The Power of Generative AI: A Review of Requirements, Models, Input–Output Formats, Evaluation Metrics, and Challenges
Generative artificial intelligence (AI) has emerged as a powerful technology with numerous applications in various domains. There is a need to identify the requirements and evaluation metrics for generative AI models designed for specific tasks. The purpose of the research aims to investigate the fu...
Gespeichert in:
| Veröffentlicht in: | Future internet Jg. 15; H. 8; S. 260 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.08.2023
|
| Schlagworte: | |
| ISSN: | 1999-5903, 1999-5903 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Generative artificial intelligence (AI) has emerged as a powerful technology with numerous applications in various domains. There is a need to identify the requirements and evaluation metrics for generative AI models designed for specific tasks. The purpose of the research aims to investigate the fundamental aspects of generative AI systems, including their requirements, models, input–output formats, and evaluation metrics. The study addresses key research questions and presents comprehensive insights to guide researchers, developers, and practitioners in the field. Firstly, the requirements necessary for implementing generative AI systems are examined and categorized into three distinct categories: hardware, software, and user experience. Furthermore, the study explores the different types of generative AI models described in the literature by presenting a taxonomy based on architectural characteristics, such as variational autoencoders (VAEs), generative adversarial networks (GANs), diffusion models, transformers, language models, normalizing flow models, and hybrid models. A comprehensive classification of input and output formats used in generative AI systems is also provided. Moreover, the research proposes a classification system based on output types and discusses commonly used evaluation metrics in generative AI. The findings contribute to advancements in the field, enabling researchers, developers, and practitioners to effectively implement and evaluate generative AI models for various applications. The significance of the research lies in understanding that generative AI system requirements are crucial for effective planning, design, and optimal performance. A taxonomy of models aids in selecting suitable options and driving advancements. Classifying input–output formats enables leveraging diverse formats for customized systems, while evaluation metrics establish standardized methods to assess model quality and performance. |
|---|---|
| AbstractList | Generative artificial intelligence (AI) has emerged as a powerful technology with numerous applications in various domains. There is a need to identify the requirements and evaluation metrics for generative AI models designed for specific tasks. The purpose of the research aims to investigate the fundamental aspects of generative AI systems, including their requirements, models, input–output formats, and evaluation metrics. The study addresses key research questions and presents comprehensive insights to guide researchers, developers, and practitioners in the field. Firstly, the requirements necessary for implementing generative AI systems are examined and categorized into three distinct categories: hardware, software, and user experience. Furthermore, the study explores the different types of generative AI models described in the literature by presenting a taxonomy based on architectural characteristics, such as variational autoencoders (VAEs), generative adversarial networks (GANs), diffusion models, transformers, language models, normalizing flow models, and hybrid models. A comprehensive classification of input and output formats used in generative AI systems is also provided. Moreover, the research proposes a classification system based on output types and discusses commonly used evaluation metrics in generative AI. The findings contribute to advancements in the field, enabling researchers, developers, and practitioners to effectively implement and evaluate generative AI models for various applications. The significance of the research lies in understanding that generative AI system requirements are crucial for effective planning, design, and optimal performance. A taxonomy of models aids in selecting suitable options and driving advancements. Classifying input–output formats enables leveraging diverse formats for customized systems, while evaluation metrics establish standardized methods to assess model quality and performance. |
