Postsynthetic Modification of Zirconium Metal-Organic Frameworks

Metal‐organic frameworks (MOFs) have been in the spotlight for a number of years due to their chemical and topological versatility. As MOF research has progressed, highly functionalised materials have become desirable for specific applications, and in many cases the limitations of direct synthesis h...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European journal of inorganic chemistry Ročník 2016; číslo 27; s. 4310 - 4331
Hlavní autori: Marshall, Ross J., Forgan, Ross S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Blackwell Publishing Ltd 01.09.2016
Predmet:
ISSN:1434-1948, 1099-0682
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Metal‐organic frameworks (MOFs) have been in the spotlight for a number of years due to their chemical and topological versatility. As MOF research has progressed, highly functionalised materials have become desirable for specific applications, and in many cases the limitations of direct synthesis have been realised. This has resulted in the search for alternative synthetic routes, with postsynthetic modification (PSM), a term used to collectively describe the functionalisation of pre‐synthesised MOFs whilst maintaining their desired characteristics, becoming a topic of interest. Advances in the scope of reactions performed are reported regularly; however reactions requiring harsh conditions can result in degradation of the framework. Zirconium‐based MOFs present high chemical, thermal and mechanical stabilities, offering wider opportunities for the scope of reaction conditions that can be tolerated, which has seen a number of successful examples reported. This microreview discusses pertinent examples of PSM resulting in enhanced properties for specific applications, alongside fundamental transformations, which are categorised broadly into covalent modifications, surface transformations, metalations, linker and metal exchange, and cluster modifications. The chemical and mechanical stabilities of zirconium metal‐organic frameworks (MOFs) make them ideal platforms for postsynthetic modification. This microreview provides an overview of the various techniques for modification and the functionalities that can be incorporated into zirconium MOFs to facilitate different applications.
AbstractList Metal‐organic frameworks (MOFs) have been in the spotlight for a number of years due to their chemical and topological versatility. As MOF research has progressed, highly functionalised materials have become desirable for specific applications, and in many cases the limitations of direct synthesis have been realised. This has resulted in the search for alternative synthetic routes, with postsynthetic modification (PSM), a term used to collectively describe the functionalisation of pre‐synthesised MOFs whilst maintaining their desired characteristics, becoming a topic of interest. Advances in the scope of reactions performed are reported regularly; however reactions requiring harsh conditions can result in degradation of the framework. Zirconium‐based MOFs present high chemical, thermal and mechanical stabilities, offering wider opportunities for the scope of reaction conditions that can be tolerated, which has seen a number of successful examples reported. This microreview discusses pertinent examples of PSM resulting in enhanced properties for specific applications, alongside fundamental transformations, which are categorised broadly into covalent modifications, surface transformations, metalations, linker and metal exchange, and cluster modifications.
Metal‐organic frameworks (MOFs) have been in the spotlight for a number of years due to their chemical and topological versatility. As MOF research has progressed, highly functionalised materials have become desirable for specific applications, and in many cases the limitations of direct synthesis have been realised. This has resulted in the search for alternative synthetic routes, with postsynthetic modification (PSM), a term used to collectively describe the functionalisation of pre‐synthesised MOFs whilst maintaining their desired characteristics, becoming a topic of interest. Advances in the scope of reactions performed are reported regularly; however reactions requiring harsh conditions can result in degradation of the framework. Zirconium‐based MOFs present high chemical, thermal and mechanical stabilities, offering wider opportunities for the scope of reaction conditions that can be tolerated, which has seen a number of successful examples reported. This microreview discusses pertinent examples of PSM resulting in enhanced properties for specific applications, alongside fundamental transformations, which are categorised broadly into covalent modifications, surface transformations, metalations, linker and metal exchange, and cluster modifications. The chemical and mechanical stabilities of zirconium metal‐organic frameworks (MOFs) make them ideal platforms for postsynthetic modification. This microreview provides an overview of the various techniques for modification and the functionalities that can be incorporated into zirconium MOFs to facilitate different applications.
Metal-organic frameworks (MOFs) have been in the spotlight for a number of years due to their chemical and topological versatility. As MOF research has progressed, highly functionalised materials have become desirable for specific applications, and in many cases the limitations of direct synthesis have been realised. This has resulted in the search for alternative synthetic routes, with postsynthetic modification (PSM), a term used to collectively describe the functionalisation of pre-synthesised MOFs whilst maintaining their desired characteristics, becoming a topic of interest. Advances in the scope of reactions performed are reported regularly; however reactions requiring harsh conditions can result in degradation of the framework. Zirconium-based MOFs present high chemical, thermal and mechanical stabilities, offering wider opportunities for the scope of reaction conditions that can be tolerated, which has seen a number of successful examples reported. This microreview discusses pertinent examples of PSM resulting in enhanced properties for specific applications, alongside fundamental transformations, which are categorised broadly into covalent modifications, surface transformations, metalations, linker and metal exchange, and cluster modifications. The chemical and mechanical stabilities of zirconium metal-organic frameworks (MOFs) make them ideal platforms for postsynthetic modification. This microreview provides an overview of the various techniques for modification and the functionalities that can be incorporated into zirconium MOFs to facilitate different applications.
Author Marshall, Ross J.
Forgan, Ross S.
Author_xml – sequence: 1
  givenname: Ross J.
  surname: Marshall
  fullname: Marshall, Ross J.
  organization: WestCHEM, School of Chemistry, The University of Glasgow, University Avenue, G12 8QQ, Glasgow, UK
– sequence: 2
  givenname: Ross S.
  surname: Forgan
  fullname: Forgan, Ross S.
  email: Ross.Forgan@glasgow.ac.uk, WestCHEM, School of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, UK, Ross.Forgan@glasgow.ac.uk
  organization: WestCHEM, School of Chemistry, The University of Glasgow, University Avenue, G12 8QQ, Glasgow, UK
BookMark eNqFkEFLwzAUgIMoqNOr5x29dL40aWxuuuGmY05BRfASXtNU47pGk4y5f291IiKIp7zD970Xvl2y2bjGEHJAoUcB0iPzbHUvBSoAmOQbZIeClAmIPN1sZ854QiXPt8luCM_QMsDEDjm5diGGVROfTLS6e-lKW1mN0bqm66rug_XaNXYx716aiHVy5R-xabmhx7lZOj8Le2SrwjqY_a-3Q-6GZ7eD82RyNboYnE4SzYXgSQmQA2YSU1ZI5EyXORVo2s8VBcrSAIeiyCQDLIFXyFDStEDGuJCZSLOCdcjheu-Ld68LE6Ka26BNXWNj3CIomvMsTwFo2qK9Naq9C8GbSr14O0e_UhTURyr1kUp9p2oF_kvQNn42iB5t_bcm19rS1mb1zxF1Nr4Y_HSTtWtDNG_fLvqZEsfsOFP305GajvujYf_mQd2zd161j4M
CitedBy_id crossref_primary_10_1002_open_202300100
crossref_primary_10_1016_j_asems_2022_100045
crossref_primary_10_1002_slct_202003289
crossref_primary_10_1039_D4NJ04745A
crossref_primary_10_1002_chem_202303725
crossref_primary_10_1016_j_ccr_2023_215143
crossref_primary_10_1016_j_seppur_2025_132138
crossref_primary_10_1002_adma_201705512
crossref_primary_10_1016_j_ccr_2021_214177
crossref_primary_10_1039_D4CC03456B
crossref_primary_10_1016_j_dyepig_2022_110438
crossref_primary_10_1002_ange_202317062
crossref_primary_10_1016_j_mtnano_2025_100665
crossref_primary_10_1021_acsomega_5c04470
crossref_primary_10_1016_j_colsurfa_2025_136524
crossref_primary_10_1016_j_ccr_2019_213064
crossref_primary_10_1021_jacs_7b10453
crossref_primary_10_1016_j_cogsc_2018_06_012
crossref_primary_10_1088_2058_6272_acc3d2
crossref_primary_10_1002_adma_202004414
crossref_primary_10_1002_aoc_4819
crossref_primary_10_1002_bkcs_11655
crossref_primary_10_1039_C6CC08191F
crossref_primary_10_1021_acsmaterialsau_4c00109
crossref_primary_10_1002_anie_202108150
crossref_primary_10_1002_cssc_201702193
crossref_primary_10_1016_j_ccr_2020_213507
crossref_primary_10_1016_j_molliq_2024_124181
crossref_primary_10_1016_j_jcat_2019_03_035
crossref_primary_10_3390_ijms24021757
crossref_primary_10_1002_anie_201806910
crossref_primary_10_1039_C7CC05068B
crossref_primary_10_1016_j_ccr_2018_09_009
crossref_primary_10_1002_ejic_202100090
crossref_primary_10_1039_D0SC03318A
crossref_primary_10_1039_C9SC01553A
crossref_primary_10_1016_j_energy_2024_131127
crossref_primary_10_1016_j_matchemphys_2019_01_009
crossref_primary_10_3390_catal10050499
crossref_primary_10_3390_nano13202754
crossref_primary_10_1002_cctc_201801452
crossref_primary_10_1016_j_mtcomm_2022_103540
crossref_primary_10_1021_jacs_0c06978
crossref_primary_10_1134_S0036023619060044
crossref_primary_10_1016_j_apcatb_2020_119385
crossref_primary_10_1016_j_colsurfa_2021_128093
crossref_primary_10_1016_j_snb_2018_06_128
crossref_primary_10_1039_C6CC10278F
crossref_primary_10_1016_j_ccr_2025_216704
crossref_primary_10_1016_j_jorganchem_2019_06_037
crossref_primary_10_1002_chem_201801419
crossref_primary_10_1021_jacs_3c01146
crossref_primary_10_3390_molecules25071598
crossref_primary_10_1002_chem_201802189
crossref_primary_10_1016_j_cej_2021_130230
crossref_primary_10_1016_j_seppur_2022_121080
crossref_primary_10_1016_j_chempr_2023_09_016
crossref_primary_10_1016_j_jcat_2024_115571
crossref_primary_10_1016_j_seppur_2024_129964
crossref_primary_10_1002_anie_202209110
crossref_primary_10_1002_anie_202317062
crossref_primary_10_1016_j_chemosphere_2022_134845
crossref_primary_10_1039_C8QI00149A
crossref_primary_10_1016_j_mtchem_2023_101693
crossref_primary_10_1002_chem_201903630
crossref_primary_10_1016_j_tet_2017_08_040
crossref_primary_10_1016_j_cej_2017_08_017
crossref_primary_10_1039_D4NR02345E
crossref_primary_10_1002_ijch_201800129
crossref_primary_10_1039_C7QI00056A
crossref_primary_10_1016_j_ccr_2022_214930
crossref_primary_10_1002_adma_201704501
crossref_primary_10_1007_s40242_019_9133_2
crossref_primary_10_1039_D2QI00382A
crossref_primary_10_1016_j_matchemphys_2023_127878
crossref_primary_10_1002_smtd_202201413
crossref_primary_10_1016_j_micromeso_2021_111601
crossref_primary_10_1002_ange_202209110
crossref_primary_10_1039_D1CS00976A
crossref_primary_10_1016_j_jlumin_2023_120092
crossref_primary_10_1016_j_pecs_2020_100849
crossref_primary_10_1002_jccs_70032
crossref_primary_10_1016_j_molstruc_2019_126940
crossref_primary_10_1016_j_ccr_2023_215515
crossref_primary_10_1016_j_mattod_2021_07_021
crossref_primary_10_1016_j_poly_2023_116392
crossref_primary_10_1016_j_chempr_2020_09_010
crossref_primary_10_1021_jacs_9b03609
crossref_primary_10_1016_j_mcat_2022_112689
crossref_primary_10_1016_j_poly_2018_09_029
crossref_primary_10_1002_cplu_202100426
crossref_primary_10_1039_C9QI01218D
crossref_primary_10_1021_jacs_1c03283
crossref_primary_10_1002_advs_201901020
crossref_primary_10_1016_j_ccr_2021_213969
crossref_primary_10_1016_j_ccr_2025_216680
crossref_primary_10_1016_j_chroma_2017_10_065
crossref_primary_10_1002_slct_201702137
crossref_primary_10_1002_ejic_201901230
crossref_primary_10_1007_s10876_019_01714_5
crossref_primary_10_1016_j_trac_2020_116015
crossref_primary_10_1016_j_ces_2023_118768
crossref_primary_10_1016_j_micromeso_2024_113114
crossref_primary_10_1021_acsami_5c04982
crossref_primary_10_1016_j_chemosphere_2020_128863
crossref_primary_10_1021_jacs_8b09606
crossref_primary_10_1016_j_inoche_2018_03_003
crossref_primary_10_1002_ange_202108150
crossref_primary_10_1039_D2MH01202B
crossref_primary_10_1002_bkcs_70000
crossref_primary_10_1016_j_ccr_2023_215042
crossref_primary_10_1002_chem_201803887
crossref_primary_10_1021_jacs_0c04668
crossref_primary_10_1246_cl_180955
crossref_primary_10_3390_separations12060152
crossref_primary_10_1021_jacs_8b09682
crossref_primary_10_1016_j_surfin_2021_101647
crossref_primary_10_1016_j_ccr_2020_213734
crossref_primary_10_1039_D1RA02971A
crossref_primary_10_1002_cjoc_201800407
crossref_primary_10_1038_natrevmats_2017_54
crossref_primary_10_1088_1361_6528_acbcd8
crossref_primary_10_1002_ange_201806910
crossref_primary_10_1002_chem_202104175
crossref_primary_10_1021_jacs_8b03613
crossref_primary_10_1016_j_ccr_2017_04_010
crossref_primary_10_1016_j_jiec_2019_02_022
crossref_primary_10_1002_smtd_202201170
crossref_primary_10_3390_en13030521
crossref_primary_10_1016_j_ccr_2025_217034
crossref_primary_10_3390_molecules27196585
crossref_primary_10_1002_anbr_202100014
crossref_primary_10_1016_j_jece_2021_105191
crossref_primary_10_1021_jacs_1c08550
crossref_primary_10_1021_jacs_1c03943
crossref_primary_10_1039_D0CY01325K
crossref_primary_10_1186_s12951_022_01263_6
crossref_primary_10_1039_D0SC00485E
crossref_primary_10_1039_D0RA00410C
crossref_primary_10_3390_app12010260
Cites_doi 10.1002/ange.201204475
10.1002/ejic.201101151
10.1002/ange.201502155
10.1021/acs.inorgchem.5b00096
10.1073/pnas.1514485112
10.1039/C5TA05997F
10.1039/C4CS00067F
10.1016/j.jcat.2015.10.012
10.1002/ange.201502094
10.1021/ja8057953
10.1021/acs.chemmater.5b00665
10.1002/anie.201505625
10.1039/C5SC01784J
10.1021/acs.chemmater.5b02648
10.1021/cm502920f
10.1021/acs.jpclett.5b00019
10.1021/jacs.5b05434
10.1039/C1SC00394A
10.1039/c3cc46105j
10.1021/ic4018536
10.1002/cssc.201402378
10.1021/acs.inorgchem.5b00413
10.1039/c3cc40470f
10.1039/C2CE06491J
10.1039/C4CC02401J
10.1039/C5DT03621F
10.1002/ange.201204806
10.1002/chem.201300326
10.1021/cr200304e
10.1126/science.1230444
10.1039/B916295J
10.1039/C5CC05237H
10.1021/ic102436b
10.1016/j.micromeso.2015.01.032
10.1039/C5CC09029F
10.1002/anie.200462786
10.1002/ange.201505461
10.1039/C5CC04506A
10.1039/c0sc00127a
10.1021/ja512762r
10.1021/ja512478y
10.1039/C5SC00213C
10.1039/C4SC03613A
10.1039/C4CS00002A
10.1002/chem.201103288
10.1002/anie.201204806
10.1039/c2jm32299d
10.1002/ange.201411703
10.1039/c3cc48275h
10.1021/ja5018267
10.1039/C5TA00816F
10.1039/C4TA06396A
10.1021/acsami.5b06901
10.1021/ja500090y
10.1002/ange.201509352
10.1002/anie.201204475
10.1021/ja406844r
10.1021/ja500330a
10.1002/anie.201507058
10.1016/j.ces.2014.09.032
10.1039/C4CC09272D
10.1002/chem.201503078
10.1021/ja500362w
10.1039/c3ta10662d
10.1002/ejic.201200033
10.1021/ja3063919
10.1039/C4CE01095G
10.1021/jacs.5b05327
10.1021/ja109810w
10.1021/ar200028a
10.1002/anie.201307520
10.1039/C5CC05927E
10.1021/cr2003272
10.1021/ja408959g
10.1002/ange.201000048
10.1021/ja710973k
10.1021/acs.inorgchem.5b01053
10.1021/ic300825s
10.1021/jacs.5b09225
10.1039/C5TA07687K
10.1002/ange.201505625
10.1039/C4CE01031K
10.1002/chem.201303801
10.1021/acs.inorgchem.5b00535
10.1021/ja3125614
10.1021/cr2003147
10.1039/C4CC08218D
10.1039/C5DT03359D
10.1039/C5CC02606G
10.1002/anie.201306923
10.1021/ja405078u
10.1039/C5CC02339D
10.1016/j.jssc.2014.06.023
10.1039/C4RA09883H
10.1002/chem.201505185
10.1021/jacs.5b12515
10.1002/ange.201500207
10.1039/C5SC02100F
10.1021/ic5012764
10.1021/cr300014x
10.1002/anie.201506888
10.1039/b807080f
10.1039/C4TC00902A
10.1038/nmat4238
10.1039/b802258p
10.1039/C5CC03780H
10.1002/anie.201411540
10.1039/C4TA03992K
10.1063/1.3276105
10.1021/cs5001448
10.1021/ja4050828
10.1039/c0cc02990d
10.1021/cm102601v
10.1039/C5CE00729A
10.1021/ic502639v
10.1039/C5CY00825E
10.1021/jacs.5b02956
10.1021/ja407176p
10.1021/cm1005899
10.1039/C0CS00031K
10.1021/cr200256v
10.1039/C4CS00076E
10.1021/ja411627z
10.1021/ja4098862
10.1002/anie.201502094
10.1016/j.micromeso.2011.12.010
10.1021/acscatal.5b01604
10.1021/ja5126885
10.1039/C5CC00686D
10.1039/C5CC10384C
10.1039/C5CC01697E
10.1002/ange.201507058
10.1039/c2cc17461h
10.1039/C5CC04808G
10.1021/ic502725y
10.1021/ja503215w
10.1039/C5TA10401G
10.1021/ja3079219
10.1039/C4CC07882A
10.1021/ja404514r
10.1021/acs.inorgchem.5b00752
10.1002/ange.201307520
10.1002/chem.201203914
10.1038/srep07823
10.1002/anie.201000048
10.1039/C5DT03178H
10.1021/acscatal.5b02243
10.1021/jz4002345
10.1021/acs.chemmater.5b04887
10.1039/c2dt31195j
10.1021/ja507947d
10.1039/c3cc48562e
10.1002/ange.200462786
10.1039/C5CC06453H
10.1002/ange.201306923
10.1039/C5CC03934G
10.1002/anie.201505461
10.1039/b903811f
10.1103/PhysRevB.86.125429
10.1039/C4NJ02093F
10.1002/anie.201502155
10.1002/anie.201500207
10.1039/C5CS00837A
10.1002/ange.201506888
10.1039/C0DT01136C
10.1002/anie.201411703
10.1021/cm501859p
10.1039/C4CC04458D
10.1021/acsnano.5b03429
10.1039/c1cc13543k
10.1002/chem.201101015
10.1021/jacs.5b04695
10.1039/C4CC09407G
10.1039/B914919H
10.1002/chem.201300477
10.1021/acs.chemmater.5b01560
10.1002/anie.201509352
10.1021/ic200744y
10.1039/C4TA05225K
10.1002/ange.201411540
ContentType Journal Article
Copyright 2016 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA.
Copyright_xml – notice: 2016 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA.
DBID BSCLL
24P
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ejic.201600394
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0682
EndPage 4331
ExternalDocumentID 10_1002_ejic_201600394
EJIC201600394
ark_67375_WNG_NJBGFBSZ_W
Genre reviewArticle
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  funderid: EP/L004461/1
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
UPT
UQL
V2E
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XJT
XOL
XPP
XV2
ZCG
ZY4
ZZTAW
~IA
~WT
24P
AAYXX
CITATION
O8X
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4664-d0080a59a23b9a43cd816ae682bba9de040bb5930ad04fa3a912ba334695625b3
IEDL.DBID 24P
ISICitedReferencesCount 202
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386166900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1434-1948
IngestDate Thu Oct 02 16:52:29 EDT 2025
Sat Nov 29 07:13:38 EST 2025
Tue Nov 18 22:31:19 EST 2025
Tue Nov 11 03:10:19 EST 2025
Tue Sep 09 05:32:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4664-d0080a59a23b9a43cd816ae682bba9de040bb5930ad04fa3a912ba334695625b3
Notes ArticleID:EJIC201600394
istex:E7F99DAEFCF267317E2294DEDA99923AA6167E67
ark:/67375/WNG-NJBGFBSZ-W
Engineering and Physical Sciences Research Council - No. EP/L004461/1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4767-6852
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.201600394
PQID 1845820012
PQPubID 23500
PageCount 22
ParticipantIDs proquest_miscellaneous_1845820012
crossref_primary_10_1002_ejic_201600394
crossref_citationtrail_10_1002_ejic_201600394
wiley_primary_10_1002_ejic_201600394_EJIC201600394
istex_primary_ark_67375_WNG_NJBGFBSZ_W
PublicationCentury 2000
PublicationDate September 2016
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationTitle European journal of inorganic chemistry
PublicationTitleAlternate Eur. J. Inorg. Chem
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References B. Gui, X. Meng, Y. Chen, J. Tian, G. Liu, C. Shen, M. Zeller, D. Yuan and C. Wang, Chem. Mater., 2015, 27, 6426-6431.
T. Sawano, P. Ji, A. R. McIsaac, Z. Lin, C. W. Abney and W. Lin, Chem. Sci., 2015, 6, 7163-7168.
Y. Han, M. Liu, K. Li, Y. Zuo, Y. Wei, S. Xu, G. Zhang, C. Song, Z. Zhang and X. Guo, CrystEngComm, 2015, 17, 6434-6440.
a) J. B. DeCoste, G. W. Peterson, H. Jasuja, T. G. Glover, Y.-G. Huang and K. S. Walton, J. Mater. Chem. A, 2013, 1, 5642-5650
a) G. Wißmann, A. Schaate, S. Lilienthal, I. Bremer, A. M. Schneider and P. Behrens, Microporous Mesoporous Mater., 2012, 152, 64-70
J. Bonnefoy, A. Legrand, E. A. Quadrelli, J. Canivet and D. Farrusseng, J. Am. Chem. Soc., 2015, 137, 9409-9416.
Angew. Chem., 2015, 127, 5231.
M. Servalli, M. Ranocchiari and J. A. Van Bokhoven, Chem. Commun., 2012, 48, 1904-1906.
S. Yuan, W. Lu, Y.-P. Chen, Q. Zhang, T.-F. Liu, D. Feng, X. Wang, J. Qin and H.-C. Zhou, J. Am. Chem. Soc., 2015, 137, 3177-3180.
a) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450-1459
A. Shigematsu, T. Yamada and H. Kitagawa, J. Am. Chem. Soc., 2011, 133, 2034-2036.
D. Feng, H.-L. Jiang, Y.-P. Chen, Z.-Y. Gu, Z. Wei and H.-C. Zhou, Inorg. Chem., 2013, 52, 12661-12667.
M. Kim and S. M. Cohen, CrystEngComm, 2012, 14, 4096-4104.
H. Fei, J. Shin, Y. S. Meng, M. Adelhardt, J. Sutter, K. Meyer and S. M. Cohen, J. Am. Chem. Soc., 2014, 136, 4965-4973.
F. Vermoortele, B. Bueken, G. Le Bars, B. Van de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, C. Kirschhock and D. E. De Vos, J. Am. Chem. Soc., 2013, 135, 11465-11468.
J. B. DeCoste, M. A. Browe, G. W. Wagner, J. A. Rossin and G. W. Peterson, Chem. Commun., 2015, 51, 12474-12477.
Angew. Chem., 2005, 117, 4748
G. Mouchaham, L. Cooper, N. Guillou, C. Martineau, E. Elkaïm, S. Bourrelly, P. L. Llewellyn, C. Allain, G. Clavier, C. Serre and T. Devic, Angew. Chem. Int. Ed., 2015, 54, 13297-13301
D. Sun, W. Liu, M. Qiu, Y. Zhang and Z. Li, Chem. Commun., 2015, 51, 2056-2059.
S. Chavan, J. G. Vitillo, M. J. Uddin, F. Bonino, C. Lamberti, E. Groppo, K.-P. Lillerud and S. Bordiga, Chem. Mater., 2010, 22, 4602-4611.
C. He, K. Lu, D. Liu and W. Lin, J. Am. Chem. Soc., 2014, 136, 5181-5184.
b) H.-L. Jiang, D. Feng, K. Wang, Z.-Y. Gu, Z. Wei, Y.-P. Chen and H.-C. Zhou, J. Am. Chem. Soc., 2013, 135, 13934-13938.
Q. Zhang, J. Yu, J. Cai, L. Zhang, Y. Cui, Y. Yang, B. Chen and G. Qian, Chem. Commun., 2015, 51, 14732-14734.
Y. Lee, S. Kim, J. K. Kang and S. M. Cohen, Chem. Commun., 2015, 51, 5735-5738.
b) A. Torrisi, C. Mellot-Draznieks and R. G. Bell, J. Chem. Phys., 2010, 132, 044705.
P. Deria, Y. G. Chung, R. Q. Snurr, J. T. Hupp and O. K. Farha, Chem. Sci., 2015, 6, 5172-5176.
F. Ragon, B. Campo, Q. Yang, C. Martineau, A. D. Wiersum, A. Lago, V. Guillerm, C. Hemsley, J. F. Eubank, M. Vishnuvarthan, F. Taulelle, P. Horcajada, A. Vimont, P. L. Llewellyn, M. Daturi, S. Devautour-Vinot, G. Maurin, C. Serre, T. Devic and G. Clet, J. Mater. Chem. A, 2015, 3, 3294-3309.
a) C. G. Piscopo, A. Polyzoidis, M. Schwarzer and S. Loebbecke, Microporous Mesoporous Mater., 2015, 208, 30-35
Y. Bai, Y. Dou, L.-H. Xie, W. Rutledge, J.-R. Li and H.-C. Zhou, Chem. Soc. Rev., 2016, 45, 2327-2367.
S. Pullen, H. Fei, A. Orthaber, S. M. Cohen and S. Ott, J. Am. Chem. Soc., 2013, 135, 16997-17003.
P. Deria, W. Bury, J. T. Hupp and O. K. Farha, Chem. Commun., 2014, 50, 1965-1968.
T. Ishiwata, Y. Furukawa, K. Sugikawa, K. Kokado and K. Sada, J. Am. Chem. Soc., 2013, 135, 5427-5432.
S. T. Madrahimov, J. R. Gallagher, G. Zhang, Z. Meinhart, S. J. Garibay, M. Delferro, J. T. Miller, O. K. Farha, J. T. Hupp and S. T. Nguyen, ACS Catal., 2015, 5, 6713-6718.
A. W. Peters, Z. Li, O. K. Farha and J. T. Hupp, ACS Nano, 2015, 9, 8484-8490.
Angew. Chem., 2015, 127, 6899.
S. R. Venna, M. Lartey, T. Li, A. Spore, S. Kumar, H. B. Nulwala, D. R. Luebke, N. L. Rosi and E. Albenze, J. Mater. Chem. A, 2015, 3, 5014-5022.
Angew. Chem., 2015, 127, 11314.
X. Lin, Y. Hong, C. Zhang, R. Huang, C. Wang and W. Lin, Chem. Commun., 2015, 51, 16996-16999.
C. Larabi and E. A. Quadrelli, Eur. J. Inorg. Chem., 2012, 3014-3022.
Z. Hu, S. Faucher, Y. Zhuo, Y. Sun, S. Wang and D. Zhao, Chem. Eur. J., 2015, 21, 17246-17255.
J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga and K. P. Lillerud, J. Am. Chem. Soc., 2008, 130, 13850-13851.
b) Z. Hu, K. Zhang, M. Zhang, Z. Guo, J. Jiang and D. Zhao, ChemSusChem, 2014, 7, 2791-2795.
K. Manna, T. Zhang, M. Carboni, C. W. Abney and W. Lin, J. Am. Chem. Soc., 2014, 136, 13182-13185.
b) M. J. Katz, S.-Y. Moon, J. E. Mondloch, M. H. Beyzavi, C. J. Stephenson, J. T. Hupp and O. K. Farha, Chem. Sci., 2015, 6, 2286-2291.
H. Fei, S. Pullen, A. Wagner, S. Ott and S. M. Cohen, Chem. Commun., 2015, 51, 66-69.
S. Yuan, Y.-P. Chen, J. Qin, W. Lu, X. Wang, Q. Zhang, M. Bosch, T.-F. Liu, X. Lian and H.-C. Zhou, Angew. Chem. Int. Ed., 2015, 54, 14696-14700
W. Morris, W. E. Briley, E. Auyeung, M. D. Cabezas and C. A. Mirkin, J. Am. Chem. Soc., 2014, 136, 7261-7264.
F. Carson, E. Martinez-Castro, R. Marcos, G. G. Miera, K. Jansson, X. Zou and B. Martin-Matute, Chem. Commun., 2015, 51, 10864-10867.
b) A. Schaate, S. Dühnen, G. Platz, S. Lilienthal, A. M. Schneider and P. Behrens, Eur. J. Inorg. Chem., 2012, 790-796.
Y.-B. Huang, M. Shen, X. Wang, P. Huang, R. Chen, Z.-J. Lin and R. Cao, J. Catal., 2016, 333, 1-7.
Angew. Chem., 2010, 122, 6400
c) P. Horcajada, C. Serre, G. Maurin, N. A. Ramsahye, F. Balas, M. Vallet-Regí, M. Sebban, F. Taulelle and G. Férey, J. Am. Chem. Soc., 2008, 130, 6774-6780
I. Hod, W. Bury, D. M. Gardner, P. Deria, V. Roznyatovskiy, M. R. Wasielewski, O. K. Farha and J. T. Hupp, J. Phys. Chem. Lett., 2015, 6, 586-591.
c) H. Furukawa, K. E. Cordova, M. O'Keeffe and O. M. Yaghi, Science, 2013, 341, 6149.
b) S. Jakobsen, D. Gianolio, D. S. Wragg, M. H. Nilsen, H. Emerich, S. Bordiga, C. Lamberti, U. Olsbye, M. Tilset and K. P. Lillerud, Phys. Rev. B, 2012, 86, 125429.
a) J. E. Mondloch, M. J. Katz, W. C. IsleyIII, P. Ghosh, P. Liao, W. Bury, G. W. Wagner, M. G. Hall, J. B. DeCoste, G. W. Peterson, R. Q. Snurr, C. J. Cramer, J. T. Hupp and O. K. Farha, Nat. Mater., 2015, 14, 512-516
Q. Zhang, J. Su, D. Feng, Z. Wei, X. Zou and H.-C. Zhou, J. Am. Chem. Soc., 2015, 137, 10064-10067.
b) P. G. Yot, K. Yang, F. Ragon, V. Dmitriev, T. Devic, P. Horcajada, C. Serre and G. Maurin, Dalton Trans., 2016, 45, 4283-4288
d) C. L. Hobday, R. J. Marshall, C. F. Murphie, J. Sotelo, T. Richards, D. R. Allan, T. Düren, F.-X. Coudert, R. S. Forgan, C. A. Morrison, S. A. Moggach and T. D. Bennett, Angew. Chem. Int. Ed., 2016, 55, 2401-2405
J. Ma, A. G. Wong-Foy and A. J. Matzger, Inorg. Chem., 2015, 54, 4591-4593.
H.-L. Jiang, D. Feng, T.-F. Liu, J.-R. Li and H.-C. Zhou, J. Am. Chem. Soc., 2012, 134, 14690-14693.
M. Kim, J. F. Cahill, Y. Su, K. A. Prather and S. M. Cohen, Chem. Sci., 2012, 3, 126-130.
C. Falaise, C. Volkringer, J.-F. Vigier, N. Henry, A. Beaurain and T. Loiseau, Chem. Eur. J., 2013, 19, 5324-5331.
C. A. Trickett, K. J. Gagnon, S. Lee, F. Gándara, H.-B. Bürgi and O. M. Yaghi, Angew. Chem. Int. Ed., 2015, 54, 11162-11167
J. Aguilera-Sigalat, A. Fox-Charles and D. Bradshaw, Chem. Commun., 2014, 50, 15453-15456.
Angew. Chem., 2012, 124, 9401.
e) Z. Fang, B. Bueken, D. E. De Vos and R. A. Fischer, Angew. Chem. Int. Ed., 2015, 54, 7234-7254
a) H. Wu, T. Yildirim and W. Zhou, J. Phys. Chem. Lett., 2013, 4, 925-930
a) J. R. Long and O. M. Yaghi, Chem. Soc. Rev., 2009, 38, 1213-1214
M. Lammert, M. T. Wharmby, S. Smolders, B. Bueken, A. Lieb, K. A. Lomachenko, D. De Vos and N. Stock, Chem. Commun., 2015, 51, 12578-12581.
Y. Luan, Y. Qi, H. Gao, R. S. Andriamitantsoa, N. Zheng and G. Wang, J. Mater. Chem. A, 2015, 3, 17320-17331.
X. Yu and S. M. Cohen, Chem. Commun., 2015, 51, 9880-9883.
a) J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed., 2005, 44, 4670-4679
Angew. Chem., 2014, 126, 507
b) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, Chem. Rev., 2012, 112, 724-781
V. Guillerm, S. Gross, C. Serre, T. Devic, M. Bauer and G. Férey, Chem. Commun., 2010, 46, 767-769.
Angew. Chem., 2014, 126, 4618.
B. Gui, G. Hu, T. Zhou and C. Wang, J. Solid State Chem., 2015, 223, 79-83.
L. Li, S. Tang, C. Wang, X. Lv, M. Jiang, H. Wu and X. Zhao, Chem. Commun., 2014, 50, 2304-2307.
T. Sawano, N. C. Thacker, Z. Lin, A. R. McIsaac and W. Lin, J. Am. Chem. Soc., 2015, 137, 12241-12248.
P. Deria, S. Li, H. Zhang, R. Q. Snurr, J. T. Hupp and O. K. Farha, Chem. Commun., 2015, 51, 12478-12481.
S. Nagata, K. Kokado and K. Sada, Chem. Commun., 2015, 51, 8614-8617.
b) S.-Y. Moon, Y. Liu, J. T. Hupp and O. K. Farha, Angew. Chem. Int. Ed., 2015, 54, 6795-6799
H. Hintz and S. Wuttke, Chem. Mater., 2014, 26, 6722-6728.
a) Z. Wang and S. M. Cohen, Chem. Soc. Rev., 2009, 38, 1315-1329
J. E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E. J. DeMarco, M. H. Weston, A. A. Sarjeant, S. T. Nguyen, P. C. Stair, R. Q. Snurr, O. K. Farha and J. T. Hupp, J. Am. Chem. Soc., 2013, 135, 10294-10297.
b) P. Deria, J. E. Mondloch, O. Karagiaridi, W. Bury, J. T. Hupp and O. K. Farha, Chem. Soc. Rev., 2014, 43, 5896-5912
a) M. Kim, J. F. Cahill, H. Fei, K. A. Prather and S. M. Cohen, J. Am. Chem. Soc., 2012, 134, 18082-18088
R. C. Klet, Y. Liu, T. C. Wang, J. T. Hupp and O. K. Farha, J. Mater. Chem. A, 2016, 4, 1479-1485.
c) C. K. Brozek and M. Dinca, Chem. Soc. Rev., 2014, 43, 5456-5467
Z. Li, N. M. Schweitzer, A. B. League, V. Bernales, A. W. Peters, A. B. Getsoian, T. C. Wang, J. T. Miller, A. Vjunov, J. L. Fulton, J. A. Lercher, C. J. Cramer, L. Gagliardi, J. T. Hupp and O. K. Farha, J. Am. Chem. Soc., 2016, 138, 1977-1982.
H. G. T. Nguyen, L. Mao, A. W. Peters, C. O. Audu, Z. J. Brown, O. K. Farha, J. T. Hupp and S. T. Nguyen, Catal. Sci. Technol., 2015, 5, 4444-4451.
A. Schaate, P. Roy, T. Preuße, S. J. Lohmeier, A. Godt and P. Behrens, Chem. Eur. J., 2011, 17, 9320-9325.
Z. Hu and D. Zhao, Dalton Trans., 2015, 44, 19018-19040.
e) L.-M. Yang, E
2014 2014; 53 126
2012 2014 2014 2014; 134 43 43 43
2015; 39
2009 2012 2013; 38 112 341
2015; 223
2014; 26
2012; 18
2011; 17
2012; 14
2009 2011 2010; 38 40 1
2014; 136
2014; 20
2013; 19
2010; 22
2014 2014 2014; 53 136 16
2014; 4
2012; 134
2015; 137
2012 2012; 51 124
2012 2012; 152
2015; 44
2013; 52
2014; 16
2009 2012; 38 112
2015 2015; 54 127
2015 2011 2008 2010 2010 2012; 51 44 130 49 122 112
2013 2016 2016 2016 2016 2014 2015; 4 45 45 55 128 2 3
2014; 50
2016; 45
2015 2013 2014 2013 2015 2015; 54 49 26 135 54 127
2015; 6
2015; 17
2015; 5
2011 2010; 47 132
2015; 3
2013; 49
2012
2015; 51
2015; 124
2015 2013; 208 135
2011; 40
2005 2005 2012 2010; 44 117 112 46
2015; 54
2016; 52
2015; 9
2015 2015 2015; 14 54 127
2014 2014 2015; 53 126 6
2015; 7
2012 2012 2012; 51 124 51
2011; 133
2012 2012; 22 86
2016; 4
2015 2016; 137 6
2015; 27
2012; 3
2012; 112
2010; 46
2015; 112
2011; 50
2015; 21
2016; 333
2013; 135
2016; 138
2012; 48
2013 2014 2010; 1 50 22
2016; 28
2012 2014; 41 7
2008; 130
2016; 22
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_2
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_3
e_1_2_10_116_2
e_1_2_10_93_2
e_1_2_10_116_3
e_1_2_10_2_3
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_116_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_97_2
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_55_2
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_124_2
e_1_2_10_124_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_22_2
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_3_2
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_3_4
e_1_2_10_11_6
e_1_2_10_15_2
e_1_2_10_113_1
e_1_2_10_3_3
e_1_2_10_11_7
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_7_2
e_1_2_10_11_4
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_11_5
e_1_2_10_15_1
e_1_2_10_10_3
e_1_2_10_7_3
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_10_2
e_1_2_10_121_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_121_2
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_23_2
e_1_2_10_42_2
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_4_2
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_8_3
e_1_2_10_11_2
e_1_2_10_58_1
e_1_2_10_8_2
e_1_2_10_11_3
e_1_2_10_34_1
e_1_2_10_58_2
e_1_2_10_8_4
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_84_2
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_92_1
e_1_2_10_115_3
e_1_2_10_73_1
e_1_2_10_17_2
e_1_2_10_96_2
e_1_2_10_115_1
e_1_2_10_17_3
e_1_2_10_96_1
e_1_2_10_115_2
e_1_2_10_5_2
e_1_2_10_54_1
e_1_2_10_96_4
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_96_3
e_1_2_10_5_4
e_1_2_10_77_2
e_1_2_10_96_6
e_1_2_10_111_1
e_1_2_10_5_3
e_1_2_10_36_1
e_1_2_10_96_5
e_1_2_10_5_6
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_5_5
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_2
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_123_2
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – reference: P. Deria, Y. G. Chung, R. Q. Snurr, J. T. Hupp and O. K. Farha, Chem. Sci., 2015, 6, 5172-5176.
– reference: T. Ishiwata, Y. Furukawa, K. Sugikawa, K. Kokado and K. Sada, J. Am. Chem. Soc., 2013, 135, 5427-5432.
– reference: S. Yuan, W. Lu, Y.-P. Chen, Q. Zhang, T.-F. Liu, D. Feng, X. Wang, J. Qin and H.-C. Zhou, J. Am. Chem. Soc., 2015, 137, 3177-3180.
– reference: d) A. C. McKinlay, R. E. Morris, P. Horcajada, G. Férey, R. Gref, P. Couvreur and C. Serre, Angew. Chem. Int. Ed., 2010, 49, 6260-6266;
– reference: P. Deria, W. Bury, I. Hod, C.-W. Kung, O. Karagiaridi, J. T. Hupp and O. K. Farha, Inorg. Chem., 2015, 54, 2185-2192.
– reference: a) G. Wißmann, A. Schaate, S. Lilienthal, I. Bremer, A. M. Schneider and P. Behrens, Microporous Mesoporous Mater., 2012, 152, 64-70;
– reference: a) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450-1459;
– reference: a) M. Kim, J. F. Cahill, H. Fei, K. A. Prather and S. M. Cohen, J. Am. Chem. Soc., 2012, 134, 18082-18088;
– reference: Y. Lee, S. Kim, J. K. Kang and S. M. Cohen, Chem. Commun., 2015, 51, 5735-5738.
– reference: a) J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed., 2005, 44, 4670-4679;
– reference: J. M. Falkowski, T. Sawano, T. Zhang, G. Tsun, Y. Chen, J. V. Lockard and W. Lin, J. Am. Chem. Soc., 2014, 136, 5213-5216.
– reference: R. J. Marshall, S. L. Griffin, C. Wilson and R. S. Forgan, Chem. Eur. J., 2016, 22, 4870-4877.
– reference: A. Schaate, P. Roy, T. Preuße, S. J. Lohmeier, A. Godt and P. Behrens, Chem. Eur. J., 2011, 17, 9320-9325.
– reference: R. J. Marshall, S. L. Griffin, C. Wilson and R. S. Forgan, J. Am. Chem. Soc., 2015, 137, 9527-9530.
– reference: Q. Zhang, J. Yu, J. Cai, L. Zhang, Y. Cui, Y. Yang, B. Chen and G. Qian, Chem. Commun., 2015, 51, 14732-14734.
– reference: Z. Li, N. M. Schweitzer, A. B. League, V. Bernales, A. W. Peters, A. B. Getsoian, T. C. Wang, J. T. Miller, A. Vjunov, J. L. Fulton, J. A. Lercher, C. J. Cramer, L. Gagliardi, J. T. Hupp and O. K. Farha, J. Am. Chem. Soc., 2016, 138, 1977-1982.
– reference: J. Ma, A. G. Wong-Foy and A. J. Matzger, Inorg. Chem., 2015, 54, 4591-4593.
– reference: a) Z. Wang and S. M. Cohen, Chem. Soc. Rev., 2009, 38, 1315-1329;
– reference: b) A. Torrisi, C. Mellot-Draznieks and R. G. Bell, J. Chem. Phys., 2010, 132, 044705.
– reference: c) S. M. Cohen, Chem. Sci., 2010, 1, 32-36.
– reference: Angew. Chem., 2015, 127, 6899.
– reference: W. Morris, C. J. Doonan and O. M. Yaghi, Inorg. Chem., 2011, 50, 6853-6855.
– reference: Z. Hu, M. Khurana, Y. H. Seah, M. Zhang, Z. Guo and D. Zhao, Chem. Eng. Sci., 2015, 124, 61-69.
– reference: Angew. Chem., 2015, 127, 4333.
– reference: b) Z. Hu, K. Zhang, M. Zhang, Z. Guo, J. Jiang and D. Zhao, ChemSusChem, 2014, 7, 2791-2795.
– reference: R. C. Klet, T. C. Wang, L. E. Fernandez, D. G. Truhlar, J. T. Hupp and O. K. Farha, Chem. Mater., 2016, 28, 1213-1219.
– reference: b) J. Della Rocca, D. Liu and W. Lin, Acc. Chem. Res., 2011, 44, 957-968;
– reference: a) K. E. deKrafft, W. S. Boyle, L. M. Burk, O. Z. Zhou and W. Lin, J. Mater. Chem., 2012, 22, 18139-18144;
– reference: C. Larabi and E. A. Quadrelli, Eur. J. Inorg. Chem., 2012, 3014-3022.
– reference: e) P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey, R. E. Morris and C. Serre, Chem. Rev., 2012, 112, 1232-1268.
– reference: T. Sawano, P. Ji, A. R. McIsaac, Z. Lin, C. W. Abney and W. Lin, Chem. Sci., 2015, 6, 7163-7168.
– reference: M. Kim, J. F. Cahill, Y. Su, K. A. Prather and S. M. Cohen, Chem. Sci., 2012, 3, 126-130.
– reference: a) O. V. Gutov, M. G. Hevia, E. C. Escudero-Adán and A. Shafir, Inorg. Chem., 2015, 54, 8396-8400;
– reference: J. Aguilera-Sigalat, A. Fox-Charles and D. Bradshaw, Chem. Commun., 2014, 50, 15453-15456.
– reference: D. H. Hong and M. P. Suh, Chem. Eur. J., 2014, 20, 426-434.
– reference: D. Sun, W. Liu, M. Qiu, Y. Zhang and Z. Li, Chem. Commun., 2015, 51, 2056-2059.
– reference: J. Bonnefoy, A. Legrand, E. A. Quadrelli, J. Canivet and D. Farrusseng, J. Am. Chem. Soc., 2015, 137, 9409-9416.
– reference: a) D. Feng, Z.-Y. Gu, J.-R. Li, H.-L. Jiang, Z. Wei and H.-C. Zhou, Angew. Chem. Int. Ed., 2012, 51, 10307-10310;
– reference: H.-L. Jiang, D. Feng, T.-F. Liu, J.-R. Li and H.-C. Zhou, J. Am. Chem. Soc., 2012, 134, 14690-14693.
– reference: X. Yu and S. M. Cohen, Chem. Commun., 2015, 51, 9880-9883.
– reference: a) M. Lin Foo, S. Horike, T. Fukushima, Y. Hijikata, Y. Kubota, M. Takata and S. Kitagawa, Dalton Trans., 2012, 41, 13791-13794;
– reference: I. Hod, W. Bury, D. M. Gardner, P. Deria, V. Roznyatovskiy, M. R. Wasielewski, O. K. Farha and J. T. Hupp, J. Phys. Chem. Lett., 2015, 6, 586-591.
– reference: c) S. Ma and H.-C. Zhou, Chem. Commun., 2010, 46, 44-53.
– reference: Y. Zhou and B. Yan, Chem. Commun., 2016, 52, 2265-2268.
– reference: Y. Han, M. Liu, K. Li, Y. Zuo, Y. Wei, S. Xu, G. Zhang, C. Song, Z. Zhang and X. Guo, CrystEngComm, 2015, 17, 6434-6440.
– reference: S. J. D. Smith, B. P. Ladewig, A. J. Hill, C. H. Lau and M. R. Hill, Sci. Rep., 2015, 5, 7823.
– reference: b) H.-C. Zhou, J. R. Long and O. M. Yaghi, Chem. Rev., 2012, 112, 673-674;
– reference: c) R. J. Marshall, T. Richards, C. Hobday, C. F. Murphie, C. Wilson, S. A. Moggach, T. D. Bennett and R. S. Forgan, Dalton Trans., 2016, 45, 4132-4135;
– reference: H. Fei, J. Shin, Y. S. Meng, M. Adelhardt, J. Sutter, K. Meyer and S. M. Cohen, J. Am. Chem. Soc., 2014, 136, 4965-4973.
– reference: Z. Hu and D. Zhao, Dalton Trans., 2015, 44, 19018-19040.
– reference: K. Manna, T. Zhang and W. Lin, J. Am. Chem. Soc., 2014, 136, 6566-6569.
– reference: b) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, Chem. Rev., 2012, 112, 724-781;
– reference: Angew. Chem., 2014, 126, 507;
– reference: b) P. Deria, J. E. Mondloch, O. Karagiaridi, W. Bury, J. T. Hupp and O. K. Farha, Chem. Soc. Rev., 2014, 43, 5896-5912;
– reference: K. Manna, T. Zhang, M. Carboni, C. W. Abney and W. Lin, J. Am. Chem. Soc., 2014, 136, 13182-13185.
– reference: a) C. Orellana-Tavra, E. F. Baxter, T. Tian, T. D. Bennett, N. K. H. Slater, A. K. Cheetham and D. Fairen-Jimenez, Chem. Commun., 2015, 51, 13878-13881;
– reference: b) M. J. Katz, S.-Y. Moon, J. E. Mondloch, M. H. Beyzavi, C. J. Stephenson, J. T. Hupp and O. K. Farha, Chem. Sci., 2015, 6, 2286-2291.
– reference: a) R. Wang, Z. Wang, Y. Xu, F. Dai, L. Zhang and D. Sun, Inorg. Chem., 2014, 53, 7086-7088;
– reference: G. Mouchaham, L. Cooper, N. Guillou, C. Martineau, E. Elkaïm, S. Bourrelly, P. L. Llewellyn, C. Allain, G. Clavier, C. Serre and T. Devic, Angew. Chem. Int. Ed., 2015, 54, 13297-13301;
– reference: Angew. Chem., 2015, 127, 11314.
– reference: a) J. E. Mondloch, M. J. Katz, W. C. IsleyIII, P. Ghosh, P. Liao, W. Bury, G. W. Wagner, M. G. Hall, J. B. DeCoste, G. W. Peterson, R. Q. Snurr, C. J. Cramer, J. T. Hupp and O. K. Farha, Nat. Mater., 2015, 14, 512-516;
– reference: Angew. Chem., 2015, 127, 13495.
– reference: Z. Hu, S. Faucher, Y. Zhuo, Y. Sun, S. Wang and D. Zhao, Chem. Eur. J., 2015, 21, 17246-17255.
– reference: R. C. Klet, Y. Liu, T. C. Wang, J. T. Hupp and O. K. Farha, J. Mater. Chem. A, 2016, 4, 1479-1485.
– reference: Angew. Chem., 2015, 127, 5231.
– reference: Y. Zhang, X. Feng, H. Li, Y. Chen, J. Zhao, S. Wang, L. Wang and B. Wang, Angew. Chem. Int. Ed., 2015, 54, 4259-4263;
– reference: b) W. Morris, B. Volosskiy, S. Demir, F. Gándara, P. L. McGrier, H. Furukawa, D. Cascio, J. F. Stoddart and O. M. Yaghi, Inorg. Chem., 2012, 51, 6443-6445.
– reference: L.-J. Li, P.-Q. Liao, C.-T. He, Y.-S. Wei, H.-L. Zhou, J.-M. Lin, X.-Y. Li and J.-P. Zhang, J. Mater. Chem. A, 2015, 3, 21849-21855.
– reference: C. A. Trickett, K. J. Gagnon, S. Lee, F. Gándara, H.-B. Bürgi and O. M. Yaghi, Angew. Chem. Int. Ed., 2015, 54, 11162-11167;
– reference: C.-W. Kung, J. E. Mondloch, T. C. Wang, W. Bury, W. Hoffeditz, B. M. Klahr, R. C. Klet, M. J. Pellin, O. K. Farha and J. T. Hupp, ACS Appl. Mater. Interfaces, 2015, 7, 28223-28230.
– reference: Angew. Chem., 2015, 127, 7340.
– reference: Angew. Chem., 2010, 122, 6400;
– reference: Y.-B. Huang, M. Shen, X. Wang, P. Huang, R. Chen, Z.-J. Lin and R. Cao, J. Catal., 2016, 333, 1-7.
– reference: C. Falaise, C. Volkringer, J.-F. Vigier, N. Henry, A. Beaurain and T. Loiseau, Chem. Eur. J., 2013, 19, 5324-5331.
– reference: b) A. Schaate, S. Dühnen, G. Platz, S. Lilienthal, A. M. Schneider and P. Behrens, Eur. J. Inorg. Chem., 2012, 790-796.
– reference: d) H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim and W. Zhou, J. Am. Chem. Soc., 2013, 135, 10525-10532;
– reference: M. Kim, S. J. Garibay and S. M. Cohen, Inorg. Chem., 2011, 50, 729-731.
– reference: I. S. Kim, J. Borycz, A. E. Platero-Prats, S. Tussupbayev, T. C. Wang, O. K. Farha, J. T. Hupp, L. Gagliardi, K. W. Chapman, C. J. Cramer and A. B. F. Martinson, Chem. Mater., 2015, 27, 4772-4778.
– reference: Y. Lee, S. Kim, H. Fei, J. K. Kang and S. M. Cohen, Chem. Commun., 2015, 51, 16549-16552.
– reference: Angew. Chem., 2015, 127, 6894.
– reference: a) Q. Yang, A. D. Wiersum, P. L. Llewellyn, V. Guillerm, C. Serre and G. Maurin, Chem. Commun., 2011, 47, 9603-9605;
– reference: H. Fei, M. D. Sampson, Y. Lee, C. P. Kubiak and S. M. Cohen, Inorg. Chem., 2015, 54, 6821-6828.
– reference: O. Karagiaridi, W. Bury, J. E. Mondloch, J. T. Hupp and O. K. Farha, Angew. Chem. Int. Ed., 2014, 53, 4530-4540;
– reference: c) C. K. Brozek and M. Dinca, Chem. Soc. Rev., 2014, 43, 5456-5467;
– reference: Angew. Chem., 2005, 117, 4748;
– reference: c) P. Horcajada, C. Serre, G. Maurin, N. A. Ramsahye, F. Balas, M. Vallet-Regí, M. Sebban, F. Taulelle and G. Férey, J. Am. Chem. Soc., 2008, 130, 6774-6780;
– reference: M. I. Gonzalez, E. D. Bloch, J. A. Mason, S. J. Teat and J. R. Long, Inorg. Chem., 2015, 54, 2995-3005.
– reference: H. Fei, S. Pullen, A. Wagner, S. Ott and S. M. Cohen, Chem. Commun., 2015, 51, 66-69.
– reference: c) G. C. Shearer, S. Chavan, J. Ethiraj, J. G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga and K. P. Lillerud, Chem. Mater., 2014, 26, 4068-4071;
– reference: D. Feng, H.-L. Jiang, Y.-P. Chen, Z.-Y. Gu, Z. Wei and H.-C. Zhou, Inorg. Chem., 2013, 52, 12661-12667.
– reference: B. Li, B. Gui, G. Hu, D. Yuan and C. Wang, Inorg. Chem., 2015, 54, 5139-5141.
– reference: b) S. Jakobsen, D. Gianolio, D. S. Wragg, M. H. Nilsen, H. Emerich, S. Bordiga, C. Lamberti, U. Olsbye, M. Tilset and K. P. Lillerud, Phys. Rev. B, 2012, 86, 125429.
– reference: M. Lammert, M. T. Wharmby, S. Smolders, B. Bueken, A. Lieb, K. A. Lomachenko, D. De Vos and N. Stock, Chem. Commun., 2015, 51, 12578-12581.
– reference: a) M. J. Katz, J. E. Mondloch, R. K. Totten, J. K. Park, S. T. Nguyen, O. K. Farha and J. T. Hupp, Angew. Chem. Int. Ed., 2014, 53, 497-501;
– reference: a) J. B. DeCoste, G. W. Peterson, H. Jasuja, T. G. Glover, Y.-G. Huang and K. S. Walton, J. Mater. Chem. A, 2013, 1, 5642-5650;
– reference: b) H.-L. Jiang, D. Feng, K. Wang, Z.-Y. Gu, Z. Wei, Y.-P. Chen and H.-C. Zhou, J. Am. Chem. Soc., 2013, 135, 13934-13938.
– reference: A. Shigematsu, T. Yamada and H. Kitagawa, J. Am. Chem. Soc., 2011, 133, 2034-2036.
– reference: c) M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino and K. P. Lillerud, Chem. Mater., 2010, 22, 6632-6640.
– reference: F. Carson, E. Martinez-Castro, R. Marcos, G. G. Miera, K. Jansson, X. Zou and B. Martin-Matute, Chem. Commun., 2015, 51, 10864-10867.
– reference: A. W. Peters, Z. Li, O. K. Farha and J. T. Hupp, ACS Nano, 2015, 9, 8484-8490.
– reference: b) J. E. Mondloch, M. J. Katz, N. Planas, D. Semrouni, L. Gagliardi, J. T. Hupp and O. K. Farha, Chem. Commun., 2014, 50, 8944-8946;
– reference: Q. Zhang, J. Su, D. Feng, Z. Wei, X. Zou and H.-C. Zhou, J. Am. Chem. Soc., 2015, 137, 10064-10067.
– reference: M. Servalli, M. Ranocchiari and J. A. Van Bokhoven, Chem. Commun., 2012, 48, 1904-1906.
– reference: S. Nagata, K. Kokado and K. Sada, Chem. Commun., 2015, 51, 8614-8617.
– reference: e) Z. Fang, B. Bueken, D. E. De Vos and R. A. Fischer, Angew. Chem. Int. Ed., 2015, 54, 7234-7254;
– reference: R. J. Marshall, C. L. Hobday, C. F. Murphie, S. L. Griffin, C. A. Morrison, S. A. Moggach and R. S. Forgan, J. Mater. Chem. A, 2016, 4, 6955-6963.
– reference: b) S.-Y. Moon, Y. Liu, J. T. Hupp and O. K. Farha, Angew. Chem. Int. Ed., 2015, 54, 6795-6799;
– reference: J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga and K. P. Lillerud, J. Am. Chem. Soc., 2008, 130, 13850-13851.
– reference: P. R. McGonigal, P. Deria, I. Hod, P. Z. Moghadam, A.-J. Avestro, N. E. Horwitz, I. C. Gibbs-Hall, A. K. Blackburn, D. Chen, Y. Y. Botros, M. R. Wasielewski, R. Q. Snurr, J. T. Hupp, O. K. Farha and J. F. Stoddart, Proc. Natl. Acad. Sci. USA, 2015, 112, 11161-11168.
– reference: J. E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E. J. DeMarco, M. H. Weston, A. A. Sarjeant, S. T. Nguyen, P. C. Stair, R. Q. Snurr, O. K. Farha and J. T. Hupp, J. Am. Chem. Soc., 2013, 135, 10294-10297.
– reference: V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M. Vishnuvarthan, B. Campo, A. Vimont, G. Clet, Q. Yang, G. Maurin, G. Férey, A. Vittadini, S. Gross and C. Serre, Angew. Chem. Int. Ed., 2012, 51, 9267-9271;
– reference: K. Manna, T. Zhang, F. X. Greene and W. Lin, J. Am. Chem. Soc., 2015, 137, 2665-2673.
– reference: Angew. Chem., 2014, 126, 4618.
– reference: H. G. T. Nguyen, L. Mao, A. W. Peters, C. O. Audu, Z. J. Brown, O. K. Farha, J. T. Hupp and S. T. Nguyen, Catal. Sci. Technol., 2015, 5, 4444-4451.
– reference: S.-Y. Moon, A. J. Howarth, T. Wang, N. A. Vermeulen, J. T. Hupp and O. K. Farha, Chem. Commun., 2016, 52, 3438-3441.
– reference: P. Deria, S. Li, H. Zhang, R. Q. Snurr, J. T. Hupp and O. K. Farha, Chem. Commun., 2015, 51, 12478-12481.
– reference: b) M. J. Katz, Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp and O. K. Farha, Chem. Commun., 2013, 49, 9449-9451;
– reference: J. M. Taylor, S. Dekura, R. Ikeda and H. Kitagawa, Chem. Mater., 2015, 27, 2286-2289.
– reference: C. Falaise, J.-S. Charles, C. Volkringer and T. Loiseau, Inorg. Chem., 2015, 54, 2235-2242.
– reference: L. Li, S. Tang, C. Wang, X. Lv, M. Jiang, H. Wu and X. Zhao, Chem. Commun., 2014, 50, 2304-2307.
– reference: I. L. Malaestean, M. Speldrich, A. Ellern, S. G. Baca and P. Kogerler, Dalton Trans., 2011, 40, 331-333.
– reference: d) J. D. Evans, C. J. Sumby and C. J. Doonan, Chem. Soc. Rev., 2014, 43, 5933-5951.
– reference: F. Vermoortele, B. Bueken, G. Le Bars, B. Van de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, C. Kirschhock and D. E. De Vos, J. Am. Chem. Soc., 2013, 135, 11465-11468.
– reference: S. Chavan, J. G. Vitillo, M. J. Uddin, F. Bonino, C. Lamberti, E. Groppo, K.-P. Lillerud and S. Bordiga, Chem. Mater., 2010, 22, 4602-4611.
– reference: H. G. T. Nguyen, N. M. Schweitzer, C.-Y. Chang, T. L. Drake, M. C. So, P. C. Stair, O. K. Farha, J. T. Hupp and S. T. Nguyen, ACS Catal., 2014, 4, 2496-2500.
– reference: f) B. Van de Voorde, I. Stassen, B. Bueken, F. Vermoortele, D. De Vos, R. Ameloot, J.-C. Tan and T. D. Bennett, J. Mater. Chem. A, 2015, 3, 1737-1742.
– reference: H. Hintz and S. Wuttke, Chem. Mater., 2014, 26, 6722-6728.
– reference: a) H. Wu, T. Yildirim and W. Zhou, J. Phys. Chem. Lett., 2013, 4, 925-930;
– reference: C.-W. Kung, T.-H. Chang, L.-Y. Chou, J. T. Hupp, O. K. Farha and K.-C. Ho, Chem. Commun., 2015, 51, 2414-2417.
– reference: K. Hindelang, A. Kronast, S. I. Vagin and B. Rieger, Chem. Eur. J., 2013, 19, 8244-8252.
– reference: V. Guillerm, S. Gross, C. Serre, T. Devic, M. Bauer and G. Férey, Chem. Commun., 2010, 46, 767-769.
– reference: X. Lin, Y. Hong, C. Zhang, R. Huang, C. Wang and W. Lin, Chem. Commun., 2015, 51, 16996-16999.
– reference: a) D. Yang, S. O. Odoh, T. C. Wang, O. K. Farha, J. T. Hupp, C. J. Cramer, L. Gagliardi and B. C. Gates, J. Am. Chem. Soc., 2015, 137, 7391-7396;
– reference: J. B. DeCoste, T. J. Demasky, M. J. Katz, O. K. Farha and J. T. Hupp, New J. Chem., 2015, 39, 2396-2399.
– reference: S. Wang, W. Morris, Y. Liu, C. M. McGuirk, Y. Zhou, J. T. Hupp, O. K. Farha and C. A. Mirkin, Angew. Chem. Int. Ed., 2015, 54, 14738-14742;
– reference: c) W. Liang, H. Chevreau, F. Ragon, P. D. Southon, V. K. Peterson and D. M. D′Alessandro, CrystEngComm, 2014, 16, 6530-6533.
– reference: Angew. Chem., 2012, 124, 10453;
– reference: X.-C. Yi, F.-G. Xi, Y. Qi and E.-Q. Gao, RSC Adv., 2015, 5, 893-900.
– reference: W. J. Phang, H. Jo, W. R. Lee, J. H. Song, K. Yoo, B. Kim and C. S. Hong, Angew. Chem. Int. Ed., 2015, 54, 5142-5146;
– reference: S. Pullen, H. Fei, A. Orthaber, S. M. Cohen and S. Ott, J. Am. Chem. Soc., 2013, 135, 16997-17003.
– reference: B. Gui, X. Meng, Y. Chen, J. Tian, G. Liu, C. Shen, M. Zeller, D. Yuan and C. Wang, Chem. Mater., 2015, 27, 6426-6431.
– reference: T. Sawano, N. C. Thacker, Z. Lin, A. R. McIsaac and W. Lin, J. Am. Chem. Soc., 2015, 137, 12241-12248.
– reference: E. López-Maya, C. Montoro, L. M. Rodríguez-Albelo, S. D. Aznar Cervantes, A. A. Lozano-Pérez, J. L. Cenís, E. Barea and J. A. R. Navarro, Angew. Chem. Int. Ed., 2015, 54, 6790-6794;
– reference: a) J. R. Long and O. M. Yaghi, Chem. Soc. Rev., 2009, 38, 1213-1214;
– reference: Angew. Chem., 2012, 124, 9401.
– reference: a) C. G. Piscopo, A. Polyzoidis, M. Schwarzer and S. Loebbecke, Microporous Mesoporous Mater., 2015, 208, 30-35;
– reference: Y. Bai, Y. Dou, L.-H. Xie, W. Rutledge, J.-R. Li and H.-C. Zhou, Chem. Soc. Rev., 2016, 45, 2327-2367.
– reference: Angew. Chem., 2016, 128, 2447-2451
– reference: C. V. McGuire and R. S. Forgan, Chem. Commun., 2015, 51, 5199-5217.
– reference: M. Kim and S. M. Cohen, CrystEngComm, 2012, 14, 4096-4104.
– reference: F. Ragon, B. Campo, Q. Yang, C. Martineau, A. D. Wiersum, A. Lago, V. Guillerm, C. Hemsley, J. F. Eubank, M. Vishnuvarthan, F. Taulelle, P. Horcajada, A. Vimont, P. L. Llewellyn, M. Daturi, S. Devautour-Vinot, G. Maurin, C. Serre, T. Devic and G. Clet, J. Mater. Chem. A, 2015, 3, 3294-3309.
– reference: b) M. Yoon, R. Srirambalaji and K. Kim, Chem. Rev., 2012, 112, 1196-1231.
– reference: Y. Luan, Y. Qi, H. Gao, R. S. Andriamitantsoa, N. Zheng and G. Wang, J. Mater. Chem. A, 2015, 3, 17320-17331.
– reference: S. Yuan, Y.-P. Chen, J. Qin, W. Lu, X. Wang, Q. Zhang, M. Bosch, T.-F. Liu, X. Lian and H.-C. Zhou, Angew. Chem. Int. Ed., 2015, 54, 14696-14700;
– reference: N. Stock and S. Biswas, Chem. Rev., 2012, 112, 933-969.
– reference: d) C. L. Hobday, R. J. Marshall, C. F. Murphie, J. Sotelo, T. Richards, D. R. Allan, T. Düren, F.-X. Coudert, R. S. Forgan, C. A. Morrison, S. A. Moggach and T. D. Bennett, Angew. Chem. Int. Ed., 2016, 55, 2401-2405;
– reference: H. Fei and S. M. Cohen, J. Am. Chem. Soc., 2015, 137, 2191-2194.
– reference: J. Chun, S. Kang, N. Park, E. J. Park, X. Jin, K.-D. Kim, H. O. Seo, S. M. Lee, H. J. Kim, W. H. Kwon, Y.-K. Park, J. M. Kim, Y. D. Kim and S. U. Son, J. Am. Chem. Soc., 2014, 136, 6786-6789.
– reference: b) D. Yang, S. O. Odoh, J. Borycz, T. C. Wang, O. K. Farha, J. T. Hupp, C. J. Cramer, L. Gagliardi and B. C. Gates, ACS Catal., 2016, 6, 235-247.
– reference: b) H. Furukawa, F. Gándara, Y.-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson and O. M. Yaghi, J. Am. Chem. Soc., 2014, 136, 4369-4381;
– reference: b) P. G. Yot, K. Yang, F. Ragon, V. Dmitriev, T. Devic, P. Horcajada, C. Serre and G. Maurin, Dalton Trans., 2016, 45, 4283-4288;
– reference: P. Roy, A. Schaate, P. Behrens and A. Godt, Chem. Eur. J., 2012, 18, 6979-6985.
– reference: S. T. Madrahimov, J. R. Gallagher, G. Zhang, Z. Meinhart, S. J. Garibay, M. Delferro, J. T. Miller, O. K. Farha, J. T. Hupp and S. T. Nguyen, ACS Catal., 2015, 5, 6713-6718.
– reference: W. Morris, W. E. Briley, E. Auyeung, M. D. Cabezas and C. A. Mirkin, J. Am. Chem. Soc., 2014, 136, 7261-7264.
– reference: P. Deria, J. E. Mondloch, E. Tylianakis, P. Ghosh, W. Bury, R. Q. Snurr, J. T. Hupp and O. K. Farha, J. Am. Chem. Soc., 2013, 135, 16801-16804.
– reference: C. Hon Lau, R. Babarao and M. R. Hill, Chem. Commun., 2013, 49, 3634-3636.
– reference: G. Zahn, P. Zerner, J. Lippke, F. L. Kempf, S. Lilienthal, C. A. Schroder, A. M. Schneider and P. Behrens, CrystEngComm, 2014, 16, 9198-9207.
– reference: S. J. Garibay and S. M. Cohen, Chem. Commun., 2010, 46, 7700-7702.
– reference: B. Gui, G. Hu, T. Zhou and C. Wang, J. Solid State Chem., 2015, 223, 79-83.
– reference: P. Deria, W. Bury, J. T. Hupp and O. K. Farha, Chem. Commun., 2014, 50, 1965-1968.
– reference: e) L.-M. Yang, E. Ganz, S. Svelle and M. Tilset, J. Mater. Chem. C, 2014, 2, 7111-7125;
– reference: c) H. Furukawa, K. E. Cordova, M. O'Keeffe and O. M. Yaghi, Science, 2013, 341, 6149.
– reference: J. B. DeCoste, M. A. Browe, G. W. Wagner, J. A. Rossin and G. W. Peterson, Chem. Commun., 2015, 51, 12474-12477.
– reference: C. He, K. Lu, D. Liu and W. Lin, J. Am. Chem. Soc., 2014, 136, 5181-5184.
– reference: b) K. K. Tanabe and S. M. Cohen, Chem. Soc. Rev., 2011, 40, 498-519;
– reference: Angew. Chem., 2015, 127, 14951.
– reference: J. Zheng, M. Wu, F. Jiang, W. Su and M. Hong, Chem. Sci., 2015, 6, 3466-3470.
– reference: S. R. Venna, M. Lartey, T. Li, A. Spore, S. Kumar, H. B. Nulwala, D. R. Luebke, N. L. Rosi and E. Albenze, J. Mater. Chem. A, 2015, 3, 5014-5022.
– reference: R. Ameloot, M. Aubrey, B. M. Wiers, A. P. Gómora-Figueroa, S. N. Patel, N. P. Balsara and J. R. Long, Chem. Eur. J., 2013, 19, 5533-5536.
– reference: Angew. Chem., 2015, 127, 14909.
– volume: 1 50 22
  start-page: 5642 8944 6632
  year: 2013 2014 2010
  end-page: 5650 8946 6640
  publication-title: J. Mater. Chem. A Chem. Commun. Chem. Mater.
– volume: 51
  start-page: 10864
  year: 2015
  end-page: 10867
  publication-title: Chem. Commun.
– volume: 21
  start-page: 17246
  year: 2015
  end-page: 17255
  publication-title: Chem. Eur. J.
– volume: 20
  start-page: 426
  year: 2014
  end-page: 434
  publication-title: Chem. Eur. J.
– volume: 136
  start-page: 6566
  year: 2014
  end-page: 6569
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 11161
  year: 2015
  end-page: 11168
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 137
  start-page: 9527
  year: 2015
  end-page: 9530
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 2191
  year: 2015
  end-page: 2194
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 12478
  year: 2015
  end-page: 12481
  publication-title: Chem. Commun.
– volume: 5
  start-page: 7823
  year: 2015
  publication-title: Sci. Rep.
– volume: 5
  start-page: 6713
  year: 2015
  end-page: 6718
  publication-title: ACS Catal.
– volume: 51
  start-page: 5735
  year: 2015
  end-page: 5738
  publication-title: Chem. Commun.
– volume: 54
  start-page: 2185
  year: 2015
  end-page: 2192
  publication-title: Inorg. Chem.
– volume: 4
  start-page: 6955
  year: 2016
  end-page: 6963
  publication-title: J. Mater. Chem. A
– volume: 137
  start-page: 9409
  year: 2015
  end-page: 9416
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 3294
  year: 2015
  end-page: 3309
  publication-title: J. Mater. Chem. A
– volume: 51
  start-page: 12578
  year: 2015
  end-page: 12581
  publication-title: Chem. Commun.
– volume: 51
  start-page: 12474
  year: 2015
  end-page: 12477
  publication-title: Chem. Commun.
– volume: 53 126
  start-page: 4530 4618
  year: 2014 2014
  end-page: 4540
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 223
  start-page: 79
  year: 2015
  end-page: 83
  publication-title: J. Solid State Chem.
– volume: 51
  start-page: 5199
  year: 2015
  end-page: 5217
  publication-title: Chem. Commun.
– volume: 133
  start-page: 2034
  year: 2011
  end-page: 2036
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 13297 13495
  year: 2015 2015
  end-page: 13301
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 208 135
  start-page: 30 13934
  year: 2015 2013
  end-page: 35 13938
  publication-title: Microporous Mesoporous Mater. J. Am. Chem. Soc.
– volume: 135
  start-page: 16801
  year: 2013
  end-page: 16804
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 16997
  year: 2013
  end-page: 17003
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 5014
  year: 2015
  end-page: 5022
  publication-title: J. Mater. Chem. A
– volume: 51
  start-page: 2414
  year: 2015
  end-page: 2417
  publication-title: Chem. Commun.
– volume: 54 127
  start-page: 14738 14951
  year: 2015 2015
  end-page: 14742
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 137
  start-page: 3177
  year: 2015
  end-page: 3180
  publication-title: J. Am. Chem. Soc.
– start-page: 3014
  year: 2012
  end-page: 3022
  publication-title: Eur. J. Inorg. Chem.
– volume: 4
  start-page: 1479
  year: 2016
  end-page: 1485
  publication-title: J. Mater. Chem. A
– volume: 130
  start-page: 13850
  year: 2008
  end-page: 13851
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 767
  year: 2010
  end-page: 769
  publication-title: Chem. Commun.
– volume: 40
  start-page: 331
  year: 2011
  end-page: 333
  publication-title: Dalton Trans.
– volume: 136
  start-page: 4965
  year: 2014
  end-page: 4973
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 2995
  year: 2015
  end-page: 3005
  publication-title: Inorg. Chem.
– volume: 124
  start-page: 61
  year: 2015
  end-page: 69
  publication-title: Chem. Eng. Sci.
– volume: 47 132
  start-page: 9603 044705
  year: 2011 2010
  end-page: 9605
  publication-title: Chem. Commun. J. Chem. Phys.
– volume: 27
  start-page: 4772
  year: 2015
  end-page: 4778
  publication-title: Chem. Mater.
– volume: 38 112 341
  start-page: 1213 673 6149
  year: 2009 2012 2013
  end-page: 1214 674
  publication-title: Chem. Soc. Rev. Chem. Rev. Science
– volume: 51
  start-page: 66
  year: 2015
  end-page: 69
  publication-title: Chem. Commun.
– volume: 16
  start-page: 9198
  year: 2014
  end-page: 9207
  publication-title: CrystEngComm
– volume: 26
  start-page: 6722
  year: 2014
  end-page: 6728
  publication-title: Chem. Mater.
– volume: 137
  start-page: 2665
  year: 2015
  end-page: 2673
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 2396
  year: 2015
  end-page: 2399
  publication-title: New J. Chem.
– volume: 53 126 6
  start-page: 497 507 2286
  year: 2014 2014 2015
  end-page: 501 2291
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Chem. Sci.
– volume: 137 6
  start-page: 7391 235
  year: 2015 2016
  end-page: 7396 247
  publication-title: J. Am. Chem. Soc. ACS Catal.
– volume: 38 40 1
  start-page: 1315 498 32
  year: 2009 2011 2010
  end-page: 1329 519 36
  publication-title: Chem. Soc. Rev. Chem. Soc. Rev. Chem. Sci.
– volume: 54
  start-page: 5139
  year: 2015
  end-page: 5141
  publication-title: Inorg. Chem.
– volume: 51
  start-page: 9880
  year: 2015
  end-page: 9883
  publication-title: Chem. Commun.
– volume: 52
  start-page: 12661
  year: 2013
  end-page: 12667
  publication-title: Inorg. Chem.
– volume: 54
  start-page: 2235
  year: 2015
  end-page: 2242
  publication-title: Inorg. Chem.
– volume: 17
  start-page: 6434
  year: 2015
  end-page: 6440
  publication-title: CrystEngComm
– volume: 3
  start-page: 17320
  year: 2015
  end-page: 17331
  publication-title: J. Mater. Chem. A
– volume: 136
  start-page: 5181
  year: 2014
  end-page: 5184
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 933
  year: 2012
  end-page: 969
  publication-title: Chem. Rev.
– volume: 17
  start-page: 9320
  year: 2011
  end-page: 9325
  publication-title: Chem. Eur. J.
– volume: 52
  start-page: 2265
  year: 2016
  end-page: 2268
  publication-title: Chem. Commun.
– volume: 333
  start-page: 1
  year: 2016
  end-page: 7
  publication-title: J. Catal.
– volume: 152
  start-page: 64 790
  year: 2012 2012
  end-page: 70 796
  publication-title: Microporous Mesoporous Mater. Eur. J. Inorg. Chem.
– volume: 38 112
  start-page: 1450 1196
  year: 2009 2012
  end-page: 1459 1231
  publication-title: Chem. Soc. Rev. Chem. Rev.
– volume: 14
  start-page: 4096
  year: 2012
  end-page: 4104
  publication-title: CrystEngComm
– volume: 135
  start-page: 5427
  year: 2013
  end-page: 5432
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 2304
  year: 2014
  end-page: 2307
  publication-title: Chem. Commun.
– volume: 137
  start-page: 10064
  year: 2015
  end-page: 10067
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 16996
  year: 2015
  end-page: 16999
  publication-title: Chem. Commun.
– volume: 134 43 43 43
  start-page: 18082 5896 5456 5933
  year: 2012 2014 2014 2014
  end-page: 18088 5912 5467 5951
  publication-title: J. Am. Chem. Soc. Chem. Soc. Rev. Chem. Soc. Rev. Chem. Soc. Rev.
– volume: 135
  start-page: 11465
  year: 2013
  end-page: 11468
  publication-title: J. Am. Chem. Soc.
– volume: 51 44 130 49 122 112
  start-page: 13878 957 6774 6260 6400 1232
  year: 2015 2011 2008 2010 2010 2012
  end-page: 13881 968 6780 6266 1268
  publication-title: Chem. Commun. Acc. Chem. Res. J. Am. Chem. Soc. Angew. Chem. Int. Ed. Angew. Chem. Chem. Rev.
– volume: 136
  start-page: 13182
  year: 2014
  end-page: 13185
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 1977
  year: 2016
  end-page: 1982
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 6426
  year: 2015
  end-page: 6431
  publication-title: Chem. Mater.
– volume: 54
  start-page: 6821
  year: 2015
  end-page: 6828
  publication-title: Inorg. Chem.
– volume: 44 117 112 46
  start-page: 4670 4748 724 44
  year: 2005 2005 2012 2010
  end-page: 4679 781 53
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Chem. Rev. Chem. Commun.
– volume: 51
  start-page: 16549
  year: 2015
  end-page: 16552
  publication-title: Chem. Commun.
– volume: 137
  start-page: 12241
  year: 2015
  end-page: 12248
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 3466
  year: 2015
  end-page: 3470
  publication-title: Chem. Sci.
– volume: 5
  start-page: 4444
  year: 2015
  end-page: 4451
  publication-title: Catal. Sci. Technol.
– volume: 27
  start-page: 2286
  year: 2015
  end-page: 2289
  publication-title: Chem. Mater.
– volume: 50
  start-page: 1965
  year: 2014
  end-page: 1968
  publication-title: Chem. Commun.
– volume: 136
  start-page: 5213
  year: 2014
  end-page: 5216
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 586
  year: 2015
  end-page: 591
  publication-title: J. Phys. Chem. Lett.
– volume: 4 45 45 55 128 2 3
  start-page: 925 4283 4132 2401 2447 7111 1737
  year: 2013 2016 2016 2016 2016 2014 2015
  end-page: 930 4288 4135 2405 2451 7125 1742
  publication-title: J. Phys. Chem. Lett. Dalton Trans. Dalton Trans. Angew. Chem. Int. Ed. Angew. Chem. J. Mater. Chem. C J. Mater. Chem. A
– volume: 51 124
  start-page: 9267 9401
  year: 2012 2012
  end-page: 9271
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51
  start-page: 8614
  year: 2015
  end-page: 8617
  publication-title: Chem. Commun.
– volume: 50
  start-page: 729
  year: 2011
  end-page: 731
  publication-title: Inorg. Chem.
– volume: 28
  start-page: 1213
  year: 2016
  end-page: 1219
  publication-title: Chem. Mater.
– volume: 135
  start-page: 10294
  year: 2013
  end-page: 10297
  publication-title: J. Am. Chem. Soc.
– volume: 54 49 26 135 54 127
  start-page: 8396 9449 4068 10525 7234 7340
  year: 2015 2013 2014 2013 2015 2015
  end-page: 8400 9451 4071 10532 7254
  publication-title: Inorg. Chem. Chem. Commun. Chem. Mater. J. Am. Chem. Soc. Angew. Chem. Int. Ed. Angew. Chem.
– volume: 19
  start-page: 8244
  year: 2013
  end-page: 8252
  publication-title: Chem. Eur. J.
– volume: 19
  start-page: 5324
  year: 2013
  end-page: 5331
  publication-title: Chem. Eur. J.
– volume: 14 54 127
  start-page: 512 6795 6899
  year: 2015 2015 2015
  end-page: 516 6799
  publication-title: Nat. Mater. Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 7163
  year: 2015
  end-page: 7168
  publication-title: Chem. Sci.
– volume: 51
  start-page: 2056
  year: 2015
  end-page: 2059
  publication-title: Chem. Commun.
– volume: 5
  start-page: 893
  year: 2015
  end-page: 900
  publication-title: RSC Adv.
– volume: 49
  start-page: 3634
  year: 2013
  end-page: 3636
  publication-title: Chem. Commun.
– volume: 51 124 51
  start-page: 10307 10453 6443
  year: 2012 2012 2012
  end-page: 10310 6445
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Inorg. Chem.
– volume: 136
  start-page: 6786
  year: 2014
  end-page: 6789
  publication-title: J. Am. Chem. Soc.
– volume: 22 86
  start-page: 18139 125429
  year: 2012 2012
  end-page: 18144
  publication-title: J. Mater. Chem. Phys. Rev. B
– volume: 7
  start-page: 28223
  year: 2015
  end-page: 28230
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 8484
  year: 2015
  end-page: 8490
  publication-title: ACS Nano
– volume: 22
  start-page: 4602
  year: 2010
  end-page: 4611
  publication-title: Chem. Mater.
– volume: 3
  start-page: 21849
  year: 2015
  end-page: 21855
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 4591
  year: 2015
  end-page: 4593
  publication-title: Inorg. Chem.
– volume: 48
  start-page: 1904
  year: 2012
  end-page: 1906
  publication-title: Chem. Commun.
– volume: 18
  start-page: 6979
  year: 2012
  end-page: 6985
  publication-title: Chem. Eur. J.
– volume: 54 127
  start-page: 6790 6894
  year: 2015 2015
  end-page: 6794
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 11162 11314
  year: 2015 2015
  end-page: 11167
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53 136 16
  start-page: 7086 4369 6530
  year: 2014 2014 2014
  end-page: 7088 4381 6533
  publication-title: Inorg. Chem. J. Am. Chem. Soc. CrystEngComm
– volume: 51
  start-page: 14732
  year: 2015
  end-page: 14734
  publication-title: Chem. Commun.
– volume: 136
  start-page: 7261
  year: 2014
  end-page: 7264
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 5533
  year: 2013
  end-page: 5536
  publication-title: Chem. Eur. J.
– volume: 45
  start-page: 2327
  year: 2016
  end-page: 2367
  publication-title: Chem. Soc. Rev.
– volume: 54 127
  start-page: 5142 5231
  year: 2015 2015
  end-page: 5146
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 46
  start-page: 7700
  year: 2010
  end-page: 7702
  publication-title: Chem. Commun.
– volume: 54 127
  start-page: 4259 4333
  year: 2015 2015
  end-page: 4263
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52
  start-page: 3438
  year: 2016
  end-page: 3441
  publication-title: Chem. Commun.
– volume: 4
  start-page: 2496
  year: 2014
  end-page: 2500
  publication-title: ACS Catal.
– volume: 41 7
  start-page: 13791 2791
  year: 2012 2014
  end-page: 13794 2795
  publication-title: Dalton Trans. ChemSusChem
– volume: 50
  start-page: 6853
  year: 2011
  end-page: 6855
  publication-title: Inorg. Chem.
– volume: 50
  start-page: 15453
  year: 2014
  end-page: 15456
  publication-title: Chem. Commun.
– volume: 22
  start-page: 4870
  year: 2016
  end-page: 4877
  publication-title: Chem. Eur. J.
– volume: 54 127
  start-page: 14696 14909
  year: 2015 2015
  end-page: 14700
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 5172
  year: 2015
  end-page: 5176
  publication-title: Chem. Sci.
– volume: 3
  start-page: 126
  year: 2012
  end-page: 130
  publication-title: Chem. Sci.
– volume: 134
  start-page: 14690
  year: 2012
  end-page: 14693
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 19018
  year: 2015
  end-page: 19040
  publication-title: Dalton Trans.
– ident: e_1_2_10_18_2
  doi: 10.1002/ange.201204475
– ident: e_1_2_10_93_2
  doi: 10.1002/ejic.201101151
– ident: e_1_2_10_116_3
  doi: 10.1002/ange.201502155
– ident: e_1_2_10_61_1
  doi: 10.1021/acs.inorgchem.5b00096
– ident: e_1_2_10_112_1
  doi: 10.1073/pnas.1514485112
– ident: e_1_2_10_105_1
  doi: 10.1039/C5TA05997F
– ident: e_1_2_10_8_2
  doi: 10.1039/C4CS00067F
– ident: e_1_2_10_108_1
  doi: 10.1016/j.jcat.2015.10.012
– ident: e_1_2_10_121_2
  doi: 10.1002/ange.201502094
– ident: e_1_2_10_12_1
  doi: 10.1021/ja8057953
– ident: e_1_2_10_101_1
  doi: 10.1021/acs.chemmater.5b00665
– ident: e_1_2_10_124_1
  doi: 10.1002/anie.201505625
– ident: e_1_2_10_107_1
  doi: 10.1039/C5SC01784J
– ident: e_1_2_10_44_1
  doi: 10.1021/acs.chemmater.5b02648
– ident: e_1_2_10_27_1
  doi: 10.1021/cm502920f
– ident: e_1_2_10_111_1
  doi: 10.1021/acs.jpclett.5b00019
– ident: e_1_2_10_48_1
  doi: 10.1021/jacs.5b05434
– ident: e_1_2_10_78_1
  doi: 10.1039/C1SC00394A
– ident: e_1_2_10_96_2
  doi: 10.1039/c3cc46105j
– ident: e_1_2_10_20_1
  doi: 10.1021/ic4018536
– ident: e_1_2_10_58_2
  doi: 10.1002/cssc.201402378
– ident: e_1_2_10_16_1
  doi: 10.1021/acs.inorgchem.5b00413
– ident: e_1_2_10_89_1
  doi: 10.1039/c3cc40470f
– ident: e_1_2_10_24_1
  doi: 10.1039/C2CE06491J
– ident: e_1_2_10_10_2
  doi: 10.1039/C4CC02401J
– ident: e_1_2_10_11_2
  doi: 10.1039/C5DT03621F
– ident: e_1_2_10_15_2
  doi: 10.1002/ange.201204806
– ident: e_1_2_10_120_1
  doi: 10.1002/chem.201300326
– ident: e_1_2_10_6_1
  doi: 10.1021/cr200304e
– ident: e_1_2_10_2_3
  doi: 10.1126/science.1230444
– ident: e_1_2_10_3_4
  doi: 10.1039/B916295J
– ident: e_1_2_10_5_1
  doi: 10.1039/C5CC05237H
– ident: e_1_2_10_32_1
  doi: 10.1021/ic102436b
– ident: e_1_2_10_23_1
  doi: 10.1016/j.micromeso.2015.01.032
– ident: e_1_2_10_66_1
  doi: 10.1039/C5CC09029F
– ident: e_1_2_10_3_1
  doi: 10.1002/anie.200462786
– ident: e_1_2_10_97_2
  doi: 10.1002/ange.201505461
– ident: e_1_2_10_68_1
  doi: 10.1039/C5CC04506A
– ident: e_1_2_10_7_3
  doi: 10.1039/c0sc00127a
– ident: e_1_2_10_102_1
  doi: 10.1021/ja512762r
– ident: e_1_2_10_71_1
  doi: 10.1021/ja512478y
– ident: e_1_2_10_76_1
  doi: 10.1039/C5SC00213C
– ident: e_1_2_10_115_3
  doi: 10.1039/C4SC03613A
– ident: e_1_2_10_8_3
  doi: 10.1039/C4CS00002A
– ident: e_1_2_10_33_1
  doi: 10.1002/chem.201103288
– ident: e_1_2_10_15_1
  doi: 10.1002/anie.201204806
– ident: e_1_2_10_84_1
  doi: 10.1039/c2jm32299d
– ident: e_1_2_10_42_2
  doi: 10.1002/ange.201411703
– ident: e_1_2_10_60_1
  doi: 10.1039/c3cc48275h
– ident: e_1_2_10_62_1
  doi: 10.1021/ja5018267
– ident: e_1_2_10_29_1
  doi: 10.1039/C5TA00816F
– ident: e_1_2_10_11_7
  doi: 10.1039/C4TA06396A
– ident: e_1_2_10_126_1
  doi: 10.1021/acsami.5b06901
– ident: e_1_2_10_72_1
  doi: 10.1021/ja500090y
– ident: e_1_2_10_11_5
  doi: 10.1002/ange.201509352
– ident: e_1_2_10_18_1
  doi: 10.1002/anie.201204475
– ident: e_1_2_10_23_2
  doi: 10.1021/ja406844r
– ident: e_1_2_10_17_2
  doi: 10.1021/ja500330a
– ident: e_1_2_10_22_1
  doi: 10.1002/anie.201507058
– ident: e_1_2_10_59_1
  doi: 10.1016/j.ces.2014.09.032
– ident: e_1_2_10_75_1
  doi: 10.1039/C4CC09272D
– ident: e_1_2_10_81_1
  doi: 10.1002/chem.201503078
– ident: e_1_2_10_51_1
  doi: 10.1021/ja500362w
– ident: e_1_2_10_10_1
  doi: 10.1039/c3ta10662d
– ident: e_1_2_10_119_1
  doi: 10.1002/ejic.201200033
– ident: e_1_2_10_35_1
  doi: 10.1021/ja3063919
– ident: e_1_2_10_94_1
  doi: 10.1039/C4CE01095G
– ident: e_1_2_10_30_1
  doi: 10.1021/jacs.5b05327
– ident: e_1_2_10_41_1
  doi: 10.1021/ja109810w
– ident: e_1_2_10_5_2
  doi: 10.1021/ar200028a
– ident: e_1_2_10_115_1
  doi: 10.1002/anie.201307520
– ident: e_1_2_10_47_1
  doi: 10.1039/C5CC05927E
– ident: e_1_2_10_3_3
  doi: 10.1021/cr2003272
– ident: e_1_2_10_106_1
  doi: 10.1021/ja408959g
– ident: e_1_2_10_5_5
  doi: 10.1002/ange.201000048
– ident: e_1_2_10_5_3
  doi: 10.1021/ja710973k
– ident: e_1_2_10_96_1
  doi: 10.1021/acs.inorgchem.5b01053
– ident: e_1_2_10_18_3
  doi: 10.1021/ic300825s
– ident: e_1_2_10_73_1
  doi: 10.1021/jacs.5b09225
– ident: e_1_2_10_103_1
  doi: 10.1039/C5TA07687K
– ident: e_1_2_10_124_2
  doi: 10.1002/ange.201505625
– ident: e_1_2_10_17_3
  doi: 10.1039/C4CE01031K
– ident: e_1_2_10_82_1
  doi: 10.1002/chem.201303801
– ident: e_1_2_10_34_1
  doi: 10.1021/acs.inorgchem.5b00535
– ident: e_1_2_10_36_1
  doi: 10.1021/ja3125614
– ident: e_1_2_10_4_2
  doi: 10.1021/cr2003147
– ident: e_1_2_10_80_1
  doi: 10.1039/C4CC08218D
– ident: e_1_2_10_13_1
  doi: 10.1039/C5DT03359D
– ident: e_1_2_10_87_1
  doi: 10.1039/C5CC02606G
– ident: e_1_2_10_77_1
  doi: 10.1002/anie.201306923
– ident: e_1_2_10_99_1
  doi: 10.1021/ja405078u
– ident: e_1_2_10_52_1
  doi: 10.1039/C5CC02339D
– ident: e_1_2_10_38_1
  doi: 10.1016/j.jssc.2014.06.023
– ident: e_1_2_10_37_1
  doi: 10.1039/C4RA09883H
– ident: e_1_2_10_49_1
  doi: 10.1002/chem.201505185
– ident: e_1_2_10_129_1
  doi: 10.1021/jacs.5b12515
– ident: e_1_2_10_31_2
  doi: 10.1002/ange.201500207
– ident: e_1_2_10_74_1
  doi: 10.1039/C5SC02100F
– ident: e_1_2_10_17_1
  doi: 10.1021/ic5012764
– ident: e_1_2_10_2_2
  doi: 10.1021/cr300014x
– ident: e_1_2_10_55_1
  doi: 10.1002/anie.201506888
– ident: e_1_2_10_4_1
  doi: 10.1039/b807080f
– ident: e_1_2_10_11_6
  doi: 10.1039/C4TC00902A
– ident: e_1_2_10_116_1
  doi: 10.1038/nmat4238
– ident: e_1_2_10_7_1
  doi: 10.1039/b802258p
– ident: e_1_2_10_46_1
  doi: 10.1039/C5CC03780H
– ident: e_1_2_10_96_5
  doi: 10.1002/anie.201411540
– ident: e_1_2_10_43_1
  doi: 10.1039/C4TA03992K
– ident: e_1_2_10_40_2
  doi: 10.1063/1.3276105
– ident: e_1_2_10_122_1
  doi: 10.1021/cs5001448
– ident: e_1_2_10_19_1
  doi: 10.1021/ja4050828
– ident: e_1_2_10_25_1
  doi: 10.1039/c0cc02990d
– ident: e_1_2_10_10_3
  doi: 10.1021/cm102601v
– ident: e_1_2_10_98_1
  doi: 10.1039/C5CE00729A
– ident: e_1_2_10_114_1
  doi: 10.1021/ic502639v
– ident: e_1_2_10_88_1
  doi: 10.1039/C5CY00825E
– ident: e_1_2_10_123_1
  doi: 10.1021/jacs.5b02956
– ident: e_1_2_10_79_1
  doi: 10.1021/ja407176p
– ident: e_1_2_10_57_1
  doi: 10.1021/cm1005899
– ident: e_1_2_10_7_2
  doi: 10.1039/C0CS00031K
– ident: e_1_2_10_5_6
  doi: 10.1021/cr200256v
– ident: e_1_2_10_8_4
  doi: 10.1039/C4CS00076E
– ident: e_1_2_10_67_1
  doi: 10.1021/ja411627z
– ident: e_1_2_10_54_1
  doi: 10.1021/ja4098862
– ident: e_1_2_10_121_1
  doi: 10.1002/anie.201502094
– ident: e_1_2_10_93_1
  doi: 10.1016/j.micromeso.2011.12.010
– ident: e_1_2_10_117_1
  doi: 10.1021/acscatal.5b01604
– ident: e_1_2_10_69_1
  doi: 10.1021/ja5126885
– ident: e_1_2_10_92_1
  doi: 10.1039/C5CC00686D
– ident: e_1_2_10_113_1
  doi: 10.1039/C5CC10384C
– ident: e_1_2_10_63_1
  doi: 10.1039/C5CC01697E
– ident: e_1_2_10_22_2
  doi: 10.1002/ange.201507058
– ident: e_1_2_10_26_1
  doi: 10.1039/c2cc17461h
– ident: e_1_2_10_109_1
  doi: 10.1039/C5CC04808G
– ident: e_1_2_10_86_1
  doi: 10.1021/ic502725y
– ident: e_1_2_10_56_1
  doi: 10.1021/ja503215w
– ident: e_1_2_10_100_1
  doi: 10.1039/C5TA10401G
– ident: e_1_2_10_8_1
  doi: 10.1021/ja3079219
– ident: e_1_2_10_45_1
  doi: 10.1039/C4CC07882A
– ident: e_1_2_10_96_4
  doi: 10.1021/ja404514r
– ident: e_1_2_10_64_1
  doi: 10.1021/acs.inorgchem.5b00752
– ident: e_1_2_10_115_2
  doi: 10.1002/ange.201307520
– ident: e_1_2_10_85_1
  doi: 10.1002/chem.201203914
– ident: e_1_2_10_90_1
  doi: 10.1038/srep07823
– ident: e_1_2_10_5_4
  doi: 10.1002/anie.201000048
– ident: e_1_2_10_11_3
  doi: 10.1039/C5DT03178H
– ident: e_1_2_10_123_2
  doi: 10.1021/acscatal.5b02243
– ident: e_1_2_10_11_1
  doi: 10.1021/jz4002345
– ident: e_1_2_10_125_1
  doi: 10.1021/acs.chemmater.5b04887
– ident: e_1_2_10_58_1
  doi: 10.1039/c2dt31195j
– ident: e_1_2_10_70_1
  doi: 10.1021/ja507947d
– ident: e_1_2_10_110_1
  doi: 10.1039/c3cc48562e
– ident: e_1_2_10_3_2
  doi: 10.1002/ange.200462786
– ident: e_1_2_10_65_1
  doi: 10.1039/C5CC06453H
– ident: e_1_2_10_77_2
  doi: 10.1002/ange.201306923
– ident: e_1_2_10_83_1
  doi: 10.1039/C5CC03934G
– ident: e_1_2_10_97_1
  doi: 10.1002/anie.201505461
– ident: e_1_2_10_2_1
  doi: 10.1039/b903811f
– ident: e_1_2_10_84_2
  doi: 10.1103/PhysRevB.86.125429
– ident: e_1_2_10_104_1
  doi: 10.1039/C4NJ02093F
– ident: e_1_2_10_116_2
  doi: 10.1002/anie.201502155
– ident: e_1_2_10_31_1
  doi: 10.1002/anie.201500207
– ident: e_1_2_10_9_1
  doi: 10.1039/C5CS00837A
– ident: e_1_2_10_55_2
  doi: 10.1002/ange.201506888
– ident: e_1_2_10_118_1
  doi: 10.1039/C0DT01136C
– ident: e_1_2_10_42_1
  doi: 10.1002/anie.201411703
– ident: e_1_2_10_96_3
  doi: 10.1021/cm501859p
– ident: e_1_2_10_50_1
  doi: 10.1039/C4CC04458D
– ident: e_1_2_10_128_1
  doi: 10.1021/acsnano.5b03429
– ident: e_1_2_10_40_1
  doi: 10.1039/c1cc13543k
– ident: e_1_2_10_14_1
  doi: 10.1002/chem.201101015
– ident: e_1_2_10_21_1
  doi: 10.1021/jacs.5b04695
– ident: e_1_2_10_91_1
  doi: 10.1039/C4CC09407G
– ident: e_1_2_10_95_1
  doi: 10.1039/B914919H
– ident: e_1_2_10_39_1
  doi: 10.1002/chem.201300477
– ident: e_1_2_10_127_1
  doi: 10.1021/acs.chemmater.5b01560
– ident: e_1_2_10_11_4
  doi: 10.1002/anie.201509352
– ident: e_1_2_10_28_1
  doi: 10.1021/ic200744y
– ident: e_1_2_10_53_1
  doi: 10.1039/C4TA05225K
– ident: e_1_2_10_96_6
  doi: 10.1002/ange.201411540
SSID ssj0003036
Score 2.580077
SecondaryResourceType review_article
Snippet Metal‐organic frameworks (MOFs) have been in the spotlight for a number of years due to their chemical and topological versatility. As MOF research has...
Metal-organic frameworks (MOFs) have been in the spotlight for a number of years due to their chemical and topological versatility. As MOF research has...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4310
SubjectTerms Chemical reactions
Covalence
Exchange
Metal-organic frameworks
Microporous materials
Platforms
Postsynthetic modification
Stability
Transformations
Zirconium
Title Postsynthetic Modification of Zirconium Metal-Organic Frameworks
URI https://api.istex.fr/ark:/67375/WNG-NJBGFBSZ-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.201600394
https://www.proquest.com/docview/1845820012
Volume 2016
WOSCitedRecordID wos000386166900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1099-0682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003036
  issn: 1434-1948
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BFwkuQIGKBVqlUgUnq4mdZJ0ju21aqnZVAaVVL9bYcaSFNos2XQQ3HoFn5EnwOJvQPVRI9JZIYyWaH_ubZOYbgC07GGgbphlD50wslkXBsCxLlhD3uUabCD-m89PhYDyWZ2fZ8bUu_oYfovvgRpHh92sKcNT19l_SUPt5QhSEUUrtpfFd6EWRkDS8gcfH3V5MG7TvLxIxc-m6bGkbQ769vH7pWOqRhr8vYc7ryNUfPfmj27_0Y3i4gJ3B28ZPVuGOrZ7A_VE77e0pDGlqb_2jcnjQiQRH04JqiLzZgmkZnE9mLnGezC-DI-vg-u-fv5omThPkbXVX_QxO8t2Po322mK_ADJHKs4LgIiYZcqEzjIUpZJSiTSXXGrPCuvjWOslEiEUYlygwi7hGIVxGTWmTFmuwUk0r-xyCVEZlaI0wJjYxSi0tak7YwudrYdQH1qpXmQX5OM3AuFANbTJXpBnVaaYPbzr5rw3txo2Sr721OjGcfaFitUGiTsd7anww3MuHH87VaR82W3Mqp1v6L4KVnc5r5ZLcRFJtGe8D99b7xzPV7sG7UXf34n8WvYQHdN1Uq72ClavZ3K7DPfPtalLPNrwTb0Bv531-cvgHkUfylg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB6VhwSXQlsqtuWRShU9WSS2k3WO3RXLo7sRElAQF8t2HGkLZNEuW7W3_oT-xv4SPM4m7R5QparHRGMlmhnb39gz3wC8t-22tmGSEuWciXCR50QVRUFi5D7XysbMt-n83G9nmbi6Sk9n2YRYC1PxQzQHbjgz_HqNExwPpPd_s4baL0PkIIwSrC_lC7DE3VaDrk75abMY4wrtC4wYJy5eFzVvY0j358fP7UtLqOJvc6DzT-jq957e2n_463V4PgOewcfKU17AM1u-hJVu3e_tFXSwb-_ke-kQoRMJBqMcs4i84YJREVwPxy50Hk7vgoF1gP3Xj59VGacJenV-12QDLnoH590jMuuwQAzSypMcAaOKU0WZThVnJhdRomwiqNYqza2b4VrHKQtVHvJCMZVGVCvGXEyNgZNmr2GxHJV2E4JEREVoDTOGG66EFlZpiujCR2xh1AJS61eaGf04dsG4lRVxMpWoGdlopgUfGvn7injjSck9b65GTI1vMF2tHcvL7FBmJ53DXufsWl624F1tT-l0izcjqrSj6US6MDcWmF1GW0C9-f7yTXlwctxtnt78y6BdWDk6H_Rl_zj79BZW8X2Vu7YFiw_jqd2GZfP1YTgZ73iPfgRzVPTh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB6VBFEutFCqplAwEqKnFbbXdtZHEjCvYCEoBXFZ7a7XUqA4KCEV3PgJ_EZ-CTt-lRwqpKpHW-OH5rH7jT3zDcC6breltoOQCONMxGNJQkSapsRH7nMptE_zMZ0_e-04ZhcX4XFZTYi9MAU_RP3BDSMjX68xwPVtkm7-YQ3VV33kIHQC7C_1pqDp4SSZBjS3T6KzXr0c4xqdtxhRj5iMnVXMjba7OXmHiZ2piUq-n4Cdr8FrvvtEH_7De3-EuRJ6WluFr8zDO50twPtuNfHtE3Rwcu_oITOY0IhYR4ME64hy01mD1LrsD03y3B_fWEfaQPbnx6eikVNZUVXhNVqEs2jnR3ePlDMWiEJieZIgZBR-KFwqQ-FRlTAnEDpgrpQiTLSJcSn9kNoisb1UUBE6rhSUmqwaUydJP0MjG2T6C1gBc1JbK6qUpzzBJNNCuogv8pzNdlpAKv1yVRKQ4xyMX7ygTnY5aobXmmnB91r-tqDe-KvkRm6uWkwMr7Fgre3z83iXxwed3ahzesnPW7BW2ZMb3eK_EZHpwXjETaLrM6wvc1vg5uZ745l852C_Wx99_ZeLVmHmeDvivf34cAlm8XRRvLYMjbvhWH-DafX7rj8arpQu_QKSl_X3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Postsynthetic+Modification+of+Zirconium+Metal-Organic+Frameworks&rft.jtitle=European+journal+of+inorganic+chemistry&rft.au=Marshall%2C+Ross+J.&rft.au=Forgan%2C+Ross+S.&rft.date=2016-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1434-1948&rft.eissn=1099-0682&rft.volume=2016&rft.issue=27&rft.spage=4310&rft.epage=4331&rft_id=info:doi/10.1002%2Fejic.201600394&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_NJBGFBSZ_W
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-1948&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-1948&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-1948&client=summon