Sugar-based amphiphilic nanoparticles arrest atherosclerosis in vivo
Atherosclerosis, the build-up of occlusive, lipid-rich plaques in arterial walls, is a focal trigger of chronic coronary, intracranial, and peripheral arterial diseases, which together account for the leading causes of death worldwide. Although the directed treatment of atherosclerotic plaques remai...
Saved in:
| Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 9; p. 2693 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
03.03.2015
|
| Subjects: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Atherosclerosis, the build-up of occlusive, lipid-rich plaques in arterial walls, is a focal trigger of chronic coronary, intracranial, and peripheral arterial diseases, which together account for the leading causes of death worldwide. Although the directed treatment of atherosclerotic plaques remains elusive, macrophages are a natural target for new interventions because they are recruited to lipid-rich lesions, actively internalize modified lipids, and convert to foam cells with diseased phenotypes. In this work, we present a nanomedicine platform to counteract plaque development based on two building blocks: first, at the single macrophage level, sugar-based amphiphilic macromolecules (AMs) were designed to competitively block oxidized lipid uptake via scavenger receptors on macrophages; second, for sustained lesion-level intervention, AMs were fabricated into serum-stable core/shell nanoparticles (NPs) to rapidly associate with plaques and inhibit disease progression in vivo. An AM library was designed and fabricated into NP compositions that showed high binding and down-regulation of both MSR1 and CD36 scavenger receptors, yielding minimal accumulation of oxidized lipids. When intravenously administered to a mouse model of cardiovascular disease, these AM NPs showed a pronounced increase in lesion association compared with the control nanoparticles, causing a significant reduction in neointimal hyperplasia, lipid burden, cholesterol clefts, and overall plaque occlusion. Thus, synthetic macromolecules configured as NPs are not only effectively mobilized to lipid-rich lesions but can also be deployed to counteract atheroinflammatory vascular diseases, highlighting the promise of nanomedicines for hyperlipidemic and metabolic syndromes. |
|---|---|
| AbstractList | Atherosclerosis, the build-up of occlusive, lipid-rich plaques in arterial walls, is a focal trigger of chronic coronary, intracranial, and peripheral arterial diseases, which together account for the leading causes of death worldwide. Although the directed treatment of atherosclerotic plaques remains elusive, macrophages are a natural target for new interventions because they are recruited to lipid-rich lesions, actively internalize modified lipids, and convert to foam cells with diseased phenotypes. In this work, we present a nanomedicine platform to counteract plaque development based on two building blocks: first, at the single macrophage level, sugar-based amphiphilic macromolecules (AMs) were designed to competitively block oxidized lipid uptake via scavenger receptors on macrophages; second, for sustained lesion-level intervention, AMs were fabricated into serum-stable core/shell nanoparticles (NPs) to rapidly associate with plaques and inhibit disease progression in vivo. An AM library was designed and fabricated into NP compositions that showed high binding and down-regulation of both MSR1 and CD36 scavenger receptors, yielding minimal accumulation of oxidized lipids. When intravenously administered to a mouse model of cardiovascular disease, these AM NPs showed a pronounced increase in lesion association compared with the control nanoparticles, causing a significant reduction in neointimal hyperplasia, lipid burden, cholesterol clefts, and overall plaque occlusion. Thus, synthetic macromolecules configured as NPs are not only effectively mobilized to lipid-rich lesions but can also be deployed to counteract atheroinflammatory vascular diseases, highlighting the promise of nanomedicines for hyperlipidemic and metabolic syndromes. Atherosclerosis, the build-up of occlusive, lipid-rich plaques in arterial walls, is a focal trigger of chronic coronary, intracranial, and peripheral arterial diseases, which together account for the leading causes of death worldwide. Although the directed treatment of atherosclerotic plaques remains elusive, macrophages are a natural target for new interventions because they are recruited to lipid-rich lesions, actively internalize modified lipids, and convert to foam cells with diseased phenotypes. In this work, we present a nanomedicine platform to counteract plaque development based on two building blocks: first, at the single macrophage level, sugar-based amphiphilic macromolecules (AMs) were designed to competitively block oxidized lipid uptake via scavenger receptors on macrophages; second, for sustained lesion-level intervention, AMs were fabricated into serum-stable core/shell nanoparticles (NPs) to rapidly associate with plaques and inhibit disease progression in vivo. An AM library was designed and fabricated into NP compositions that showed high binding and down-regulation of both MSR1 and CD36 scavenger receptors, yielding minimal accumulation of oxidized lipids. When intravenously administered to a mouse model of cardiovascular disease, these AM NPs showed a pronounced increase in lesion association compared with the control nanoparticles, causing a significant reduction in neointimal hyperplasia, lipid burden, cholesterol clefts, and overall plaque occlusion. Thus, synthetic macromolecules configured as NPs are not only effectively mobilized to lipid-rich lesions but can also be deployed to counteract atheroinflammatory vascular diseases, highlighting the promise of nanomedicines for hyperlipidemic and metabolic syndromes.Atherosclerosis, the build-up of occlusive, lipid-rich plaques in arterial walls, is a focal trigger of chronic coronary, intracranial, and peripheral arterial diseases, which together account for the leading causes of death worldwide. Although the directed treatment of atherosclerotic plaques remains elusive, macrophages are a natural target for new interventions because they are recruited to lipid-rich lesions, actively internalize modified lipids, and convert to foam cells with diseased phenotypes. In this work, we present a nanomedicine platform to counteract plaque development based on two building blocks: first, at the single macrophage level, sugar-based amphiphilic macromolecules (AMs) were designed to competitively block oxidized lipid uptake via scavenger receptors on macrophages; second, for sustained lesion-level intervention, AMs were fabricated into serum-stable core/shell nanoparticles (NPs) to rapidly associate with plaques and inhibit disease progression in vivo. An AM library was designed and fabricated into NP compositions that showed high binding and down-regulation of both MSR1 and CD36 scavenger receptors, yielding minimal accumulation of oxidized lipids. When intravenously administered to a mouse model of cardiovascular disease, these AM NPs showed a pronounced increase in lesion association compared with the control nanoparticles, causing a significant reduction in neointimal hyperplasia, lipid burden, cholesterol clefts, and overall plaque occlusion. Thus, synthetic macromolecules configured as NPs are not only effectively mobilized to lipid-rich lesions but can also be deployed to counteract atheroinflammatory vascular diseases, highlighting the promise of nanomedicines for hyperlipidemic and metabolic syndromes. |
| Author | Joseph, Laurie B Prud'homme, Robert K Kholodovych, Vladyslav Moghe, Prabhas V Lewis, Daniel R York, Adam W Zablocki, Kyle R Petersen, Latrisha K Uhrich, Kathryn E |
| Author_xml | – sequence: 1 givenname: Daniel R surname: Lewis fullname: Lewis, Daniel R organization: Department of Chemical & Biochemical Engineering, Department of Biomedical Engineering – sequence: 2 givenname: Latrisha K surname: Petersen fullname: Petersen, Latrisha K organization: Department of Biomedical Engineering – sequence: 3 givenname: Adam W surname: York fullname: York, Adam W organization: Department of Biomedical Engineering – sequence: 4 givenname: Kyle R surname: Zablocki fullname: Zablocki, Kyle R organization: Department of Biomedical Engineering – sequence: 5 givenname: Laurie B surname: Joseph fullname: Joseph, Laurie B organization: Department of Pharmacology – sequence: 6 givenname: Vladyslav surname: Kholodovych fullname: Kholodovych, Vladyslav organization: Office of Information Technology, Division of High Performance & Research Computing, Rutgers University, Piscataway, NJ 08854; and – sequence: 7 givenname: Robert K surname: Prud'homme fullname: Prud'homme, Robert K organization: Department of Chemical & Biomolecular Engineering, Princeton University, Princeton, NJ 08544 – sequence: 8 givenname: Kathryn E surname: Uhrich fullname: Uhrich, Kathryn E organization: Department of Chemistry and Chemical Biology, and – sequence: 9 givenname: Prabhas V surname: Moghe fullname: Moghe, Prabhas V email: moghe@rutgers.edu organization: Department of Chemical & Biochemical Engineering, Department of Biomedical Engineering, moghe@rutgers.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25691739$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUE1LxDAUDLLi7lbP3qRHL11f0jRpjrJ-woIH9Vxe08SNtGlN2gX_vQVXEIY3wzA85r01WfjeG0IuKWwoyPxm8Bg3lDNeKE4pOyErCopmgitY_NNLso7xEwBUUcIZWbJCKCpztSJ3r9MHhqzGaJoUu2HvZrROpx59P2AYnW5NTDEEE8cUx70JfZytebqYOp8e3KE_J6cW22gujpyQ94f7t-1Ttnt5fN7e7jLNhRgzakHlUgtZY07zumHKFBKs1bqG2YPc6ILrklFmQRRSay4ZYmkRlVaWWZaQ69-9Q-i_prlQ1bmoTduiN_0UKyoEKCbl_JCEXB2jU92ZphqC6zB8V3-Xsx_CeV4o |
| CitedBy_id | crossref_primary_10_1016_j_jddst_2024_106334 crossref_primary_10_1186_s40035_023_00393_7 crossref_primary_10_1016_j_mattod_2017_05_006 crossref_primary_10_3390_life13040951 crossref_primary_10_3389_fimmu_2017_00923 crossref_primary_10_1002_advs_202104264 crossref_primary_10_1016_j_ijpharm_2023_123737 crossref_primary_10_1016_j_nano_2021_102387 crossref_primary_10_1016_j_biomaterials_2017_07_035 crossref_primary_10_1038_nnano_2017_167 crossref_primary_10_1016_j_snb_2024_137182 crossref_primary_10_1002_adhm_201500126 crossref_primary_10_1161_ATVBAHA_118_311569 crossref_primary_10_1002_advs_201800781 crossref_primary_10_1016_j_ejpb_2021_05_027 crossref_primary_10_1016_j_pharmthera_2020_107521 crossref_primary_10_1186_s12951_022_01279_y crossref_primary_10_1016_j_actbio_2023_09_011 crossref_primary_10_1016_j_jconrel_2016_05_049 crossref_primary_10_1038_s41427_024_00548_6 crossref_primary_10_1126_scitranslmed_aay1063 crossref_primary_10_1186_s40580_021_00270_x crossref_primary_10_1073_pnas_2201443119 crossref_primary_10_1002_ppsc_202000311 crossref_primary_10_1016_j_biomaterials_2016_10_001 crossref_primary_10_1016_j_ijpharm_2019_01_023 crossref_primary_10_1002_adfm_202421512 crossref_primary_10_3390_pharmaceutics12111056 crossref_primary_10_1002_smll_202200967 crossref_primary_10_1038_s41392_019_0068_3 crossref_primary_10_1016_j_atherosclerosis_2019_09_023 crossref_primary_10_1016_j_biomaterials_2021_120875 crossref_primary_10_1016_j_actbio_2017_05_029 crossref_primary_10_1038_srep22910 crossref_primary_10_3390_cells12040522 crossref_primary_10_1002_adma_201902604 crossref_primary_10_1080_14728222_2023_2288272 crossref_primary_10_1016_j_addr_2017_08_003 crossref_primary_10_1039_D4NR00252K crossref_primary_10_3390_ijms23052522 crossref_primary_10_1002_advs_202504990 crossref_primary_10_1093_cvr_cvv271 crossref_primary_10_1016_j_cclet_2022_06_008 crossref_primary_10_1074_jbc_M116_739243 crossref_primary_10_3389_fphar_2021_755569 crossref_primary_10_1002_wnan_1840 crossref_primary_10_1016_j_jstrokecerebrovasdis_2019_03_045 crossref_primary_10_1016_j_nano_2015_09_005 crossref_primary_10_3389_fbioe_2020_00112 crossref_primary_10_1093_cvr_cvae099 crossref_primary_10_1002_adtp_201900208 crossref_primary_10_1007_s40139_019_00196_4 crossref_primary_10_3390_pharmaceutics16081037 crossref_primary_10_3390_app14051939 crossref_primary_10_1002_smll_201601425 crossref_primary_10_1002_smll_202003253 crossref_primary_10_1002_smll_201702793 crossref_primary_10_1016_j_addr_2021_01_005 crossref_primary_10_1016_j_jconrel_2016_12_032 crossref_primary_10_3389_fbioe_2021_686684 crossref_primary_10_1002_anie_202305576 crossref_primary_10_1161_CIRCRESAHA_115_306256 crossref_primary_10_3390_nano8020084 crossref_primary_10_1016_j_biomaterials_2015_12_033 crossref_primary_10_3390_jfb6020171 crossref_primary_10_3390_cryst11101172 crossref_primary_10_1080_10717544_2021_1886199 crossref_primary_10_1007_s11095_017_2211_6 crossref_primary_10_1155_2020_8131754 crossref_primary_10_1007_s11095_016_2000_7 crossref_primary_10_1016_j_atherosclerosis_2019_04_223 crossref_primary_10_1016_j_addr_2018_07_008 crossref_primary_10_1016_j_apmt_2022_101466 crossref_primary_10_1016_j_addr_2024_115204 crossref_primary_10_1038_s41569_021_00629_x crossref_primary_10_1038_s41569_018_0073_1 crossref_primary_10_1093_cvr_cvv237 crossref_primary_10_1002_adma_201904607 crossref_primary_10_1002_ange_202305576 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1424594112 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 25691739 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R21 HL093753 – fundername: NIBIB NIH HHS grantid: EB005583 – fundername: NIBIB NIH HHS grantid: T32 EB005583 – fundername: NIGMS NIH HHS grantid: T32 GM008339 – fundername: NHLBI NIH HHS grantid: R21HL93753 – fundername: NIGMS NIH HHS grantid: T32GM008339 – fundername: NIAMS NIH HHS grantid: U54AR055073 – fundername: NHLBI NIH HHS grantid: R01 HL107913 – fundername: NIAMS NIH HHS grantid: U54 AR055073 – fundername: NHLBI NIH HHS grantid: R01HL107913 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c466t-1f0937c67ba313bd29e570ffccb07ba03ec54c8212f0657cc472aa8faa9c9f2f2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 100 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350224900038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Thu Sep 04 19:23:20 EDT 2025 Mon Jul 21 05:58:48 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | atherosclerosis nanomedicine macrophages biomaterials |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c466t-1f0937c67ba313bd29e570ffccb07ba03ec54c8212f0657cc472aa8faa9c9f2f2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/112/9/2693.full.pdf |
| PMID | 25691739 |
| PQID | 1660927714 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1660927714 pubmed_primary_25691739 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-03-03 |
| PublicationDateYYYYMMDD | 2015-03-03 |
| PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2015 |
| References | 16214597 - Lancet. 2005 Oct 8;366(9493):1267-78 18046703 - Magn Reson Med. 2007 Dec;58(6):1164-70 22223224 - Adv Mater. 2012 Feb 7;24(6):733-9 22835678 - Acta Biomater. 2012 Nov;8(11):3956-62 19405544 - Biomacromolecules. 2009 Jun 8;10(6):1381-91 17531655 - J Am Coll Cardiol. 2007 May 29;49(21):2073-80 19487682 - Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9815-9 24972372 - Mol Pharm. 2014 Aug 4;11(8):2815-24 15031495 - Science. 2004 Mar 19;303(5665):1813-8 23891521 - Biomaterials. 2013 Oct;34(32):7950-9 21816466 - Biomaterials. 2011 Nov;32(32):8319-27 2251254 - Proc Natl Acad Sci U S A. 1990 Dec;87(23):9133-7 21523920 - Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011 Jul-Aug;3(4):400-20 14980540 - Drug Discov Today. 2004 Mar 1;9(5):219-28 18672949 - Mol Pharm. 2008 Jul-Aug;5(4):505-15 11877368 - Circulation. 2002 Mar 5;105(9):1135-43 20170758 - Acta Biomater. 2010 Aug;6(8):3081-91 16768400 - Biomacromolecules. 2006 Jun;7(6):1796-805 19644120 - Science. 2009 Jul 31;325(5940):612-6 17891134 - Nat Biotechnol. 2007 Oct;25(10):1165-70 23795777 - Biomacromolecules. 2013 Aug 12;14(8):2463-9 9974397 - Arterioscler Thromb Vasc Biol. 1999 Feb;19(2):187-95 23738575 - Biomacromolecules. 2013 Aug 12;14(8):2499-509 8696943 - Arterioscler Thromb Vasc Biol. 1996 Aug;16(8):1033-9 11073835 - Arterioscler Thromb Vasc Biol. 2000 Nov;20(11):2336-45 11229870 - Front Biosci. 2001 Mar 1;6:D515-25 15638783 - Curr Vasc Pharmacol. 2005 Jan;3(1):63-8 22179539 - Circulation. 2012 Jan 3;125(1):e2-e220 8982823 - J Anat. 1996 Dec;189 ( Pt 3):503-5 16452560 - N Engl J Med. 2006 Feb 2;354(5):483-95 12482824 - Arterioscler Thromb Vasc Biol. 2002 Dec 1;22(12):1990-5 17675037 - Atherosclerosis. 2008 Feb;196(2):598-607 |
| References_xml | – reference: 16214597 - Lancet. 2005 Oct 8;366(9493):1267-78 – reference: 9974397 - Arterioscler Thromb Vasc Biol. 1999 Feb;19(2):187-95 – reference: 19644120 - Science. 2009 Jul 31;325(5940):612-6 – reference: 8696943 - Arterioscler Thromb Vasc Biol. 1996 Aug;16(8):1033-9 – reference: 17675037 - Atherosclerosis. 2008 Feb;196(2):598-607 – reference: 20170758 - Acta Biomater. 2010 Aug;6(8):3081-91 – reference: 22835678 - Acta Biomater. 2012 Nov;8(11):3956-62 – reference: 21816466 - Biomaterials. 2011 Nov;32(32):8319-27 – reference: 21523920 - Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011 Jul-Aug;3(4):400-20 – reference: 11229870 - Front Biosci. 2001 Mar 1;6:D515-25 – reference: 2251254 - Proc Natl Acad Sci U S A. 1990 Dec;87(23):9133-7 – reference: 19487682 - Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9815-9 – reference: 8982823 - J Anat. 1996 Dec;189 ( Pt 3):503-5 – reference: 19405544 - Biomacromolecules. 2009 Jun 8;10(6):1381-91 – reference: 23891521 - Biomaterials. 2013 Oct;34(32):7950-9 – reference: 14980540 - Drug Discov Today. 2004 Mar 1;9(5):219-28 – reference: 17891134 - Nat Biotechnol. 2007 Oct;25(10):1165-70 – reference: 11073835 - Arterioscler Thromb Vasc Biol. 2000 Nov;20(11):2336-45 – reference: 17531655 - J Am Coll Cardiol. 2007 May 29;49(21):2073-80 – reference: 16452560 - N Engl J Med. 2006 Feb 2;354(5):483-95 – reference: 11877368 - Circulation. 2002 Mar 5;105(9):1135-43 – reference: 15638783 - Curr Vasc Pharmacol. 2005 Jan;3(1):63-8 – reference: 24972372 - Mol Pharm. 2014 Aug 4;11(8):2815-24 – reference: 18046703 - Magn Reson Med. 2007 Dec;58(6):1164-70 – reference: 22179539 - Circulation. 2012 Jan 3;125(1):e2-e220 – reference: 16768400 - Biomacromolecules. 2006 Jun;7(6):1796-805 – reference: 22223224 - Adv Mater. 2012 Feb 7;24(6):733-9 – reference: 23738575 - Biomacromolecules. 2013 Aug 12;14(8):2499-509 – reference: 23795777 - Biomacromolecules. 2013 Aug 12;14(8):2463-9 – reference: 18672949 - Mol Pharm. 2008 Jul-Aug;5(4):505-15 – reference: 12482824 - Arterioscler Thromb Vasc Biol. 2002 Dec 1;22(12):1990-5 – reference: 15031495 - Science. 2004 Mar 19;303(5665):1813-8 |
| SSID | ssj0009580 |
| Score | 2.4868255 |
| Snippet | Atherosclerosis, the build-up of occlusive, lipid-rich plaques in arterial walls, is a focal trigger of chronic coronary, intracranial, and peripheral arterial... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2693 |
| SubjectTerms | Animals Atherosclerosis - drug therapy Atherosclerosis - genetics Atherosclerosis - metabolism Atherosclerosis - pathology Carbohydrates CD36 Antigens - genetics CD36 Antigens - metabolism Humans Hyperplasia - genetics Hyperplasia - metabolism Hyperplasia - pathology Lipids Macrophages - metabolism Macrophages - pathology Mice Mice, Knockout Nanoparticles Neointima - genetics Neointima - metabolism Neointima - pathology Oxidation-Reduction Plaque, Atherosclerotic - blood Plaque, Atherosclerotic - drug therapy Plaque, Atherosclerotic - genetics Plaque, Atherosclerotic - metabolism Plaque, Atherosclerotic - pathology Scavenger Receptors, Class A - genetics Scavenger Receptors, Class A - metabolism |
| Title | Sugar-based amphiphilic nanoparticles arrest atherosclerosis in vivo |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25691739 https://www.proquest.com/docview/1660927714 |
| Volume | 112 |
| WOSCitedRecordID | wos000350224900038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleMhIDDKZ5OHY8IQRULFSVAKlbdHFslCUJTdvfzzlJBQsSEosHS5Gi8_m-z-fzfYRcRUj5EQaBBVJrxq0xLEWcYzYyJjaI2AagEZuQ43E8napJl3Cru7LKVUxsAnVWapcjH_pCeCqQ0ud31SdzqlHudrWT0FgnvRCpjPNqOY1_NN2N224EymeCK2_V2keGw6qA-ta98ooU950c5W_8ssGZ0c5__3CXbHcMk963LtEna6bYI_1uD9f0ums0fbNPHl8XHzBjDsgyCriseeXSK5oWUOBZuiuZo9Dod9CGKpY1TuGY1zQv6DJflgfkffT09vDMOlUFprkQc-ZbDymJFjIFtFmaBcpE0rNW69TDOS80OuI6RkizSE9wBbkMAGILoLSygQ0OyUZRFuaYUOlryARGS2R9HIyNTcBBqYwLbtNUhQNyubJUgl7rriKgMOWiTr5tNSBHrbmTqm2vkSAJwzNkqE7-8PUp2UIGEzVFYeEZ6Vncs-acbOrlPK9nF4074DievHwBrXrA_A |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sugar-based+amphiphilic+nanoparticles+arrest+atherosclerosis+in+vivo&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lewis%2C+Daniel+R&rft.au=Petersen%2C+Latrisha+K&rft.au=York%2C+Adam+W&rft.au=Zablocki%2C+Kyle+R&rft.date=2015-03-03&rft.eissn=1091-6490&rft.volume=112&rft.issue=9&rft.spage=2693&rft_id=info:doi/10.1073%2Fpnas.1424594112&rft_id=info%3Apmid%2F25691739&rft_id=info%3Apmid%2F25691739&rft.externalDocID=25691739 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |