Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis

Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). Despite its efficiency, a potential problem is that using pre-constructed sine-cosine waves as the required...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of neural systems Ročník 24; číslo 4; s. 1450013
Hlavní autoři: Zhang, Yu, Zhou, Guoxu, Jin, Jing, Wang, Xingyu, Cichocki, Andrzej
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore 01.06.2014
Témata:
ISSN:0129-0657, 1793-6462, 1793-6462
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). Despite its efficiency, a potential problem is that using pre-constructed sine-cosine waves as the required reference signals in the CCA method often does not result in the optimal recognition accuracy due to their lack of features from the real electro-encephalo-gram (EEG) data. To address this problem, this study proposes a novel method based on multiset canonical correlation analysis (MsetCCA) to optimize the reference signals used in the CCA method for SSVEP frequency recognition. The MsetCCA method learns multiple linear transforms that implement joint spatial filtering to maximize the overall correlation among canonical variates, and hence extracts SSVEP common features from multiple sets of EEG data recorded at the same stimulus frequency. The optimized reference signals are formed by combination of the common features and completely based on training data. Experimental study with EEG data from 10 healthy subjects demonstrates that the MsetCCA method improves the recognition accuracy of SSVEP frequency in comparison with the CCA method and other two competing methods (multiway CCA (MwayCCA) and phase constrained CCA (PCCA)), especially for a small number of channels and a short time window length. The superiority indicates that the proposed MsetCCA method is a new promising candidate for frequency recognition in SSVEP-based BCIs.
AbstractList Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). Despite its efficiency, a potential problem is that using pre-constructed sine-cosine waves as the required reference signals in the CCA method often does not result in the optimal recognition accuracy due to their lack of features from the real electro-encephalo-gram (EEG) data. To address this problem, this study proposes a novel method based on multiset canonical correlation analysis (MsetCCA) to optimize the reference signals used in the CCA method for SSVEP frequency recognition. The MsetCCA method learns multiple linear transforms that implement joint spatial filtering to maximize the overall correlation among canonical variates, and hence extracts SSVEP common features from multiple sets of EEG data recorded at the same stimulus frequency. The optimized reference signals are formed by combination of the common features and completely based on training data. Experimental study with EEG data from 10 healthy subjects demonstrates that the MsetCCA method improves the recognition accuracy of SSVEP frequency in comparison with the CCA method and other two competing methods (multiway CCA (MwayCCA) and phase constrained CCA (PCCA)), especially for a small number of channels and a short time window length. The superiority indicates that the proposed MsetCCA method is a new promising candidate for frequency recognition in SSVEP-based BCIs.
Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). Despite its efficiency, a potential problem is that using pre-constructed sine-cosine waves as the required reference signals in the CCA method often does not result in the optimal recognition accuracy due to their lack of features from the real electro-encephalo-gram (EEG) data. To address this problem, this study proposes a novel method based on multiset canonical correlation analysis (MsetCCA) to optimize the reference signals used in the CCA method for SSVEP frequency recognition. The MsetCCA method learns multiple linear transforms that implement joint spatial filtering to maximize the overall correlation among canonical variates, and hence extracts SSVEP common features from multiple sets of EEG data recorded at the same stimulus frequency. The optimized reference signals are formed by combination of the common features and completely based on training data. Experimental study with EEG data from 10 healthy subjects demonstrates that the MsetCCA method improves the recognition accuracy of SSVEP frequency in comparison with the CCA method and other two competing methods (multiway CCA (MwayCCA) and phase constrained CCA (PCCA)), especially for a small number of channels and a short time window length. The superiority indicates that the proposed MsetCCA method is a new promising candidate for frequency recognition in SSVEP-based BCIs.Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). Despite its efficiency, a potential problem is that using pre-constructed sine-cosine waves as the required reference signals in the CCA method often does not result in the optimal recognition accuracy due to their lack of features from the real electro-encephalo-gram (EEG) data. To address this problem, this study proposes a novel method based on multiset canonical correlation analysis (MsetCCA) to optimize the reference signals used in the CCA method for SSVEP frequency recognition. The MsetCCA method learns multiple linear transforms that implement joint spatial filtering to maximize the overall correlation among canonical variates, and hence extracts SSVEP common features from multiple sets of EEG data recorded at the same stimulus frequency. The optimized reference signals are formed by combination of the common features and completely based on training data. Experimental study with EEG data from 10 healthy subjects demonstrates that the MsetCCA method improves the recognition accuracy of SSVEP frequency in comparison with the CCA method and other two competing methods (multiway CCA (MwayCCA) and phase constrained CCA (PCCA)), especially for a small number of channels and a short time window length. The superiority indicates that the proposed MsetCCA method is a new promising candidate for frequency recognition in SSVEP-based BCIs.
Author Zhou, Guoxu
Wang, Xingyu
Cichocki, Andrzej
Zhang, Yu
Jin, Jing
Author_xml – sequence: 1
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Key Laboratory for Advanced Control and Optimization for Chemical Processes, East China University of Science and Technology, Shanghai, P. R. China
– sequence: 2
  givenname: Guoxu
  surname: Zhou
  fullname: Zhou, Guoxu
– sequence: 3
  givenname: Jing
  surname: Jin
  fullname: Jin, Jing
– sequence: 4
  givenname: Xingyu
  surname: Wang
  fullname: Wang, Xingyu
– sequence: 5
  givenname: Andrzej
  surname: Cichocki
  fullname: Cichocki, Andrzej
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24694168$$D View this record in MEDLINE/PubMed
BookMark eNo1kM1OwzAQhC1URH_gAbggH7kEvLbjJEeoWqhUCaRCr9HGcSojxylxcsjbk0I57WG-Gc3OnEx84w0ht8AeACR_3DHgGVNxAjJmDAS7IDNIMhEpqfiEzE5ydNKnZB7C14jIRKZXZMqlyiSodEb269Z898brgbZGNwdvO9t4aj3d7far96jAYEr6vNzQPlh_oHXvOhtMRzWOZaxGR3XTtsbhrw89uiHYcE0uK3TB3JzvgnyuVx_L12j79rJZPm0jLZVikeRFBiKBIoWKK5BMlAlHphSiTA0aDlVRauSJ4CmajFfIUKMogVUiy7TkC3L_l3tsm_GN0OW1Ddo4h940fcghHleRSsRiRO_OaF_UpsyPra2xHfL_LfgP5Kdilw
CitedBy_id crossref_primary_10_1016_j_eswa_2017_12_015
crossref_primary_10_1016_j_patrec_2018_03_012
crossref_primary_10_3390_s23146310
crossref_primary_10_1007_s11227_024_06027_7
crossref_primary_10_1088_1741_2552_abcb6e
crossref_primary_10_3389_fnins_2025_1544452
crossref_primary_10_3390_bios12100772
crossref_primary_10_1016_j_cmpb_2018_07_013
crossref_primary_10_1109_JIOT_2024_3367690
crossref_primary_10_1016_j_neucom_2019_10_049
crossref_primary_10_1109_TNNLS_2024_3506998
crossref_primary_10_1109_TNSRE_2022_3192413
crossref_primary_10_1109_JBHI_2018_2840085
crossref_primary_10_1016_j_neucom_2016_11_008
crossref_primary_10_1007_s10489_025_06859_7
crossref_primary_10_1109_TBME_2021_3049853
crossref_primary_10_1109_TIM_2022_3150848
crossref_primary_10_1016_j_measurement_2022_111188
crossref_primary_10_1109_TCE_2025_3535157
crossref_primary_10_1016_j_jneumeth_2016_12_010
crossref_primary_10_1109_ACCESS_2021_3136774
crossref_primary_10_1109_JBHI_2024_3462991
crossref_primary_10_1016_j_neucom_2017_02_050
crossref_primary_10_1109_JSEN_2020_3017491
crossref_primary_10_3389_fncom_2018_00021
crossref_primary_10_1016_j_bspc_2021_103209
crossref_primary_10_1371_journal_pone_0172578
crossref_primary_10_1016_j_jneumeth_2014_04_032
crossref_primary_10_1016_j_neuroimage_2021_118166
crossref_primary_10_1109_ACCESS_2019_2925078
crossref_primary_10_3758_s13428_025_02710_6
crossref_primary_10_1109_TIM_2022_3219497
crossref_primary_10_1088_1741_2552_ac9861
crossref_primary_10_1016_j_inffus_2025_103069
crossref_primary_10_1109_TNNLS_2015_2487364
crossref_primary_10_1016_j_neunet_2023_12_029
crossref_primary_10_1007_s11571_025_10331_0
crossref_primary_10_1007_s11571_020_09620_7
crossref_primary_10_1016_j_medengphy_2022_103945
crossref_primary_10_1109_TNSRE_2023_3309543
crossref_primary_10_1109_TNSRE_2023_3288397
crossref_primary_10_1038_s41598_024_84534_6
crossref_primary_10_1088_1741_2552_aa836f
crossref_primary_10_1016_j_bspc_2019_101644
crossref_primary_10_1016_j_neucom_2016_08_082
crossref_primary_10_1016_j_neucom_2016_08_083
crossref_primary_10_3389_fnbot_2017_00035
crossref_primary_10_1109_TNSRE_2021_3104825
crossref_primary_10_1088_1741_2552_abd1c0
crossref_primary_10_1371_journal_pone_0226048
crossref_primary_10_1088_1741_2552_ace380
crossref_primary_10_1109_TKDE_2019_2958342
crossref_primary_10_3390_s20216321
crossref_primary_10_1088_1741_2560_12_4_046006
crossref_primary_10_1109_TNSRE_2019_2934496
crossref_primary_10_1109_TNSRE_2016_2627556
crossref_primary_10_3390_s20030891
crossref_primary_10_1016_j_compbiomed_2019_103526
crossref_primary_10_1016_j_jneumeth_2014_03_012
crossref_primary_10_1049_joe_2018_9077
crossref_primary_10_1016_j_neuroimage_2016_11_016
crossref_primary_10_1016_j_neucom_2017_01_002
crossref_primary_10_1088_1741_2552_ad7f89
crossref_primary_10_1038_s42256_019_0091_7
crossref_primary_10_1016_j_cmpb_2016_04_023
crossref_primary_10_3390_e19010041
crossref_primary_10_1016_j_engappai_2025_110654
crossref_primary_10_1016_j_cmpb_2020_105326
crossref_primary_10_1088_1741_2552_aa6a23
crossref_primary_10_1016_j_asoc_2017_08_011
crossref_primary_10_3389_fnins_2021_716051
crossref_primary_10_1007_s12559_021_09941_7
crossref_primary_10_1016_j_bspc_2024_106932
crossref_primary_10_1088_1741_2552_aa5847
crossref_primary_10_3389_fnhum_2017_00391
crossref_primary_10_1109_TFUZZ_2019_2905823
crossref_primary_10_1016_j_jcde_2017_08_002
crossref_primary_10_1109_TNSRE_2023_3274121
crossref_primary_10_1016_j_jneumeth_2015_08_004
crossref_primary_10_1088_1741_2560_12_4_046008
crossref_primary_10_3390_brainsci11040450
crossref_primary_10_1109_TCYB_2019_2924237
crossref_primary_10_3389_fninf_2018_00065
crossref_primary_10_1145_3448302
crossref_primary_10_1002_cpe_5476
crossref_primary_10_1016_j_bspc_2018_06_010
crossref_primary_10_1088_1741_2552_aab2f2
crossref_primary_10_1016_j_bspc_2020_101888
crossref_primary_10_1109_TNSRE_2022_3142736
crossref_primary_10_3390_s21041315
crossref_primary_10_1109_TNSRE_2020_3040984
crossref_primary_10_1109_TNSRE_2020_3005771
crossref_primary_10_1109_TIM_2022_3146950
crossref_primary_10_3389_fnins_2023_1142892
crossref_primary_10_3389_fnhum_2021_675091
crossref_primary_10_1109_TNNLS_2021_3118468
crossref_primary_10_1016_j_jneumeth_2020_108686
crossref_primary_10_1016_j_neucom_2015_11_065
crossref_primary_10_1016_j_neucom_2020_03_048
crossref_primary_10_1109_TFUZZ_2018_2866811
crossref_primary_10_1016_j_neucom_2015_08_122
crossref_primary_10_1109_ACCESS_2017_2747632
crossref_primary_10_1016_j_jneumeth_2018_04_001
crossref_primary_10_1038_s41433_021_01592_0
crossref_primary_10_3389_fncom_2016_00105
crossref_primary_10_1109_ACCESS_2020_2980370
crossref_primary_10_1016_j_bspc_2017_09_001
crossref_primary_10_1016_j_neucom_2025_131561
crossref_primary_10_1016_j_patcog_2017_05_004
crossref_primary_10_3390_s24217084
crossref_primary_10_1088_1741_2552_ab2373
crossref_primary_10_1109_TNSRE_2023_3250953
crossref_primary_10_1088_1741_2552_ab7264
crossref_primary_10_1371_journal_pone_0140703
crossref_primary_10_1088_1741_2552_ac81ee
crossref_primary_10_3389_fnhum_2018_00246
crossref_primary_10_1016_j_bspc_2020_102042
crossref_primary_10_1016_j_jneumeth_2022_109674
crossref_primary_10_1109_TNSRE_2020_2983275
crossref_primary_10_1142_S0219519425400809
crossref_primary_10_1073_pnas_1508080112
crossref_primary_10_1007_s11517_023_02845_8
crossref_primary_10_1080_10447318_2016_1203047
crossref_primary_10_3389_fnins_2020_00717
crossref_primary_10_1109_TNSRE_2022_3215695
crossref_primary_10_1016_j_cmpb_2016_05_002
crossref_primary_10_1007_s12559_017_9478_0
crossref_primary_10_1016_j_eswa_2022_117574
crossref_primary_10_1109_JSEN_2022_3173433
crossref_primary_10_1088_1741_2552_ac823e
crossref_primary_10_1007_s42452_024_05816_2
crossref_primary_10_1109_TNSRE_2018_2874975
crossref_primary_10_1088_1741_2552_aa6213
crossref_primary_10_3233_JID_220001
crossref_primary_10_31083_j_jin2304073
crossref_primary_10_1016_j_bbe_2017_10_004
crossref_primary_10_1016_j_jneumeth_2022_109688
crossref_primary_10_1007_s11571_019_09541_0
crossref_primary_10_1109_TBME_2016_2559527
crossref_primary_10_1109_TBME_2024_3406603
crossref_primary_10_1016_j_neuroimage_2023_120501
crossref_primary_10_1109_TNNLS_2015_2476656
crossref_primary_10_1155_2014_908719
crossref_primary_10_1109_TBME_2020_2975552
crossref_primary_10_1016_j_bspc_2024_106063
crossref_primary_10_1109_ACCESS_2017_2675538
crossref_primary_10_1088_1741_2560_13_3_036019
crossref_primary_10_1093_jrsssc_qlad022
crossref_primary_10_1109_TNSRE_2016_2519350
crossref_primary_10_1016_j_bspc_2020_102022
crossref_primary_10_1016_j_jneumeth_2024_110325
crossref_primary_10_1109_MSP_2023_3278074
crossref_primary_10_3389_fnins_2023_1246940
crossref_primary_10_1109_LSP_2014_2368952
crossref_primary_10_1109_TNSRE_2018_2817924
crossref_primary_10_1016_j_bspc_2022_103906
crossref_primary_10_1109_TNSRE_2018_2864119
crossref_primary_10_1109_JPROC_2015_2474704
crossref_primary_10_1007_s11277_020_07738_9
crossref_primary_10_1016_j_artmed_2025_103100
crossref_primary_10_1007_s12204_021_2387_0
crossref_primary_10_1109_MSP_2016_2521870
crossref_primary_10_1088_1741_2552_acf7f6
crossref_primary_10_1016_j_bspc_2022_103482
crossref_primary_10_1016_j_compbiomed_2018_08_011
crossref_primary_10_3233_JIFS_169097
crossref_primary_10_1109_ACCESS_2018_2886759
crossref_primary_10_1007_s11280_018_0635_5
crossref_primary_10_1016_j_neucom_2021_07_103
crossref_primary_10_1088_1741_2552_aaca6e
crossref_primary_10_1088_1741_2552_abf00c
crossref_primary_10_1016_j_neucom_2016_09_011
crossref_primary_10_1109_ACCESS_2020_2994226
crossref_primary_10_3390_app6100270
crossref_primary_10_1109_ACCESS_2017_2698068
crossref_primary_10_1109_TNSRE_2024_3424410
crossref_primary_10_1109_TBME_2020_2972747
crossref_primary_10_1080_2326263X_2020_1783170
crossref_primary_10_1109_TNSRE_2023_3305202
crossref_primary_10_3233_JIFS_169089
crossref_primary_10_3389_fnins_2022_863359
crossref_primary_10_1088_1741_2552_aa7ee9
crossref_primary_10_1038_s41598_019_56962_2
crossref_primary_10_1109_TNSRE_2022_3162029
crossref_primary_10_1109_TNSRE_2018_2848222
crossref_primary_10_3389_fnins_2017_00630
crossref_primary_10_1007_s00542_016_3229_0
crossref_primary_10_1088_1741_2552_abe7cf
crossref_primary_10_1088_1741_2552_ac2bb7
crossref_primary_10_1007_s11571_016_9398_9
crossref_primary_10_1016_j_neucom_2017_02_080
crossref_primary_10_1088_1741_2552_aac605
crossref_primary_10_1088_1741_2552_ac6b57
crossref_primary_10_1007_s11280_018_0619_5
crossref_primary_10_1109_ACCESS_2020_3044732
crossref_primary_10_1016_j_compbiomed_2023_107806
crossref_primary_10_1007_s10633_020_09770_3
crossref_primary_10_1016_j_neunet_2024_106734
crossref_primary_10_1109_ACCESS_2018_2825378
crossref_primary_10_1007_s11571_022_09923_x
crossref_primary_10_1016_j_compbiomed_2023_107488
crossref_primary_10_1088_1741_2552_abfdfa
crossref_primary_10_1109_TNSRE_2020_3038718
crossref_primary_10_1186_s12913_025_12551_w
crossref_primary_10_1109_JSTSP_2016_2594945
crossref_primary_10_1109_TNSRE_2021_3057938
crossref_primary_10_1016_j_eswa_2023_120141
crossref_primary_10_1016_j_jneumeth_2015_01_024
crossref_primary_10_1371_journal_pone_0159988
crossref_primary_10_1007_s12559_014_9313_9
crossref_primary_10_1007_s11277_021_08135_6
crossref_primary_10_1016_j_jneumeth_2022_109499
crossref_primary_10_1088_1741_2552_aa6086
crossref_primary_10_1109_TNSRE_2019_2940712
crossref_primary_10_1088_1741_2552_ac6ae5
crossref_primary_10_1109_JBHI_2018_2832538
crossref_primary_10_1109_TNSRE_2024_3386763
crossref_primary_10_3390_s22072568
crossref_primary_10_1109_TBME_2017_2694818
crossref_primary_10_3233_ICA_180586
crossref_primary_10_1088_1741_2552_ab6cb7
crossref_primary_10_1088_1741_2552_aabb82
crossref_primary_10_1016_j_bspc_2021_103162
crossref_primary_10_1016_j_bspc_2020_102304
crossref_primary_10_1109_TNSRE_2021_3073165
crossref_primary_10_1109_TIM_2023_3284952
crossref_primary_10_1007_s10916_016_0475_8
crossref_primary_10_3389_fncom_2022_868642
crossref_primary_10_1109_TSMC_2020_2964684
crossref_primary_10_1155_2018_4278782
crossref_primary_10_1016_j_compbiomed_2021_105042
crossref_primary_10_1111_psyp_12916
crossref_primary_10_1109_TNSRE_2018_2826541
crossref_primary_10_1088_1741_2552_ab914e
crossref_primary_10_1177_1073858414549015
crossref_primary_10_1002_int_22341
crossref_primary_10_1109_TBME_2020_2975773
crossref_primary_10_1109_TKDE_2017_2763618
crossref_primary_10_1109_TCYB_2018_2841847
crossref_primary_10_1002_adfm_202201843
crossref_primary_10_1109_TNSRE_2024_3408273
crossref_primary_10_1088_1741_2552_ab13d1
crossref_primary_10_1080_02664763_2021_1939661
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1142/S0129065714500130
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Computer Science
EISSN 1793-6462
ExternalDocumentID 24694168
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.DC
0R~
36B
4.4
53G
5GY
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CAG
CGR
COF
CS3
CUY
CVF
DU5
EBS
ECM
EIF
EJD
EMOBN
F5P
HZ~
NPM
O9-
P2P
P71
RWJ
WSC
7X8
ID FETCH-LOGICAL-c4660-42b91371b81f261403d72a066aa48eae21fbdca27328ae92fa0aca3d10f399c42
IEDL.DBID 7X8
ISICitedReferencesCount 303
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334281800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0129-0657
1793-6462
IngestDate Thu Oct 02 10:30:58 EDT 2025
Thu Apr 03 06:59:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4660-42b91371b81f261403d72a066aa48eae21fbdca27328ae92fa0aca3d10f399c42
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24694168
PQID 1513046353
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1513046353
pubmed_primary_24694168
PublicationCentury 2000
PublicationDate 20140600
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 20140600
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of neural systems
PublicationTitleAlternate Int J Neural Syst
PublicationYear 2014
SSID ssj0014748
Score 2.5184855
Snippet Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1450013
SubjectTerms Adult
Algorithms
Brain - physiology
Brain Mapping
Brain-Computer Interfaces
Electroencephalography
Evoked Potentials, Visual - physiology
Female
Humans
Male
Pattern Recognition, Automated
Photic Stimulation
Recognition (Psychology)
User-Computer Interface
Young Adult
Title Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/24694168
https://www.proquest.com/docview/1513046353
Volume 24
WOSCitedRecordID wos000334281800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA7qPHhx_nb-IoLXsCbNkvQkOjYUdAymY7eSpKl4Weemgv-9L2nmToLgpbfS8vXlva95X96H0FXqytSW0pEMqiHhGTPEeI17khTaGe0UL8Kc2Qc5GKjJJBvGDbdFlFUuc2JI1EVl_R55GypTmG7VSa9nb8S7RvnuarTQWEeNFKiMj2o5WXURuAzuWT4GieCCxa4m5aw9ChswoiMp74Tu3e8MM1SafvO_77iDtiPHxDd1UOyiNTfdQ82lfwOOy3kfjfvzWkj9hX90RNUUv07xaDTuDYmvcAW-7d5jr45_wUF8uHDvGD5HFc5TYuvNPWo5HdZxvskBeu73nrp3JPosEMuFSAhnJqOppEbREn6oeJIWkmngIlpz5bRjtDSF1czP9dEuY6VOtNVpQZMSMLecHaINeKw7RjjRDpKCo8IAsNIqlRmrLKWCGeOAebTQ5RK5HOLYNyf01FUfi3yFXQsd1fDns3rgRs64P24r1Mkf7j5FW8BpeK3mOkONElaxO0eb9hMQml-EAIHrYPj4DWIexMg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frequency+recognition+in+SSVEP-based+BCI+using+multiset+canonical+correlation+analysis&rft.jtitle=International+journal+of+neural+systems&rft.au=Zhang%2C+Yu&rft.au=Zhou%2C+Guoxu&rft.au=Jin%2C+Jing&rft.au=Wang%2C+Xingyu&rft.date=2014-06-01&rft.issn=0129-0657&rft.volume=24&rft.issue=4&rft.spage=1450013&rft_id=info:doi/10.1142%2FS0129065714500130&rft_id=info%3Apmid%2F24694168&rft_id=info%3Apmid%2F24694168&rft.externalDocID=24694168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0129-0657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0129-0657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0129-0657&client=summon