Muscle-tendon interaction and elastic energy usage in human walking

The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo tech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physiology (1985) Jg. 99; H. 2; S. 603
Hauptverfasser: Ishikawa, Masaki, Komi, Paavo V, Grey, Michael J, Lepola, Vesa, Bruggemann, Gert-Peter
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.08.2005
Schlagworte:
ISSN:8750-7587
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo techniques were employed to record the Achilles tendon force and to scan real-time fascicle lengths for two muscles (medial gastrocnemius and soleus). The results showed that tendinous tissues of both medial gastrocnemius and soleus muscles lengthened slowly throughout the single-stance phase and then recoiled rapidly close to the end of the ground contact. However, the fascicle length changes demonstrated different patterns and amplitudes between two muscles. The medial gastrocnemius fascicles were stretched during the early single-stance phase and then remained isometrically during the late-stance phase. In contrast, the soleus fascicles were lengthened until the end of the single-stance phase. These findings suggest that the elastic recoil takes place not as a spring-like bouncing but as a catapult action in natural human walking. The interaction between the muscle fascicles and tendinous tissues plays an important role in the process of release of elastic energy, although the leg muscles, which are commonly accepted as synergists, do not have similar mechanical behavior of fascicles in this catapult action.
AbstractList The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo techniques were employed to record the Achilles tendon force and to scan real-time fascicle lengths for two muscles (medial gastrocnemius and soleus). The results showed that tendinous tissues of both medial gastrocnemius and soleus muscles lengthened slowly throughout the single-stance phase and then recoiled rapidly close to the end of the ground contact. However, the fascicle length changes demonstrated different patterns and amplitudes between two muscles. The medial gastrocnemius fascicles were stretched during the early single-stance phase and then remained isometrically during the late-stance phase. In contrast, the soleus fascicles were lengthened until the end of the single-stance phase. These findings suggest that the elastic recoil takes place not as a spring-like bouncing but as a catapult action in natural human walking. The interaction between the muscle fascicles and tendinous tissues plays an important role in the process of release of elastic energy, although the leg muscles, which are commonly accepted as synergists, do not have similar mechanical behavior of fascicles in this catapult action.The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo techniques were employed to record the Achilles tendon force and to scan real-time fascicle lengths for two muscles (medial gastrocnemius and soleus). The results showed that tendinous tissues of both medial gastrocnemius and soleus muscles lengthened slowly throughout the single-stance phase and then recoiled rapidly close to the end of the ground contact. However, the fascicle length changes demonstrated different patterns and amplitudes between two muscles. The medial gastrocnemius fascicles were stretched during the early single-stance phase and then remained isometrically during the late-stance phase. In contrast, the soleus fascicles were lengthened until the end of the single-stance phase. These findings suggest that the elastic recoil takes place not as a spring-like bouncing but as a catapult action in natural human walking. The interaction between the muscle fascicles and tendinous tissues plays an important role in the process of release of elastic energy, although the leg muscles, which are commonly accepted as synergists, do not have similar mechanical behavior of fascicles in this catapult action.
The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo techniques were employed to record the Achilles tendon force and to scan real-time fascicle lengths for two muscles (medial gastrocnemius and soleus). The results showed that tendinous tissues of both medial gastrocnemius and soleus muscles lengthened slowly throughout the single-stance phase and then recoiled rapidly close to the end of the ground contact. However, the fascicle length changes demonstrated different patterns and amplitudes between two muscles. The medial gastrocnemius fascicles were stretched during the early single-stance phase and then remained isometrically during the late-stance phase. In contrast, the soleus fascicles were lengthened until the end of the single-stance phase. These findings suggest that the elastic recoil takes place not as a spring-like bouncing but as a catapult action in natural human walking. The interaction between the muscle fascicles and tendinous tissues plays an important role in the process of release of elastic energy, although the leg muscles, which are commonly accepted as synergists, do not have similar mechanical behavior of fascicles in this catapult action.
Author Ishikawa, Masaki
Komi, Paavo V
Grey, Michael J
Bruggemann, Gert-Peter
Lepola, Vesa
Author_xml – sequence: 1
  givenname: Masaki
  surname: Ishikawa
  fullname: Ishikawa, Masaki
  email: masaki@sport.jyu.fi
  organization: Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä, PO Box 35 (LL2), 40014 Jyväskylä, Finland. masaki@sport.jyu.fi
– sequence: 2
  givenname: Paavo V
  surname: Komi
  fullname: Komi, Paavo V
– sequence: 3
  givenname: Michael J
  surname: Grey
  fullname: Grey, Michael J
– sequence: 4
  givenname: Vesa
  surname: Lepola
  fullname: Lepola, Vesa
– sequence: 5
  givenname: Gert-Peter
  surname: Bruggemann
  fullname: Bruggemann, Gert-Peter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15845776$$D View this record in MEDLINE/PubMed
BookMark eNo1j0tPwzAQhH0oog_4C5ATtxQ78StHVEFBKuIC52hjb1oXxwlxItR_TxBFGmlWmk-jnSWZhTYgIbeMrhkT2f0Rus53h1N0rV9TynSxzigVM7LQStBUCa3mZBnjcco4F-ySzJnQXCglF2TzOkbjMR0w2DYkLgzYgxncdEOwCXqIgzMJBuz3p2SMsMcJSg5jAyH5Bv_pwv6KXNTgI16ffUU-nh7fN8_p7m37snnYpYZLMaR1XVXMUlv8vqhULrmstZEoWG6rDCshKRQ61yBMQSdBro0By4usUAi5ylbk7q-369uvEeNQNi4a9B4CtmMspaa54IxP4M0ZHKsGbdn1roH-VP7Pzn4AokRdlw
CitedBy_id crossref_primary_10_1242_jeb_100826
crossref_primary_10_1111_sms_14142
crossref_primary_10_1016_j_clinph_2012_01_006
crossref_primary_10_1152_japplphysiol_00290_2017
crossref_primary_10_1016_j_ptsp_2009_07_001
crossref_primary_10_1159_000516910
crossref_primary_10_1242_jeb_243040
crossref_primary_10_1152_japplphysiol_00473_2018
crossref_primary_10_1038_s41598_017_15218_7
crossref_primary_10_1152_japplphysiol_00738_2007
crossref_primary_10_1111_j_1365_2842_2010_02064_x
crossref_primary_10_1242_jeb_242626
crossref_primary_10_1007_s10237_011_0329_8
crossref_primary_10_1016_j_jbiomech_2025_112796
crossref_primary_10_1109_TNSRE_2019_2904924
crossref_primary_10_1016_j_jbiomech_2023_111583
crossref_primary_10_1007_s42242_021_00148_1
crossref_primary_10_1109_ACCESS_2024_3521052
crossref_primary_10_1016_j_humov_2022_103052
crossref_primary_10_1016_j_jtbi_2020_110249
crossref_primary_10_3390_machines10070585
crossref_primary_10_1242_jeb_245474
crossref_primary_10_1016_j_isci_2025_112203
crossref_primary_10_1109_TRO_2022_3189249
crossref_primary_10_1249_MSS_0b013e3181912272
crossref_primary_10_1371_journal_pone_0120579
crossref_primary_10_1038_s41598_021_01694_5
crossref_primary_10_1016_j_gaitpost_2024_06_026
crossref_primary_10_1038_s41598_020_65626_5
crossref_primary_10_1136_bmjopen_2016_012839
crossref_primary_10_1371_journal_pone_0231996
crossref_primary_10_1177_1941738118820517
crossref_primary_10_1109_TRO_2011_2164958
crossref_primary_10_1016_j_jelekin_2011_09_008
crossref_primary_10_1016_j_ultrasmedbio_2015_07_011
crossref_primary_10_1016_j_jbiomech_2018_11_023
crossref_primary_10_1016_j_clinbiomech_2011_04_010
crossref_primary_10_1002_adma_202501290
crossref_primary_10_1371_journal_pone_0056137
crossref_primary_10_1016_j_clinbiomech_2025_106568
crossref_primary_10_1016_j_jbiomech_2015_04_024
crossref_primary_10_1007_s00421_011_2128_4
crossref_primary_10_1016_j_jbiomech_2020_110067
crossref_primary_10_1242_jeb_058743
crossref_primary_10_1016_j_archger_2017_12_012
crossref_primary_10_1186_s42490_019_0031_y
crossref_primary_10_1016_j_jbiomech_2012_06_035
crossref_primary_10_1152_jn_00852_2009
crossref_primary_10_1016_j_jbiomech_2012_06_032
crossref_primary_10_1088_1748_3190_aaeefd
crossref_primary_10_1371_journal_pone_0257269
crossref_primary_10_1113_jphysiol_2008_165555
crossref_primary_10_1111_joa_13916
crossref_primary_10_1152_japplphysiol_00536_2016
crossref_primary_10_1242_jeb_077131
crossref_primary_10_1242_jeb_245113
crossref_primary_10_2519_jospt_2008_2816
crossref_primary_10_1123_jab_2017_0389
crossref_primary_10_1242_jeb_140376
crossref_primary_10_1371_journal_pone_0163169
crossref_primary_10_1002_jor_24464
crossref_primary_10_1016_j_gaitpost_2015_10_009
crossref_primary_10_1123_ijspp_2020_0669
crossref_primary_10_1249_JES_0000000000000086
crossref_primary_10_1152_japplphysiol_00114_2015
crossref_primary_10_1249_MSS_0000000000000254
crossref_primary_10_1155_2020_2976535
crossref_primary_10_1186_s12984_023_01204_w
crossref_primary_10_3389_fphys_2016_00414
crossref_primary_10_1016_j_aimed_2020_08_002
crossref_primary_10_3233_NRE_161394
crossref_primary_10_1038_s41598_023_32370_5
crossref_primary_10_1098_rsos_161036
crossref_primary_10_1136_bjsports_2014_094386
crossref_primary_10_1152_japplphysiol_00735_2021
crossref_primary_10_3389_fphys_2021_777403
crossref_primary_10_1371_journal_pcbi_1001107
crossref_primary_10_1177_10711007241238209
crossref_primary_10_3389_fphys_2020_518134
crossref_primary_10_1371_journal_pone_0179976
crossref_primary_10_1038_nature14288
crossref_primary_10_1016_j_gaitpost_2017_07_124
crossref_primary_10_1007_s13320_012_0090_3
crossref_primary_10_1016_j_gaitpost_2015_04_020
crossref_primary_10_1016_j_jbiomech_2019_109432
crossref_primary_10_1109_TBME_2015_2497659
crossref_primary_10_1016_j_medengphy_2015_04_004
crossref_primary_10_1177_0363546508330126
crossref_primary_10_1016_j_jbiomech_2013_02_023
crossref_primary_10_1097_JES_0b013e31819c2df6
crossref_primary_10_1016_j_apmr_2012_03_020
crossref_primary_10_1038_s41598_021_84847_w
crossref_primary_10_1016_j_jbiomech_2016_07_020
crossref_primary_10_1186_s12984_021_00943_y
crossref_primary_10_3233_BMR_170998
crossref_primary_10_1016_j_gaitpost_2016_05_006
crossref_primary_10_1155_2018_6756027
crossref_primary_10_1152_japplphysiol_01316_2007
crossref_primary_10_1016_j_bbe_2019_08_007
crossref_primary_10_1016_j_jbiomech_2008_03_040
crossref_primary_10_23736_S0022_4707_22_13751_5
crossref_primary_10_1249_MSS_0000000000001828
crossref_primary_10_1088_1748_3190_ac0b99
crossref_primary_10_1113_jphysiol_2007_139105
crossref_primary_10_1177_0284185115626471
crossref_primary_10_3389_fspor_2020_00056
crossref_primary_10_1016_j_jbiomech_2025_112691
crossref_primary_10_1126_scirobotics_abj1362
crossref_primary_10_33393_aop_2025_3482
crossref_primary_10_1038_s41598_020_60360_4
crossref_primary_10_1152_japplphysiol_00353_2006
crossref_primary_10_1186_s12984_020_00703_4
crossref_primary_10_1016_j_jbiomech_2016_07_038
crossref_primary_10_1109_TMECH_2012_2213608
crossref_primary_10_1152_japplphysiol_00128_2015
crossref_primary_10_1016_j_clinbiomech_2010_01_018
crossref_primary_10_1007_s00221_012_3165_x
crossref_primary_10_1007_s10439_020_02635_5
crossref_primary_10_1016_j_bone_2009_07_014
crossref_primary_10_1177_16878140211011905
crossref_primary_10_1242_jeb_244863
crossref_primary_10_3389_fphys_2019_01504
crossref_primary_10_1242_jeb_115451
crossref_primary_10_1682_JRRD_2015_04_0066
crossref_primary_10_1002_jum_15330
crossref_primary_10_1016_j_gaitpost_2012_07_024
crossref_primary_10_1109_TNSRE_2020_3020564
crossref_primary_10_1109_TBME_2018_2889624
crossref_primary_10_1242_jeb_121673
crossref_primary_10_1242_jeb_009241
crossref_primary_10_1016_j_apmr_2019_01_003
crossref_primary_10_1002_jor_22524
crossref_primary_10_1038_s41598_025_95589_4
crossref_primary_10_3113_FAI_2012_0312
crossref_primary_10_1016_j_neures_2015_01_015
crossref_primary_10_3390_app11052037
crossref_primary_10_1109_TNSRE_2021_3065389
crossref_primary_10_1038_s41598_024_56579_0
crossref_primary_10_1016_j_gaitpost_2019_12_032
crossref_primary_10_1109_ACCESS_2021_3115956
crossref_primary_10_1152_japplphysiol_00274_2006
crossref_primary_10_1016_j_jbiomech_2021_110447
crossref_primary_10_1007_s00421_010_1606_4
crossref_primary_10_1002_adma_202404330
crossref_primary_10_1002_j_2040_4603_2022_tb00203_x
crossref_primary_10_1016_j_jtbi_2013_12_014
crossref_primary_10_1371_journal_pone_0111595
crossref_primary_10_1016_j_jbiomech_2014_01_035
crossref_primary_10_1088_1748_3190_ac3adf
crossref_primary_10_1155_2017_8208764
crossref_primary_10_1016_j_jshs_2022_07_002
crossref_primary_10_3389_fphys_2018_01789
crossref_primary_10_1016_j_mehy_2019_03_028
crossref_primary_10_1088_0031_9155_61_6_2485
crossref_primary_10_1519_SSC_0b013e3181e928f9
crossref_primary_10_1152_jn_00251_2013
crossref_primary_10_1007_s00421_011_2032_y
crossref_primary_10_1038_s41598_025_86147_z
crossref_primary_10_1371_journal_pone_0255221
crossref_primary_10_1109_TNSRE_2025_3602709
crossref_primary_10_1053_j_jfas_2017_01_039
crossref_primary_10_1152_japplphysiol_90432_2008
crossref_primary_10_1242_jeb_245614
crossref_primary_10_3390_s21217387
crossref_primary_10_1016_j_ptsp_2018_05_012
crossref_primary_10_1111_sms_12111
crossref_primary_10_1186_s40798_023_00604_5
crossref_primary_10_1109_TIE_2014_2300060
crossref_primary_10_1371_journal_pone_0218047
crossref_primary_10_1007_s00167_021_06512_z
crossref_primary_10_1242_jeb_017269
crossref_primary_10_1016_j_jbiomech_2018_08_016
crossref_primary_10_1007_s10439_024_03669_9
crossref_primary_10_1016_j_gaitpost_2007_11_004
crossref_primary_10_1007_s00422_014_0625_3
crossref_primary_10_1109_TMECH_2018_2866337
crossref_primary_10_1111_j_1748_1716_2006_01634_x
crossref_primary_10_1242_jeb_017277
crossref_primary_10_1088_1748_3190_ad7345
crossref_primary_10_1073_pnas_1107972109
crossref_primary_10_11648_j_ijsspe_20251003_15
crossref_primary_10_2165_00007256_200636110_00004
crossref_primary_10_1038_s41598_023_49339_z
crossref_primary_10_1016_j_gaitpost_2017_01_007
crossref_primary_10_1016_j_jbiomech_2022_111216
crossref_primary_10_1038_s41598_018_23705_8
crossref_primary_10_1242_jeb_02434
crossref_primary_10_1249_MSS_0b013e318289d821
crossref_primary_10_2519_jospt_2007_2440
crossref_primary_10_1016_j_jbiomech_2014_01_054
crossref_primary_10_1155_2019_4512501
crossref_primary_10_1007_s00421_014_3092_6
crossref_primary_10_1017_S0263574709005736
crossref_primary_10_1080_21679169_2018_1561941
crossref_primary_10_1007_s00221_022_06513_5
crossref_primary_10_3390_jcm8122096
crossref_primary_10_7717_peerj_5182
crossref_primary_10_1080_21681163_2025_2485095
crossref_primary_10_1111_apha_12550
crossref_primary_10_1113_jphysiol_2007_127969
crossref_primary_10_1016_j_gaitpost_2020_01_018
crossref_primary_10_1016_j_jelekin_2012_01_011
crossref_primary_10_1111_sms_13669
crossref_primary_10_1007_s00421_008_0758_y
crossref_primary_10_1016_j_jajs_2021_09_001
crossref_primary_10_1016_j_mechatronics_2012_09_011
crossref_primary_10_1109_TNSRE_2013_2291903
crossref_primary_10_1242_bio_20148672
crossref_primary_10_1242_jeb_191247
crossref_primary_10_1002_jmor_20398
crossref_primary_10_1177_2325967119883357
crossref_primary_10_1177_1071100719839691
crossref_primary_10_1242_jeb_033639
crossref_primary_10_1371_journal_pone_0237449
crossref_primary_10_1016_j_humov_2022_102948
crossref_primary_10_1016_j_gaitpost_2006_05_002
crossref_primary_10_1109_TBME_2015_2491224
crossref_primary_10_1088_1361_665X_ac9dd0
crossref_primary_10_1152_japplphysiol_00253_2013
crossref_primary_10_3389_fbioe_2022_832087
crossref_primary_10_1016_j_jelekin_2012_08_012
crossref_primary_10_3390_machines4010001
crossref_primary_10_1038_s41598_017_00485_1
crossref_primary_10_1249_MSS_0000000000001065
crossref_primary_10_1016_j_jbiomech_2017_09_015
crossref_primary_10_1002_jfa2_70078
crossref_primary_10_1016_j_gaitpost_2013_01_027
crossref_primary_10_1152_japplphysiol_01208_2007
crossref_primary_10_1016_j_jelekin_2018_04_001
crossref_primary_10_1016_j_clinbiomech_2012_05_005
crossref_primary_10_3113_FAI_2009_0367
crossref_primary_10_1016_j_gaitpost_2011_02_011
crossref_primary_10_1007_s12541_013_0108_9
crossref_primary_10_1016_j_jtbi_2014_03_010
crossref_primary_10_1242_jeb_126854
crossref_primary_10_1242_jeb_235614
crossref_primary_10_1016_j_jelekin_2011_06_004
crossref_primary_10_1016_j_jhevol_2022_103195
crossref_primary_10_2519_jospt_2006_2013
crossref_primary_10_1152_jn_00391_2023
crossref_primary_10_1097_JES_0b013e3181878417
crossref_primary_10_1242_jeb_107656
crossref_primary_10_1249_MSS_0000000000002742
crossref_primary_10_1002_j_2040_4603_2017_tb00746_x
crossref_primary_10_1109_TBME_2021_3120716
crossref_primary_10_1242_jeb_083527
crossref_primary_10_3390_app11052227
crossref_primary_10_1016_j_jbiomech_2006_09_008
crossref_primary_10_1111_sms_13089
crossref_primary_10_1016_j_clinbiomech_2022_105664
crossref_primary_10_1177_0309364619883197
crossref_primary_10_1242_bio_044651
crossref_primary_10_1519_JSC_0b013e31817ae4a7
crossref_primary_10_1097_JES_0b013e3181b7ea29
crossref_primary_10_1016_j_jbiomech_2016_04_032
crossref_primary_10_1007_s11517_025_03335_9
crossref_primary_10_1093_icb_icab120
crossref_primary_10_1016_j_jbiomech_2022_111095
crossref_primary_10_1111_sms_12667
crossref_primary_10_1242_jeb_204032
crossref_primary_10_3389_fphys_2020_592183
crossref_primary_10_1109_TUFFC_2009_1002
crossref_primary_10_1016_j_jbiomech_2016_09_015
crossref_primary_10_1242_jeb_058461
crossref_primary_10_1016_j_gaitpost_2014_10_001
crossref_primary_10_1109_TMECH_2020_3041877
crossref_primary_10_1007_s00221_016_4703_8
crossref_primary_10_1126_scirobotics_aah4416
crossref_primary_10_1016_j_jbiomech_2016_11_062
crossref_primary_10_3389_fphys_2019_01575
crossref_primary_10_1152_jn_00967_2010
crossref_primary_10_1371_journal_pcbi_1004912
crossref_primary_10_1038_s41598_023_39718_x
crossref_primary_10_1152_japplphysiol_00462_2017
crossref_primary_10_1016_j_jbiomech_2025_112973
crossref_primary_10_1007_s40279_023_01904_2
crossref_primary_10_2165_11535920_000000000_00000
crossref_primary_10_1371_journal_pcbi_1012411
crossref_primary_10_1007_s10514_018_9697_6
crossref_primary_10_1007_s11012_016_0478_z
crossref_primary_10_1126_science_aba9947
crossref_primary_10_1097_JES_0b013e31820d7bc5
crossref_primary_10_1038_srep29870
crossref_primary_10_1242_jeb_097345
crossref_primary_10_1371_journal_pcbi_1008280
crossref_primary_10_1016_j_clinbiomech_2023_106158
crossref_primary_10_1016_j_jbiomech_2018_03_013
crossref_primary_10_1016_j_jelekin_2010_08_004
crossref_primary_10_1016_j_jbiomech_2006_12_017
crossref_primary_10_1016_j_jbiomech_2017_06_022
crossref_primary_10_7717_peerj_4164
crossref_primary_10_1016_j_gaitpost_2018_07_177
crossref_primary_10_1007_s10237_017_0890_x
crossref_primary_10_1016_j_jbiomech_2024_112440
crossref_primary_10_1152_japplphysiol_00277_2007
crossref_primary_10_1242_jeb_150011
crossref_primary_10_3390_app10030799
crossref_primary_10_1016_j_jelekin_2008_05_008
crossref_primary_10_1242_jeb_159749
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1152/japplphysiol.00189.2005
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
ExternalDocumentID 15845776
Genre Journal Article
Clinical Conference
GroupedDBID ---
-~X
.55
.GJ
18M
1CY
29J
2WC
39C
3O-
4.4
53G
5VS
85S
8M5
AAFWJ
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ABOCM
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
ACPRK
ACYGS
ADBBV
ADFNX
AEILP
AENEX
AFOSN
AFRAH
AGCDD
AGNAY
AI.
AIDAL
AJUXI
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
C1A
C2-
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMOBN
F5P
FRP
GX1
H13
H~9
ITBOX
J5H
KQ8
L7B
MVM
NEJ
NPM
OHT
OK1
P-O
P2P
P6G
PQQKQ
RAP
RHF
RHI
RPL
RPRKH
SJN
TR2
UHB
UKR
UPT
VH1
VXZ
W8F
WH7
WOQ
X7M
XOL
XSW
YBH
YCJ
YQJ
YQT
YWH
ZXP
~02
7X8
ADXHL
ID FETCH-LOGICAL-c465t-ffbb1d0d90189773646f8c6e513db2eb560a9838a5c90c90a38ccad49297ea372
IEDL.DBID 7X8
ISICitedReferencesCount 368
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000230486200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 8750-7587
IngestDate Fri Sep 05 09:07:31 EDT 2025
Wed Feb 19 01:41:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-ffbb1d0d90189773646f8c6e513db2eb560a9838a5c90c90a38ccad49297ea372
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference Proceeding-1
ObjectType-Feature-3
content type line 23
PMID 15845776
PQID 68035414
PQPubID 23479
ParticipantIDs proquest_miscellaneous_68035414
pubmed_primary_15845776
PublicationCentury 2000
PublicationDate 2005-08-01
PublicationDateYYYYMMDD 2005-08-01
PublicationDate_xml – month: 08
  year: 2005
  text: 2005-08-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2005
SSID ssj0014451
Score 2.37254
Snippet The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 603
SubjectTerms Adaptation, Physiological - physiology
Adult
Ankle Joint - physiology
Computer Simulation
Energy Transfer - physiology
Humans
Image Interpretation, Computer-Assisted - methods
Male
Models, Biological
Muscle Contraction - physiology
Muscle, Skeletal - diagnostic imaging
Muscle, Skeletal - physiology
Tendons - diagnostic imaging
Tendons - physiology
Ultrasonography
Walking - physiology
Title Muscle-tendon interaction and elastic energy usage in human walking
URI https://www.ncbi.nlm.nih.gov/pubmed/15845776
https://www.proquest.com/docview/68035414
Volume 99
WOSCitedRecordID wos000230486200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6qFfHio76fexBvwTz3AYJIsXhp6UGht7LZ3YhSE7VW6b93ZpPiSTwIIadNWCazu1_mm5kP4DxWiHNz2v204EEaGx5IRRSiMTHxQNymhRebEIOBHI3UsAVXi1oYSqtc7Il-o7aVoRj5JZdhQpLV169vAWlGEbfaCGgsQTtBIEPLUox-OARqvVVH98IAUbFosrvwwLp8JnbYhw6qCXER0pesZL-jTH_a9Db-N89NWG9QJrup3WILWq7swPZNiX_YL3N2wYb1pKrHeQdW-w29vg3d_myK4wOKi1clo1YS73XhA9OlZQ6RNr6QOV8vyGaUk4aDmNf5Y196QmH3HXjo3d5374JGZSEwKc8-gqLI88iGVpEZhEh4ygtpuMuixOaxyxESaSUTqTOjQrx0IvGr2xRxlXA6EfEuLJdV6faB8cjEWayNMnmWilDJwiqb6ih1meSy0AdwtrDZGL2YqAldumo2HS-sdgB7tdnHr3WzjXGECCkTgh_--ewRrPm-qj477xjaBa5fdwIr5vPjafp-6p0D74Nh_xspIsPu
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muscle-tendon+interaction+and+elastic+energy+usage+in+human+walking&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Ishikawa%2C+Masaki&rft.au=Komi%2C+Paavo+V&rft.au=Grey%2C+Michael+J&rft.au=Lepola%2C+Vesa&rft.date=2005-08-01&rft.issn=8750-7587&rft.volume=99&rft.issue=2&rft.spage=603&rft_id=info:doi/10.1152%2Fjapplphysiol.00189.2005&rft_id=info%3Apmid%2F15845776&rft_id=info%3Apmid%2F15845776&rft.externalDocID=15845776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon