Postsynthetic Modification of Zirconium Metal-Organic Frameworks
Metal‐organic frameworks (MOFs) have been in the spotlight for a number of years due to their chemical and topological versatility. As MOF research has progressed, highly functionalised materials have become desirable for specific applications, and in many cases the limitations of direct synthesis h...
Uložené v:
| Vydané v: | European journal of inorganic chemistry Ročník 2016; číslo 27; s. 4310 - 4331 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Blackwell Publishing Ltd
01.09.2016
|
| Predmet: | |
| ISSN: | 1434-1948, 1099-0682 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Metal‐organic frameworks (MOFs) have been in the spotlight for a number of years due to their chemical and topological versatility. As MOF research has progressed, highly functionalised materials have become desirable for specific applications, and in many cases the limitations of direct synthesis have been realised. This has resulted in the search for alternative synthetic routes, with postsynthetic modification (PSM), a term used to collectively describe the functionalisation of pre‐synthesised MOFs whilst maintaining their desired characteristics, becoming a topic of interest. Advances in the scope of reactions performed are reported regularly; however reactions requiring harsh conditions can result in degradation of the framework. Zirconium‐based MOFs present high chemical, thermal and mechanical stabilities, offering wider opportunities for the scope of reaction conditions that can be tolerated, which has seen a number of successful examples reported. This microreview discusses pertinent examples of PSM resulting in enhanced properties for specific applications, alongside fundamental transformations, which are categorised broadly into covalent modifications, surface transformations, metalations, linker and metal exchange, and cluster modifications.
The chemical and mechanical stabilities of zirconium metal‐organic frameworks (MOFs) make them ideal platforms for postsynthetic modification. This microreview provides an overview of the various techniques for modification and the functionalities that can be incorporated into zirconium MOFs to facilitate different applications. |
|---|---|
| AbstractList | Metal‐organic frameworks (MOFs) have been in the spotlight for a number of years due to their chemical and topological versatility. As MOF research has progressed, highly functionalised materials have become desirable for specific applications, and in many cases the limitations of direct synthesis have been realised. This has resulted in the search for alternative synthetic routes, with postsynthetic modification (PSM), a term used to collectively describe the functionalisation of pre‐synthesised MOFs whilst maintaining their desired characteristics, becoming a topic of interest. Advances in the scope of reactions performed are reported regularly; however reactions requiring harsh conditions can result in degradation of the framework. Zirconium‐based MOFs present high chemical, thermal and mechanical stabilities, offering wider opportunities for the scope of reaction conditions that can be tolerated, which has seen a number of successful examples reported. This microreview discusses pertinent examples of PSM resulting in enhanced properties for specific applications, alongside fundamental transformations, which are categorised broadly into covalent modifications, surface transformations, metalations, linker and metal exchange, and cluster modifications. Metal‐organic frameworks (MOFs) have been in the spotlight for a number of years due to their chemical and topological versatility. As MOF research has progressed, highly functionalised materials have become desirable for specific applications, and in many cases the limitations of direct synthesis have been realised. This has resulted in the search for alternative synthetic routes, with postsynthetic modification (PSM), a term used to collectively describe the functionalisation of pre‐synthesised MOFs whilst maintaining their desired characteristics, becoming a topic of interest. Advances in the scope of reactions performed are reported regularly; however reactions requiring harsh conditions can result in degradation of the framework. Zirconium‐based MOFs present high chemical, thermal and mechanical stabilities, offering wider opportunities for the scope of reaction conditions that can be tolerated, which has seen a number of successful examples reported. This microreview discusses pertinent examples of PSM resulting in enhanced properties for specific applications, alongside fundamental transformations, which are categorised broadly into covalent modifications, surface transformations, metalations, linker and metal exchange, and cluster modifications. The chemical and mechanical stabilities of zirconium metal‐organic frameworks (MOFs) make them ideal platforms for postsynthetic modification. This microreview provides an overview of the various techniques for modification and the functionalities that can be incorporated into zirconium MOFs to facilitate different applications. Metal-organic frameworks (MOFs) have been in the spotlight for a number of years due to their chemical and topological versatility. As MOF research has progressed, highly functionalised materials have become desirable for specific applications, and in many cases the limitations of direct synthesis have been realised. This has resulted in the search for alternative synthetic routes, with postsynthetic modification (PSM), a term used to collectively describe the functionalisation of pre-synthesised MOFs whilst maintaining their desired characteristics, becoming a topic of interest. Advances in the scope of reactions performed are reported regularly; however reactions requiring harsh conditions can result in degradation of the framework. Zirconium-based MOFs present high chemical, thermal and mechanical stabilities, offering wider opportunities for the scope of reaction conditions that can be tolerated, which has seen a number of successful examples reported. This microreview discusses pertinent examples of PSM resulting in enhanced properties for specific applications, alongside fundamental transformations, which are categorised broadly into covalent modifications, surface transformations, metalations, linker and metal exchange, and cluster modifications. The chemical and mechanical stabilities of zirconium metal-organic frameworks (MOFs) make them ideal platforms for postsynthetic modification. This microreview provides an overview of the various techniques for modification and the functionalities that can be incorporated into zirconium MOFs to facilitate different applications. |
| Author | Marshall, Ross J. Forgan, Ross S. |
| Author_xml | – sequence: 1 givenname: Ross J. surname: Marshall fullname: Marshall, Ross J. organization: WestCHEM, School of Chemistry, The University of Glasgow, University Avenue, G12 8QQ, Glasgow, UK – sequence: 2 givenname: Ross S. surname: Forgan fullname: Forgan, Ross S. email: Ross.Forgan@glasgow.ac.uk, WestCHEM, School of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, UK, Ross.Forgan@glasgow.ac.uk organization: WestCHEM, School of Chemistry, The University of Glasgow, University Avenue, G12 8QQ, Glasgow, UK |
| BookMark | eNqFkEFLwzAUgIMoqNOr5x29dL40aWxuuuGmY05BRfASXtNU47pGk4y5f291IiKIp7zD970Xvl2y2bjGEHJAoUcB0iPzbHUvBSoAmOQbZIeClAmIPN1sZ854QiXPt8luCM_QMsDEDjm5diGGVROfTLS6e-lKW1mN0bqm66rug_XaNXYx716aiHVy5R-xabmhx7lZOj8Le2SrwjqY_a-3Q-6GZ7eD82RyNboYnE4SzYXgSQmQA2YSU1ZI5EyXORVo2s8VBcrSAIeiyCQDLIFXyFDStEDGuJCZSLOCdcjheu-Ld68LE6Ka26BNXWNj3CIomvMsTwFo2qK9Naq9C8GbSr14O0e_UhTURyr1kUp9p2oF_kvQNn42iB5t_bcm19rS1mb1zxF1Nr4Y_HSTtWtDNG_fLvqZEsfsOFP305GajvujYf_mQd2zd161j4M |
| CitedBy_id | crossref_primary_10_1002_open_202300100 crossref_primary_10_1016_j_asems_2022_100045 crossref_primary_10_1002_slct_202003289 crossref_primary_10_1039_D4NJ04745A crossref_primary_10_1002_chem_202303725 crossref_primary_10_1016_j_ccr_2023_215143 crossref_primary_10_1016_j_seppur_2025_132138 crossref_primary_10_1002_adma_201705512 crossref_primary_10_1016_j_ccr_2021_214177 crossref_primary_10_1039_D4CC03456B crossref_primary_10_1016_j_dyepig_2022_110438 crossref_primary_10_1002_ange_202317062 crossref_primary_10_1016_j_mtnano_2025_100665 crossref_primary_10_1021_acsomega_5c04470 crossref_primary_10_1016_j_colsurfa_2025_136524 crossref_primary_10_1016_j_ccr_2019_213064 crossref_primary_10_1021_jacs_7b10453 crossref_primary_10_1016_j_cogsc_2018_06_012 crossref_primary_10_1088_2058_6272_acc3d2 crossref_primary_10_1002_adma_202004414 crossref_primary_10_1002_aoc_4819 crossref_primary_10_1002_bkcs_11655 crossref_primary_10_1039_C6CC08191F crossref_primary_10_1021_acsmaterialsau_4c00109 crossref_primary_10_1002_anie_202108150 crossref_primary_10_1002_cssc_201702193 crossref_primary_10_1016_j_ccr_2020_213507 crossref_primary_10_1016_j_molliq_2024_124181 crossref_primary_10_1016_j_jcat_2019_03_035 crossref_primary_10_3390_ijms24021757 crossref_primary_10_1002_anie_201806910 crossref_primary_10_1039_C7CC05068B crossref_primary_10_1016_j_ccr_2018_09_009 crossref_primary_10_1002_ejic_202100090 crossref_primary_10_1039_D0SC03318A crossref_primary_10_1039_C9SC01553A crossref_primary_10_1016_j_energy_2024_131127 crossref_primary_10_1016_j_matchemphys_2019_01_009 crossref_primary_10_3390_catal10050499 crossref_primary_10_3390_nano13202754 crossref_primary_10_1002_cctc_201801452 crossref_primary_10_1016_j_mtcomm_2022_103540 crossref_primary_10_1021_jacs_0c06978 crossref_primary_10_1134_S0036023619060044 crossref_primary_10_1016_j_apcatb_2020_119385 crossref_primary_10_1016_j_colsurfa_2021_128093 crossref_primary_10_1016_j_snb_2018_06_128 crossref_primary_10_1039_C6CC10278F crossref_primary_10_1016_j_ccr_2025_216704 crossref_primary_10_1016_j_jorganchem_2019_06_037 crossref_primary_10_1002_chem_201801419 crossref_primary_10_1021_jacs_3c01146 crossref_primary_10_3390_molecules25071598 crossref_primary_10_1002_chem_201802189 crossref_primary_10_1016_j_cej_2021_130230 crossref_primary_10_1016_j_seppur_2022_121080 crossref_primary_10_1016_j_chempr_2023_09_016 crossref_primary_10_1016_j_jcat_2024_115571 crossref_primary_10_1016_j_seppur_2024_129964 crossref_primary_10_1002_anie_202209110 crossref_primary_10_1002_anie_202317062 crossref_primary_10_1016_j_chemosphere_2022_134845 crossref_primary_10_1039_C8QI00149A crossref_primary_10_1016_j_mtchem_2023_101693 crossref_primary_10_1002_chem_201903630 crossref_primary_10_1016_j_tet_2017_08_040 crossref_primary_10_1016_j_cej_2017_08_017 crossref_primary_10_1039_D4NR02345E crossref_primary_10_1002_ijch_201800129 crossref_primary_10_1039_C7QI00056A crossref_primary_10_1016_j_ccr_2022_214930 crossref_primary_10_1002_adma_201704501 crossref_primary_10_1007_s40242_019_9133_2 crossref_primary_10_1039_D2QI00382A crossref_primary_10_1016_j_matchemphys_2023_127878 crossref_primary_10_1002_smtd_202201413 crossref_primary_10_1016_j_micromeso_2021_111601 crossref_primary_10_1002_ange_202209110 crossref_primary_10_1039_D1CS00976A crossref_primary_10_1016_j_jlumin_2023_120092 crossref_primary_10_1016_j_pecs_2020_100849 crossref_primary_10_1002_jccs_70032 crossref_primary_10_1016_j_molstruc_2019_126940 crossref_primary_10_1016_j_ccr_2023_215515 crossref_primary_10_1016_j_mattod_2021_07_021 crossref_primary_10_1016_j_poly_2023_116392 crossref_primary_10_1016_j_chempr_2020_09_010 crossref_primary_10_1021_jacs_9b03609 crossref_primary_10_1016_j_mcat_2022_112689 crossref_primary_10_1016_j_poly_2018_09_029 crossref_primary_10_1002_cplu_202100426 crossref_primary_10_1039_C9QI01218D crossref_primary_10_1021_jacs_1c03283 crossref_primary_10_1002_advs_201901020 crossref_primary_10_1016_j_ccr_2021_213969 crossref_primary_10_1016_j_ccr_2025_216680 crossref_primary_10_1016_j_chroma_2017_10_065 crossref_primary_10_1002_slct_201702137 crossref_primary_10_1002_ejic_201901230 crossref_primary_10_1007_s10876_019_01714_5 crossref_primary_10_1016_j_trac_2020_116015 crossref_primary_10_1016_j_ces_2023_118768 crossref_primary_10_1016_j_micromeso_2024_113114 crossref_primary_10_1021_acsami_5c04982 crossref_primary_10_1016_j_chemosphere_2020_128863 crossref_primary_10_1021_jacs_8b09606 crossref_primary_10_1016_j_inoche_2018_03_003 crossref_primary_10_1002_ange_202108150 crossref_primary_10_1039_D2MH01202B crossref_primary_10_1002_bkcs_70000 crossref_primary_10_1016_j_ccr_2023_215042 crossref_primary_10_1002_chem_201803887 crossref_primary_10_1021_jacs_0c04668 crossref_primary_10_1246_cl_180955 crossref_primary_10_3390_separations12060152 crossref_primary_10_1021_jacs_8b09682 crossref_primary_10_1016_j_surfin_2021_101647 crossref_primary_10_1016_j_ccr_2020_213734 crossref_primary_10_1039_D1RA02971A crossref_primary_10_1002_cjoc_201800407 crossref_primary_10_1038_natrevmats_2017_54 crossref_primary_10_1088_1361_6528_acbcd8 crossref_primary_10_1002_ange_201806910 crossref_primary_10_1002_chem_202104175 crossref_primary_10_1021_jacs_8b03613 crossref_primary_10_1016_j_ccr_2017_04_010 crossref_primary_10_1016_j_jiec_2019_02_022 crossref_primary_10_1002_smtd_202201170 crossref_primary_10_3390_en13030521 crossref_primary_10_1016_j_ccr_2025_217034 crossref_primary_10_3390_molecules27196585 crossref_primary_10_1002_anbr_202100014 crossref_primary_10_1016_j_jece_2021_105191 crossref_primary_10_1021_jacs_1c08550 crossref_primary_10_1021_jacs_1c03943 crossref_primary_10_1039_D0CY01325K crossref_primary_10_1186_s12951_022_01263_6 crossref_primary_10_1039_D0SC00485E crossref_primary_10_1039_D0RA00410C crossref_primary_10_3390_app12010260 |
| Cites_doi | 10.1002/ange.201204475 10.1002/ejic.201101151 10.1002/ange.201502155 10.1021/acs.inorgchem.5b00096 10.1073/pnas.1514485112 10.1039/C5TA05997F 10.1039/C4CS00067F 10.1016/j.jcat.2015.10.012 10.1002/ange.201502094 10.1021/ja8057953 10.1021/acs.chemmater.5b00665 10.1002/anie.201505625 10.1039/C5SC01784J 10.1021/acs.chemmater.5b02648 10.1021/cm502920f 10.1021/acs.jpclett.5b00019 10.1021/jacs.5b05434 10.1039/C1SC00394A 10.1039/c3cc46105j 10.1021/ic4018536 10.1002/cssc.201402378 10.1021/acs.inorgchem.5b00413 10.1039/c3cc40470f 10.1039/C2CE06491J 10.1039/C4CC02401J 10.1039/C5DT03621F 10.1002/ange.201204806 10.1002/chem.201300326 10.1021/cr200304e 10.1126/science.1230444 10.1039/B916295J 10.1039/C5CC05237H 10.1021/ic102436b 10.1016/j.micromeso.2015.01.032 10.1039/C5CC09029F 10.1002/anie.200462786 10.1002/ange.201505461 10.1039/C5CC04506A 10.1039/c0sc00127a 10.1021/ja512762r 10.1021/ja512478y 10.1039/C5SC00213C 10.1039/C4SC03613A 10.1039/C4CS00002A 10.1002/chem.201103288 10.1002/anie.201204806 10.1039/c2jm32299d 10.1002/ange.201411703 10.1039/c3cc48275h 10.1021/ja5018267 10.1039/C5TA00816F 10.1039/C4TA06396A 10.1021/acsami.5b06901 10.1021/ja500090y 10.1002/ange.201509352 10.1002/anie.201204475 10.1021/ja406844r 10.1021/ja500330a 10.1002/anie.201507058 10.1016/j.ces.2014.09.032 10.1039/C4CC09272D 10.1002/chem.201503078 10.1021/ja500362w 10.1039/c3ta10662d 10.1002/ejic.201200033 10.1021/ja3063919 10.1039/C4CE01095G 10.1021/jacs.5b05327 10.1021/ja109810w 10.1021/ar200028a 10.1002/anie.201307520 10.1039/C5CC05927E 10.1021/cr2003272 10.1021/ja408959g 10.1002/ange.201000048 10.1021/ja710973k 10.1021/acs.inorgchem.5b01053 10.1021/ic300825s 10.1021/jacs.5b09225 10.1039/C5TA07687K 10.1002/ange.201505625 10.1039/C4CE01031K 10.1002/chem.201303801 10.1021/acs.inorgchem.5b00535 10.1021/ja3125614 10.1021/cr2003147 10.1039/C4CC08218D 10.1039/C5DT03359D 10.1039/C5CC02606G 10.1002/anie.201306923 10.1021/ja405078u 10.1039/C5CC02339D 10.1016/j.jssc.2014.06.023 10.1039/C4RA09883H 10.1002/chem.201505185 10.1021/jacs.5b12515 10.1002/ange.201500207 10.1039/C5SC02100F 10.1021/ic5012764 10.1021/cr300014x 10.1002/anie.201506888 10.1039/b807080f 10.1039/C4TC00902A 10.1038/nmat4238 10.1039/b802258p 10.1039/C5CC03780H 10.1002/anie.201411540 10.1039/C4TA03992K 10.1063/1.3276105 10.1021/cs5001448 10.1021/ja4050828 10.1039/c0cc02990d 10.1021/cm102601v 10.1039/C5CE00729A 10.1021/ic502639v 10.1039/C5CY00825E 10.1021/jacs.5b02956 10.1021/ja407176p 10.1021/cm1005899 10.1039/C0CS00031K 10.1021/cr200256v 10.1039/C4CS00076E 10.1021/ja411627z 10.1021/ja4098862 10.1002/anie.201502094 10.1016/j.micromeso.2011.12.010 10.1021/acscatal.5b01604 10.1021/ja5126885 10.1039/C5CC00686D 10.1039/C5CC10384C 10.1039/C5CC01697E 10.1002/ange.201507058 10.1039/c2cc17461h 10.1039/C5CC04808G 10.1021/ic502725y 10.1021/ja503215w 10.1039/C5TA10401G 10.1021/ja3079219 10.1039/C4CC07882A 10.1021/ja404514r 10.1021/acs.inorgchem.5b00752 10.1002/ange.201307520 10.1002/chem.201203914 10.1038/srep07823 10.1002/anie.201000048 10.1039/C5DT03178H 10.1021/acscatal.5b02243 10.1021/jz4002345 10.1021/acs.chemmater.5b04887 10.1039/c2dt31195j 10.1021/ja507947d 10.1039/c3cc48562e 10.1002/ange.200462786 10.1039/C5CC06453H 10.1002/ange.201306923 10.1039/C5CC03934G 10.1002/anie.201505461 10.1039/b903811f 10.1103/PhysRevB.86.125429 10.1039/C4NJ02093F 10.1002/anie.201502155 10.1002/anie.201500207 10.1039/C5CS00837A 10.1002/ange.201506888 10.1039/C0DT01136C 10.1002/anie.201411703 10.1021/cm501859p 10.1039/C4CC04458D 10.1021/acsnano.5b03429 10.1039/c1cc13543k 10.1002/chem.201101015 10.1021/jacs.5b04695 10.1039/C4CC09407G 10.1039/B914919H 10.1002/chem.201300477 10.1021/acs.chemmater.5b01560 10.1002/anie.201509352 10.1021/ic200744y 10.1039/C4TA05225K 10.1002/ange.201411540 |
| ContentType | Journal Article |
| Copyright | 2016 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. |
| Copyright_xml | – notice: 2016 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. |
| DBID | BSCLL 24P AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/ejic.201600394 |
| DatabaseName | Istex Wiley Online Library Open Access CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1099-0682 |
| EndPage | 4331 |
| ExternalDocumentID | 10_1002_ejic_201600394 EJIC201600394 ark_67375_WNG_NJBGFBSZ_W |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council funderid: EP/L004461/1 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABLJU ABPVW ACAHQ ACBWZ ACCZN ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 UB1 UPT UQL V2E VH1 W8V W99 WBFHL WBKPD WH7 WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XJT XOL XPP XV2 ZCG ZY4 ZZTAW ~IA ~WT 24P AAYXX CITATION O8X 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c4664-d0080a59a23b9a43cd816ae682bba9de040bb5930ad04fa3a912ba334695625b3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 202 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386166900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1434-1948 |
| IngestDate | Thu Oct 02 16:52:29 EDT 2025 Sat Nov 29 07:13:38 EST 2025 Tue Nov 18 22:31:19 EST 2025 Tue Nov 11 03:10:19 EST 2025 Tue Sep 09 05:32:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 27 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4664-d0080a59a23b9a43cd816ae682bba9de040bb5930ad04fa3a912ba334695625b3 |
| Notes | ArticleID:EJIC201600394 istex:E7F99DAEFCF267317E2294DEDA99923AA6167E67 ark:/67375/WNG-NJBGFBSZ-W Engineering and Physical Sciences Research Council - No. EP/L004461/1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4767-6852 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.201600394 |
| PQID | 1845820012 |
| PQPubID | 23500 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_1845820012 crossref_primary_10_1002_ejic_201600394 crossref_citationtrail_10_1002_ejic_201600394 wiley_primary_10_1002_ejic_201600394_EJIC201600394 istex_primary_ark_67375_WNG_NJBGFBSZ_W |
| PublicationCentury | 2000 |
| PublicationDate | September 2016 |
| PublicationDateYYYYMMDD | 2016-09-01 |
| PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | European journal of inorganic chemistry |
| PublicationTitleAlternate | Eur. J. Inorg. Chem |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | B. Gui, X. Meng, Y. Chen, J. Tian, G. Liu, C. Shen, M. Zeller, D. Yuan and C. Wang, Chem. Mater., 2015, 27, 6426-6431. T. Sawano, P. Ji, A. R. McIsaac, Z. Lin, C. W. Abney and W. Lin, Chem. Sci., 2015, 6, 7163-7168. Y. Han, M. Liu, K. Li, Y. Zuo, Y. Wei, S. Xu, G. Zhang, C. Song, Z. Zhang and X. Guo, CrystEngComm, 2015, 17, 6434-6440. a) J. B. DeCoste, G. W. Peterson, H. Jasuja, T. G. Glover, Y.-G. Huang and K. S. Walton, J. Mater. Chem. A, 2013, 1, 5642-5650 a) G. Wißmann, A. Schaate, S. Lilienthal, I. Bremer, A. M. Schneider and P. Behrens, Microporous Mesoporous Mater., 2012, 152, 64-70 J. Bonnefoy, A. Legrand, E. A. Quadrelli, J. Canivet and D. Farrusseng, J. Am. Chem. Soc., 2015, 137, 9409-9416. Angew. Chem., 2015, 127, 5231. M. Servalli, M. Ranocchiari and J. A. Van Bokhoven, Chem. Commun., 2012, 48, 1904-1906. S. Yuan, W. Lu, Y.-P. Chen, Q. Zhang, T.-F. Liu, D. Feng, X. Wang, J. Qin and H.-C. Zhou, J. Am. Chem. Soc., 2015, 137, 3177-3180. a) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450-1459 A. Shigematsu, T. Yamada and H. Kitagawa, J. Am. Chem. Soc., 2011, 133, 2034-2036. D. Feng, H.-L. Jiang, Y.-P. Chen, Z.-Y. Gu, Z. Wei and H.-C. Zhou, Inorg. Chem., 2013, 52, 12661-12667. M. Kim and S. M. Cohen, CrystEngComm, 2012, 14, 4096-4104. H. Fei, J. Shin, Y. S. Meng, M. Adelhardt, J. Sutter, K. Meyer and S. M. Cohen, J. Am. Chem. Soc., 2014, 136, 4965-4973. F. Vermoortele, B. Bueken, G. Le Bars, B. Van de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, C. Kirschhock and D. E. De Vos, J. Am. Chem. Soc., 2013, 135, 11465-11468. J. B. DeCoste, M. A. Browe, G. W. Wagner, J. A. Rossin and G. W. Peterson, Chem. Commun., 2015, 51, 12474-12477. Angew. Chem., 2005, 117, 4748 G. Mouchaham, L. Cooper, N. Guillou, C. Martineau, E. Elkaïm, S. Bourrelly, P. L. Llewellyn, C. Allain, G. Clavier, C. Serre and T. Devic, Angew. Chem. Int. Ed., 2015, 54, 13297-13301 D. Sun, W. Liu, M. Qiu, Y. Zhang and Z. Li, Chem. Commun., 2015, 51, 2056-2059. S. Chavan, J. G. Vitillo, M. J. Uddin, F. Bonino, C. Lamberti, E. Groppo, K.-P. Lillerud and S. Bordiga, Chem. Mater., 2010, 22, 4602-4611. C. He, K. Lu, D. Liu and W. Lin, J. Am. Chem. Soc., 2014, 136, 5181-5184. b) H.-L. Jiang, D. Feng, K. Wang, Z.-Y. Gu, Z. Wei, Y.-P. Chen and H.-C. Zhou, J. Am. Chem. Soc., 2013, 135, 13934-13938. Q. Zhang, J. Yu, J. Cai, L. Zhang, Y. Cui, Y. Yang, B. Chen and G. Qian, Chem. Commun., 2015, 51, 14732-14734. Y. Lee, S. Kim, J. K. Kang and S. M. Cohen, Chem. Commun., 2015, 51, 5735-5738. b) A. Torrisi, C. Mellot-Draznieks and R. G. Bell, J. Chem. Phys., 2010, 132, 044705. P. Deria, Y. G. Chung, R. Q. Snurr, J. T. Hupp and O. K. Farha, Chem. Sci., 2015, 6, 5172-5176. F. Ragon, B. Campo, Q. Yang, C. Martineau, A. D. Wiersum, A. Lago, V. Guillerm, C. Hemsley, J. F. Eubank, M. Vishnuvarthan, F. Taulelle, P. Horcajada, A. Vimont, P. L. Llewellyn, M. Daturi, S. Devautour-Vinot, G. Maurin, C. Serre, T. Devic and G. Clet, J. Mater. Chem. A, 2015, 3, 3294-3309. a) C. G. Piscopo, A. Polyzoidis, M. Schwarzer and S. Loebbecke, Microporous Mesoporous Mater., 2015, 208, 30-35 Y. Bai, Y. Dou, L.-H. Xie, W. Rutledge, J.-R. Li and H.-C. Zhou, Chem. Soc. Rev., 2016, 45, 2327-2367. S. Pullen, H. Fei, A. Orthaber, S. M. Cohen and S. Ott, J. Am. Chem. Soc., 2013, 135, 16997-17003. P. Deria, W. Bury, J. T. Hupp and O. K. Farha, Chem. Commun., 2014, 50, 1965-1968. T. Ishiwata, Y. Furukawa, K. Sugikawa, K. Kokado and K. Sada, J. Am. Chem. Soc., 2013, 135, 5427-5432. S. T. Madrahimov, J. R. Gallagher, G. Zhang, Z. Meinhart, S. J. Garibay, M. Delferro, J. T. Miller, O. K. Farha, J. T. Hupp and S. T. Nguyen, ACS Catal., 2015, 5, 6713-6718. A. W. Peters, Z. Li, O. K. Farha and J. T. Hupp, ACS Nano, 2015, 9, 8484-8490. Angew. Chem., 2015, 127, 6899. S. R. Venna, M. Lartey, T. Li, A. Spore, S. Kumar, H. B. Nulwala, D. R. Luebke, N. L. Rosi and E. Albenze, J. Mater. Chem. A, 2015, 3, 5014-5022. Angew. Chem., 2015, 127, 11314. X. Lin, Y. Hong, C. Zhang, R. Huang, C. Wang and W. Lin, Chem. Commun., 2015, 51, 16996-16999. C. Larabi and E. A. Quadrelli, Eur. J. Inorg. Chem., 2012, 3014-3022. Z. Hu, S. Faucher, Y. Zhuo, Y. Sun, S. Wang and D. Zhao, Chem. Eur. J., 2015, 21, 17246-17255. J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga and K. P. Lillerud, J. Am. Chem. Soc., 2008, 130, 13850-13851. b) Z. Hu, K. Zhang, M. Zhang, Z. Guo, J. Jiang and D. Zhao, ChemSusChem, 2014, 7, 2791-2795. K. Manna, T. Zhang, M. Carboni, C. W. Abney and W. Lin, J. Am. Chem. Soc., 2014, 136, 13182-13185. b) M. J. Katz, S.-Y. Moon, J. E. Mondloch, M. H. Beyzavi, C. J. Stephenson, J. T. Hupp and O. K. Farha, Chem. Sci., 2015, 6, 2286-2291. H. Fei, S. Pullen, A. Wagner, S. Ott and S. M. Cohen, Chem. Commun., 2015, 51, 66-69. S. Yuan, Y.-P. Chen, J. Qin, W. Lu, X. Wang, Q. Zhang, M. Bosch, T.-F. Liu, X. Lian and H.-C. Zhou, Angew. Chem. Int. Ed., 2015, 54, 14696-14700 W. Morris, W. E. Briley, E. Auyeung, M. D. Cabezas and C. A. Mirkin, J. Am. Chem. Soc., 2014, 136, 7261-7264. F. Carson, E. Martinez-Castro, R. Marcos, G. G. Miera, K. Jansson, X. Zou and B. Martin-Matute, Chem. Commun., 2015, 51, 10864-10867. b) A. Schaate, S. Dühnen, G. Platz, S. Lilienthal, A. M. Schneider and P. Behrens, Eur. J. Inorg. Chem., 2012, 790-796. Y.-B. Huang, M. Shen, X. Wang, P. Huang, R. Chen, Z.-J. Lin and R. Cao, J. Catal., 2016, 333, 1-7. Angew. Chem., 2010, 122, 6400 c) P. Horcajada, C. Serre, G. Maurin, N. A. Ramsahye, F. Balas, M. Vallet-Regí, M. Sebban, F. Taulelle and G. Férey, J. Am. Chem. Soc., 2008, 130, 6774-6780 I. Hod, W. Bury, D. M. Gardner, P. Deria, V. Roznyatovskiy, M. R. Wasielewski, O. K. Farha and J. T. Hupp, J. Phys. Chem. Lett., 2015, 6, 586-591. c) H. Furukawa, K. E. Cordova, M. O'Keeffe and O. M. Yaghi, Science, 2013, 341, 6149. b) S. Jakobsen, D. Gianolio, D. S. Wragg, M. H. Nilsen, H. Emerich, S. Bordiga, C. Lamberti, U. Olsbye, M. Tilset and K. P. Lillerud, Phys. Rev. B, 2012, 86, 125429. a) J. E. Mondloch, M. J. Katz, W. C. IsleyIII, P. Ghosh, P. Liao, W. Bury, G. W. Wagner, M. G. Hall, J. B. DeCoste, G. W. Peterson, R. Q. Snurr, C. J. Cramer, J. T. Hupp and O. K. Farha, Nat. Mater., 2015, 14, 512-516 Q. Zhang, J. Su, D. Feng, Z. Wei, X. Zou and H.-C. Zhou, J. Am. Chem. Soc., 2015, 137, 10064-10067. b) P. G. Yot, K. Yang, F. Ragon, V. Dmitriev, T. Devic, P. Horcajada, C. Serre and G. Maurin, Dalton Trans., 2016, 45, 4283-4288 d) C. L. Hobday, R. J. Marshall, C. F. Murphie, J. Sotelo, T. Richards, D. R. Allan, T. Düren, F.-X. Coudert, R. S. Forgan, C. A. Morrison, S. A. Moggach and T. D. Bennett, Angew. Chem. Int. Ed., 2016, 55, 2401-2405 J. Ma, A. G. Wong-Foy and A. J. Matzger, Inorg. Chem., 2015, 54, 4591-4593. H.-L. Jiang, D. Feng, T.-F. Liu, J.-R. Li and H.-C. Zhou, J. Am. Chem. Soc., 2012, 134, 14690-14693. M. Kim, J. F. Cahill, Y. Su, K. A. Prather and S. M. Cohen, Chem. Sci., 2012, 3, 126-130. C. Falaise, C. Volkringer, J.-F. Vigier, N. Henry, A. Beaurain and T. Loiseau, Chem. Eur. J., 2013, 19, 5324-5331. C. A. Trickett, K. J. Gagnon, S. Lee, F. Gándara, H.-B. Bürgi and O. M. Yaghi, Angew. Chem. Int. Ed., 2015, 54, 11162-11167 J. Aguilera-Sigalat, A. Fox-Charles and D. Bradshaw, Chem. Commun., 2014, 50, 15453-15456. Angew. Chem., 2012, 124, 9401. e) Z. Fang, B. Bueken, D. E. De Vos and R. A. Fischer, Angew. Chem. Int. Ed., 2015, 54, 7234-7254 a) H. Wu, T. Yildirim and W. Zhou, J. Phys. Chem. Lett., 2013, 4, 925-930 a) J. R. Long and O. M. Yaghi, Chem. Soc. Rev., 2009, 38, 1213-1214 M. Lammert, M. T. Wharmby, S. Smolders, B. Bueken, A. Lieb, K. A. Lomachenko, D. De Vos and N. Stock, Chem. Commun., 2015, 51, 12578-12581. Y. Luan, Y. Qi, H. Gao, R. S. Andriamitantsoa, N. Zheng and G. Wang, J. Mater. Chem. A, 2015, 3, 17320-17331. X. Yu and S. M. Cohen, Chem. Commun., 2015, 51, 9880-9883. a) J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed., 2005, 44, 4670-4679 Angew. Chem., 2014, 126, 507 b) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, Chem. Rev., 2012, 112, 724-781 V. Guillerm, S. Gross, C. Serre, T. Devic, M. Bauer and G. Férey, Chem. Commun., 2010, 46, 767-769. Angew. Chem., 2014, 126, 4618. B. Gui, G. Hu, T. Zhou and C. Wang, J. Solid State Chem., 2015, 223, 79-83. L. Li, S. Tang, C. Wang, X. Lv, M. Jiang, H. Wu and X. Zhao, Chem. Commun., 2014, 50, 2304-2307. T. Sawano, N. C. Thacker, Z. Lin, A. R. McIsaac and W. Lin, J. Am. Chem. Soc., 2015, 137, 12241-12248. P. Deria, S. Li, H. Zhang, R. Q. Snurr, J. T. Hupp and O. K. Farha, Chem. Commun., 2015, 51, 12478-12481. S. Nagata, K. Kokado and K. Sada, Chem. Commun., 2015, 51, 8614-8617. b) S.-Y. Moon, Y. Liu, J. T. Hupp and O. K. Farha, Angew. Chem. Int. Ed., 2015, 54, 6795-6799 H. Hintz and S. Wuttke, Chem. Mater., 2014, 26, 6722-6728. a) Z. Wang and S. M. Cohen, Chem. Soc. Rev., 2009, 38, 1315-1329 J. E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E. J. DeMarco, M. H. Weston, A. A. Sarjeant, S. T. Nguyen, P. C. Stair, R. Q. Snurr, O. K. Farha and J. T. Hupp, J. Am. Chem. Soc., 2013, 135, 10294-10297. b) P. Deria, J. E. Mondloch, O. Karagiaridi, W. Bury, J. T. Hupp and O. K. Farha, Chem. Soc. Rev., 2014, 43, 5896-5912 a) M. Kim, J. F. Cahill, H. Fei, K. A. Prather and S. M. Cohen, J. Am. Chem. Soc., 2012, 134, 18082-18088 R. C. Klet, Y. Liu, T. C. Wang, J. T. Hupp and O. K. Farha, J. Mater. Chem. A, 2016, 4, 1479-1485. c) C. K. Brozek and M. Dinca, Chem. Soc. Rev., 2014, 43, 5456-5467 Z. Li, N. M. Schweitzer, A. B. League, V. Bernales, A. W. Peters, A. B. Getsoian, T. C. Wang, J. T. Miller, A. Vjunov, J. L. Fulton, J. A. Lercher, C. J. Cramer, L. Gagliardi, J. T. Hupp and O. K. Farha, J. Am. Chem. Soc., 2016, 138, 1977-1982. H. G. T. Nguyen, L. Mao, A. W. Peters, C. O. Audu, Z. J. Brown, O. K. Farha, J. T. Hupp and S. T. Nguyen, Catal. Sci. Technol., 2015, 5, 4444-4451. A. Schaate, P. Roy, T. Preuße, S. J. Lohmeier, A. Godt and P. Behrens, Chem. Eur. J., 2011, 17, 9320-9325. Z. Hu and D. Zhao, Dalton Trans., 2015, 44, 19018-19040. e) L.-M. Yang, E 2014 2014; 53 126 2012 2014 2014 2014; 134 43 43 43 2015; 39 2009 2012 2013; 38 112 341 2015; 223 2014; 26 2012; 18 2011; 17 2012; 14 2009 2011 2010; 38 40 1 2014; 136 2014; 20 2013; 19 2010; 22 2014 2014 2014; 53 136 16 2014; 4 2012; 134 2015; 137 2012 2012; 51 124 2012 2012; 152 2015; 44 2013; 52 2014; 16 2009 2012; 38 112 2015 2015; 54 127 2015 2011 2008 2010 2010 2012; 51 44 130 49 122 112 2013 2016 2016 2016 2016 2014 2015; 4 45 45 55 128 2 3 2014; 50 2016; 45 2015 2013 2014 2013 2015 2015; 54 49 26 135 54 127 2015; 6 2015; 17 2015; 5 2011 2010; 47 132 2015; 3 2013; 49 2012 2015; 51 2015; 124 2015 2013; 208 135 2011; 40 2005 2005 2012 2010; 44 117 112 46 2015; 54 2016; 52 2015; 9 2015 2015 2015; 14 54 127 2014 2014 2015; 53 126 6 2015; 7 2012 2012 2012; 51 124 51 2011; 133 2012 2012; 22 86 2016; 4 2015 2016; 137 6 2015; 27 2012; 3 2012; 112 2010; 46 2015; 112 2011; 50 2015; 21 2016; 333 2013; 135 2016; 138 2012; 48 2013 2014 2010; 1 50 22 2016; 28 2012 2014; 41 7 2008; 130 2016; 22 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_2 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_3 e_1_2_10_116_2 e_1_2_10_93_2 e_1_2_10_116_3 e_1_2_10_2_3 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_97_2 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_55_2 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_2 e_1_2_10_124_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_22_2 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_3_2 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_3_4 e_1_2_10_11_6 e_1_2_10_15_2 e_1_2_10_113_1 e_1_2_10_3_3 e_1_2_10_11_7 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_7_2 e_1_2_10_11_4 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_11_5 e_1_2_10_15_1 e_1_2_10_10_3 e_1_2_10_7_3 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_10_2 e_1_2_10_121_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_121_2 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_23_2 e_1_2_10_42_2 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_4_2 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_8_3 e_1_2_10_11_2 e_1_2_10_58_1 e_1_2_10_8_2 e_1_2_10_11_3 e_1_2_10_34_1 e_1_2_10_58_2 e_1_2_10_8_4 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_84_2 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_92_1 e_1_2_10_115_3 e_1_2_10_73_1 e_1_2_10_17_2 e_1_2_10_96_2 e_1_2_10_115_1 e_1_2_10_17_3 e_1_2_10_96_1 e_1_2_10_115_2 e_1_2_10_5_2 e_1_2_10_54_1 e_1_2_10_96_4 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_96_3 e_1_2_10_5_4 e_1_2_10_77_2 e_1_2_10_96_6 e_1_2_10_111_1 e_1_2_10_5_3 e_1_2_10_36_1 e_1_2_10_96_5 e_1_2_10_5_6 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_5_5 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_2 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_123_2 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_47_1 e_1_2_10_89_1 |
| References_xml | – reference: P. Deria, Y. G. Chung, R. Q. Snurr, J. T. Hupp and O. K. Farha, Chem. Sci., 2015, 6, 5172-5176. – reference: T. Ishiwata, Y. Furukawa, K. Sugikawa, K. Kokado and K. Sada, J. Am. Chem. Soc., 2013, 135, 5427-5432. – reference: S. Yuan, W. Lu, Y.-P. Chen, Q. Zhang, T.-F. Liu, D. Feng, X. Wang, J. Qin and H.-C. Zhou, J. Am. Chem. Soc., 2015, 137, 3177-3180. – reference: d) A. C. McKinlay, R. E. Morris, P. Horcajada, G. Férey, R. Gref, P. Couvreur and C. Serre, Angew. Chem. Int. Ed., 2010, 49, 6260-6266; – reference: P. Deria, W. Bury, I. Hod, C.-W. Kung, O. Karagiaridi, J. T. Hupp and O. K. Farha, Inorg. Chem., 2015, 54, 2185-2192. – reference: a) G. Wißmann, A. Schaate, S. Lilienthal, I. Bremer, A. M. Schneider and P. Behrens, Microporous Mesoporous Mater., 2012, 152, 64-70; – reference: a) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450-1459; – reference: a) M. Kim, J. F. Cahill, H. Fei, K. A. Prather and S. M. Cohen, J. Am. Chem. Soc., 2012, 134, 18082-18088; – reference: Y. Lee, S. Kim, J. K. Kang and S. M. Cohen, Chem. Commun., 2015, 51, 5735-5738. – reference: a) J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed., 2005, 44, 4670-4679; – reference: J. M. Falkowski, T. Sawano, T. Zhang, G. Tsun, Y. Chen, J. V. Lockard and W. Lin, J. Am. Chem. Soc., 2014, 136, 5213-5216. – reference: R. J. Marshall, S. L. Griffin, C. Wilson and R. S. Forgan, Chem. Eur. J., 2016, 22, 4870-4877. – reference: A. Schaate, P. Roy, T. Preuße, S. J. Lohmeier, A. Godt and P. Behrens, Chem. Eur. J., 2011, 17, 9320-9325. – reference: R. J. Marshall, S. L. Griffin, C. Wilson and R. S. Forgan, J. Am. Chem. Soc., 2015, 137, 9527-9530. – reference: Q. Zhang, J. Yu, J. Cai, L. Zhang, Y. Cui, Y. Yang, B. Chen and G. Qian, Chem. Commun., 2015, 51, 14732-14734. – reference: Z. Li, N. M. Schweitzer, A. B. League, V. Bernales, A. W. Peters, A. B. Getsoian, T. C. Wang, J. T. Miller, A. Vjunov, J. L. Fulton, J. A. Lercher, C. J. Cramer, L. Gagliardi, J. T. Hupp and O. K. Farha, J. Am. Chem. Soc., 2016, 138, 1977-1982. – reference: J. Ma, A. G. Wong-Foy and A. J. Matzger, Inorg. Chem., 2015, 54, 4591-4593. – reference: a) Z. Wang and S. M. Cohen, Chem. Soc. Rev., 2009, 38, 1315-1329; – reference: b) A. Torrisi, C. Mellot-Draznieks and R. G. Bell, J. Chem. Phys., 2010, 132, 044705. – reference: c) S. M. Cohen, Chem. Sci., 2010, 1, 32-36. – reference: Angew. Chem., 2015, 127, 6899. – reference: W. Morris, C. J. Doonan and O. M. Yaghi, Inorg. Chem., 2011, 50, 6853-6855. – reference: Z. Hu, M. Khurana, Y. H. Seah, M. Zhang, Z. Guo and D. Zhao, Chem. Eng. Sci., 2015, 124, 61-69. – reference: Angew. Chem., 2015, 127, 4333. – reference: b) Z. Hu, K. Zhang, M. Zhang, Z. Guo, J. Jiang and D. Zhao, ChemSusChem, 2014, 7, 2791-2795. – reference: R. C. Klet, T. C. Wang, L. E. Fernandez, D. G. Truhlar, J. T. Hupp and O. K. Farha, Chem. Mater., 2016, 28, 1213-1219. – reference: b) J. Della Rocca, D. Liu and W. Lin, Acc. Chem. Res., 2011, 44, 957-968; – reference: a) K. E. deKrafft, W. S. Boyle, L. M. Burk, O. Z. Zhou and W. Lin, J. Mater. Chem., 2012, 22, 18139-18144; – reference: C. Larabi and E. A. Quadrelli, Eur. J. Inorg. Chem., 2012, 3014-3022. – reference: e) P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey, R. E. Morris and C. Serre, Chem. Rev., 2012, 112, 1232-1268. – reference: T. Sawano, P. Ji, A. R. McIsaac, Z. Lin, C. W. Abney and W. Lin, Chem. Sci., 2015, 6, 7163-7168. – reference: M. Kim, J. F. Cahill, Y. Su, K. A. Prather and S. M. Cohen, Chem. Sci., 2012, 3, 126-130. – reference: a) O. V. Gutov, M. G. Hevia, E. C. Escudero-Adán and A. Shafir, Inorg. Chem., 2015, 54, 8396-8400; – reference: J. Aguilera-Sigalat, A. Fox-Charles and D. Bradshaw, Chem. Commun., 2014, 50, 15453-15456. – reference: D. H. Hong and M. P. Suh, Chem. Eur. J., 2014, 20, 426-434. – reference: D. Sun, W. Liu, M. Qiu, Y. Zhang and Z. Li, Chem. Commun., 2015, 51, 2056-2059. – reference: J. Bonnefoy, A. Legrand, E. A. Quadrelli, J. Canivet and D. Farrusseng, J. Am. Chem. Soc., 2015, 137, 9409-9416. – reference: a) D. Feng, Z.-Y. Gu, J.-R. Li, H.-L. Jiang, Z. Wei and H.-C. Zhou, Angew. Chem. Int. Ed., 2012, 51, 10307-10310; – reference: H.-L. Jiang, D. Feng, T.-F. Liu, J.-R. Li and H.-C. Zhou, J. Am. Chem. Soc., 2012, 134, 14690-14693. – reference: X. Yu and S. M. Cohen, Chem. Commun., 2015, 51, 9880-9883. – reference: a) M. Lin Foo, S. Horike, T. Fukushima, Y. Hijikata, Y. Kubota, M. Takata and S. Kitagawa, Dalton Trans., 2012, 41, 13791-13794; – reference: I. Hod, W. Bury, D. M. Gardner, P. Deria, V. Roznyatovskiy, M. R. Wasielewski, O. K. Farha and J. T. Hupp, J. Phys. Chem. Lett., 2015, 6, 586-591. – reference: c) S. Ma and H.-C. Zhou, Chem. Commun., 2010, 46, 44-53. – reference: Y. Zhou and B. Yan, Chem. Commun., 2016, 52, 2265-2268. – reference: Y. Han, M. Liu, K. Li, Y. Zuo, Y. Wei, S. Xu, G. Zhang, C. Song, Z. Zhang and X. Guo, CrystEngComm, 2015, 17, 6434-6440. – reference: S. J. D. Smith, B. P. Ladewig, A. J. Hill, C. H. Lau and M. R. Hill, Sci. Rep., 2015, 5, 7823. – reference: b) H.-C. Zhou, J. R. Long and O. M. Yaghi, Chem. Rev., 2012, 112, 673-674; – reference: c) R. J. Marshall, T. Richards, C. Hobday, C. F. Murphie, C. Wilson, S. A. Moggach, T. D. Bennett and R. S. Forgan, Dalton Trans., 2016, 45, 4132-4135; – reference: H. Fei, J. Shin, Y. S. Meng, M. Adelhardt, J. Sutter, K. Meyer and S. M. Cohen, J. Am. Chem. Soc., 2014, 136, 4965-4973. – reference: Z. Hu and D. Zhao, Dalton Trans., 2015, 44, 19018-19040. – reference: K. Manna, T. Zhang and W. Lin, J. Am. Chem. Soc., 2014, 136, 6566-6569. – reference: b) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, Chem. Rev., 2012, 112, 724-781; – reference: Angew. Chem., 2014, 126, 507; – reference: b) P. Deria, J. E. Mondloch, O. Karagiaridi, W. Bury, J. T. Hupp and O. K. Farha, Chem. Soc. Rev., 2014, 43, 5896-5912; – reference: K. Manna, T. Zhang, M. Carboni, C. W. Abney and W. Lin, J. Am. Chem. Soc., 2014, 136, 13182-13185. – reference: a) C. Orellana-Tavra, E. F. Baxter, T. Tian, T. D. Bennett, N. K. H. Slater, A. K. Cheetham and D. Fairen-Jimenez, Chem. Commun., 2015, 51, 13878-13881; – reference: b) M. J. Katz, S.-Y. Moon, J. E. Mondloch, M. H. Beyzavi, C. J. Stephenson, J. T. Hupp and O. K. Farha, Chem. Sci., 2015, 6, 2286-2291. – reference: a) R. Wang, Z. Wang, Y. Xu, F. Dai, L. Zhang and D. Sun, Inorg. Chem., 2014, 53, 7086-7088; – reference: G. Mouchaham, L. Cooper, N. Guillou, C. Martineau, E. Elkaïm, S. Bourrelly, P. L. Llewellyn, C. Allain, G. Clavier, C. Serre and T. Devic, Angew. Chem. Int. Ed., 2015, 54, 13297-13301; – reference: Angew. Chem., 2015, 127, 11314. – reference: a) J. E. Mondloch, M. J. Katz, W. C. IsleyIII, P. Ghosh, P. Liao, W. Bury, G. W. Wagner, M. G. Hall, J. B. DeCoste, G. W. Peterson, R. Q. Snurr, C. J. Cramer, J. T. Hupp and O. K. Farha, Nat. Mater., 2015, 14, 512-516; – reference: Angew. Chem., 2015, 127, 13495. – reference: Z. Hu, S. Faucher, Y. Zhuo, Y. Sun, S. Wang and D. Zhao, Chem. Eur. J., 2015, 21, 17246-17255. – reference: R. C. Klet, Y. Liu, T. C. Wang, J. T. Hupp and O. K. Farha, J. Mater. Chem. A, 2016, 4, 1479-1485. – reference: Angew. Chem., 2015, 127, 5231. – reference: Y. Zhang, X. Feng, H. Li, Y. Chen, J. Zhao, S. Wang, L. Wang and B. Wang, Angew. Chem. Int. Ed., 2015, 54, 4259-4263; – reference: b) W. Morris, B. Volosskiy, S. Demir, F. Gándara, P. L. McGrier, H. Furukawa, D. Cascio, J. F. Stoddart and O. M. Yaghi, Inorg. Chem., 2012, 51, 6443-6445. – reference: L.-J. Li, P.-Q. Liao, C.-T. He, Y.-S. Wei, H.-L. Zhou, J.-M. Lin, X.-Y. Li and J.-P. Zhang, J. Mater. Chem. A, 2015, 3, 21849-21855. – reference: C. A. Trickett, K. J. Gagnon, S. Lee, F. Gándara, H.-B. Bürgi and O. M. Yaghi, Angew. Chem. Int. Ed., 2015, 54, 11162-11167; – reference: C.-W. Kung, J. E. Mondloch, T. C. Wang, W. Bury, W. Hoffeditz, B. M. Klahr, R. C. Klet, M. J. Pellin, O. K. Farha and J. T. Hupp, ACS Appl. Mater. Interfaces, 2015, 7, 28223-28230. – reference: Angew. Chem., 2015, 127, 7340. – reference: Angew. Chem., 2010, 122, 6400; – reference: Y.-B. Huang, M. Shen, X. Wang, P. Huang, R. Chen, Z.-J. Lin and R. Cao, J. Catal., 2016, 333, 1-7. – reference: C. Falaise, C. Volkringer, J.-F. Vigier, N. Henry, A. Beaurain and T. Loiseau, Chem. Eur. J., 2013, 19, 5324-5331. – reference: b) A. Schaate, S. Dühnen, G. Platz, S. Lilienthal, A. M. Schneider and P. Behrens, Eur. J. Inorg. Chem., 2012, 790-796. – reference: d) H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim and W. Zhou, J. Am. Chem. Soc., 2013, 135, 10525-10532; – reference: M. Kim, S. J. Garibay and S. M. Cohen, Inorg. Chem., 2011, 50, 729-731. – reference: I. S. Kim, J. Borycz, A. E. Platero-Prats, S. Tussupbayev, T. C. Wang, O. K. Farha, J. T. Hupp, L. Gagliardi, K. W. Chapman, C. J. Cramer and A. B. F. Martinson, Chem. Mater., 2015, 27, 4772-4778. – reference: Y. Lee, S. Kim, H. Fei, J. K. Kang and S. M. Cohen, Chem. Commun., 2015, 51, 16549-16552. – reference: Angew. Chem., 2015, 127, 6894. – reference: a) Q. Yang, A. D. Wiersum, P. L. Llewellyn, V. Guillerm, C. Serre and G. Maurin, Chem. Commun., 2011, 47, 9603-9605; – reference: H. Fei, M. D. Sampson, Y. Lee, C. P. Kubiak and S. M. Cohen, Inorg. Chem., 2015, 54, 6821-6828. – reference: O. Karagiaridi, W. Bury, J. E. Mondloch, J. T. Hupp and O. K. Farha, Angew. Chem. Int. Ed., 2014, 53, 4530-4540; – reference: c) C. K. Brozek and M. Dinca, Chem. Soc. Rev., 2014, 43, 5456-5467; – reference: Angew. Chem., 2005, 117, 4748; – reference: c) P. Horcajada, C. Serre, G. Maurin, N. A. Ramsahye, F. Balas, M. Vallet-Regí, M. Sebban, F. Taulelle and G. Férey, J. Am. Chem. Soc., 2008, 130, 6774-6780; – reference: M. I. Gonzalez, E. D. Bloch, J. A. Mason, S. J. Teat and J. R. Long, Inorg. Chem., 2015, 54, 2995-3005. – reference: H. Fei, S. Pullen, A. Wagner, S. Ott and S. M. Cohen, Chem. Commun., 2015, 51, 66-69. – reference: c) G. C. Shearer, S. Chavan, J. Ethiraj, J. G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga and K. P. Lillerud, Chem. Mater., 2014, 26, 4068-4071; – reference: D. Feng, H.-L. Jiang, Y.-P. Chen, Z.-Y. Gu, Z. Wei and H.-C. Zhou, Inorg. Chem., 2013, 52, 12661-12667. – reference: B. Li, B. Gui, G. Hu, D. Yuan and C. Wang, Inorg. Chem., 2015, 54, 5139-5141. – reference: b) S. Jakobsen, D. Gianolio, D. S. Wragg, M. H. Nilsen, H. Emerich, S. Bordiga, C. Lamberti, U. Olsbye, M. Tilset and K. P. Lillerud, Phys. Rev. B, 2012, 86, 125429. – reference: M. Lammert, M. T. Wharmby, S. Smolders, B. Bueken, A. Lieb, K. A. Lomachenko, D. De Vos and N. Stock, Chem. Commun., 2015, 51, 12578-12581. – reference: a) M. J. Katz, J. E. Mondloch, R. K. Totten, J. K. Park, S. T. Nguyen, O. K. Farha and J. T. Hupp, Angew. Chem. Int. Ed., 2014, 53, 497-501; – reference: a) J. B. DeCoste, G. W. Peterson, H. Jasuja, T. G. Glover, Y.-G. Huang and K. S. Walton, J. Mater. Chem. A, 2013, 1, 5642-5650; – reference: b) H.-L. Jiang, D. Feng, K. Wang, Z.-Y. Gu, Z. Wei, Y.-P. Chen and H.-C. Zhou, J. Am. Chem. Soc., 2013, 135, 13934-13938. – reference: A. Shigematsu, T. Yamada and H. Kitagawa, J. Am. Chem. Soc., 2011, 133, 2034-2036. – reference: c) M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino and K. P. Lillerud, Chem. Mater., 2010, 22, 6632-6640. – reference: F. Carson, E. Martinez-Castro, R. Marcos, G. G. Miera, K. Jansson, X. Zou and B. Martin-Matute, Chem. Commun., 2015, 51, 10864-10867. – reference: A. W. Peters, Z. Li, O. K. Farha and J. T. Hupp, ACS Nano, 2015, 9, 8484-8490. – reference: b) J. E. Mondloch, M. J. Katz, N. Planas, D. Semrouni, L. Gagliardi, J. T. Hupp and O. K. Farha, Chem. Commun., 2014, 50, 8944-8946; – reference: Q. Zhang, J. Su, D. Feng, Z. Wei, X. Zou and H.-C. Zhou, J. Am. Chem. Soc., 2015, 137, 10064-10067. – reference: M. Servalli, M. Ranocchiari and J. A. Van Bokhoven, Chem. Commun., 2012, 48, 1904-1906. – reference: S. Nagata, K. Kokado and K. Sada, Chem. Commun., 2015, 51, 8614-8617. – reference: e) Z. Fang, B. Bueken, D. E. De Vos and R. A. Fischer, Angew. Chem. Int. Ed., 2015, 54, 7234-7254; – reference: R. J. Marshall, C. L. Hobday, C. F. Murphie, S. L. Griffin, C. A. Morrison, S. A. Moggach and R. S. Forgan, J. Mater. Chem. A, 2016, 4, 6955-6963. – reference: b) S.-Y. Moon, Y. Liu, J. T. Hupp and O. K. Farha, Angew. Chem. Int. Ed., 2015, 54, 6795-6799; – reference: J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga and K. P. Lillerud, J. Am. Chem. Soc., 2008, 130, 13850-13851. – reference: P. R. McGonigal, P. Deria, I. Hod, P. Z. Moghadam, A.-J. Avestro, N. E. Horwitz, I. C. Gibbs-Hall, A. K. Blackburn, D. Chen, Y. Y. Botros, M. R. Wasielewski, R. Q. Snurr, J. T. Hupp, O. K. Farha and J. F. Stoddart, Proc. Natl. Acad. Sci. USA, 2015, 112, 11161-11168. – reference: J. E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E. J. DeMarco, M. H. Weston, A. A. Sarjeant, S. T. Nguyen, P. C. Stair, R. Q. Snurr, O. K. Farha and J. T. Hupp, J. Am. Chem. Soc., 2013, 135, 10294-10297. – reference: V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M. Vishnuvarthan, B. Campo, A. Vimont, G. Clet, Q. Yang, G. Maurin, G. Férey, A. Vittadini, S. Gross and C. Serre, Angew. Chem. Int. Ed., 2012, 51, 9267-9271; – reference: K. Manna, T. Zhang, F. X. Greene and W. Lin, J. Am. Chem. Soc., 2015, 137, 2665-2673. – reference: Angew. Chem., 2014, 126, 4618. – reference: H. G. T. Nguyen, L. Mao, A. W. Peters, C. O. Audu, Z. J. Brown, O. K. Farha, J. T. Hupp and S. T. Nguyen, Catal. Sci. Technol., 2015, 5, 4444-4451. – reference: S.-Y. Moon, A. J. Howarth, T. Wang, N. A. Vermeulen, J. T. Hupp and O. K. Farha, Chem. Commun., 2016, 52, 3438-3441. – reference: P. Deria, S. Li, H. Zhang, R. Q. Snurr, J. T. Hupp and O. K. Farha, Chem. Commun., 2015, 51, 12478-12481. – reference: b) M. J. Katz, Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp and O. K. Farha, Chem. Commun., 2013, 49, 9449-9451; – reference: J. M. Taylor, S. Dekura, R. Ikeda and H. Kitagawa, Chem. Mater., 2015, 27, 2286-2289. – reference: C. Falaise, J.-S. Charles, C. Volkringer and T. Loiseau, Inorg. Chem., 2015, 54, 2235-2242. – reference: L. Li, S. Tang, C. Wang, X. Lv, M. Jiang, H. Wu and X. Zhao, Chem. Commun., 2014, 50, 2304-2307. – reference: I. L. Malaestean, M. Speldrich, A. Ellern, S. G. Baca and P. Kogerler, Dalton Trans., 2011, 40, 331-333. – reference: d) J. D. Evans, C. J. Sumby and C. J. Doonan, Chem. Soc. Rev., 2014, 43, 5933-5951. – reference: F. Vermoortele, B. Bueken, G. Le Bars, B. Van de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, C. Kirschhock and D. E. De Vos, J. Am. Chem. Soc., 2013, 135, 11465-11468. – reference: S. Chavan, J. G. Vitillo, M. J. Uddin, F. Bonino, C. Lamberti, E. Groppo, K.-P. Lillerud and S. Bordiga, Chem. Mater., 2010, 22, 4602-4611. – reference: H. G. T. Nguyen, N. M. Schweitzer, C.-Y. Chang, T. L. Drake, M. C. So, P. C. Stair, O. K. Farha, J. T. Hupp and S. T. Nguyen, ACS Catal., 2014, 4, 2496-2500. – reference: f) B. Van de Voorde, I. Stassen, B. Bueken, F. Vermoortele, D. De Vos, R. Ameloot, J.-C. Tan and T. D. Bennett, J. Mater. Chem. A, 2015, 3, 1737-1742. – reference: H. Hintz and S. Wuttke, Chem. Mater., 2014, 26, 6722-6728. – reference: a) H. Wu, T. Yildirim and W. Zhou, J. Phys. Chem. Lett., 2013, 4, 925-930; – reference: C.-W. Kung, T.-H. Chang, L.-Y. Chou, J. T. Hupp, O. K. Farha and K.-C. Ho, Chem. Commun., 2015, 51, 2414-2417. – reference: K. Hindelang, A. Kronast, S. I. Vagin and B. Rieger, Chem. Eur. J., 2013, 19, 8244-8252. – reference: V. Guillerm, S. Gross, C. Serre, T. Devic, M. Bauer and G. Férey, Chem. Commun., 2010, 46, 767-769. – reference: X. Lin, Y. Hong, C. Zhang, R. Huang, C. Wang and W. Lin, Chem. Commun., 2015, 51, 16996-16999. – reference: a) D. Yang, S. O. Odoh, T. C. Wang, O. K. Farha, J. T. Hupp, C. J. Cramer, L. Gagliardi and B. C. Gates, J. Am. Chem. Soc., 2015, 137, 7391-7396; – reference: J. B. DeCoste, T. J. Demasky, M. J. Katz, O. K. Farha and J. T. Hupp, New J. Chem., 2015, 39, 2396-2399. – reference: S. Wang, W. Morris, Y. Liu, C. M. McGuirk, Y. Zhou, J. T. Hupp, O. K. Farha and C. A. Mirkin, Angew. Chem. Int. Ed., 2015, 54, 14738-14742; – reference: c) W. Liang, H. Chevreau, F. Ragon, P. D. Southon, V. K. Peterson and D. M. D′Alessandro, CrystEngComm, 2014, 16, 6530-6533. – reference: Angew. Chem., 2012, 124, 10453; – reference: X.-C. Yi, F.-G. Xi, Y. Qi and E.-Q. Gao, RSC Adv., 2015, 5, 893-900. – reference: W. J. Phang, H. Jo, W. R. Lee, J. H. Song, K. Yoo, B. Kim and C. S. Hong, Angew. Chem. Int. Ed., 2015, 54, 5142-5146; – reference: S. Pullen, H. Fei, A. Orthaber, S. M. Cohen and S. Ott, J. Am. Chem. Soc., 2013, 135, 16997-17003. – reference: B. Gui, X. Meng, Y. Chen, J. Tian, G. Liu, C. Shen, M. Zeller, D. Yuan and C. Wang, Chem. Mater., 2015, 27, 6426-6431. – reference: T. Sawano, N. C. Thacker, Z. Lin, A. R. McIsaac and W. Lin, J. Am. Chem. Soc., 2015, 137, 12241-12248. – reference: E. López-Maya, C. Montoro, L. M. Rodríguez-Albelo, S. D. Aznar Cervantes, A. A. Lozano-Pérez, J. L. Cenís, E. Barea and J. A. R. Navarro, Angew. Chem. Int. Ed., 2015, 54, 6790-6794; – reference: a) J. R. Long and O. M. Yaghi, Chem. Soc. Rev., 2009, 38, 1213-1214; – reference: Angew. Chem., 2012, 124, 9401. – reference: a) C. G. Piscopo, A. Polyzoidis, M. Schwarzer and S. Loebbecke, Microporous Mesoporous Mater., 2015, 208, 30-35; – reference: Y. Bai, Y. Dou, L.-H. Xie, W. Rutledge, J.-R. Li and H.-C. Zhou, Chem. Soc. Rev., 2016, 45, 2327-2367. – reference: Angew. Chem., 2016, 128, 2447-2451 – reference: C. V. McGuire and R. S. Forgan, Chem. Commun., 2015, 51, 5199-5217. – reference: M. Kim and S. M. Cohen, CrystEngComm, 2012, 14, 4096-4104. – reference: F. Ragon, B. Campo, Q. Yang, C. Martineau, A. D. Wiersum, A. Lago, V. Guillerm, C. Hemsley, J. F. Eubank, M. Vishnuvarthan, F. Taulelle, P. Horcajada, A. Vimont, P. L. Llewellyn, M. Daturi, S. Devautour-Vinot, G. Maurin, C. Serre, T. Devic and G. Clet, J. Mater. Chem. A, 2015, 3, 3294-3309. – reference: b) M. Yoon, R. Srirambalaji and K. Kim, Chem. Rev., 2012, 112, 1196-1231. – reference: Y. Luan, Y. Qi, H. Gao, R. S. Andriamitantsoa, N. Zheng and G. Wang, J. Mater. Chem. A, 2015, 3, 17320-17331. – reference: S. Yuan, Y.-P. Chen, J. Qin, W. Lu, X. Wang, Q. Zhang, M. Bosch, T.-F. Liu, X. Lian and H.-C. Zhou, Angew. Chem. Int. Ed., 2015, 54, 14696-14700; – reference: N. Stock and S. Biswas, Chem. Rev., 2012, 112, 933-969. – reference: d) C. L. Hobday, R. J. Marshall, C. F. Murphie, J. Sotelo, T. Richards, D. R. Allan, T. Düren, F.-X. Coudert, R. S. Forgan, C. A. Morrison, S. A. Moggach and T. D. Bennett, Angew. Chem. Int. Ed., 2016, 55, 2401-2405; – reference: H. Fei and S. M. Cohen, J. Am. Chem. Soc., 2015, 137, 2191-2194. – reference: J. Chun, S. Kang, N. Park, E. J. Park, X. Jin, K.-D. Kim, H. O. Seo, S. M. Lee, H. J. Kim, W. H. Kwon, Y.-K. Park, J. M. Kim, Y. D. Kim and S. U. Son, J. Am. Chem. Soc., 2014, 136, 6786-6789. – reference: b) D. Yang, S. O. Odoh, J. Borycz, T. C. Wang, O. K. Farha, J. T. Hupp, C. J. Cramer, L. Gagliardi and B. C. Gates, ACS Catal., 2016, 6, 235-247. – reference: b) H. Furukawa, F. Gándara, Y.-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson and O. M. Yaghi, J. Am. Chem. Soc., 2014, 136, 4369-4381; – reference: b) P. G. Yot, K. Yang, F. Ragon, V. Dmitriev, T. Devic, P. Horcajada, C. Serre and G. Maurin, Dalton Trans., 2016, 45, 4283-4288; – reference: P. Roy, A. Schaate, P. Behrens and A. Godt, Chem. Eur. J., 2012, 18, 6979-6985. – reference: S. T. Madrahimov, J. R. Gallagher, G. Zhang, Z. Meinhart, S. J. Garibay, M. Delferro, J. T. Miller, O. K. Farha, J. T. Hupp and S. T. Nguyen, ACS Catal., 2015, 5, 6713-6718. – reference: W. Morris, W. E. Briley, E. Auyeung, M. D. Cabezas and C. A. Mirkin, J. Am. Chem. Soc., 2014, 136, 7261-7264. – reference: P. Deria, J. E. Mondloch, E. Tylianakis, P. Ghosh, W. Bury, R. Q. Snurr, J. T. Hupp and O. K. Farha, J. Am. Chem. Soc., 2013, 135, 16801-16804. – reference: C. Hon Lau, R. Babarao and M. R. Hill, Chem. Commun., 2013, 49, 3634-3636. – reference: G. Zahn, P. Zerner, J. Lippke, F. L. Kempf, S. Lilienthal, C. A. Schroder, A. M. Schneider and P. Behrens, CrystEngComm, 2014, 16, 9198-9207. – reference: S. J. Garibay and S. M. Cohen, Chem. Commun., 2010, 46, 7700-7702. – reference: B. Gui, G. Hu, T. Zhou and C. Wang, J. Solid State Chem., 2015, 223, 79-83. – reference: P. Deria, W. Bury, J. T. Hupp and O. K. Farha, Chem. Commun., 2014, 50, 1965-1968. – reference: e) L.-M. Yang, E. Ganz, S. Svelle and M. Tilset, J. Mater. Chem. C, 2014, 2, 7111-7125; – reference: c) H. Furukawa, K. E. Cordova, M. O'Keeffe and O. M. Yaghi, Science, 2013, 341, 6149. – reference: J. B. DeCoste, M. A. Browe, G. W. Wagner, J. A. Rossin and G. W. Peterson, Chem. Commun., 2015, 51, 12474-12477. – reference: C. He, K. Lu, D. Liu and W. Lin, J. Am. Chem. Soc., 2014, 136, 5181-5184. – reference: b) K. K. Tanabe and S. M. Cohen, Chem. Soc. Rev., 2011, 40, 498-519; – reference: Angew. Chem., 2015, 127, 14951. – reference: J. Zheng, M. Wu, F. Jiang, W. Su and M. Hong, Chem. Sci., 2015, 6, 3466-3470. – reference: S. R. Venna, M. Lartey, T. Li, A. Spore, S. Kumar, H. B. Nulwala, D. R. Luebke, N. L. Rosi and E. Albenze, J. Mater. Chem. A, 2015, 3, 5014-5022. – reference: R. Ameloot, M. Aubrey, B. M. Wiers, A. P. Gómora-Figueroa, S. N. Patel, N. P. Balsara and J. R. Long, Chem. Eur. J., 2013, 19, 5533-5536. – reference: Angew. Chem., 2015, 127, 14909. – volume: 1 50 22 start-page: 5642 8944 6632 year: 2013 2014 2010 end-page: 5650 8946 6640 publication-title: J. Mater. Chem. A Chem. Commun. Chem. Mater. – volume: 51 start-page: 10864 year: 2015 end-page: 10867 publication-title: Chem. Commun. – volume: 21 start-page: 17246 year: 2015 end-page: 17255 publication-title: Chem. Eur. J. – volume: 20 start-page: 426 year: 2014 end-page: 434 publication-title: Chem. Eur. J. – volume: 136 start-page: 6566 year: 2014 end-page: 6569 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 11161 year: 2015 end-page: 11168 publication-title: Proc. Natl. Acad. Sci. USA – volume: 137 start-page: 9527 year: 2015 end-page: 9530 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 2191 year: 2015 end-page: 2194 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 12478 year: 2015 end-page: 12481 publication-title: Chem. Commun. – volume: 5 start-page: 7823 year: 2015 publication-title: Sci. Rep. – volume: 5 start-page: 6713 year: 2015 end-page: 6718 publication-title: ACS Catal. – volume: 51 start-page: 5735 year: 2015 end-page: 5738 publication-title: Chem. Commun. – volume: 54 start-page: 2185 year: 2015 end-page: 2192 publication-title: Inorg. Chem. – volume: 4 start-page: 6955 year: 2016 end-page: 6963 publication-title: J. Mater. Chem. A – volume: 137 start-page: 9409 year: 2015 end-page: 9416 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 3294 year: 2015 end-page: 3309 publication-title: J. Mater. Chem. A – volume: 51 start-page: 12578 year: 2015 end-page: 12581 publication-title: Chem. Commun. – volume: 51 start-page: 12474 year: 2015 end-page: 12477 publication-title: Chem. Commun. – volume: 53 126 start-page: 4530 4618 year: 2014 2014 end-page: 4540 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 223 start-page: 79 year: 2015 end-page: 83 publication-title: J. Solid State Chem. – volume: 51 start-page: 5199 year: 2015 end-page: 5217 publication-title: Chem. Commun. – volume: 133 start-page: 2034 year: 2011 end-page: 2036 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 13297 13495 year: 2015 2015 end-page: 13301 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 208 135 start-page: 30 13934 year: 2015 2013 end-page: 35 13938 publication-title: Microporous Mesoporous Mater. J. Am. Chem. Soc. – volume: 135 start-page: 16801 year: 2013 end-page: 16804 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 16997 year: 2013 end-page: 17003 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 5014 year: 2015 end-page: 5022 publication-title: J. Mater. Chem. A – volume: 51 start-page: 2414 year: 2015 end-page: 2417 publication-title: Chem. Commun. – volume: 54 127 start-page: 14738 14951 year: 2015 2015 end-page: 14742 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 137 start-page: 3177 year: 2015 end-page: 3180 publication-title: J. Am. Chem. Soc. – start-page: 3014 year: 2012 end-page: 3022 publication-title: Eur. J. Inorg. Chem. – volume: 4 start-page: 1479 year: 2016 end-page: 1485 publication-title: J. Mater. Chem. A – volume: 130 start-page: 13850 year: 2008 end-page: 13851 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 767 year: 2010 end-page: 769 publication-title: Chem. Commun. – volume: 40 start-page: 331 year: 2011 end-page: 333 publication-title: Dalton Trans. – volume: 136 start-page: 4965 year: 2014 end-page: 4973 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 2995 year: 2015 end-page: 3005 publication-title: Inorg. Chem. – volume: 124 start-page: 61 year: 2015 end-page: 69 publication-title: Chem. Eng. Sci. – volume: 47 132 start-page: 9603 044705 year: 2011 2010 end-page: 9605 publication-title: Chem. Commun. J. Chem. Phys. – volume: 27 start-page: 4772 year: 2015 end-page: 4778 publication-title: Chem. Mater. – volume: 38 112 341 start-page: 1213 673 6149 year: 2009 2012 2013 end-page: 1214 674 publication-title: Chem. Soc. Rev. Chem. Rev. Science – volume: 51 start-page: 66 year: 2015 end-page: 69 publication-title: Chem. Commun. – volume: 16 start-page: 9198 year: 2014 end-page: 9207 publication-title: CrystEngComm – volume: 26 start-page: 6722 year: 2014 end-page: 6728 publication-title: Chem. Mater. – volume: 137 start-page: 2665 year: 2015 end-page: 2673 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 2396 year: 2015 end-page: 2399 publication-title: New J. Chem. – volume: 53 126 6 start-page: 497 507 2286 year: 2014 2014 2015 end-page: 501 2291 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Chem. Sci. – volume: 137 6 start-page: 7391 235 year: 2015 2016 end-page: 7396 247 publication-title: J. Am. Chem. Soc. ACS Catal. – volume: 38 40 1 start-page: 1315 498 32 year: 2009 2011 2010 end-page: 1329 519 36 publication-title: Chem. Soc. Rev. Chem. Soc. Rev. Chem. Sci. – volume: 54 start-page: 5139 year: 2015 end-page: 5141 publication-title: Inorg. Chem. – volume: 51 start-page: 9880 year: 2015 end-page: 9883 publication-title: Chem. Commun. – volume: 52 start-page: 12661 year: 2013 end-page: 12667 publication-title: Inorg. Chem. – volume: 54 start-page: 2235 year: 2015 end-page: 2242 publication-title: Inorg. Chem. – volume: 17 start-page: 6434 year: 2015 end-page: 6440 publication-title: CrystEngComm – volume: 3 start-page: 17320 year: 2015 end-page: 17331 publication-title: J. Mater. Chem. A – volume: 136 start-page: 5181 year: 2014 end-page: 5184 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 933 year: 2012 end-page: 969 publication-title: Chem. Rev. – volume: 17 start-page: 9320 year: 2011 end-page: 9325 publication-title: Chem. Eur. J. – volume: 52 start-page: 2265 year: 2016 end-page: 2268 publication-title: Chem. Commun. – volume: 333 start-page: 1 year: 2016 end-page: 7 publication-title: J. Catal. – volume: 152 start-page: 64 790 year: 2012 2012 end-page: 70 796 publication-title: Microporous Mesoporous Mater. Eur. J. Inorg. Chem. – volume: 38 112 start-page: 1450 1196 year: 2009 2012 end-page: 1459 1231 publication-title: Chem. Soc. Rev. Chem. Rev. – volume: 14 start-page: 4096 year: 2012 end-page: 4104 publication-title: CrystEngComm – volume: 135 start-page: 5427 year: 2013 end-page: 5432 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 2304 year: 2014 end-page: 2307 publication-title: Chem. Commun. – volume: 137 start-page: 10064 year: 2015 end-page: 10067 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 16996 year: 2015 end-page: 16999 publication-title: Chem. Commun. – volume: 134 43 43 43 start-page: 18082 5896 5456 5933 year: 2012 2014 2014 2014 end-page: 18088 5912 5467 5951 publication-title: J. Am. Chem. Soc. Chem. Soc. Rev. Chem. Soc. Rev. Chem. Soc. Rev. – volume: 135 start-page: 11465 year: 2013 end-page: 11468 publication-title: J. Am. Chem. Soc. – volume: 51 44 130 49 122 112 start-page: 13878 957 6774 6260 6400 1232 year: 2015 2011 2008 2010 2010 2012 end-page: 13881 968 6780 6266 1268 publication-title: Chem. Commun. Acc. Chem. Res. J. Am. Chem. Soc. Angew. Chem. Int. Ed. Angew. Chem. Chem. Rev. – volume: 136 start-page: 13182 year: 2014 end-page: 13185 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 1977 year: 2016 end-page: 1982 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 6426 year: 2015 end-page: 6431 publication-title: Chem. Mater. – volume: 54 start-page: 6821 year: 2015 end-page: 6828 publication-title: Inorg. Chem. – volume: 44 117 112 46 start-page: 4670 4748 724 44 year: 2005 2005 2012 2010 end-page: 4679 781 53 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Chem. Rev. Chem. Commun. – volume: 51 start-page: 16549 year: 2015 end-page: 16552 publication-title: Chem. Commun. – volume: 137 start-page: 12241 year: 2015 end-page: 12248 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 3466 year: 2015 end-page: 3470 publication-title: Chem. Sci. – volume: 5 start-page: 4444 year: 2015 end-page: 4451 publication-title: Catal. Sci. Technol. – volume: 27 start-page: 2286 year: 2015 end-page: 2289 publication-title: Chem. Mater. – volume: 50 start-page: 1965 year: 2014 end-page: 1968 publication-title: Chem. Commun. – volume: 136 start-page: 5213 year: 2014 end-page: 5216 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 586 year: 2015 end-page: 591 publication-title: J. Phys. Chem. Lett. – volume: 4 45 45 55 128 2 3 start-page: 925 4283 4132 2401 2447 7111 1737 year: 2013 2016 2016 2016 2016 2014 2015 end-page: 930 4288 4135 2405 2451 7125 1742 publication-title: J. Phys. Chem. Lett. Dalton Trans. Dalton Trans. Angew. Chem. Int. Ed. Angew. Chem. J. Mater. Chem. C J. Mater. Chem. A – volume: 51 124 start-page: 9267 9401 year: 2012 2012 end-page: 9271 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 start-page: 8614 year: 2015 end-page: 8617 publication-title: Chem. Commun. – volume: 50 start-page: 729 year: 2011 end-page: 731 publication-title: Inorg. Chem. – volume: 28 start-page: 1213 year: 2016 end-page: 1219 publication-title: Chem. Mater. – volume: 135 start-page: 10294 year: 2013 end-page: 10297 publication-title: J. Am. Chem. Soc. – volume: 54 49 26 135 54 127 start-page: 8396 9449 4068 10525 7234 7340 year: 2015 2013 2014 2013 2015 2015 end-page: 8400 9451 4071 10532 7254 publication-title: Inorg. Chem. Chem. Commun. Chem. Mater. J. Am. Chem. Soc. Angew. Chem. Int. Ed. Angew. Chem. – volume: 19 start-page: 8244 year: 2013 end-page: 8252 publication-title: Chem. Eur. J. – volume: 19 start-page: 5324 year: 2013 end-page: 5331 publication-title: Chem. Eur. J. – volume: 14 54 127 start-page: 512 6795 6899 year: 2015 2015 2015 end-page: 516 6799 publication-title: Nat. Mater. Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 7163 year: 2015 end-page: 7168 publication-title: Chem. Sci. – volume: 51 start-page: 2056 year: 2015 end-page: 2059 publication-title: Chem. Commun. – volume: 5 start-page: 893 year: 2015 end-page: 900 publication-title: RSC Adv. – volume: 49 start-page: 3634 year: 2013 end-page: 3636 publication-title: Chem. Commun. – volume: 51 124 51 start-page: 10307 10453 6443 year: 2012 2012 2012 end-page: 10310 6445 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Inorg. Chem. – volume: 136 start-page: 6786 year: 2014 end-page: 6789 publication-title: J. Am. Chem. Soc. – volume: 22 86 start-page: 18139 125429 year: 2012 2012 end-page: 18144 publication-title: J. Mater. Chem. Phys. Rev. B – volume: 7 start-page: 28223 year: 2015 end-page: 28230 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 8484 year: 2015 end-page: 8490 publication-title: ACS Nano – volume: 22 start-page: 4602 year: 2010 end-page: 4611 publication-title: Chem. Mater. – volume: 3 start-page: 21849 year: 2015 end-page: 21855 publication-title: J. Mater. Chem. A – volume: 54 start-page: 4591 year: 2015 end-page: 4593 publication-title: Inorg. Chem. – volume: 48 start-page: 1904 year: 2012 end-page: 1906 publication-title: Chem. Commun. – volume: 18 start-page: 6979 year: 2012 end-page: 6985 publication-title: Chem. Eur. J. – volume: 54 127 start-page: 6790 6894 year: 2015 2015 end-page: 6794 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 11162 11314 year: 2015 2015 end-page: 11167 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 136 16 start-page: 7086 4369 6530 year: 2014 2014 2014 end-page: 7088 4381 6533 publication-title: Inorg. Chem. J. Am. Chem. Soc. CrystEngComm – volume: 51 start-page: 14732 year: 2015 end-page: 14734 publication-title: Chem. Commun. – volume: 136 start-page: 7261 year: 2014 end-page: 7264 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 5533 year: 2013 end-page: 5536 publication-title: Chem. Eur. J. – volume: 45 start-page: 2327 year: 2016 end-page: 2367 publication-title: Chem. Soc. Rev. – volume: 54 127 start-page: 5142 5231 year: 2015 2015 end-page: 5146 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 46 start-page: 7700 year: 2010 end-page: 7702 publication-title: Chem. Commun. – volume: 54 127 start-page: 4259 4333 year: 2015 2015 end-page: 4263 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 3438 year: 2016 end-page: 3441 publication-title: Chem. Commun. – volume: 4 start-page: 2496 year: 2014 end-page: 2500 publication-title: ACS Catal. – volume: 41 7 start-page: 13791 2791 year: 2012 2014 end-page: 13794 2795 publication-title: Dalton Trans. ChemSusChem – volume: 50 start-page: 6853 year: 2011 end-page: 6855 publication-title: Inorg. Chem. – volume: 50 start-page: 15453 year: 2014 end-page: 15456 publication-title: Chem. Commun. – volume: 22 start-page: 4870 year: 2016 end-page: 4877 publication-title: Chem. Eur. J. – volume: 54 127 start-page: 14696 14909 year: 2015 2015 end-page: 14700 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 5172 year: 2015 end-page: 5176 publication-title: Chem. Sci. – volume: 3 start-page: 126 year: 2012 end-page: 130 publication-title: Chem. Sci. – volume: 134 start-page: 14690 year: 2012 end-page: 14693 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 19018 year: 2015 end-page: 19040 publication-title: Dalton Trans. – ident: e_1_2_10_18_2 doi: 10.1002/ange.201204475 – ident: e_1_2_10_93_2 doi: 10.1002/ejic.201101151 – ident: e_1_2_10_116_3 doi: 10.1002/ange.201502155 – ident: e_1_2_10_61_1 doi: 10.1021/acs.inorgchem.5b00096 – ident: e_1_2_10_112_1 doi: 10.1073/pnas.1514485112 – ident: e_1_2_10_105_1 doi: 10.1039/C5TA05997F – ident: e_1_2_10_8_2 doi: 10.1039/C4CS00067F – ident: e_1_2_10_108_1 doi: 10.1016/j.jcat.2015.10.012 – ident: e_1_2_10_121_2 doi: 10.1002/ange.201502094 – ident: e_1_2_10_12_1 doi: 10.1021/ja8057953 – ident: e_1_2_10_101_1 doi: 10.1021/acs.chemmater.5b00665 – ident: e_1_2_10_124_1 doi: 10.1002/anie.201505625 – ident: e_1_2_10_107_1 doi: 10.1039/C5SC01784J – ident: e_1_2_10_44_1 doi: 10.1021/acs.chemmater.5b02648 – ident: e_1_2_10_27_1 doi: 10.1021/cm502920f – ident: e_1_2_10_111_1 doi: 10.1021/acs.jpclett.5b00019 – ident: e_1_2_10_48_1 doi: 10.1021/jacs.5b05434 – ident: e_1_2_10_78_1 doi: 10.1039/C1SC00394A – ident: e_1_2_10_96_2 doi: 10.1039/c3cc46105j – ident: e_1_2_10_20_1 doi: 10.1021/ic4018536 – ident: e_1_2_10_58_2 doi: 10.1002/cssc.201402378 – ident: e_1_2_10_16_1 doi: 10.1021/acs.inorgchem.5b00413 – ident: e_1_2_10_89_1 doi: 10.1039/c3cc40470f – ident: e_1_2_10_24_1 doi: 10.1039/C2CE06491J – ident: e_1_2_10_10_2 doi: 10.1039/C4CC02401J – ident: e_1_2_10_11_2 doi: 10.1039/C5DT03621F – ident: e_1_2_10_15_2 doi: 10.1002/ange.201204806 – ident: e_1_2_10_120_1 doi: 10.1002/chem.201300326 – ident: e_1_2_10_6_1 doi: 10.1021/cr200304e – ident: e_1_2_10_2_3 doi: 10.1126/science.1230444 – ident: e_1_2_10_3_4 doi: 10.1039/B916295J – ident: e_1_2_10_5_1 doi: 10.1039/C5CC05237H – ident: e_1_2_10_32_1 doi: 10.1021/ic102436b – ident: e_1_2_10_23_1 doi: 10.1016/j.micromeso.2015.01.032 – ident: e_1_2_10_66_1 doi: 10.1039/C5CC09029F – ident: e_1_2_10_3_1 doi: 10.1002/anie.200462786 – ident: e_1_2_10_97_2 doi: 10.1002/ange.201505461 – ident: e_1_2_10_68_1 doi: 10.1039/C5CC04506A – ident: e_1_2_10_7_3 doi: 10.1039/c0sc00127a – ident: e_1_2_10_102_1 doi: 10.1021/ja512762r – ident: e_1_2_10_71_1 doi: 10.1021/ja512478y – ident: e_1_2_10_76_1 doi: 10.1039/C5SC00213C – ident: e_1_2_10_115_3 doi: 10.1039/C4SC03613A – ident: e_1_2_10_8_3 doi: 10.1039/C4CS00002A – ident: e_1_2_10_33_1 doi: 10.1002/chem.201103288 – ident: e_1_2_10_15_1 doi: 10.1002/anie.201204806 – ident: e_1_2_10_84_1 doi: 10.1039/c2jm32299d – ident: e_1_2_10_42_2 doi: 10.1002/ange.201411703 – ident: e_1_2_10_60_1 doi: 10.1039/c3cc48275h – ident: e_1_2_10_62_1 doi: 10.1021/ja5018267 – ident: e_1_2_10_29_1 doi: 10.1039/C5TA00816F – ident: e_1_2_10_11_7 doi: 10.1039/C4TA06396A – ident: e_1_2_10_126_1 doi: 10.1021/acsami.5b06901 – ident: e_1_2_10_72_1 doi: 10.1021/ja500090y – ident: e_1_2_10_11_5 doi: 10.1002/ange.201509352 – ident: e_1_2_10_18_1 doi: 10.1002/anie.201204475 – ident: e_1_2_10_23_2 doi: 10.1021/ja406844r – ident: e_1_2_10_17_2 doi: 10.1021/ja500330a – ident: e_1_2_10_22_1 doi: 10.1002/anie.201507058 – ident: e_1_2_10_59_1 doi: 10.1016/j.ces.2014.09.032 – ident: e_1_2_10_75_1 doi: 10.1039/C4CC09272D – ident: e_1_2_10_81_1 doi: 10.1002/chem.201503078 – ident: e_1_2_10_51_1 doi: 10.1021/ja500362w – ident: e_1_2_10_10_1 doi: 10.1039/c3ta10662d – ident: e_1_2_10_119_1 doi: 10.1002/ejic.201200033 – ident: e_1_2_10_35_1 doi: 10.1021/ja3063919 – ident: e_1_2_10_94_1 doi: 10.1039/C4CE01095G – ident: e_1_2_10_30_1 doi: 10.1021/jacs.5b05327 – ident: e_1_2_10_41_1 doi: 10.1021/ja109810w – ident: e_1_2_10_5_2 doi: 10.1021/ar200028a – ident: e_1_2_10_115_1 doi: 10.1002/anie.201307520 – ident: e_1_2_10_47_1 doi: 10.1039/C5CC05927E – ident: e_1_2_10_3_3 doi: 10.1021/cr2003272 – ident: e_1_2_10_106_1 doi: 10.1021/ja408959g – ident: e_1_2_10_5_5 doi: 10.1002/ange.201000048 – ident: e_1_2_10_5_3 doi: 10.1021/ja710973k – ident: e_1_2_10_96_1 doi: 10.1021/acs.inorgchem.5b01053 – ident: e_1_2_10_18_3 doi: 10.1021/ic300825s – ident: e_1_2_10_73_1 doi: 10.1021/jacs.5b09225 – ident: e_1_2_10_103_1 doi: 10.1039/C5TA07687K – ident: e_1_2_10_124_2 doi: 10.1002/ange.201505625 – ident: e_1_2_10_17_3 doi: 10.1039/C4CE01031K – ident: e_1_2_10_82_1 doi: 10.1002/chem.201303801 – ident: e_1_2_10_34_1 doi: 10.1021/acs.inorgchem.5b00535 – ident: e_1_2_10_36_1 doi: 10.1021/ja3125614 – ident: e_1_2_10_4_2 doi: 10.1021/cr2003147 – ident: e_1_2_10_80_1 doi: 10.1039/C4CC08218D – ident: e_1_2_10_13_1 doi: 10.1039/C5DT03359D – ident: e_1_2_10_87_1 doi: 10.1039/C5CC02606G – ident: e_1_2_10_77_1 doi: 10.1002/anie.201306923 – ident: e_1_2_10_99_1 doi: 10.1021/ja405078u – ident: e_1_2_10_52_1 doi: 10.1039/C5CC02339D – ident: e_1_2_10_38_1 doi: 10.1016/j.jssc.2014.06.023 – ident: e_1_2_10_37_1 doi: 10.1039/C4RA09883H – ident: e_1_2_10_49_1 doi: 10.1002/chem.201505185 – ident: e_1_2_10_129_1 doi: 10.1021/jacs.5b12515 – ident: e_1_2_10_31_2 doi: 10.1002/ange.201500207 – ident: e_1_2_10_74_1 doi: 10.1039/C5SC02100F – ident: e_1_2_10_17_1 doi: 10.1021/ic5012764 – ident: e_1_2_10_2_2 doi: 10.1021/cr300014x – ident: e_1_2_10_55_1 doi: 10.1002/anie.201506888 – ident: e_1_2_10_4_1 doi: 10.1039/b807080f – ident: e_1_2_10_11_6 doi: 10.1039/C4TC00902A – ident: e_1_2_10_116_1 doi: 10.1038/nmat4238 – ident: e_1_2_10_7_1 doi: 10.1039/b802258p – ident: e_1_2_10_46_1 doi: 10.1039/C5CC03780H – ident: e_1_2_10_96_5 doi: 10.1002/anie.201411540 – ident: e_1_2_10_43_1 doi: 10.1039/C4TA03992K – ident: e_1_2_10_40_2 doi: 10.1063/1.3276105 – ident: e_1_2_10_122_1 doi: 10.1021/cs5001448 – ident: e_1_2_10_19_1 doi: 10.1021/ja4050828 – ident: e_1_2_10_25_1 doi: 10.1039/c0cc02990d – ident: e_1_2_10_10_3 doi: 10.1021/cm102601v – ident: e_1_2_10_98_1 doi: 10.1039/C5CE00729A – ident: e_1_2_10_114_1 doi: 10.1021/ic502639v – ident: e_1_2_10_88_1 doi: 10.1039/C5CY00825E – ident: e_1_2_10_123_1 doi: 10.1021/jacs.5b02956 – ident: e_1_2_10_79_1 doi: 10.1021/ja407176p – ident: e_1_2_10_57_1 doi: 10.1021/cm1005899 – ident: e_1_2_10_7_2 doi: 10.1039/C0CS00031K – ident: e_1_2_10_5_6 doi: 10.1021/cr200256v – ident: e_1_2_10_8_4 doi: 10.1039/C4CS00076E – ident: e_1_2_10_67_1 doi: 10.1021/ja411627z – ident: e_1_2_10_54_1 doi: 10.1021/ja4098862 – ident: e_1_2_10_121_1 doi: 10.1002/anie.201502094 – ident: e_1_2_10_93_1 doi: 10.1016/j.micromeso.2011.12.010 – ident: e_1_2_10_117_1 doi: 10.1021/acscatal.5b01604 – ident: e_1_2_10_69_1 doi: 10.1021/ja5126885 – ident: e_1_2_10_92_1 doi: 10.1039/C5CC00686D – ident: e_1_2_10_113_1 doi: 10.1039/C5CC10384C – ident: e_1_2_10_63_1 doi: 10.1039/C5CC01697E – ident: e_1_2_10_22_2 doi: 10.1002/ange.201507058 – ident: e_1_2_10_26_1 doi: 10.1039/c2cc17461h – ident: e_1_2_10_109_1 doi: 10.1039/C5CC04808G – ident: e_1_2_10_86_1 doi: 10.1021/ic502725y – ident: e_1_2_10_56_1 doi: 10.1021/ja503215w – ident: e_1_2_10_100_1 doi: 10.1039/C5TA10401G – ident: e_1_2_10_8_1 doi: 10.1021/ja3079219 – ident: e_1_2_10_45_1 doi: 10.1039/C4CC07882A – ident: e_1_2_10_96_4 doi: 10.1021/ja404514r – ident: e_1_2_10_64_1 doi: 10.1021/acs.inorgchem.5b00752 – ident: e_1_2_10_115_2 doi: 10.1002/ange.201307520 – ident: e_1_2_10_85_1 doi: 10.1002/chem.201203914 – ident: e_1_2_10_90_1 doi: 10.1038/srep07823 – ident: e_1_2_10_5_4 doi: 10.1002/anie.201000048 – ident: e_1_2_10_11_3 doi: 10.1039/C5DT03178H – ident: e_1_2_10_123_2 doi: 10.1021/acscatal.5b02243 – ident: e_1_2_10_11_1 doi: 10.1021/jz4002345 – ident: e_1_2_10_125_1 doi: 10.1021/acs.chemmater.5b04887 – ident: e_1_2_10_58_1 doi: 10.1039/c2dt31195j – ident: e_1_2_10_70_1 doi: 10.1021/ja507947d – ident: e_1_2_10_110_1 doi: 10.1039/c3cc48562e – ident: e_1_2_10_3_2 doi: 10.1002/ange.200462786 – ident: e_1_2_10_65_1 doi: 10.1039/C5CC06453H – ident: e_1_2_10_77_2 doi: 10.1002/ange.201306923 – ident: e_1_2_10_83_1 doi: 10.1039/C5CC03934G – ident: e_1_2_10_97_1 doi: 10.1002/anie.201505461 – ident: e_1_2_10_2_1 doi: 10.1039/b903811f – ident: e_1_2_10_84_2 doi: 10.1103/PhysRevB.86.125429 – ident: e_1_2_10_104_1 doi: 10.1039/C4NJ02093F – ident: e_1_2_10_116_2 doi: 10.1002/anie.201502155 – ident: e_1_2_10_31_1 doi: 10.1002/anie.201500207 – ident: e_1_2_10_9_1 doi: 10.1039/C5CS00837A – ident: e_1_2_10_55_2 doi: 10.1002/ange.201506888 – ident: e_1_2_10_118_1 doi: 10.1039/C0DT01136C – ident: e_1_2_10_42_1 doi: 10.1002/anie.201411703 – ident: e_1_2_10_96_3 doi: 10.1021/cm501859p – ident: e_1_2_10_50_1 doi: 10.1039/C4CC04458D – ident: e_1_2_10_128_1 doi: 10.1021/acsnano.5b03429 – ident: e_1_2_10_40_1 doi: 10.1039/c1cc13543k – ident: e_1_2_10_14_1 doi: 10.1002/chem.201101015 – ident: e_1_2_10_21_1 doi: 10.1021/jacs.5b04695 – ident: e_1_2_10_91_1 doi: 10.1039/C4CC09407G – ident: e_1_2_10_95_1 doi: 10.1039/B914919H – ident: e_1_2_10_39_1 doi: 10.1002/chem.201300477 – ident: e_1_2_10_127_1 doi: 10.1021/acs.chemmater.5b01560 – ident: e_1_2_10_11_4 doi: 10.1002/anie.201509352 – ident: e_1_2_10_28_1 doi: 10.1021/ic200744y – ident: e_1_2_10_53_1 doi: 10.1039/C4TA05225K – ident: e_1_2_10_96_6 doi: 10.1002/ange.201411540 |
| SSID | ssj0003036 |
| Score | 2.580077 |
| SecondaryResourceType | review_article |
| Snippet | Metal‐organic frameworks (MOFs) have been in the spotlight for a number of years due to their chemical and topological versatility. As MOF research has... Metal-organic frameworks (MOFs) have been in the spotlight for a number of years due to their chemical and topological versatility. As MOF research has... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4310 |
| SubjectTerms | Chemical reactions Covalence Exchange Metal-organic frameworks Microporous materials Platforms Postsynthetic modification Stability Transformations Zirconium |
| Title | Postsynthetic Modification of Zirconium Metal-Organic Frameworks |
| URI | https://api.istex.fr/ark:/67375/WNG-NJBGFBSZ-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.201600394 https://www.proquest.com/docview/1845820012 |
| Volume | 2016 |
| WOSCitedRecordID | wos000386166900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1099-0682 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003036 issn: 1434-1948 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BFwkuQIGKBVqlUgUnq4mdZJ0ju21aqnZVAaVVL9bYcaSFNos2XQQ3HoFn5EnwOJvQPVRI9JZIYyWaH_ubZOYbgC07GGgbphlD50wslkXBsCxLlhD3uUabCD-m89PhYDyWZ2fZ8bUu_oYfovvgRpHh92sKcNT19l_SUPt5QhSEUUrtpfFd6EWRkDS8gcfH3V5MG7TvLxIxc-m6bGkbQ769vH7pWOqRhr8vYc7ryNUfPfmj27_0Y3i4gJ3B28ZPVuGOrZ7A_VE77e0pDGlqb_2jcnjQiQRH04JqiLzZgmkZnE9mLnGezC-DI-vg-u-fv5omThPkbXVX_QxO8t2Po322mK_ADJHKs4LgIiYZcqEzjIUpZJSiTSXXGrPCuvjWOslEiEUYlygwi7hGIVxGTWmTFmuwUk0r-xyCVEZlaI0wJjYxSi0tak7YwudrYdQH1qpXmQX5OM3AuFANbTJXpBnVaaYPbzr5rw3txo2Sr721OjGcfaFitUGiTsd7anww3MuHH87VaR82W3Mqp1v6L4KVnc5r5ZLcRFJtGe8D99b7xzPV7sG7UXf34n8WvYQHdN1Uq72ClavZ3K7DPfPtalLPNrwTb0Bv531-cvgHkUfylg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB6VhwSXQlsqtuWRShU9WSS2k3WO3RXLo7sRElAQF8t2HGkLZNEuW7W3_oT-xv4SPM4m7R5QparHRGMlmhnb39gz3wC8t-22tmGSEuWciXCR50QVRUFi5D7XysbMt-n83G9nmbi6Sk9n2YRYC1PxQzQHbjgz_HqNExwPpPd_s4baL0PkIIwSrC_lC7DE3VaDrk75abMY4wrtC4wYJy5eFzVvY0j358fP7UtLqOJvc6DzT-jq957e2n_463V4PgOewcfKU17AM1u-hJVu3e_tFXSwb-_ke-kQoRMJBqMcs4i84YJREVwPxy50Hk7vgoF1gP3Xj59VGacJenV-12QDLnoH590jMuuwQAzSypMcAaOKU0WZThVnJhdRomwiqNYqza2b4VrHKQtVHvJCMZVGVCvGXEyNgZNmr2GxHJV2E4JEREVoDTOGG66EFlZpiujCR2xh1AJS61eaGf04dsG4lRVxMpWoGdlopgUfGvn7injjSck9b65GTI1vMF2tHcvL7FBmJ53DXufsWl624F1tT-l0izcjqrSj6US6MDcWmF1GW0C9-f7yTXlwctxtnt78y6BdWDk6H_Rl_zj79BZW8X2Vu7YFiw_jqd2GZfP1YTgZ73iPfgRzVPTh |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB6VBFEutFCqplAwEqKnFbbXdtZHEjCvYCEoBXFZ7a7XUqA4KCEV3PgJ_EZ-CTt-lRwqpKpHW-OH5rH7jT3zDcC6breltoOQCONMxGNJQkSapsRH7nMptE_zMZ0_e-04ZhcX4XFZTYi9MAU_RP3BDSMjX68xwPVtkm7-YQ3VV33kIHQC7C_1pqDp4SSZBjS3T6KzXr0c4xqdtxhRj5iMnVXMjba7OXmHiZ2piUq-n4Cdr8FrvvtEH_7De3-EuRJ6WluFr8zDO50twPtuNfHtE3Rwcu_oITOY0IhYR4ME64hy01mD1LrsD03y3B_fWEfaQPbnx6eikVNZUVXhNVqEs2jnR3ePlDMWiEJieZIgZBR-KFwqQ-FRlTAnEDpgrpQiTLSJcSn9kNoisb1UUBE6rhSUmqwaUydJP0MjG2T6C1gBc1JbK6qUpzzBJNNCuogv8pzNdlpAKv1yVRKQ4xyMX7ygTnY5aobXmmnB91r-tqDe-KvkRm6uWkwMr7Fgre3z83iXxwed3ahzesnPW7BW2ZMb3eK_EZHpwXjETaLrM6wvc1vg5uZ745l852C_Wx99_ZeLVmHmeDvivf34cAlm8XRRvLYMjbvhWH-DafX7rj8arpQu_QKSl_X3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Postsynthetic+Modification+of+Zirconium+Metal-Organic+Frameworks&rft.jtitle=European+journal+of+inorganic+chemistry&rft.au=Marshall%2C+Ross+J.&rft.au=Forgan%2C+Ross+S.&rft.date=2016-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1434-1948&rft.eissn=1099-0682&rft.volume=2016&rft.issue=27&rft.spage=4310&rft.epage=4331&rft_id=info:doi/10.1002%2Fejic.201600394&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_NJBGFBSZ_W |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-1948&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-1948&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-1948&client=summon |