| Audience | Academic |
| Author | Adapa, Pydi Venkata Satya Ramesh Bandi, Ajay Kuchi, Yudu Eswar Vinay Pratap Kumar |
| Author_xml | – sequence: 1 givenname: Ajay orcidid: 0000-0003-2434-736X surname: Bandi fullname: Bandi, Ajay – sequence: 2 givenname: Pydi Venkata Satya Ramesh surname: Adapa fullname: Adapa, Pydi Venkata Satya Ramesh – sequence: 3 givenname: Yudu Eswar Vinay Pratap Kumar surname: Kuchi fullname: Kuchi, Yudu Eswar Vinay Pratap Kumar |
| BookMark | eNptUctuEzEUHaEitZRu-gUjsUOkeDx-jNlFUR-RWhVVZW3d2Nepo4mdejwp7PgH_rBfgtOAQAh7ca_OPefI1-dNdRBiwKo6bchZ2yry0fmGk45QQV5VR41SasIVaQ_-6g-rk2FYkXJaRYWQR9XX-wesP8cnTHV09SUGTJD9Fuvp_FM9re9w6_FpN7rDx9EnXGPIw4f6JlrsS52HzZifv_-4HXNp6ouY1rCbn2-hH4tRDPUN5uRNwSDYevYAfY9hicPb6rWDfsCTX_W4-nJxfj-7mlzfXs5n0-uJYULkCSWMLBxSKwXtmGgtOrMwsmusWzArO2COGymF40BEq7jjTChOwIKVihLTHlfzva-NsNKb5NeQvukIXr8AMS01pOxNj1ohdigXVBJpmAUGHQcFFFnDqWMOite7vdcmxccRh6xXcUyhPF_TjksiulY1hXW2Zy2hmPrgYk5gyrW49qZE5nzBp2UhJiVpSBGQvcCkOAwJnTY-v3xeEfpeN0Tv8tV_8i2S9_9Ifm_2H_JPLlinWQ |
| CitedBy_id | crossref_primary_10_1097_JS9_0000000000001583 crossref_primary_10_1108_JEEE_10_2024_0485 crossref_primary_10_1080_17517575_2024_2427024 crossref_primary_10_2478_mcj_2024_0002 crossref_primary_10_1109_ACCESS_2024_3397775 crossref_primary_10_3389_feduc_2025_1565938 crossref_primary_10_3390_su16209066 crossref_primary_10_3390_fire8080293 crossref_primary_10_1016_j_qref_2025_101977 crossref_primary_10_1371_journal_pone_0328926 crossref_primary_10_1007_s10115_025_02550_y crossref_primary_10_1080_10437797_2024_2340931 crossref_primary_10_3390_electronics14132717 crossref_primary_10_3390_app142412050 crossref_primary_10_3390_app15031484 crossref_primary_10_1039_D5DD00159E crossref_primary_10_1108_LHT_03_2024_0158 crossref_primary_10_1016_j_coco_2025_102548 crossref_primary_10_3390_app15116019 crossref_primary_10_3389_fpsyg_2024_1387948 crossref_primary_10_3390_rel16081083 crossref_primary_10_1016_j_ssaho_2025_101838 crossref_primary_10_2478_picbe_2024_0240 crossref_primary_10_1109_TCCN_2025_3558992 crossref_primary_10_1080_08874417_2024_2409252 crossref_primary_10_1186_s13321_023_00798_6 crossref_primary_10_30785_mbud_1649820 crossref_primary_10_3390_electronics14142800 crossref_primary_10_1016_j_heliyon_2024_e38008 crossref_primary_10_1108_TG_01_2024_0022 crossref_primary_10_1057_s41599_025_04731_0 crossref_primary_10_1080_08874417_2024_2417672 crossref_primary_10_1016_j_premed_2025_100003 crossref_primary_10_1002_spe_3389 crossref_primary_10_1007_s11831_025_10260_5 crossref_primary_10_1080_17460441_2025_2499122 crossref_primary_10_1002_mp_17473 crossref_primary_10_1177_01655515241297329 crossref_primary_10_20879_acr_2025_22_006 crossref_primary_10_1007_s10462_025_11219_5 crossref_primary_10_1016_j_jbusres_2025_115320 crossref_primary_10_3390_en17164132 crossref_primary_10_1002_acp_70088 crossref_primary_10_1016_j_sftr_2025_101206 crossref_primary_10_1515_nanoph_2025_0049 crossref_primary_10_1017_dce_2025_10014 crossref_primary_10_1080_10447318_2024_2400379 crossref_primary_10_1145_3769106 crossref_primary_10_3390_app14188203 crossref_primary_10_3390_a18030155 crossref_primary_10_3390_fi16110413 crossref_primary_10_1016_j_crtox_2025_100232 crossref_primary_10_1055_s_0044_1782663 crossref_primary_10_1109_JIOT_2025_3546016 crossref_primary_10_18267_j_aip_235 crossref_primary_10_3390_bdcc9010015 crossref_primary_10_1016_j_biomaterials_2025_123704 crossref_primary_10_1177_14780771251352960 crossref_primary_10_1016_j_procs_2025_04_628 crossref_primary_10_25304_rlt_v33_3377 crossref_primary_10_3389_fpsyg_2025_1628471 crossref_primary_10_1016_j_acalib_2025_103082 crossref_primary_10_1016_j_jretconser_2024_104009 crossref_primary_10_2174_0113894501322734241008163304 crossref_primary_10_1097_MS9_0000000000003368 crossref_primary_10_1038_s41746_024_01409_w crossref_primary_10_3389_fdata_2024_1400024 crossref_primary_10_1109_JSEN_2024_3480932 crossref_primary_10_1016_j_engappai_2025_110090 crossref_primary_10_14801_jkiit_2025_23_8_183 crossref_primary_10_3390_app15169057 crossref_primary_10_3390_electronics13244874 crossref_primary_10_1080_0142159X_2025_2533401 crossref_primary_10_1016_j_jmrt_2025_04_163 crossref_primary_10_1177_09610006241295802 crossref_primary_10_3390_electronics13244876 crossref_primary_10_1016_j_telpol_2025_103033 crossref_primary_10_1109_LSENS_2024_3470748 crossref_primary_10_1109_MC_2024_3382073 crossref_primary_10_1515_iwp_2024_2054 crossref_primary_10_55056_etq_788 crossref_primary_10_3390_socsci13090475 crossref_primary_10_1007_s10845_025_02604_6 crossref_primary_10_32604_cmes_2024_052256 crossref_primary_10_1080_2331186X_2025_2560059 crossref_primary_10_3389_fpubh_2025_1649342 crossref_primary_10_1016_j_nxmate_2024_100275 crossref_primary_10_1007_s12530_025_09722_9 crossref_primary_10_1080_12460125_2024_2410042 crossref_primary_10_3390_electronics13173509 crossref_primary_10_1007_s10462_025_11281_z crossref_primary_10_3390_forecast7010003 crossref_primary_10_1007_s10639_025_13441_8 crossref_primary_10_1109_ACCESS_2024_3461874 crossref_primary_10_1007_s44366_025_0067_6 crossref_primary_10_1109_ACCESS_2024_3491373 crossref_primary_10_1016_j_compbiolchem_2025_108586 crossref_primary_10_1109_JIOT_2024_3450653 crossref_primary_10_1007_s10462_025_11338_z crossref_primary_10_1080_00098655_2025_2493717 crossref_primary_10_1177_00220345241255593 crossref_primary_10_1038_s41598_025_95106_7 crossref_primary_10_1186_s13104_024_06920_7 crossref_primary_10_3390_admsci15020066 crossref_primary_10_1123_kr_2024_0081 crossref_primary_10_1097_CIN_0000000000001149 crossref_primary_10_3390_electronics13244980 crossref_primary_10_3390_fi17010008 crossref_primary_10_1016_j_procs_2025_04_002 crossref_primary_10_1016_j_scs_2025_106826 crossref_primary_10_1108_MD_10_2023_1968 crossref_primary_10_3390_su16124929 crossref_primary_10_1007_s10661_024_13514_0 crossref_primary_10_1177_21582440251368594 crossref_primary_10_3389_frai_2024_1407905 crossref_primary_10_1016_j_apenergy_2025_125296 crossref_primary_10_1007_s11196_024_10199_z crossref_primary_10_1016_j_actphy_2025_100115 crossref_primary_10_1108_IMDS_08_2024_0773 crossref_primary_10_29216_ueip_1607837 crossref_primary_10_1016_j_jwpe_2025_108273 crossref_primary_10_1016_j_imu_2024_101500 crossref_primary_10_1038_s41598_025_03805_y crossref_primary_10_1177_13694332251353614 crossref_primary_10_1016_j_mtcomm_2025_112800 crossref_primary_10_1007_s42524_025_4147_6 crossref_primary_10_3389_feduc_2024_1414758 crossref_primary_10_1016_j_artmed_2025_103137 crossref_primary_10_1002_cjce_25452 crossref_primary_10_2196_59792 crossref_primary_10_3390_j7010003 crossref_primary_10_1080_13675567_2025_2497537 crossref_primary_10_1016_j_inffus_2025_103599 crossref_primary_10_3390_electronics13204014 crossref_primary_10_1108_AJIM_08_2024_0653 crossref_primary_10_15407_scine21_02_064 crossref_primary_10_1007_s10772_024_10136_2 crossref_primary_10_1016_j_tws_2025_113739 crossref_primary_10_1080_10447318_2025_2518333 crossref_primary_10_1145_3761820 crossref_primary_10_3390_jmse12122134 crossref_primary_10_1038_s41598_025_96869_9 crossref_primary_10_1109_ACCESS_2025_3547433 crossref_primary_10_1080_10632921_2025_2473902 crossref_primary_10_3390_electronics13010106 crossref_primary_10_37772_2309_9275_2025_1_24__3 crossref_primary_10_1007_s13369_025_10526_x crossref_primary_10_3390_electronics14173476 crossref_primary_10_1109_ACCESS_2024_3385107 crossref_primary_10_1016_j_modpat_2024_100663 crossref_primary_10_1038_s41746_025_01900_y crossref_primary_10_1134_S0361768824700737 crossref_primary_10_1007_s10639_025_13584_8 crossref_primary_10_1186_s41239_024_00453_6 crossref_primary_10_1080_16258312_2025_2520737 crossref_primary_10_1016_j_procs_2024_09_568 crossref_primary_10_1109_ACCESS_2024_3498893 crossref_primary_10_54097_dx4jft92 crossref_primary_10_1016_j_heliyon_2024_e25388 crossref_primary_10_14201_eks_31942 crossref_primary_10_1007_s43681_024_00649_6 crossref_primary_10_1080_10494820_2025_2465439 crossref_primary_10_3390_children12030359 crossref_primary_10_1016_j_compcom_2024_102895 crossref_primary_10_1016_j_techsoc_2024_102566 crossref_primary_10_1007_s11517_025_03429_4 crossref_primary_10_1186_s12909_024_06592_8 crossref_primary_10_46467_TdD40_2024_156_175 crossref_primary_10_7717_peerj_cs_2421 crossref_primary_10_1038_s41467_025_60763_9 crossref_primary_10_3390_math13172795 crossref_primary_10_1016_j_cjche_2025_05_013 crossref_primary_10_1016_j_compositesa_2025_108897 crossref_primary_10_1016_j_compeleceng_2025_110481 crossref_primary_10_3390_j7030017 crossref_primary_10_1007_s12559_025_10469_3 crossref_primary_10_1016_j_jafr_2025_101787 crossref_primary_10_1080_07366981_2024_2439628 crossref_primary_10_1080_15391523_2024_2447727 crossref_primary_10_1016_j_ijhcs_2025_103471 crossref_primary_10_1007_s13132_024_02152_z crossref_primary_10_1080_14479338_2025_2504428 crossref_primary_10_1080_10528008_2025_2507682 crossref_primary_10_3390_su16229963 crossref_primary_10_1108_IJIS_10_2024_0296 crossref_primary_10_1016_j_jmb_2025_169181 crossref_primary_10_1365_s40702_025_01166_8 crossref_primary_10_1111_jcal_70117 crossref_primary_10_3390_s24072256 crossref_primary_10_1111_gcb_70226 crossref_primary_10_1109_MC_2024_3401085 crossref_primary_10_3389_frai_2025_1615113 |
| Cites_doi | 10.1109/ICCV51070.2023.01322 10.1016/j.knosys.2019.104927 10.1109/CVPR.2018.00828 10.1145/3592094 10.1109/CVPR.2018.00824 10.1109/JAS.2017.7510583 10.1109/CVPR.2017.463 10.1109/CVPR52729.2023.01366 10.21437/Interspeech.2017-1620 10.18653/v1/2022.acl-long.499 10.1109/CVPR.2018.00143 10.1145/3219819.3219977 10.1145/3528223.3530094 10.1109/WACV.2018.00028 10.1093/ehjopen/oead007 10.18653/v1/2021.emnlp-main.47 10.1007/978-3-030-11021-5_5 10.1145/3394486.3403104 10.1117/12.2559429 10.3390/s20113106 10.18653/v1/2020.findings-emnlp.139 10.1021/acs.jmedchem.1c00927 10.1109/CVPR.2019.00861 10.18653/v1/2022.inlg-main.25 10.1109/ICIP.2017.8296650 10.3390/fi15060192 10.18653/v1/2022.findings-emnlp.116 10.1109/ICCV.2017.267 10.1162/tacl_a_00324 10.1145/3343031.3350944 10.1109/CVPR52729.2023.00037 10.1109/TIP.2019.2895768 10.1016/j.drudis.2022.103439 10.1016/j.patcog.2021.108098 10.1016/j.xcrm.2022.100794 10.1016/j.ijinfomgt.2023.102642 10.3390/info12020055 10.1016/j.cosrev.2020.100285 10.1126/science.abq1158 10.1109/CVPR52688.2022.01103 10.1109/UEMCON51285.2020.9298135 10.1109/TASLP.2023.3288409 10.1007/s00521-020-04941-4 10.1109/ICCV.2017.244 10.1109/ICCV.2017.364 10.1109/CVPR52688.2022.00246 10.1109/IJCNN52387.2021.9533461 10.1007/978-3-030-00928-1_11 10.2139/ssrn.3864965 10.18653/v1/2020.inlg-1.14 10.1109/ACCESS.2019.2901930 10.1145/3503161.3547855 10.1186/s13321-019-0404-1 10.1007/978-3-319-10602-1_48 10.1109/ICCV.2017.629 10.1007/978-3-319-77380-3_51 10.1007/978-3-030-21568-2_11 10.1109/CVPR52688.2022.01750 10.1109/ACCESS.2019.2905015 10.18653/v1/2021.emnlp-main.685 10.14778/3231751.3231757 10.1145/3597151 10.1109/CVPR.2018.00854 10.1109/ICCV48922.2021.00209 10.1007/978-3-031-20047-2_21 10.1109/TASLP.2021.3133208 10.1016/j.neucom.2019.12.032 10.1162/tacl_a_00166 10.1109/CVPR.2015.7298935 10.1109/ACCESS.2018.2886814 10.1109/CVPR.2017.19 10.1109/CVPR.2018.00577 10.1109/ICCV.2017.608 10.1007/s12021-018-9377-x 10.21437/Interspeech.2021-469 10.1109/CVPR.2017.632 10.1109/ICASSP49357.2023.10095889 10.18653/v1/2023.findings-acl.308 10.1007/978-3-319-46487-9_43 10.1145/3422622 10.1109/CVPR.2019.00453 10.18653/v1/2022.emnlp-main.26 10.1145/3123266.3127905 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.3390/fi15080260 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1999-5903 |
| ExternalDocumentID | oai_doaj_org_article_9ee8e7b2707c4da4a85a9a2e4152f4fa A762477010 10_3390_fi15080260 |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GroupedDBID | -DT .4I 5VS 7WY 8FE 8FG 8FL AADQD AAFWJ AAKPC AAYXX ABDBF ABUWG ACIHN ADBBV ADMLS AEAQA AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z EAP EBS EJD ESX FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC K60 K6V K6~ K7- KQ8 M0C MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQBIZ PQBZA PQGLB PQQKQ PROAC RNS TR2 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c466t-2040bfe2d7628463defcbc781dfb4d78a4f5c776f5a06395f546950adad7920c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 235 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001055830900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-5903 |
| IngestDate | Tue Oct 14 18:59:08 EDT 2025 Sat Nov 01 15:15:38 EDT 2025 Tue Nov 04 18:38:35 EST 2025 Tue Nov 18 22:16:36 EST 2025 Sat Nov 29 07:12:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c466t-2040bfe2d7628463defcbc781dfb4d78a4f5c776f5a06395f546950adad7920c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2434-736X |
| OpenAccessLink | https://doaj.org/article/9ee8e7b2707c4da4a85a9a2e4152f4fa |
| PQID | 2857068391 |
| PQPubID | 2032396 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9ee8e7b2707c4da4a85a9a2e4152f4fa proquest_journals_2857068391 gale_infotracacademiconefile_A762477010 crossref_citationtrail_10_3390_fi15080260 crossref_primary_10_3390_fi15080260 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Future internet |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_94 ref_137 ref_93 ref_136 ref_92 ref_139 ref_138 ref_90 Hong (ref_66) 2022; 41 ref_12 ref_131 ref_99 ref_130 ref_10 ref_98 ref_133 ref_97 ref_132 ref_96 ref_135 ref_95 ref_134 ref_17 ref_15 Fonseca (ref_40) 2021; 30 ref_126 ref_128 ref_127 Ding (ref_77) 2021; 34 ref_129 ref_25 ref_120 ref_22 ref_122 ref_121 ref_124 ref_123 ref_29 ref_28 ref_26 ref_72 ref_159 ref_158 ref_70 Raffel (ref_39) 2020; 21 Harshvardhan (ref_11) 2020; 38 ref_151 ref_79 ref_150 Samuelson (ref_173) 2023; 66 ref_78 ref_153 ref_152 ref_76 ref_155 ref_74 ref_157 ref_73 Liu (ref_27) 2023; 9 ref_160 Goodfellow (ref_44) 2020; 63 Cao (ref_8) 2019; 7 Tong (ref_19) 2021; 64 ref_83 ref_82 ref_147 ref_81 ref_80 ref_149 Jin (ref_13) 2020; 2020 Maziarka (ref_125) 2020; 12 ref_140 Wang (ref_6) 2017; 4 ref_89 ref_142 ref_88 ref_141 ref_87 ref_144 ref_86 ref_143 ref_85 ref_146 ref_84 ref_145 Zeng (ref_21) 2022; 3 Zhou (ref_156) 2018; 2018 Meila (ref_166) 2021; Volume 139 Hayashi (ref_154) 2019; 186 ref_50 Brown (ref_5) 2020; 33 ref_58 ref_57 ref_172 ref_56 ref_55 ref_54 ref_53 Dwivedi (ref_23) 2023; 71 Jain (ref_51) 2020; 32 ref_59 Alayrac (ref_109) 2022; 35 ref_61 ref_60 ref_169 Marchandot (ref_71) 2023; 3 ref_69 ref_162 ref_68 Fang (ref_36) 2019; 7 ref_67 ref_164 ref_163 ref_65 ref_64 ref_165 ref_63 ref_168 ref_62 ref_167 Park (ref_52) 2018; 11 Jiang (ref_75) 2020; 8 ref_171 ref_170 ref_115 ref_114 ref_117 ref_116 ref_119 ref_118 Papa (ref_18) 2021; 119 ref_34 ref_33 ref_32 Li (ref_35) 2022; 378 ref_111 ref_31 ref_110 ref_30 ref_113 ref_112 Cheng (ref_9) 2020; 14 Jabbar (ref_16) 2021; 54 ref_37 Young (ref_38) 2014; 2 Danel (ref_24) 2023; 28 ref_104 ref_103 ref_106 ref_105 ref_108 ref_107 ref_47 Aggarwal (ref_14) 2021; 1 ref_46 ref_45 Yu (ref_161) 2020; 384 ref_43 Lucas (ref_91) 2019; 28 ref_42 ref_41 ref_102 ref_101 ref_1 ref_3 ref_2 ref_49 ref_48 ref_4 Pan (ref_7) 2019; 7 Aldausari (ref_20) 2022; 55 Xue (ref_100) 2018; 16 Saharia (ref_148) 2022; 35 |
| References_xml | – ident: ref_55 doi: 10.1109/ICCV51070.2023.01322 – volume: 186 start-page: 104927 year: 2019 ident: ref_154 article-title: GlyphGAN: Style-consistent font generation based on generative adversarial networks publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.104927 – ident: ref_136 doi: 10.1109/CVPR.2018.00828 – ident: ref_74 – ident: ref_102 doi: 10.1145/3592094 – ident: ref_80 – ident: ref_99 doi: 10.1109/CVPR.2018.00824 – volume: 4 start-page: 588 year: 2017 ident: ref_6 article-title: Generative adversarial networks: Introduction and outlook publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2017.7510583 – ident: ref_122 doi: 10.1109/CVPR.2017.463 – volume: 55 start-page: 30 year: 2022 ident: ref_20 article-title: Video generative adversarial networks: A review publication-title: ACM Comput. Surv. (CSUR) – ident: ref_88 – ident: ref_151 doi: 10.1109/CVPR52729.2023.01366 – ident: ref_82 doi: 10.21437/Interspeech.2017-1620 – ident: ref_108 – ident: ref_132 – ident: ref_42 – ident: ref_170 doi: 10.18653/v1/2022.acl-long.499 – ident: ref_1 – ident: ref_123 – volume: 1 start-page: 100004 year: 2021 ident: ref_14 article-title: Generative adversarial network: An overview of theory and applications publication-title: Int. J. Inf. Manag. Data Insights – ident: ref_94 – ident: ref_169 – ident: ref_92 doi: 10.1109/CVPR.2018.00143 – ident: ref_68 doi: 10.1145/3219819.3219977 – ident: ref_31 – ident: ref_56 – volume: 34 start-page: 19822 year: 2021 ident: ref_77 article-title: Cogview: Mastering text-to-image generation via transformers publication-title: Adv. Neural Inf. Process. Syst. – volume: 41 start-page: 1 year: 2022 ident: ref_66 article-title: AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/3528223.3530094 – ident: ref_83 – ident: ref_54 doi: 10.1109/WACV.2018.00028 – volume: 21 start-page: 5485 year: 2020 ident: ref_39 article-title: Exploring the limits of transfer learning with a unified text-to-text transformer publication-title: J. Mach. Learn. Res. – volume: 3 start-page: oead007 year: 2023 ident: ref_71 article-title: ChatGPT: The next frontier in academic writing for cardiologists or a pandora’s box of ethical dilemmas publication-title: Eur. Heart J. Open doi: 10.1093/ehjopen/oead007 – ident: ref_152 – ident: ref_128 – ident: ref_45 – ident: ref_60 doi: 10.18653/v1/2021.emnlp-main.47 – ident: ref_140 doi: 10.1007/978-3-030-11021-5_5 – ident: ref_149 – volume: 14 start-page: 4625 year: 2020 ident: ref_9 article-title: Generative Adversarial Networks: A Literature Review publication-title: KSII Trans. Internet Inf. Syst. – ident: ref_97 – ident: ref_76 doi: 10.1145/3394486.3403104 – ident: ref_30 – ident: ref_146 doi: 10.1117/12.2559429 – ident: ref_85 doi: 10.3390/s20113106 – ident: ref_3 – ident: ref_121 – ident: ref_114 doi: 10.18653/v1/2020.findings-emnlp.139 – volume: 64 start-page: 14011 year: 2021 ident: ref_19 article-title: Generative models for De Novo drug design publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.1c00927 – ident: ref_64 doi: 10.1109/CVPR.2019.00861 – ident: ref_111 doi: 10.18653/v1/2022.inlg-main.25 – ident: ref_135 doi: 10.1109/ICIP.2017.8296650 – ident: ref_86 – ident: ref_28 doi: 10.3390/fi15060192 – ident: ref_157 – ident: ref_67 – ident: ref_129 – ident: ref_117 doi: 10.18653/v1/2022.findings-emnlp.116 – ident: ref_106 – ident: ref_73 – ident: ref_138 doi: 10.1109/ICCV.2017.267 – volume: 8 start-page: 423 year: 2020 ident: ref_75 article-title: How can we know what language models know? publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00324 – ident: ref_134 doi: 10.1145/3343031.3350944 – ident: ref_143 – ident: ref_25 – ident: ref_50 – ident: ref_33 – volume: Volume 139 start-page: 8821 year: 2021 ident: ref_166 article-title: Zero-Shot Text-to-Image Generation publication-title: Proceedings of the 38th International Conference on Machine Learning, PMLR – ident: ref_103 doi: 10.1109/CVPR52729.2023.00037 – volume: 28 start-page: 3312 year: 2019 ident: ref_91 article-title: Generative adversarial networks and perceptual losses for video super-resolution publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2895768 – volume: 28 start-page: 103439 year: 2023 ident: ref_24 article-title: Docking-based generative approaches in the search for new drug candidates publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2022.103439 – ident: ref_89 – ident: ref_126 – volume: 119 start-page: 108098 year: 2021 ident: ref_18 article-title: A survey on text generation using generative adversarial networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108098 – volume: 3 start-page: 100794 year: 2022 ident: ref_21 article-title: Deep generative molecular design reshapes drug discovery publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2022.100794 – ident: ref_101 – ident: ref_70 – volume: 71 start-page: 102642 year: 2023 ident: ref_23 article-title: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy publication-title: Int. J. Inf. Manag. doi: 10.1016/j.ijinfomgt.2023.102642 – ident: ref_160 – ident: ref_22 – ident: ref_95 – volume: 2020 start-page: 1459107 year: 2020 ident: ref_13 article-title: Generative Adversarial Network Technologies and Applications in Computer Vision publication-title: Intell. Neurosci. – ident: ref_158 doi: 10.3390/info12020055 – volume: 38 start-page: 100285 year: 2020 ident: ref_11 article-title: A comprehensive survey and analysis of generative models in machine learning publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2020.100285 – volume: 378 start-page: 1092 year: 2022 ident: ref_35 article-title: Competition-level code generation with alphacode publication-title: Science doi: 10.1126/science.abq1158 – ident: ref_150 doi: 10.1109/CVPR52688.2022.01103 – ident: ref_10 doi: 10.1109/UEMCON51285.2020.9298135 – ident: ref_120 doi: 10.1109/TASLP.2023.3288409 – volume: 32 start-page: 14579 year: 2020 ident: ref_51 article-title: GAN-Poser: An improvised bidirectional GAN model for human motion prediction publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04941-4 – ident: ref_87 doi: 10.1109/ICCV.2017.244 – ident: ref_142 – ident: ref_165 – ident: ref_78 – ident: ref_62 doi: 10.1109/ICCV.2017.364 – ident: ref_131 doi: 10.1109/CVPR52688.2022.00246 – ident: ref_48 doi: 10.1109/IJCNN52387.2021.9533461 – ident: ref_49 – ident: ref_32 – ident: ref_137 doi: 10.1007/978-3-030-00928-1_11 – ident: ref_15 doi: 10.2139/ssrn.3864965 – ident: ref_26 – ident: ref_112 doi: 10.18653/v1/2020.inlg-1.14 – ident: ref_113 – ident: ref_159 – volume: 7 start-page: 28230 year: 2019 ident: ref_36 article-title: Gesture Recognition Based on CNN and DCGAN for Calculation and Text Output publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2901930 – volume: 35 start-page: 36479 year: 2022 ident: ref_148 article-title: Photorealistic text-to-image diffusion models with deep language understanding publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_171 – ident: ref_84 – ident: ref_53 doi: 10.1145/3503161.3547855 – volume: 12 start-page: 1 year: 2020 ident: ref_125 article-title: Mol-CycleGAN: A generative model for molecular optimization publication-title: J. Cheminform. doi: 10.1186/s13321-019-0404-1 – ident: ref_37 doi: 10.1007/978-3-319-10602-1_48 – ident: ref_93 doi: 10.1109/ICCV.2017.629 – ident: ref_96 doi: 10.1007/978-3-319-77380-3_51 – ident: ref_104 – ident: ref_155 doi: 10.1007/978-3-030-21568-2_11 – ident: ref_65 doi: 10.1109/CVPR52688.2022.01750 – volume: 2018 start-page: 4907423 year: 2018 ident: ref_156 article-title: Stock market prediction on high-frequency data using generative adversarial nets publication-title: Math. Probl. Eng. – volume: 7 start-page: 36322 year: 2019 ident: ref_7 article-title: Recent progress on generative adversarial networks (GANs): A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2905015 – ident: ref_115 doi: 10.18653/v1/2021.emnlp-main.685 – volume: 11 start-page: 1071 year: 2018 ident: ref_52 article-title: Data Synthesis Based on Generative Adversarial Networks publication-title: Proc. VLDB Endow. doi: 10.14778/3231751.3231757 – ident: ref_139 – volume: 66 start-page: 20 year: 2023 ident: ref_173 article-title: Legal Challenges to Generative AI, Part I publication-title: Commun. ACM doi: 10.1145/3597151 – ident: ref_61 doi: 10.1109/CVPR.2018.00854 – ident: ref_98 doi: 10.1109/ICCV48922.2021.00209 – ident: ref_69 – ident: ref_118 doi: 10.1007/978-3-031-20047-2_21 – volume: 30 start-page: 829 year: 2021 ident: ref_40 article-title: Fsd50k: An open dataset of human-labeled sound events publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2021.3133208 – ident: ref_41 – ident: ref_107 – ident: ref_17 – ident: ref_110 – volume: 384 start-page: 192 year: 2020 ident: ref_161 article-title: Point Encoder GAN: A deep learning model for 3D point cloud inpainting publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.032 – volume: 2 start-page: 67 year: 2014 ident: ref_38 article-title: From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00166 – ident: ref_72 – ident: ref_124 – ident: ref_145 – ident: ref_162 – ident: ref_59 doi: 10.1109/CVPR.2015.7298935 – volume: 7 start-page: 14985 year: 2019 ident: ref_8 article-title: Recent Advances of Generative Adversarial Networks in Computer Vision publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2886814 – ident: ref_90 doi: 10.1109/CVPR.2017.19 – ident: ref_119 – ident: ref_144 – ident: ref_127 doi: 10.1109/CVPR.2018.00577 – ident: ref_34 – ident: ref_163 doi: 10.1109/ICCV.2017.608 – volume: 16 start-page: 383 year: 2018 ident: ref_100 article-title: Segan: Adversarial network with multi-scale l 1 loss for medical image segmentation publication-title: Neuroinformatics doi: 10.1007/s12021-018-9377-x – ident: ref_153 – volume: 33 start-page: 1877 year: 2020 ident: ref_5 article-title: Language models are few-shot learners publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_130 – ident: ref_63 doi: 10.21437/Interspeech.2021-469 – ident: ref_79 – volume: 9 start-page: 798 year: 2023 ident: ref_27 article-title: Generative artificial intelligence and its applications in materials science: Current situation and future perspectives publication-title: J. Mater. – ident: ref_167 – ident: ref_81 doi: 10.1109/CVPR.2017.632 – volume: 35 start-page: 23716 year: 2022 ident: ref_109 article-title: Flamingo: A visual language model for few-shot learning publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_116 – ident: ref_164 – ident: ref_29 – ident: ref_47 doi: 10.1109/ICASSP49357.2023.10095889 – ident: ref_2 – ident: ref_46 – ident: ref_12 – volume: 54 start-page: 157 year: 2021 ident: ref_16 article-title: A survey on generative adversarial networks: Variants, applications, and training publication-title: ACM Comput. Surv. (CSUR) – ident: ref_168 doi: 10.18653/v1/2023.findings-acl.308 – ident: ref_141 doi: 10.1007/978-3-319-46487-9_43 – ident: ref_133 – ident: ref_43 – ident: ref_105 – volume: 63 start-page: 139 year: 2020 ident: ref_44 article-title: Generative adversarial networks publication-title: Commun. ACM doi: 10.1145/3422622 – ident: ref_147 – ident: ref_4 doi: 10.1109/CVPR.2019.00453 – ident: ref_57 – ident: ref_58 doi: 10.18653/v1/2022.emnlp-main.26 – ident: ref_172 doi: 10.1145/3123266.3127905 |
| SSID | ssj0000392667 |
| Score | 2.671435 |
| SecondaryResourceType | review_article |
| Snippet | Generative artificial intelligence (AI) has emerged as a powerful technology with numerous applications in various domains. There is a need to identify the... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 260 |
| SubjectTerms | AIGC AIGC models Analysis Artificial intelligence ChatGPT Classification Computational linguistics Generative adversarial networks generative AI survey Generative artificial intelligence GPT-3 GPT-4 Internet Language Language processing Natural language interfaces Natural language processing Quality assessment Researchers Software Taxonomy User experience |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVKy4IuoDwqhpbKEkgIiaiJ40fSDRqqjqiAUiGQurMcP1ClKjOdZBBL_oE_5Eu41_FMQYJuukpke-H4Xt-XnXMIeW5YUxTOmIwrLzIepMya3LKsNK6sTAi2sRHE9b06OanOzurTVHDr0rXKpU2MhtpNLdbI9xkisUtw58Xr2WWGrFF4upooNG6RjYKxAvX8ncpWNZYcnL-UakAlLSG73w_niH-OOFp_-aEI1_8_oxw9zeTeTee4Re6mGJOOB6W4T9Z8-4Bs_oE8-JB8B_Wgp8iQRqeBDtjTaPjo-PiAjulwYoBdnzxeFY41xO4VRea0C3get7NF_-vHz4-LHl7oJAa-0H60wg6nH5Cqy0KbaR09XFK2dI_Il8nR58O3WSJhyCyXsoddxPMmeObAakKsUjqP8lMQ5oaGO1UZHoRVSgZhMNoRQUDCLXLjjFM1y225TdbbaesfE-qlLaqYYwWIg6qmctYyW3NhBGRtgY_Iy6VItE0I5UiUcaEhU0Hx6Svxjciz1djZgMvxz1FvULKrEYilHRum8686bU1de1951TCVK8ud4aYSpjbMY2gTeDAj8gL1QuOOh-lYk35cgI9C7Cw9hpXhSkFiOyK7S73QyRR0-kopnlzfvUPuIJf9cLtwl6z384V_Sm7bb_15N9-Lmv0bPXsDfg priority: 102 providerName: ProQuest |
| Title | The Power of Generative AI: A Review of Requirements, Models, Input–Output Formats, Evaluation Metrics, and Challenges |
| URI | https://www.proquest.com/docview/2857068391 https://doaj.org/article/9ee8e7b2707c4da4a85a9a2e4152f4fa |
| Volume | 15 |
| WOSCitedRecordID | wos001055830900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: 7WY dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: M0C dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC509aAH8cmOrkODggiGzST9SLzNDjM46IxhUdz10nT6AQtLdtnJiEf_g__QX2JVJzOOoHjx0gndfehUVVd91XS-Anhusno0csYkXHmR8CBlUqc2S3Lj8sKEYGsbSVzfqeWyODkpq51SX3QnrKMH7gR3WHpfeFVnKlWWO8NNIUxpMk-BJ_AQoRGinp1kKvpgDPtSqo6PNMe8_jCcEfM5MWj9FoEiUf_f3HGMMbO7cKcHh2zcLeoeXPPNfbi9Qxn4AL6iXllFpc3YRWAdaTR5LDaev2Zj1h3109Cxpzu-8fBv9YpRybNzfM6by3X749v39-sWX9gsIlbsn25Jv9mCamxZ7DONY5NNrZXVQ_g4m36YvEn66gmJ5VK2aP48rYPPHLo7BBm58yR4hfg01NypwvAgrFIyCEMwRQSBmbJIjTNOlVlq80ew11w0fh-Yl3ZUxOQoIIAp6sJZm9mSCyMw3Qp8AC83EtW2pxanChfnGlMMkr7-Jf0BPNvOvewINf4464gUs51BJNixA01D96ah_2UaA3hBatW0VXE51vR_HOBHEemVHqNkuFKYkQ7gYKN53e_hlc6I-18igBw9_h-reQK3qFR9d3nwAPbaq7V_Cjftl_ZsdTWE6-rT6RBuHE2X1fEwGjO2b1WC7SKdYFuJzzhezRfV6U_94P1z |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3batRAGP6pVVAvPEtXqw6oiGBodjLJJILIunbp0u1apELvxskcSqFk103Ww53v4Hv4UD6J_5_DVkG964VXCZMhzEy--Q8zk-8DeKR53u9brQMhXRwInyRBHhoeRNpGqfbe5KYmcZ3I6TQ9PMz21-B79y8MHavsbGJtqO3M0Br5Ficm9gTdef_l_ENAqlG0u9pJaDSw2HVfPmHKVr4Yv8bv-5jz0fbBcCdoVQUCI5KkQliIMPeOWzQD6Hwj66hBEuM2nwsrUy18bKRMfKzJfcc-xgwyDrXVVmY8NBG-9xycFwKnAx0VDIerNZ0Qg40kkQ0LahRl4ZY_Jr514u36ze_V8gB_cwK1Zxtd_d_G5BpcaWNoNmhAfx3WXHEDLv_CrHgTPiP82T4pwLGZZw23Nhl2Nhg_ZwPW7IjQo7eOjkLXa6TlM0bKcCd4HRfzZfXj67c3ywpv2KgO7LF8e8WNzvZIisxgmS4sG3aSNOUteHcmXb8N68WscBvAXGL6aZ1Deozz0jy1xnCTiVjHmJV60YOnHQSUaRnYSQjkRGEmRnBRp3DpwcNV3XnDO_LHWq8ISasaxBVeF8wWR6o1PSpzLnUy5zKURlgtdBrrTHNHoZsXXvfgCeFQkUXD5hjd_piBnSJuMDXAkRFSYuLeg80Oh6o1daU6BeGdfz9-ABd3DvYmajKe7t6FSxyjxeYk5SasV4uluwcXzMfquFzcr2cVg_dnDdmfV3JhAg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bi9NAFD6sq4g-eJetrjqgIoKh6WQmkwgidXeLpWstorBvcTKXZWFJa5N6efM_-G_8Of4Sz8mlq6C-7YNPCZMhZJJvzmXm5PsAHmieDwZW60AoJwPh4zjIQ8ODSNso0d6b3NQkrvtqOk0ODtLZBnzv_oWhssrOJtaG2s4NrZH3OTGxx-jOB33flkXMdkfPFx8CUpCindZOTqOByMR9-YTpW_lsvIvf-iHno723Oy-DVmEgMCKOK4SICHPvuEWTgI44so4eTmEM53NhVaKFl0ap2EtNrlx6idmkDLXVVqU8NBHe9wycRS8saY5NVLBe3wkx8Ihj1TCiRlEa9v0Rca8Th9dvPrCWCvibQ6i93Ojy__x-rsClNrZmw2YyXIUNV1yDi78wLl6Hzzgt2IyU4djcs4Zzmww-G46fsiFrdkro0htHJdL12mn5hJFi3DEex8ViVf34-u31qsITNqoDfmzfW3Oms1ckUWawTReW7XRSNeUNeHcqQ78Jm8W8cFvAXGwGSZ1beoz_kjyxxnCTCqklZqte9OBxB4fMtMzsJBBynGGGRtDJTqDTg_vrvouGj-SPvV4QqtY9iEO8bpgvD7PWJGWpc4lTOVehMsJqoROpU80dhXReeN2DR4TJjCwdPo7R7Q8bOCjiDMuG-GaEUpjQ92C7w2TWmsAyOwHkrX9fvgfnEanZ_ng6uQ0XOAaRTYHlNmxWy5W7A-fMx-qoXN6tJxiD96eN2J-RUmmo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Power+of+Generative+AI%3A+A+Review+of+Requirements%2C+Models%2C+Input%E2%80%93Output+Formats%2C+Evaluation+Metrics%2C+and+Challenges&rft.jtitle=Future+internet&rft.au=Bandi%2C+Ajay&rft.au=Adapa%2C+Pydi+Venkata+Satya+Ramesh&rft.au=Kuchi%2C+Yudu+Eswar+Vinay+Pratap+Kumar&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.issn=1999-5903&rft.eissn=1999-5903&rft.volume=15&rft.issue=8&rft_id=info:doi/10.3390%2Ffi15080260&rft.externalDocID=A762477010 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon |