Muscle-tendon interaction and elastic energy usage in human walking
The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo tech...
Gespeichert in:
| Veröffentlicht in: | Journal of applied physiology (1985) Jg. 99; H. 2; S. 603 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.08.2005
|
| Schlagworte: | |
| ISSN: | 8750-7587 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo techniques were employed to record the Achilles tendon force and to scan real-time fascicle lengths for two muscles (medial gastrocnemius and soleus). The results showed that tendinous tissues of both medial gastrocnemius and soleus muscles lengthened slowly throughout the single-stance phase and then recoiled rapidly close to the end of the ground contact. However, the fascicle length changes demonstrated different patterns and amplitudes between two muscles. The medial gastrocnemius fascicles were stretched during the early single-stance phase and then remained isometrically during the late-stance phase. In contrast, the soleus fascicles were lengthened until the end of the single-stance phase. These findings suggest that the elastic recoil takes place not as a spring-like bouncing but as a catapult action in natural human walking. The interaction between the muscle fascicles and tendinous tissues plays an important role in the process of release of elastic energy, although the leg muscles, which are commonly accepted as synergists, do not have similar mechanical behavior of fascicles in this catapult action. |
|---|---|
| AbstractList | The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo techniques were employed to record the Achilles tendon force and to scan real-time fascicle lengths for two muscles (medial gastrocnemius and soleus). The results showed that tendinous tissues of both medial gastrocnemius and soleus muscles lengthened slowly throughout the single-stance phase and then recoiled rapidly close to the end of the ground contact. However, the fascicle length changes demonstrated different patterns and amplitudes between two muscles. The medial gastrocnemius fascicles were stretched during the early single-stance phase and then remained isometrically during the late-stance phase. In contrast, the soleus fascicles were lengthened until the end of the single-stance phase. These findings suggest that the elastic recoil takes place not as a spring-like bouncing but as a catapult action in natural human walking. The interaction between the muscle fascicles and tendinous tissues plays an important role in the process of release of elastic energy, although the leg muscles, which are commonly accepted as synergists, do not have similar mechanical behavior of fascicles in this catapult action.The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo techniques were employed to record the Achilles tendon force and to scan real-time fascicle lengths for two muscles (medial gastrocnemius and soleus). The results showed that tendinous tissues of both medial gastrocnemius and soleus muscles lengthened slowly throughout the single-stance phase and then recoiled rapidly close to the end of the ground contact. However, the fascicle length changes demonstrated different patterns and amplitudes between two muscles. The medial gastrocnemius fascicles were stretched during the early single-stance phase and then remained isometrically during the late-stance phase. In contrast, the soleus fascicles were lengthened until the end of the single-stance phase. These findings suggest that the elastic recoil takes place not as a spring-like bouncing but as a catapult action in natural human walking. The interaction between the muscle fascicles and tendinous tissues plays an important role in the process of release of elastic energy, although the leg muscles, which are commonly accepted as synergists, do not have similar mechanical behavior of fascicles in this catapult action. The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo techniques were employed to record the Achilles tendon force and to scan real-time fascicle lengths for two muscles (medial gastrocnemius and soleus). The results showed that tendinous tissues of both medial gastrocnemius and soleus muscles lengthened slowly throughout the single-stance phase and then recoiled rapidly close to the end of the ground contact. However, the fascicle length changes demonstrated different patterns and amplitudes between two muscles. The medial gastrocnemius fascicles were stretched during the early single-stance phase and then remained isometrically during the late-stance phase. In contrast, the soleus fascicles were lengthened until the end of the single-stance phase. These findings suggest that the elastic recoil takes place not as a spring-like bouncing but as a catapult action in natural human walking. The interaction between the muscle fascicles and tendinous tissues plays an important role in the process of release of elastic energy, although the leg muscles, which are commonly accepted as synergists, do not have similar mechanical behavior of fascicles in this catapult action. |
| Author | Ishikawa, Masaki Komi, Paavo V Grey, Michael J Bruggemann, Gert-Peter Lepola, Vesa |
| Author_xml | – sequence: 1 givenname: Masaki surname: Ishikawa fullname: Ishikawa, Masaki email: masaki@sport.jyu.fi organization: Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä, PO Box 35 (LL2), 40014 Jyväskylä, Finland. masaki@sport.jyu.fi – sequence: 2 givenname: Paavo V surname: Komi fullname: Komi, Paavo V – sequence: 3 givenname: Michael J surname: Grey fullname: Grey, Michael J – sequence: 4 givenname: Vesa surname: Lepola fullname: Lepola, Vesa – sequence: 5 givenname: Gert-Peter surname: Bruggemann fullname: Bruggemann, Gert-Peter |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15845776$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1j0tPwzAQhH0oog_4C5ATtxQ78StHVEFBKuIC52hjb1oXxwlxItR_TxBFGmlWmk-jnSWZhTYgIbeMrhkT2f0Rus53h1N0rV9TynSxzigVM7LQStBUCa3mZBnjcco4F-ySzJnQXCglF2TzOkbjMR0w2DYkLgzYgxncdEOwCXqIgzMJBuz3p2SMsMcJSg5jAyH5Bv_pwv6KXNTgI16ffUU-nh7fN8_p7m37snnYpYZLMaR1XVXMUlv8vqhULrmstZEoWG6rDCshKRQ61yBMQSdBro0By4usUAi5ylbk7q-369uvEeNQNi4a9B4CtmMspaa54IxP4M0ZHKsGbdn1roH-VP7Pzn4AokRdlw |
| CitedBy_id | crossref_primary_10_1242_jeb_100826 crossref_primary_10_1111_sms_14142 crossref_primary_10_1016_j_clinph_2012_01_006 crossref_primary_10_1152_japplphysiol_00290_2017 crossref_primary_10_1016_j_ptsp_2009_07_001 crossref_primary_10_1159_000516910 crossref_primary_10_1242_jeb_243040 crossref_primary_10_1152_japplphysiol_00473_2018 crossref_primary_10_1038_s41598_017_15218_7 crossref_primary_10_1152_japplphysiol_00738_2007 crossref_primary_10_1111_j_1365_2842_2010_02064_x crossref_primary_10_1242_jeb_242626 crossref_primary_10_1007_s10237_011_0329_8 crossref_primary_10_1016_j_jbiomech_2025_112796 crossref_primary_10_1109_TNSRE_2019_2904924 crossref_primary_10_1016_j_jbiomech_2023_111583 crossref_primary_10_1007_s42242_021_00148_1 crossref_primary_10_1109_ACCESS_2024_3521052 crossref_primary_10_1016_j_humov_2022_103052 crossref_primary_10_1016_j_jtbi_2020_110249 crossref_primary_10_3390_machines10070585 crossref_primary_10_1242_jeb_245474 crossref_primary_10_1016_j_isci_2025_112203 crossref_primary_10_1109_TRO_2022_3189249 crossref_primary_10_1249_MSS_0b013e3181912272 crossref_primary_10_1371_journal_pone_0120579 crossref_primary_10_1038_s41598_021_01694_5 crossref_primary_10_1016_j_gaitpost_2024_06_026 crossref_primary_10_1038_s41598_020_65626_5 crossref_primary_10_1136_bmjopen_2016_012839 crossref_primary_10_1371_journal_pone_0231996 crossref_primary_10_1177_1941738118820517 crossref_primary_10_1109_TRO_2011_2164958 crossref_primary_10_1016_j_jelekin_2011_09_008 crossref_primary_10_1016_j_ultrasmedbio_2015_07_011 crossref_primary_10_1016_j_jbiomech_2018_11_023 crossref_primary_10_1016_j_clinbiomech_2011_04_010 crossref_primary_10_1002_adma_202501290 crossref_primary_10_1371_journal_pone_0056137 crossref_primary_10_1016_j_clinbiomech_2025_106568 crossref_primary_10_1016_j_jbiomech_2015_04_024 crossref_primary_10_1007_s00421_011_2128_4 crossref_primary_10_1016_j_jbiomech_2020_110067 crossref_primary_10_1242_jeb_058743 crossref_primary_10_1016_j_archger_2017_12_012 crossref_primary_10_1186_s42490_019_0031_y crossref_primary_10_1016_j_jbiomech_2012_06_035 crossref_primary_10_1152_jn_00852_2009 crossref_primary_10_1016_j_jbiomech_2012_06_032 crossref_primary_10_1088_1748_3190_aaeefd crossref_primary_10_1371_journal_pone_0257269 crossref_primary_10_1113_jphysiol_2008_165555 crossref_primary_10_1111_joa_13916 crossref_primary_10_1152_japplphysiol_00536_2016 crossref_primary_10_1242_jeb_077131 crossref_primary_10_1242_jeb_245113 crossref_primary_10_2519_jospt_2008_2816 crossref_primary_10_1123_jab_2017_0389 crossref_primary_10_1242_jeb_140376 crossref_primary_10_1371_journal_pone_0163169 crossref_primary_10_1002_jor_24464 crossref_primary_10_1016_j_gaitpost_2015_10_009 crossref_primary_10_1123_ijspp_2020_0669 crossref_primary_10_1249_JES_0000000000000086 crossref_primary_10_1152_japplphysiol_00114_2015 crossref_primary_10_1249_MSS_0000000000000254 crossref_primary_10_1155_2020_2976535 crossref_primary_10_1186_s12984_023_01204_w crossref_primary_10_3389_fphys_2016_00414 crossref_primary_10_1016_j_aimed_2020_08_002 crossref_primary_10_3233_NRE_161394 crossref_primary_10_1038_s41598_023_32370_5 crossref_primary_10_1098_rsos_161036 crossref_primary_10_1136_bjsports_2014_094386 crossref_primary_10_1152_japplphysiol_00735_2021 crossref_primary_10_3389_fphys_2021_777403 crossref_primary_10_1371_journal_pcbi_1001107 crossref_primary_10_1177_10711007241238209 crossref_primary_10_3389_fphys_2020_518134 crossref_primary_10_1371_journal_pone_0179976 crossref_primary_10_1038_nature14288 crossref_primary_10_1016_j_gaitpost_2017_07_124 crossref_primary_10_1007_s13320_012_0090_3 crossref_primary_10_1016_j_gaitpost_2015_04_020 crossref_primary_10_1016_j_jbiomech_2019_109432 crossref_primary_10_1109_TBME_2015_2497659 crossref_primary_10_1016_j_medengphy_2015_04_004 crossref_primary_10_1177_0363546508330126 crossref_primary_10_1016_j_jbiomech_2013_02_023 crossref_primary_10_1097_JES_0b013e31819c2df6 crossref_primary_10_1016_j_apmr_2012_03_020 crossref_primary_10_1038_s41598_021_84847_w crossref_primary_10_1016_j_jbiomech_2016_07_020 crossref_primary_10_1186_s12984_021_00943_y crossref_primary_10_3233_BMR_170998 crossref_primary_10_1016_j_gaitpost_2016_05_006 crossref_primary_10_1155_2018_6756027 crossref_primary_10_1152_japplphysiol_01316_2007 crossref_primary_10_1016_j_bbe_2019_08_007 crossref_primary_10_1016_j_jbiomech_2008_03_040 crossref_primary_10_23736_S0022_4707_22_13751_5 crossref_primary_10_1249_MSS_0000000000001828 crossref_primary_10_1088_1748_3190_ac0b99 crossref_primary_10_1113_jphysiol_2007_139105 crossref_primary_10_1177_0284185115626471 crossref_primary_10_3389_fspor_2020_00056 crossref_primary_10_1016_j_jbiomech_2025_112691 crossref_primary_10_1126_scirobotics_abj1362 crossref_primary_10_33393_aop_2025_3482 crossref_primary_10_1038_s41598_020_60360_4 crossref_primary_10_1152_japplphysiol_00353_2006 crossref_primary_10_1186_s12984_020_00703_4 crossref_primary_10_1016_j_jbiomech_2016_07_038 crossref_primary_10_1109_TMECH_2012_2213608 crossref_primary_10_1152_japplphysiol_00128_2015 crossref_primary_10_1016_j_clinbiomech_2010_01_018 crossref_primary_10_1007_s00221_012_3165_x crossref_primary_10_1007_s10439_020_02635_5 crossref_primary_10_1016_j_bone_2009_07_014 crossref_primary_10_1177_16878140211011905 crossref_primary_10_1242_jeb_244863 crossref_primary_10_3389_fphys_2019_01504 crossref_primary_10_1242_jeb_115451 crossref_primary_10_1682_JRRD_2015_04_0066 crossref_primary_10_1002_jum_15330 crossref_primary_10_1016_j_gaitpost_2012_07_024 crossref_primary_10_1109_TNSRE_2020_3020564 crossref_primary_10_1109_TBME_2018_2889624 crossref_primary_10_1242_jeb_121673 crossref_primary_10_1242_jeb_009241 crossref_primary_10_1016_j_apmr_2019_01_003 crossref_primary_10_1002_jor_22524 crossref_primary_10_1038_s41598_025_95589_4 crossref_primary_10_3113_FAI_2012_0312 crossref_primary_10_1016_j_neures_2015_01_015 crossref_primary_10_3390_app11052037 crossref_primary_10_1109_TNSRE_2021_3065389 crossref_primary_10_1038_s41598_024_56579_0 crossref_primary_10_1016_j_gaitpost_2019_12_032 crossref_primary_10_1109_ACCESS_2021_3115956 crossref_primary_10_1152_japplphysiol_00274_2006 crossref_primary_10_1016_j_jbiomech_2021_110447 crossref_primary_10_1007_s00421_010_1606_4 crossref_primary_10_1002_adma_202404330 crossref_primary_10_1002_j_2040_4603_2022_tb00203_x crossref_primary_10_1016_j_jtbi_2013_12_014 crossref_primary_10_1371_journal_pone_0111595 crossref_primary_10_1016_j_jbiomech_2014_01_035 crossref_primary_10_1088_1748_3190_ac3adf crossref_primary_10_1155_2017_8208764 crossref_primary_10_1016_j_jshs_2022_07_002 crossref_primary_10_3389_fphys_2018_01789 crossref_primary_10_1016_j_mehy_2019_03_028 crossref_primary_10_1088_0031_9155_61_6_2485 crossref_primary_10_1519_SSC_0b013e3181e928f9 crossref_primary_10_1152_jn_00251_2013 crossref_primary_10_1007_s00421_011_2032_y crossref_primary_10_1038_s41598_025_86147_z crossref_primary_10_1371_journal_pone_0255221 crossref_primary_10_1109_TNSRE_2025_3602709 crossref_primary_10_1053_j_jfas_2017_01_039 crossref_primary_10_1152_japplphysiol_90432_2008 crossref_primary_10_1242_jeb_245614 crossref_primary_10_3390_s21217387 crossref_primary_10_1016_j_ptsp_2018_05_012 crossref_primary_10_1111_sms_12111 crossref_primary_10_1186_s40798_023_00604_5 crossref_primary_10_1109_TIE_2014_2300060 crossref_primary_10_1371_journal_pone_0218047 crossref_primary_10_1007_s00167_021_06512_z crossref_primary_10_1242_jeb_017269 crossref_primary_10_1016_j_jbiomech_2018_08_016 crossref_primary_10_1007_s10439_024_03669_9 crossref_primary_10_1016_j_gaitpost_2007_11_004 crossref_primary_10_1007_s00422_014_0625_3 crossref_primary_10_1109_TMECH_2018_2866337 crossref_primary_10_1111_j_1748_1716_2006_01634_x crossref_primary_10_1242_jeb_017277 crossref_primary_10_1088_1748_3190_ad7345 crossref_primary_10_1073_pnas_1107972109 crossref_primary_10_11648_j_ijsspe_20251003_15 crossref_primary_10_2165_00007256_200636110_00004 crossref_primary_10_1038_s41598_023_49339_z crossref_primary_10_1016_j_gaitpost_2017_01_007 crossref_primary_10_1016_j_jbiomech_2022_111216 crossref_primary_10_1038_s41598_018_23705_8 crossref_primary_10_1242_jeb_02434 crossref_primary_10_1249_MSS_0b013e318289d821 crossref_primary_10_2519_jospt_2007_2440 crossref_primary_10_1016_j_jbiomech_2014_01_054 crossref_primary_10_1155_2019_4512501 crossref_primary_10_1007_s00421_014_3092_6 crossref_primary_10_1017_S0263574709005736 crossref_primary_10_1080_21679169_2018_1561941 crossref_primary_10_1007_s00221_022_06513_5 crossref_primary_10_3390_jcm8122096 crossref_primary_10_7717_peerj_5182 crossref_primary_10_1080_21681163_2025_2485095 crossref_primary_10_1111_apha_12550 crossref_primary_10_1113_jphysiol_2007_127969 crossref_primary_10_1016_j_gaitpost_2020_01_018 crossref_primary_10_1016_j_jelekin_2012_01_011 crossref_primary_10_1111_sms_13669 crossref_primary_10_1007_s00421_008_0758_y crossref_primary_10_1016_j_jajs_2021_09_001 crossref_primary_10_1016_j_mechatronics_2012_09_011 crossref_primary_10_1109_TNSRE_2013_2291903 crossref_primary_10_1242_bio_20148672 crossref_primary_10_1242_jeb_191247 crossref_primary_10_1002_jmor_20398 crossref_primary_10_1177_2325967119883357 crossref_primary_10_1177_1071100719839691 crossref_primary_10_1242_jeb_033639 crossref_primary_10_1371_journal_pone_0237449 crossref_primary_10_1016_j_humov_2022_102948 crossref_primary_10_1016_j_gaitpost_2006_05_002 crossref_primary_10_1109_TBME_2015_2491224 crossref_primary_10_1088_1361_665X_ac9dd0 crossref_primary_10_1152_japplphysiol_00253_2013 crossref_primary_10_3389_fbioe_2022_832087 crossref_primary_10_1016_j_jelekin_2012_08_012 crossref_primary_10_3390_machines4010001 crossref_primary_10_1038_s41598_017_00485_1 crossref_primary_10_1249_MSS_0000000000001065 crossref_primary_10_1016_j_jbiomech_2017_09_015 crossref_primary_10_1002_jfa2_70078 crossref_primary_10_1016_j_gaitpost_2013_01_027 crossref_primary_10_1152_japplphysiol_01208_2007 crossref_primary_10_1016_j_jelekin_2018_04_001 crossref_primary_10_1016_j_clinbiomech_2012_05_005 crossref_primary_10_3113_FAI_2009_0367 crossref_primary_10_1016_j_gaitpost_2011_02_011 crossref_primary_10_1007_s12541_013_0108_9 crossref_primary_10_1016_j_jtbi_2014_03_010 crossref_primary_10_1242_jeb_126854 crossref_primary_10_1242_jeb_235614 crossref_primary_10_1016_j_jelekin_2011_06_004 crossref_primary_10_1016_j_jhevol_2022_103195 crossref_primary_10_2519_jospt_2006_2013 crossref_primary_10_1152_jn_00391_2023 crossref_primary_10_1097_JES_0b013e3181878417 crossref_primary_10_1242_jeb_107656 crossref_primary_10_1249_MSS_0000000000002742 crossref_primary_10_1002_j_2040_4603_2017_tb00746_x crossref_primary_10_1109_TBME_2021_3120716 crossref_primary_10_1242_jeb_083527 crossref_primary_10_3390_app11052227 crossref_primary_10_1016_j_jbiomech_2006_09_008 crossref_primary_10_1111_sms_13089 crossref_primary_10_1016_j_clinbiomech_2022_105664 crossref_primary_10_1177_0309364619883197 crossref_primary_10_1242_bio_044651 crossref_primary_10_1519_JSC_0b013e31817ae4a7 crossref_primary_10_1097_JES_0b013e3181b7ea29 crossref_primary_10_1016_j_jbiomech_2016_04_032 crossref_primary_10_1007_s11517_025_03335_9 crossref_primary_10_1093_icb_icab120 crossref_primary_10_1016_j_jbiomech_2022_111095 crossref_primary_10_1111_sms_12667 crossref_primary_10_1242_jeb_204032 crossref_primary_10_3389_fphys_2020_592183 crossref_primary_10_1109_TUFFC_2009_1002 crossref_primary_10_1016_j_jbiomech_2016_09_015 crossref_primary_10_1242_jeb_058461 crossref_primary_10_1016_j_gaitpost_2014_10_001 crossref_primary_10_1109_TMECH_2020_3041877 crossref_primary_10_1007_s00221_016_4703_8 crossref_primary_10_1126_scirobotics_aah4416 crossref_primary_10_1016_j_jbiomech_2016_11_062 crossref_primary_10_3389_fphys_2019_01575 crossref_primary_10_1152_jn_00967_2010 crossref_primary_10_1371_journal_pcbi_1004912 crossref_primary_10_1038_s41598_023_39718_x crossref_primary_10_1152_japplphysiol_00462_2017 crossref_primary_10_1016_j_jbiomech_2025_112973 crossref_primary_10_1007_s40279_023_01904_2 crossref_primary_10_2165_11535920_000000000_00000 crossref_primary_10_1371_journal_pcbi_1012411 crossref_primary_10_1007_s10514_018_9697_6 crossref_primary_10_1007_s11012_016_0478_z crossref_primary_10_1126_science_aba9947 crossref_primary_10_1097_JES_0b013e31820d7bc5 crossref_primary_10_1038_srep29870 crossref_primary_10_1242_jeb_097345 crossref_primary_10_1371_journal_pcbi_1008280 crossref_primary_10_1016_j_clinbiomech_2023_106158 crossref_primary_10_1016_j_jbiomech_2018_03_013 crossref_primary_10_1016_j_jelekin_2010_08_004 crossref_primary_10_1016_j_jbiomech_2006_12_017 crossref_primary_10_1016_j_jbiomech_2017_06_022 crossref_primary_10_7717_peerj_4164 crossref_primary_10_1016_j_gaitpost_2018_07_177 crossref_primary_10_1007_s10237_017_0890_x crossref_primary_10_1016_j_jbiomech_2024_112440 crossref_primary_10_1152_japplphysiol_00277_2007 crossref_primary_10_1242_jeb_150011 crossref_primary_10_3390_app10030799 crossref_primary_10_1016_j_jelekin_2008_05_008 crossref_primary_10_1242_jeb_159749 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1152/japplphysiol.00189.2005 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| ExternalDocumentID | 15845776 |
| Genre | Journal Article Clinical Conference |
| GroupedDBID | --- -~X .55 .GJ 18M 1CY 29J 2WC 39C 3O- 4.4 53G 5VS 85S 8M5 AAFWJ ABCQX ABDNZ ABHWK ABJNI ABKWE ABOCM ACBEA ACGFO ACGFS ACIWK ACKIV ACPRK ACYGS ADBBV ADFNX AEILP AENEX AFOSN AFRAH AGCDD AGNAY AI. AIDAL AJUXI ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW C1A C2- CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD EMOBN F5P FRP GX1 H13 H~9 ITBOX J5H KQ8 L7B MVM NEJ NPM OHT OK1 P-O P2P P6G PQQKQ RAP RHF RHI RPL RPRKH SJN TR2 UHB UKR UPT VH1 VXZ W8F WH7 WOQ X7M XOL XSW YBH YCJ YQJ YQT YWH ZXP ~02 7X8 ADXHL |
| ID | FETCH-LOGICAL-c465t-ffbb1d0d90189773646f8c6e513db2eb560a9838a5c90c90a38ccad49297ea372 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 368 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000230486200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 8750-7587 |
| IngestDate | Fri Sep 05 09:07:31 EDT 2025 Wed Feb 19 01:41:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c465t-ffbb1d0d90189773646f8c6e513db2eb560a9838a5c90c90a38ccad49297ea372 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference Proceeding-1 ObjectType-Feature-3 content type line 23 |
| PMID | 15845776 |
| PQID | 68035414 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_68035414 pubmed_primary_15845776 |
| PublicationCentury | 2000 |
| PublicationDate | 2005-08-01 |
| PublicationDateYYYYMMDD | 2005-08-01 |
| PublicationDate_xml | – month: 08 year: 2005 text: 2005-08-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of applied physiology (1985) |
| PublicationTitleAlternate | J Appl Physiol (1985) |
| PublicationYear | 2005 |
| SSID | ssj0014451 |
| Score | 2.37254 |
| Snippet | The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 603 |
| SubjectTerms | Adaptation, Physiological - physiology Adult Ankle Joint - physiology Computer Simulation Energy Transfer - physiology Humans Image Interpretation, Computer-Assisted - methods Male Models, Biological Muscle Contraction - physiology Muscle, Skeletal - diagnostic imaging Muscle, Skeletal - physiology Tendons - diagnostic imaging Tendons - physiology Ultrasonography Walking - physiology |
| Title | Muscle-tendon interaction and elastic energy usage in human walking |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/15845776 https://www.proquest.com/docview/68035414 |
| Volume | 99 |
| WOSCitedRecordID | wos000230486200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6qFfHio76fexBvwTz3AYJIsXhp6UGht7LZ3YhSE7VW6b93ZpPiSTwIIadNWCazu1_mm5kP4DxWiHNz2v204EEaGx5IRRSiMTHxQNymhRebEIOBHI3UsAVXi1oYSqtc7Il-o7aVoRj5JZdhQpLV169vAWlGEbfaCGgsQTtBIEPLUox-OARqvVVH98IAUbFosrvwwLp8JnbYhw6qCXER0pesZL-jTH_a9Db-N89NWG9QJrup3WILWq7swPZNiX_YL3N2wYb1pKrHeQdW-w29vg3d_myK4wOKi1clo1YS73XhA9OlZQ6RNr6QOV8vyGaUk4aDmNf5Y196QmH3HXjo3d5374JGZSEwKc8-gqLI88iGVpEZhEh4ygtpuMuixOaxyxESaSUTqTOjQrx0IvGr2xRxlXA6EfEuLJdV6faB8cjEWayNMnmWilDJwiqb6ih1meSy0AdwtrDZGL2YqAldumo2HS-sdgB7tdnHr3WzjXGECCkTgh_--ewRrPm-qj477xjaBa5fdwIr5vPjafp-6p0D74Nh_xspIsPu |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muscle-tendon+interaction+and+elastic+energy+usage+in+human+walking&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Ishikawa%2C+Masaki&rft.au=Komi%2C+Paavo+V&rft.au=Grey%2C+Michael+J&rft.au=Lepola%2C+Vesa&rft.date=2005-08-01&rft.issn=8750-7587&rft.volume=99&rft.issue=2&rft.spage=603&rft_id=info:doi/10.1152%2Fjapplphysiol.00189.2005&rft_id=info%3Apmid%2F15845776&rft_id=info%3Apmid%2F15845776&rft.externalDocID=15845776 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |