
ref_119
ref_118
Papa (ref_18) 2021; 119
ref_34
ref_33
ref_32
Li (ref_35) 2022; 378
ref_111
ref_31
ref_110
ref_30
ref_113
ref_112
Cheng (ref_9) 2020; 14
Jabbar (ref_16) 2021; 54
ref_37
Young (ref_38) 2014; 2
Danel (ref_24) 2023; 28
ref_104
ref_103
ref_106
ref_105
ref_108
ref_107
ref_47
Aggarwal (ref_14) 2021; 1
ref_46
ref_45
Yu (ref_161) 2020; 384
ref_43
Lucas (ref_91) 2019; 28
ref_42
ref_41
ref_102
ref_101
ref_1
ref_3
ref_2
ref_49
ref_48
ref_4
Pan (ref_7) 2019; 7
Aldausari (ref_20) 2022; 55
Xue (ref_100) 2018; 16
Saharia (ref_148) 2022; 35
References_xml – ident: ref_55
  doi: 10.1109/ICCV51070.2023.01322
– volume: 186
  start-page: 104927
  year: 2019
  ident: ref_154
  article-title: GlyphGAN: Style-consistent font generation based on generative adversarial networks
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.104927
– ident: ref_136
  doi: 10.1109/CVPR.2018.00828
– ident: ref_74
– ident: ref_102
  doi: 10.1145/3592094
– ident: ref_80
– ident: ref_99
  doi: 10.1109/CVPR.2018.00824
– volume: 4
  start-page: 588
  year: 2017
  ident: ref_6
  article-title: Generative adversarial networks: Introduction and outlook
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2017.7510583
– ident: ref_122
  doi: 10.1109/CVPR.2017.463
– volume: 55
  start-page: 30
  year: 2022
  ident: ref_20
  article-title: Video generative adversarial networks: A review
  publication-title: ACM Comput. Surv. (CSUR)
– ident: ref_88
– ident: ref_151
  doi: 10.1109/CVPR52729.2023.01366
– ident: ref_82
  doi: 10.21437/Interspeech.2017-1620
– ident: ref_108
– ident: ref_132
– ident: ref_42
– ident: ref_170
  doi: 10.18653/v1/2022.acl-long.499
– ident: ref_1
– ident: ref_123
– volume: 1
  start-page: 100004
  year: 2021
  ident: ref_14
  article-title: Generative adversarial network: An overview of theory and applications
  publication-title: Int. J. Inf. Manag. Data Insights
– ident: ref_94
– ident: ref_169
– ident: ref_92
  doi: 10.1109/CVPR.2018.00143
– ident: ref_68
  doi: 10.1145/3219819.3219977
– ident: ref_31
– ident: ref_56
– volume: 34
  start-page: 19822
  year: 2021
  ident: ref_77
  article-title: Cogview: Mastering text-to-image generation via transformers
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 41
  start-page: 1
  year: 2022
  ident: ref_66
  article-title: AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/3528223.3530094
– ident: ref_83
– ident: ref_54
  doi: 10.1109/WACV.2018.00028
– volume: 21
  start-page: 5485
  year: 2020
  ident: ref_39
  article-title: Exploring the limits of transfer learning with a unified text-to-text transformer
  publication-title: J. Mach. Learn. Res.
– volume: 3
  start-page: oead007
  year: 2023
  ident: ref_71
  article-title: ChatGPT: The next frontier in academic writing for cardiologists or a pandora’s box of ethical dilemmas
  publication-title: Eur. Heart J. Open
  doi: 10.1093/ehjopen/oead007
– ident: ref_152
– ident: ref_128
– ident: ref_45
– ident: ref_60
  doi: 10.18653/v1/2021.emnlp-main.47
– ident: ref_140
  doi: 10.1007/978-3-030-11021-5_5
– ident: ref_149
– volume: 14
  start-page: 4625
  year: 2020
  ident: ref_9
  article-title: Generative Adversarial Networks: A Literature Review
  publication-title: KSII Trans. Internet Inf. Syst.
– ident: ref_97
– ident: ref_76
  doi: 10.1145/3394486.3403104
– ident: ref_30
– ident: ref_146
  doi: 10.1117/12.2559429
– ident: ref_85
  doi: 10.3390/s20113106
– ident: ref_3
– ident: ref_121
– ident: ref_114
  doi: 10.18653/v1/2020.findings-emnlp.139
– volume: 64
  start-page: 14011
  year: 2021
  ident: ref_19
  article-title: Generative models for De Novo drug design
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.1c00927
– ident: ref_64
  doi: 10.1109/CVPR.2019.00861
– ident: ref_111
  doi: 10.18653/v1/2022.inlg-main.25
– ident: ref_135
  doi: 10.1109/ICIP.2017.8296650
– ident: ref_86
– ident: ref_28
  doi: 10.3390/fi15060192
– ident: ref_157
– ident: ref_67
– ident: ref_129
– ident: ref_117
  doi: 10.18653/v1/2022.findings-emnlp.116
– ident: ref_106
– ident: ref_73
– ident: ref_138
  doi: 10.1109/ICCV.2017.267
– volume: 8
  start-page: 423
  year: 2020
  ident: ref_75
  article-title: How can we know what language models know?
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00324
– ident: ref_134
  doi: 10.1145/3343031.3350944
– ident: ref_143
– ident: ref_25
– ident: ref_50
– ident: ref_33
– volume: Volume 139
  start-page: 8821
  year: 2021
  ident: ref_166
  article-title: Zero-Shot Text-to-Image Generation
  publication-title: Proceedings of the 38th International Conference on Machine Learning, PMLR
– ident: ref_103
  doi: 10.1109/CVPR52729.2023.00037
– volume: 28
  start-page: 3312
  year: 2019
  ident: ref_91
  article-title: Generative adversarial networks and perceptual losses for video super-resolution
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2895768
– volume: 28
  start-page: 103439
  year: 2023
  ident: ref_24
  article-title: Docking-based generative approaches in the search for new drug candidates
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2022.103439
– ident: ref_89
– ident: ref_126
– volume: 119
  start-page: 108098
  year: 2021
  ident: ref_18
  article-title: A survey on text generation using generative adversarial networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108098
– volume: 3
  start-page: 100794
  year: 2022
  ident: ref_21
  article-title: Deep generative molecular design reshapes drug discovery
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2022.100794
– ident: ref_101
– ident: ref_70
– volume: 71
  start-page: 102642
  year: 2023
  ident: ref_23
  article-title: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy
  publication-title: Int. J. Inf. Manag.
  doi: 10.1016/j.ijinfomgt.2023.102642
– ident: ref_160
– ident: ref_22
– ident: ref_95
– volume: 2020
  start-page: 1459107
  year: 2020
  ident: ref_13
  article-title: Generative Adversarial Network Technologies and Applications in Computer Vision
  publication-title: Intell. Neurosci.
– ident: ref_158
  doi: 10.3390/info12020055
– volume: 38
  start-page: 100285
  year: 2020
  ident: ref_11
  article-title: A comprehensive survey and analysis of generative models in machine learning
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2020.100285
– volume: 378
  start-page: 1092
  year: 2022
  ident: ref_35
  article-title: Competition-level code generation with alphacode
  publication-title: Science
  doi: 10.1126/science.abq1158
– ident: ref_150
  doi: 10.1109/CVPR52688.2022.01103
– ident: ref_10
  doi: 10.1109/UEMCON51285.2020.9298135
– ident: ref_120
  doi: 10.1109/TASLP.2023.3288409
– volume: 32
  start-page: 14579
  year: 2020
  ident: ref_51
  article-title: GAN-Poser: An improvised bidirectional GAN model for human motion prediction
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04941-4
– ident: ref_87
  doi: 10.1109/ICCV.2017.244
– ident: ref_142
– ident: ref_165
– ident: ref_78
– ident: ref_62
  doi: 10.1109/ICCV.2017.364
– ident: ref_131
  doi: 10.1109/CVPR52688.2022.00246
– ident: ref_48
  doi: 10.1109/IJCNN52387.2021.9533461
– ident: ref_49
– ident: ref_32
– ident: ref_137
  doi: 10.1007/978-3-030-00928-1_11
– ident: ref_15
  doi: 10.2139/ssrn.3864965
– ident: ref_26
– ident: ref_112
  doi: 10.18653/v1/2020.inlg-1.14
– ident: ref_113
– ident: ref_159
– volume: 7
  start-page: 28230
  year: 2019
  ident: ref_36
  article-title: Gesture Recognition Based on CNN and DCGAN for Calculation and Text Output
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2901930
– volume: 35
  start-page: 36479
  year: 2022
  ident: ref_148
  article-title: Photorealistic text-to-image diffusion models with deep language understanding
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_171
– ident: ref_84
– ident: ref_53
  doi: 10.1145/3503161.3547855
– volume: 12
  start-page: 1
  year: 2020
  ident: ref_125
  article-title: Mol-CycleGAN: A generative model for molecular optimization
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-019-0404-1
– ident: ref_37
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref_93
  doi: 10.1109/ICCV.2017.629
– ident: ref_96
  doi: 10.1007/978-3-319-77380-3_51
– ident: ref_104
– ident: ref_155
  doi: 10.1007/978-3-030-21568-2_11
– ident: ref_65
  doi: 10.1109/CVPR52688.2022.01750
– volume: 2018
  start-page: 4907423
  year: 2018
  ident: ref_156
  article-title: Stock market prediction on high-frequency data using generative adversarial nets
  publication-title: Math. Probl. Eng.
– volume: 7
  start-page: 36322
  year: 2019
  ident: ref_7
  article-title: Recent progress on generative adversarial networks (GANs): A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2905015
– ident: ref_115
  doi: 10.18653/v1/2021.emnlp-main.685
– volume: 11
  start-page: 1071
  year: 2018
  ident: ref_52
  article-title: Data Synthesis Based on Generative Adversarial Networks
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3231751.3231757
– ident: ref_139
– volume: 66
  start-page: 20
  year: 2023
  ident: ref_173
  article-title: Legal Challenges to Generative AI, Part I
  publication-title: Commun. ACM
  doi: 10.1145/3597151
– ident: ref_61
  doi: 10.1109/CVPR.2018.00854
– ident: ref_98
  doi: 10.1109/ICCV48922.2021.00209
– ident: ref_69
– ident: ref_118
  doi: 10.1007/978-3-031-20047-2_21
– volume: 30
  start-page: 829
  year: 2021
  ident: ref_40
  article-title: Fsd50k: An open dataset of human-labeled sound events
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2021.3133208
– ident: ref_41
– ident: ref_107
– ident: ref_17
– ident: ref_110
– volume: 384
  start-page: 192
  year: 2020
  ident: ref_161
  article-title: Point Encoder GAN: A deep learning model for 3D point cloud inpainting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.032
– volume: 2
  start-page: 67
  year: 2014
  ident: ref_38
  article-title: From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00166
– ident: ref_72
– ident: ref_124
– ident: ref_145
– ident: ref_162
– ident: ref_59
  doi: 10.1109/CVPR.2015.7298935
– volume: 7
  start-page: 14985
  year: 2019
  ident: ref_8
  article-title: Recent Advances of Generative Adversarial Networks in Computer Vision
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886814
– ident: ref_90
  doi: 10.1109/CVPR.2017.19
– ident: ref_119
– ident: ref_144
– ident: ref_127
  doi: 10.1109/CVPR.2018.00577
– ident: ref_34
– ident: ref_163
  doi: 10.1109/ICCV.2017.608
– volume: 16
  start-page: 383
  year: 2018
  ident: ref_100
  article-title: Segan: Adversarial network with multi-scale l 1 loss for medical image segmentation
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-018-9377-x
– ident: ref_153
– volume: 33
  start-page: 1877
  year: 2020
  ident: ref_5
  article-title: Language models are few-shot learners
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_130
– ident: ref_63
  doi: 10.21437/Interspeech.2021-469
– ident: ref_79
– volume: 9
  start-page: 798
  year: 2023
  ident: ref_27
  article-title: Generative artificial intelligence and its applications in materials science: Current situation and future perspectives
  publication-title: J. Mater.
– ident: ref_167
– ident: ref_81
  doi: 10.1109/CVPR.2017.632
– volume: 35
  start-page: 23716
  year: 2022
  ident: ref_109
  article-title: Flamingo: A visual language model for few-shot learning
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_116
– ident: ref_164
– ident: ref_29
– ident: ref_47
  doi: 10.1109/ICASSP49357.2023.10095889
– ident: ref_2
– ident: ref_46
– ident: ref_12
– volume: 54
  start-page: 157
  year: 2021
  ident: ref_16
  article-title: A survey on generative adversarial networks: Variants, applications, and training
  publication-title: ACM Comput. Surv. (CSUR)
– ident: ref_168
  doi: 10.18653/v1/2023.findings-acl.308
– ident: ref_141
  doi: 10.1007/978-3-319-46487-9_43
– ident: ref_133
– ident: ref_43
– ident: ref_105
– volume: 63
  start-page: 139
  year: 2020
  ident: ref_44
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– ident: ref_147
– ident: ref_4
  doi: 10.1109/CVPR.2019.00453
– ident: ref_57
– ident: ref_58
  doi: 10.18653/v1/2022.emnlp-main.26
– ident: ref_172
  doi: 10.1145/3123266.3127905
SSID ssj0000392667
Score 2.671435
SecondaryResourceType review_article
Snippet Generative artificial intelligence (AI) has emerged as a powerful technology with numerous applications in various domains. There is a need to identify the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 260
SubjectTerms AIGC
AIGC models
Analysis
Artificial intelligence
ChatGPT
Classification
Computational linguistics
Generative adversarial networks
generative AI survey
Generative artificial intelligence
GPT-3
GPT-4
Internet
Language
Language processing
Natural language interfaces
Natural language processing
Quality assessment
Researchers
Software
Taxonomy
User experience
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVKy4IuoDwqhpbKEkgIiaiJ40fSDRqqjqiAUiGQurMcP1ClKjOdZBBL_oE_5Eu41_FMQYJuukpke-H4Xt-XnXMIeW5YUxTOmIwrLzIepMya3LKsNK6sTAi2sRHE9b06OanOzurTVHDr0rXKpU2MhtpNLdbI9xkisUtw58Xr2WWGrFF4upooNG6RjYKxAvX8ncpWNZYcnL-UakAlLSG73w_niH-OOFp_-aEI1_8_oxw9zeTeTee4Re6mGJOOB6W4T9Z8-4Bs_oE8-JB8B_Wgp8iQRqeBDtjTaPjo-PiAjulwYoBdnzxeFY41xO4VRea0C3get7NF_-vHz4-LHl7oJAa-0H60wg6nH5Cqy0KbaR09XFK2dI_Il8nR58O3WSJhyCyXsoddxPMmeObAakKsUjqP8lMQ5oaGO1UZHoRVSgZhMNoRQUDCLXLjjFM1y225TdbbaesfE-qlLaqYYwWIg6qmctYyW3NhBGRtgY_Iy6VItE0I5UiUcaEhU0Hx6Svxjciz1djZgMvxz1FvULKrEYilHRum8686bU1de1951TCVK8ud4aYSpjbMY2gTeDAj8gL1QuOOh-lYk35cgI9C7Cw9hpXhSkFiOyK7S73QyRR0-kopnlzfvUPuIJf9cLtwl6z384V_Sm7bb_15N9-Lmv0bPXsDfg
  priority: 102
  providerName: ProQuest
Title The Power of Generative AI: A Review of Requirements, Models, Input–Output Formats, Evaluation Metrics, and Challenges
URI https://www.proquest.com/docview/2857068391
https://doaj.org/article/9ee8e7b2707c4da4a85a9a2e4152f4fa
Volume 15
WOSCitedRecordID wos001055830900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: 7WY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: M0C
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC509aAH8cmOrkODggiGzST9SLzNDjM46IxhUdz10nT6AQtLdtnJiEf_g__QX2JVJzOOoHjx0gndfehUVVd91XS-Anhusno0csYkXHmR8CBlUqc2S3Lj8sKEYGsbSVzfqeWyODkpq51SX3QnrKMH7gR3WHpfeFVnKlWWO8NNIUxpMk-BJ_AQoRGinp1kKvpgDPtSqo6PNMe8_jCcEfM5MWj9FoEiUf_f3HGMMbO7cKcHh2zcLeoeXPPNfbi9Qxn4AL6iXllFpc3YRWAdaTR5LDaev2Zj1h3109Cxpzu-8fBv9YpRybNzfM6by3X749v39-sWX9gsIlbsn25Jv9mCamxZ7DONY5NNrZXVQ_g4m36YvEn66gmJ5VK2aP48rYPPHLo7BBm58yR4hfg01NypwvAgrFIyCEMwRQSBmbJIjTNOlVlq80ew11w0fh-Yl3ZUxOQoIIAp6sJZm9mSCyMw3Qp8AC83EtW2pxanChfnGlMMkr7-Jf0BPNvOvewINf4464gUs51BJNixA01D96ah_2UaA3hBatW0VXE51vR_HOBHEemVHqNkuFKYkQ7gYKN53e_hlc6I-18igBw9_h-reQK3qFR9d3nwAPbaq7V_Cjftl_ZsdTWE6-rT6RBuHE2X1fEwGjO2b1WC7SKdYFuJzzhezRfV6U_94P1z
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3batRAGP6pVVAvPEtXqw6oiGBodjLJJILIunbp0u1apELvxskcSqFk103Ww53v4Hv4UD6J_5_DVkG964VXCZMhzEy--Q8zk-8DeKR53u9brQMhXRwInyRBHhoeRNpGqfbe5KYmcZ3I6TQ9PMz21-B79y8MHavsbGJtqO3M0Br5Ficm9gTdef_l_ENAqlG0u9pJaDSw2HVfPmHKVr4Yv8bv-5jz0fbBcCdoVQUCI5KkQliIMPeOWzQD6Hwj66hBEuM2nwsrUy18bKRMfKzJfcc-xgwyDrXVVmY8NBG-9xycFwKnAx0VDIerNZ0Qg40kkQ0LahRl4ZY_Jr514u36ze_V8gB_cwK1Zxtd_d_G5BpcaWNoNmhAfx3WXHEDLv_CrHgTPiP82T4pwLGZZw23Nhl2Nhg_ZwPW7IjQo7eOjkLXa6TlM0bKcCd4HRfzZfXj67c3ywpv2KgO7LF8e8WNzvZIisxgmS4sG3aSNOUteHcmXb8N68WscBvAXGL6aZ1Deozz0jy1xnCTiVjHmJV60YOnHQSUaRnYSQjkRGEmRnBRp3DpwcNV3XnDO_LHWq8ISasaxBVeF8wWR6o1PSpzLnUy5zKURlgtdBrrTHNHoZsXXvfgCeFQkUXD5hjd_piBnSJuMDXAkRFSYuLeg80Oh6o1daU6BeGdfz9-ABd3DvYmajKe7t6FSxyjxeYk5SasV4uluwcXzMfquFzcr2cVg_dnDdmfV3JhAg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bi9NAFD6sq4g-eJetrjqgIoKh6WQmkwgidXeLpWstorBvcTKXZWFJa5N6efM_-G_8Of4Sz8mlq6C-7YNPCZMhZJJvzmXm5PsAHmieDwZW60AoJwPh4zjIQ8ODSNso0d6b3NQkrvtqOk0ODtLZBnzv_oWhssrOJtaG2s4NrZH3OTGxx-jOB33flkXMdkfPFx8CUpCindZOTqOByMR9-YTpW_lsvIvf-iHno723Oy-DVmEgMCKOK4SICHPvuEWTgI44so4eTmEM53NhVaKFl0ap2EtNrlx6idmkDLXVVqU8NBHe9wycRS8saY5NVLBe3wkx8Ihj1TCiRlEa9v0Rca8Th9dvPrCWCvibQ6i93Ojy__x-rsClNrZmw2YyXIUNV1yDi78wLl6Hzzgt2IyU4djcs4Zzmww-G46fsiFrdkro0htHJdL12mn5hJFi3DEex8ViVf34-u31qsITNqoDfmzfW3Oms1ckUWawTReW7XRSNeUNeHcqQ78Jm8W8cFvAXGwGSZ1beoz_kjyxxnCTCqklZqte9OBxB4fMtMzsJBBynGGGRtDJTqDTg_vrvouGj-SPvV4QqtY9iEO8bpgvD7PWJGWpc4lTOVehMsJqoROpU80dhXReeN2DR4TJjCwdPo7R7Q8bOCjiDMuG-GaEUpjQ92C7w2TWmsAyOwHkrX9fvgfnEanZ_ng6uQ0XOAaRTYHlNmxWy5W7A-fMx-qoXN6tJxiD96eN2J-RUmmo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Power+of+Generative+AI%3A+A+Review+of+Requirements%2C+Models%2C+Input%E2%80%93Output+Formats%2C+Evaluation+Metrics%2C+and+Challenges&rft.jtitle=Future+internet&rft.au=Bandi%2C+Ajay&rft.au=Adapa%2C+Pydi+Venkata+Satya+Ramesh&rft.au=Kuchi%2C+Yudu+Eswar+Vinay+Pratap+Kumar&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.issn=1999-5903&rft.eissn=1999-5903&rft.volume=15&rft.issue=8&rft_id=info:doi/10.3390%2Ffi15080260&rft.externalDocID=A762477010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon