Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects

In the golden age of pharmaceutical nanocarriers, we are witnessing a maturation stage of the original concepts and ideas. There is no doubt that nanoformulations are extremely valuable tools for drug delivery applications; the current challenge is how to optimize them to ensure that they are safe,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in molecular biosciences Jg. 7; S. 587997
Hauptverfasser: Scioli Montoto, Sebastián, Muraca, Giuliana, Ruiz, María Esperanza
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Media S.A 30.10.2020
Schlagworte:
ISSN:2296-889X, 2296-889X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the golden age of pharmaceutical nanocarriers, we are witnessing a maturation stage of the original concepts and ideas. There is no doubt that nanoformulations are extremely valuable tools for drug delivery applications; the current challenge is how to optimize them to ensure that they are safe, effective and scalable, so that they can be manufactured at an industrial level and advance to clinical use. In this context, lipid nanoparticles have gained ground, since they are generally regarded as non-toxic, biocompatible and easy-to-produce formulations. Pharmaceutical applications of lipid nanocarriers are a burgeoning field for the transport and delivery of a diversity of therapeutic agents, from biotechnological products to small drug molecules. This review starts with a brief overview of the characteristics of solid lipid nanoparticles and discusses the relevancy of performing systematic preformulation studies. The main applications, as well as the advantages that this type of nanovehicles offers in certain therapeutic scenarios are discussed. Next, pharmacokinetic aspects are described, such as routes of administration, absorption after oral administration, distribution in the organism (including brain penetration) and elimination processes. Safety and toxicity issues are also addressed. Our work presents an original point of view, addressing the biopharmaceutical aspects of these nanovehicles by means of descriptive statistics of the state-of-the-art of solid lipid nanoparticles research. All the presented results, trends, graphs and discussions are based in a systematic (and reproducible) bibliographic search that considered only original papers in the subject, covering a 7 years range (2013-today), a period that accounts for more than 60% of the total number of publications in the topic in the main bibliographic databases and search engines. Focus was placed on the therapeutic fields of application, absorption and distribution processes and current efforts for the translation into the clinical practice of lipid-based nanoparticles. For this, the currently active clinical trials on lipid nanoparticles were reviewed, with a brief discussion on what achievements or milestones are still to be reached, as a way of understanding the reasons for the scarce number of solid lipid nanoparticles undergoing clinical trials.
AbstractList In the golden age of pharmaceutical nanocarriers, we are witnessing a maturation stage of the original concepts and ideas. There is no doubt that nanoformulations are extremely valuable tools for drug delivery applications; the current challenge is how to optimize them to ensure that they are safe, effective and scalable, so that they can be manufactured at an industrial level and advance to clinical use. In this context, lipid nanoparticles have gained ground, since they are generally regarded as non-toxic, biocompatible and easy-to-produce formulations. Pharmaceutical applications of lipid nanocarriers are a burgeoning field for the transport and delivery of a diversity of therapeutic agents, from biotechnological products to small drug molecules. This review starts with a brief overview of the characteristics of solid lipid nanoparticles and discusses the relevancy of performing systematic preformulation studies. The main applications, as well as the advantages that this type of nanovehicles offers in certain therapeutic scenarios are discussed. Next, pharmacokinetic aspects are described, such as routes of administration, absorption after oral administration, distribution in the organism (including brain penetration) and elimination processes. Safety and toxicity issues are also addressed. Our work presents an original point of view, addressing the biopharmaceutical aspects of these nanovehicles by means of descriptive statistics of the state-of-the-art of solid lipid nanoparticles research. All the presented results, trends, graphs and discussions are based in a systematic (and reproducible) bibliographic search that considered only original papers in the subject, covering a 7 years range (2013-today), a period that accounts for more than 60% of the total number of publications in the topic in the main bibliographic databases and search engines. Focus was placed on the therapeutic fields of application, absorption and distribution processes and current efforts for the translation into the clinical practice of lipid-based nanoparticles. For this, the currently active clinical trials on lipid nanoparticles were reviewed, with a brief discussion on what achievements or milestones are still to be reached, as a way of understanding the reasons for the scarce number of solid lipid nanoparticles undergoing clinical trials.In the golden age of pharmaceutical nanocarriers, we are witnessing a maturation stage of the original concepts and ideas. There is no doubt that nanoformulations are extremely valuable tools for drug delivery applications; the current challenge is how to optimize them to ensure that they are safe, effective and scalable, so that they can be manufactured at an industrial level and advance to clinical use. In this context, lipid nanoparticles have gained ground, since they are generally regarded as non-toxic, biocompatible and easy-to-produce formulations. Pharmaceutical applications of lipid nanocarriers are a burgeoning field for the transport and delivery of a diversity of therapeutic agents, from biotechnological products to small drug molecules. This review starts with a brief overview of the characteristics of solid lipid nanoparticles and discusses the relevancy of performing systematic preformulation studies. The main applications, as well as the advantages that this type of nanovehicles offers in certain therapeutic scenarios are discussed. Next, pharmacokinetic aspects are described, such as routes of administration, absorption after oral administration, distribution in the organism (including brain penetration) and elimination processes. Safety and toxicity issues are also addressed. Our work presents an original point of view, addressing the biopharmaceutical aspects of these nanovehicles by means of descriptive statistics of the state-of-the-art of solid lipid nanoparticles research. All the presented results, trends, graphs and discussions are based in a systematic (and reproducible) bibliographic search that considered only original papers in the subject, covering a 7 years range (2013-today), a period that accounts for more than 60% of the total number of publications in the topic in the main bibliographic databases and search engines. Focus was placed on the therapeutic fields of application, absorption and distribution processes and current efforts for the translation into the clinical practice of lipid-based nanoparticles. For this, the currently active clinical trials on lipid nanoparticles were reviewed, with a brief discussion on what achievements or milestones are still to be reached, as a way of understanding the reasons for the scarce number of solid lipid nanoparticles undergoing clinical trials.
In the golden age of pharmaceutical nanocarriers, we are witnessing a maturation stage of the original concepts and ideas. There is no doubt that nanoformulations are extremely valuable tools for drug delivery applications; the current challenge is how to optimize them to ensure that they are safe, effective and scalable, so that they can be manufactured at an industrial level and advance to clinical use. In this context, lipid nanoparticles have gained ground, since they are generally regarded as non-toxic, biocompatible and easy-to-produce formulations. Pharmaceutical applications of lipid nanocarriers are a burgeoning field for the transport and delivery of a diversity of therapeutic agents, from biotechnological products to small drug molecules. This review starts with a brief overview of the characteristics of solid lipid nanoparticles and discusses the relevancy of performing systematic preformulation studies. The main applications, as well as the advantages that this type of nanovehicles offers in certain therapeutic scenarios are discussed. Next, pharmacokinetic aspects are described, such as routes of administration, absorption after oral administration, distribution in the organism (including brain penetration) and elimination processes. Safety and toxicity issues are also addressed. Our work presents an original point of view, addressing the biopharmaceutical aspects of these nanovehicles by means of descriptive statistics of the state-of-the-art of solid lipid nanoparticles research. All the presented results, trends, graphs and discussions are based in a systematic (and reproducible) bibliographic search that considered only original papers in the subject, covering a 7 years range (2013-today), a period that accounts for more than 60% of the total number of publications in the topic in the main bibliographic databases and search engines. Focus was placed on the therapeutic fields of application, absorption and distribution processes and current efforts for the translation into the clinical practice of lipid-based nanoparticles. For this, the currently active clinical trials on lipid nanoparticles were reviewed, with a brief discussion on what achievements or milestones are still to be reached, as a way of understanding the reasons for the scarce number of solid lipid nanoparticles undergoing clinical trials.
Author Ruiz, María Esperanza
Muraca, Giuliana
Scioli Montoto, Sebastián
AuthorAffiliation 2 Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires , Argentina
3 Instituto Nacional de Medicamentos (INAME, ANMAT) , Buenos Aires , Argentina
1 Laboratorio de Investigación y Desarrollo de Bioactivos, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , La Plata , Argentina
AuthorAffiliation_xml – name: 3 Instituto Nacional de Medicamentos (INAME, ANMAT) , Buenos Aires , Argentina
– name: 2 Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires , Argentina
– name: 1 Laboratorio de Investigación y Desarrollo de Bioactivos, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , La Plata , Argentina
Author_xml – sequence: 1
  givenname: Sebastián
  surname: Scioli Montoto
  fullname: Scioli Montoto, Sebastián
– sequence: 2
  givenname: Giuliana
  surname: Muraca
  fullname: Muraca, Giuliana
– sequence: 3
  givenname: María Esperanza
  surname: Ruiz
  fullname: Ruiz, María Esperanza
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33195435$$D View this record in MEDLINE/PubMed
BookMark eNp1kl1rFDEUhoNUbK39Ad7IXHqzaz4mX14ItbW1sKiggngTziSZbUpmMk1mC_33zu5spRW8ScKb9zznhLwv0UGfeo_Qa4KXjCn9ru1SbJYUU7zkSmotn6EjSrVYKKV_HTw6H6KTUm4wxoRjJkX9Ah0yRjSvGT9Cv7-nGFy1CsO0foE-DZDHYKMvVZtydZ436-rcx3Dn8_376ts15A5simkdLMQKeld9DGmYZb8Zd-ppGbwdyyv0vIVY_Ml-P0Y_Lz79OPu8WH29vDo7XS1sLfi4aG0jmGc1k55O49LaOaGgxa11rcQN5wyzmjdOO6UVE05LK1sKngJgYgmwY3Q1c12CGzPk0EG-NwmC2Qkpr83-TcYTzKi0WAnFaiK8JhaI4ko0llNJ6cT6MLOGTdN5Z30_ZohPoE9v-nBt1unOSCFoLfAEeLsH5HS78WU0XSjWxwi9T5tiJhPBmFOuJ-ubx73-Nnn4nMkgZ4PNqZTsW2PDCGNI29YhGoLNNglmlwSzTYKZkzBVkn8qH-D_r_kDQWe4VQ
CitedBy_id crossref_primary_10_1002_adfm_202510532
crossref_primary_10_2174_2210303113666221226092547
crossref_primary_10_1208_s12249_021_02189_2
crossref_primary_10_1016_j_ijbiomac_2022_12_076
crossref_primary_10_3390_app112110250
crossref_primary_10_1038_s41598_022_23013_2
crossref_primary_10_1007_s00216_024_05283_z
crossref_primary_10_1016_j_envres_2023_117264
crossref_primary_10_3390_jpm13091328
crossref_primary_10_1080_17425247_2022_2138328
crossref_primary_10_7759_cureus_90291
crossref_primary_10_1007_s10876_024_02751_5
crossref_primary_10_1007_s40005_024_00694_7
crossref_primary_10_1016_j_ijpharm_2024_124345
crossref_primary_10_3390_ijms23084101
crossref_primary_10_1186_s43094_022_00414_8
crossref_primary_10_1080_1040841X_2023_2274835
crossref_primary_10_1016_j_prp_2024_155489
crossref_primary_10_3390_pharmaceutics14112403
crossref_primary_10_3390_biomedicines10123051
crossref_primary_10_1080_09205063_2022_2054399
crossref_primary_10_26599_NBE_2024_9290081
crossref_primary_10_1080_20415990_2025_2484170
crossref_primary_10_1016_j_biopha_2024_117149
crossref_primary_10_1038_s41392_022_01082_z
crossref_primary_10_1186_s12951_022_01309_9
crossref_primary_10_3390_pharmaceutics17060707
crossref_primary_10_2174_1574885518666230727100812
crossref_primary_10_3390_ph17101389
crossref_primary_10_1007_s12032_025_02609_4
crossref_primary_10_1002_anbr_202100109
crossref_primary_10_3390_ijms23052606
crossref_primary_10_1080_02652048_2024_2326091
crossref_primary_10_3389_fphar_2021_713616
crossref_primary_10_1016_j_jddst_2021_102886
crossref_primary_10_3390_antiox12020393
crossref_primary_10_3390_biomedicines10020283
crossref_primary_10_1080_17425247_2024_2421402
crossref_primary_10_1016_j_apsb_2022_12_005
crossref_primary_10_1002_slct_202404746
crossref_primary_10_1016_j_jconrel_2022_08_021
crossref_primary_10_1016_j_scitotenv_2023_169748
crossref_primary_10_1002_bit_28205
crossref_primary_10_1080_02652048_2024_2437362
crossref_primary_10_1016_j_ijpharm_2024_124800
crossref_primary_10_2174_1574885518666230727125109
crossref_primary_10_3390_microorganisms10081504
crossref_primary_10_1007_s11033_022_07683_9
crossref_primary_10_3390_nano12071146
crossref_primary_10_3390_pharmaceutics16121574
crossref_primary_10_3390_pharmaceutics17010121
crossref_primary_10_1016_j_jinorgbio_2022_111751
crossref_primary_10_3390_polym16233265
crossref_primary_10_3390_pharmaceutics14102180
crossref_primary_10_1016_j_biopha_2024_116271
crossref_primary_10_1016_j_nxnano_2025_100137
crossref_primary_10_1515_ntrev_2024_0134
crossref_primary_10_1080_1061186X_2024_2409884
crossref_primary_10_3390_ijms251910712
crossref_primary_10_3389_fnano_2022_836674
crossref_primary_10_1049_nbt2_12094
crossref_primary_10_52711_0974_360X_2023_00547
crossref_primary_10_2174_0113816128337166241219081400
crossref_primary_10_1080_14760584_2021_1984890
crossref_primary_10_1007_s11095_025_03836_0
crossref_primary_10_1007_s40005_021_00557_5
crossref_primary_10_3390_medicina60020208
crossref_primary_10_1016_j_jddst_2022_103938
crossref_primary_10_3389_fphar_2022_900610
crossref_primary_10_2174_1574885517666221006105306
crossref_primary_10_1016_j_jddst_2025_107319
crossref_primary_10_3390_pharmaceutics16121584
crossref_primary_10_1002_adma_202303266
crossref_primary_10_3389_fimmu_2023_1129296
crossref_primary_10_3390_antibiotics13111042
crossref_primary_10_1007_s11696_024_03531_1
crossref_primary_10_3389_fchem_2024_1449380
crossref_primary_10_2147_IJN_S526731
crossref_primary_10_1089_adt_2024_120
crossref_primary_10_3389_fmolb_2021_655435
crossref_primary_10_3762_bjnano_14_66
crossref_primary_10_3390_nano15171326
crossref_primary_10_1208_s12249_025_03133_4
crossref_primary_10_1016_j_ijbiomac_2024_136496
crossref_primary_10_3390_pharmaceutics13122162
crossref_primary_10_3390_ijms251910382
crossref_primary_10_1016_j_ijpharm_2024_124662
crossref_primary_10_1007_s40199_022_00446_8
crossref_primary_10_1088_2399_1984_ada900
crossref_primary_10_1186_s12951_020_00766_4
crossref_primary_10_3390_membranes13030343
crossref_primary_10_3390_foods12122327
crossref_primary_10_3390_pharmaceutics16050618
crossref_primary_10_1007_s12247_022_09617_1
crossref_primary_10_1016_j_jddst_2023_105270
crossref_primary_10_1089_bio_2024_0156
crossref_primary_10_1016_j_jconrel_2023_11_012
crossref_primary_10_1016_j_ejphar_2025_178121
crossref_primary_10_1186_s12943_023_01797_9
crossref_primary_10_3390_pharmaceutics17081079
crossref_primary_10_1002_btm2_10601
crossref_primary_10_1016_j_ijbiomac_2021_06_059
crossref_primary_10_3390_cancers13143539
crossref_primary_10_1002_ptr_8054
crossref_primary_10_1016_j_ejps_2024_106928
crossref_primary_10_4155_tde_2023_0116
crossref_primary_10_1016_j_talanta_2022_123945
crossref_primary_10_1016_j_addr_2021_03_004
crossref_primary_10_3389_fbioe_2024_1349077
crossref_primary_10_1002_ddr_22097
crossref_primary_10_1007_s12668_024_01730_4
crossref_primary_10_1016_j_ijpharm_2022_122498
crossref_primary_10_1016_j_ijpharm_2025_125819
crossref_primary_10_3389_fchem_2021_580118
crossref_primary_10_1016_j_semcancer_2022_06_003
crossref_primary_10_1016_j_fbio_2025_106305
crossref_primary_10_1007_s00210_023_02522_5
crossref_primary_10_1016_j_ejpb_2022_05_016
crossref_primary_10_1016_j_addr_2022_114293
crossref_primary_10_3390_cosmetics11040112
crossref_primary_10_3390_pharmaceutics14051034
crossref_primary_10_1002_smll_202502315
crossref_primary_10_3389_fphar_2024_1435133
crossref_primary_10_1002_mabi_202300102
crossref_primary_10_1007_s12033_022_00479_z
crossref_primary_10_1016_j_bbcan_2022_188703
crossref_primary_10_1016_j_ijpharm_2021_120321
crossref_primary_10_1039_D5BM01176K
crossref_primary_10_3390_foods13172812
crossref_primary_10_1111_jcmm_17677
crossref_primary_10_3390_antiox12030633
crossref_primary_10_3390_pharmaceutics16111366
crossref_primary_10_1016_j_jddst_2023_104616
crossref_primary_10_1016_j_biopha_2022_113429
crossref_primary_10_1007_s00210_025_04003_3
crossref_primary_10_1016_j_jconrel_2022_04_007
crossref_primary_10_1016_j_colsurfb_2025_115122
crossref_primary_10_3390_vaccines12070764
crossref_primary_10_1016_j_foodres_2025_115861
crossref_primary_10_3390_nano11010171
crossref_primary_10_1016_j_colsurfb_2023_113148
crossref_primary_10_2174_0115734137301584240722054651
crossref_primary_10_1016_j_jsps_2024_102209
crossref_primary_10_1038_s41392_023_01561_x
crossref_primary_10_1080_01932691_2024_2399122
crossref_primary_10_1080_09712119_2025_2497329
crossref_primary_10_3390_mi16040389
crossref_primary_10_1016_j_ccr_2024_216206
crossref_primary_10_1680_jbibn_23_00004
crossref_primary_10_2174_0118722105250901231201024930
crossref_primary_10_1016_j_carpta_2025_100942
crossref_primary_10_1007_s00210_024_03581_y
crossref_primary_10_1002_wnan_1898
crossref_primary_10_1007_s11224_022_01950_y
crossref_primary_10_1208_s12249_024_02925_4
crossref_primary_10_1007_s12088_024_01392_6
crossref_primary_10_1007_s00210_024_03082_y
crossref_primary_10_1515_tnsci_2022_0359
crossref_primary_10_1177_15330338221080974
crossref_primary_10_1039_D3BM00219E
crossref_primary_10_1016_j_pmatsci_2025_101499
crossref_primary_10_1002_elsc_202200037
crossref_primary_10_3390_app11083553
crossref_primary_10_7759_cureus_68339
crossref_primary_10_1016_j_jddst_2021_103032
crossref_primary_10_1080_17435889_2024_2440301
crossref_primary_10_3390_antiox10030436
crossref_primary_10_1016_j_addr_2024_115283
crossref_primary_10_1016_j_colsurfa_2024_133207
crossref_primary_10_3390_pharmaceutics14112463
crossref_primary_10_4155_tde_2021_0068
crossref_primary_10_3390_ijms22052318
crossref_primary_10_3390_pharmaceutics14112464
crossref_primary_10_3390_pharmaceutics14040813
crossref_primary_10_1155_2021_9571286
crossref_primary_10_3390_molecules29163828
crossref_primary_10_1208_s12249_022_02410_w
crossref_primary_10_1016_j_apsb_2023_01_018
crossref_primary_10_3390_molecules27061943
crossref_primary_10_3390_ph15091115
crossref_primary_10_56294_saludcyt20251814
crossref_primary_10_4103_1673_5374_374137
crossref_primary_10_1016_j_apsb_2022_11_026
crossref_primary_10_1016_j_addr_2021_113855
crossref_primary_10_1002_adtp_202300275
crossref_primary_10_3390_ani14040655
crossref_primary_10_3390_ijms25168720
crossref_primary_10_1007_s13596_024_00787_6
crossref_primary_10_1016_j_biopha_2023_115512
crossref_primary_10_1016_j_biopha_2021_111940
crossref_primary_10_1016_j_ejpb_2021_04_025
crossref_primary_10_1016_j_ijpharm_2024_124866
crossref_primary_10_3390_ma14092440
crossref_primary_10_3390_vaccines9050535
crossref_primary_10_1016_j_jddst_2022_103982
crossref_primary_10_2147_DDDT_S461969
crossref_primary_10_1002_adma_202108757
crossref_primary_10_1002_adbi_202400623
crossref_primary_10_3390_ph16121634
crossref_primary_10_3390_molecules27113460
crossref_primary_10_1007_s00210_024_03543_4
crossref_primary_10_3390_pharmaceutics15030831
crossref_primary_10_1002_wnan_1956
crossref_primary_10_1016_j_ijpharm_2024_124876
crossref_primary_10_1016_j_jiec_2025_08_042
crossref_primary_10_3390_ma15072388
crossref_primary_10_4155_tde_2021_0086
crossref_primary_10_3390_pharmaceutics14030533
crossref_primary_10_1016_j_jddst_2023_105182
crossref_primary_10_3389_fcell_2021_805336
crossref_primary_10_3390_pharmaceutics13010038
crossref_primary_10_3390_encyclopedia2020063
crossref_primary_10_1080_17425247_2024_2410951
crossref_primary_10_1007_s00210_024_03033_7
crossref_primary_10_1007_s11244_022_01697_0
crossref_primary_10_1080_03639045_2025_2495848
crossref_primary_10_1016_j_biopha_2021_112137
crossref_primary_10_1016_j_actatropica_2023_106846
crossref_primary_10_1080_09205063_2022_2121589
crossref_primary_10_1007_s10924_024_03374_7
crossref_primary_10_1186_s12951_025_03378_y
crossref_primary_10_1016_j_biopha_2022_113868
crossref_primary_10_1039_D4MH01891E
crossref_primary_10_2217_nnm_2023_0243
crossref_primary_10_3390_ijms26051868
crossref_primary_10_1016_j_ejpb_2023_07_013
crossref_primary_10_2174_0113816128319233240725103706
crossref_primary_10_1002_smll_202501431
crossref_primary_10_3389_fphar_2025_1592066
crossref_primary_10_2147_DDDT_S441325
crossref_primary_10_2174_1381612829666230330144614
crossref_primary_10_1002_jat_4379
crossref_primary_10_2147_IJN_S462213
crossref_primary_10_1016_j_biopha_2024_116433
crossref_primary_10_3389_fmolb_2022_887678
crossref_primary_10_1002_ptr_8230
crossref_primary_10_3390_life12101618
crossref_primary_10_1016_j_lfs_2024_122614
crossref_primary_10_3390_ph18030366
crossref_primary_10_1016_j_biopha_2024_117404
crossref_primary_10_1016_j_biopha_2023_114505
crossref_primary_10_1016_j_xphs_2022_02_014
crossref_primary_10_1007_s12272_022_01413_2
crossref_primary_10_1016_j_jddst_2022_103411
crossref_primary_10_1016_j_jddst_2022_103656
crossref_primary_10_1002_adtp_202200326
crossref_primary_10_3390_pharmaceutics15051503
crossref_primary_10_3390_plants10061238
crossref_primary_10_1080_02652048_2021_2021307
crossref_primary_10_2174_0122117385312175240502100018
crossref_primary_10_38124_ijisrt_25sep096
crossref_primary_10_22159_ijap_2025v17i5_54465
crossref_primary_10_3389_fchem_2022_914126
crossref_primary_10_1002_cbdv_202401581
crossref_primary_10_1002_advs_202403473
crossref_primary_10_1002_cbf_3909
crossref_primary_10_3390_colloids8050055
crossref_primary_10_1002_fsn3_4043
crossref_primary_10_1080_10717544_2022_2026535
crossref_primary_10_3390_pharmaceutics13020267
crossref_primary_10_1016_j_apmt_2022_101631
crossref_primary_10_1038_s41598_024_62676_x
crossref_primary_10_3390_pharmaceutics16081017
crossref_primary_10_1007_s44174_025_00276_7
crossref_primary_10_1016_j_jmgm_2023_108539
crossref_primary_10_3390_pharmaceutics15122753
crossref_primary_10_1007_s13346_022_01149_y
crossref_primary_10_2174_0115672018276382231207103955
crossref_primary_10_3389_fmedt_2022_893056
crossref_primary_10_1002_elps_202100182
crossref_primary_10_1016_j_biopha_2024_117465
crossref_primary_10_1007_s13204_021_02018_9
crossref_primary_10_3390_pharmaceutics16101297
crossref_primary_10_1557_s43579_022_00257_7
crossref_primary_10_3390_biomedicines11030705
crossref_primary_10_3390_ph18050615
crossref_primary_10_1007_s13346_025_01962_1
crossref_primary_10_1080_09205063_2022_2103625
crossref_primary_10_2147_IJN_S443692
crossref_primary_10_12923_cipms_2025_0002
crossref_primary_10_1186_s40824_023_00343_4
crossref_primary_10_1016_j_biopha_2022_113932
crossref_primary_10_1080_13880209_2025_2469607
crossref_primary_10_1016_j_heliyon_2023_e13676
crossref_primary_10_2174_0113816128329768241230071303
crossref_primary_10_1093_jpp_rgae155
crossref_primary_10_1007_s12668_024_01373_5
crossref_primary_10_3390_ph16030362
crossref_primary_10_1155_2022_5288698
crossref_primary_10_1016_j_ijpharm_2021_120960
crossref_primary_10_1124_dmd_122_000980
crossref_primary_10_3389_fchem_2022_908386
crossref_primary_10_3390_pharmaceutics15030863
crossref_primary_10_1039_D5PM00109A
crossref_primary_10_1016_j_ijpharm_2025_125669
crossref_primary_10_2174_0113816128304923240704113319
crossref_primary_10_3390_biomedicines10092179
crossref_primary_10_3390_antibiotics12010184
crossref_primary_10_1016_j_addr_2023_114721
crossref_primary_10_3390_pharmaceutics15010221
crossref_primary_10_3390_ph16020311
crossref_primary_10_1016_j_jddst_2021_102912
crossref_primary_10_1016_j_jddst_2024_105948
crossref_primary_10_3390_antiox11040742
crossref_primary_10_1007_s10311_021_01276_x
crossref_primary_10_3390_jcm12216867
crossref_primary_10_1016_j_colsurfb_2024_113869
crossref_primary_10_3390_ph16030474
crossref_primary_10_3389_fcimb_2023_1328519
crossref_primary_10_2174_0124522716311647240613050008
crossref_primary_10_1016_j_jinorgbio_2025_112900
crossref_primary_10_3390_pharmaceutics13040437
crossref_primary_10_3390_pharmaceutics14030506
crossref_primary_10_1016_j_ijpharm_2024_124972
crossref_primary_10_1016_j_actatropica_2022_106342
crossref_primary_10_1016_j_ijpharm_2022_121782
crossref_primary_10_1002_aoc_7862
crossref_primary_10_3390_mps6050097
crossref_primary_10_1007_s00210_024_03559_w
Cites_doi 10.1038/s41598-018-37900-0
10.1016/j.ijpharm.2019.118575
10.1016/J.MSEC.2016.05.119
10.1080/03639045.2017.1304957
10.1016/J.JCONREL.2014.10.026
10.1016/S0928-0987(02)00051-9
10.26452/ijrps.v10i2.395
10.1016/j.ejpb.2018.01.001
10.1186/s12951-016-0177-x
10.3390/nano10071353
10.2217/nnm.12.141
10.1016/J.EJPB.2013.02.005
10.3109/21691401.2015.1036997
10.1016/j.ejpb.2018.11.017
10.1080/10717544.2016.1194498
10.1038/nrc.2016.108
10.1080/10837450.2017.1384491
10.1155/2017/5984014
10.1002/chin.200502271
10.1016/j.colsurfa.2016.05.017
10.1016/J.IMMUNI.2016.02.026
10.12659/MSM.924700
10.1080/00914037.2019.1570513
10.1016/j.ijpharm.2018.08.028
10.1158/1538-7445.am2019-ct210
10.1002/smll.201100001
10.1016/B978-0-08-101750-0.00013-1
10.1111/jphp.12217
10.1155/2017/6509184
10.1016/j.jtice.2019.07.010
10.1007/s11095-014-1469-1
10.1517/17425247.2013.784742
10.1517/17425247.2014.938634
10.1038/35888
10.1039/c3fo60036j
10.1016/B978-0-12-801076-1.00023-X
10.1016/J.TIBTECH.2016.07.006
10.1016/J.YMTHE.2017.03.013
10.1039/c9tb01081e
10.1016/J.IJPHARM.2014.08.008
10.4103/0250-474X.115457
10.1080/03639045.2017.1391835
10.1016/j.ejpb.2017.04.013
10.3109/08982104.2015.1117490
10.1016/j.colsurfb.2020.111076
10.1088/0957-4484/26/49/495103
10.1016/j.ejpb.2016.08.001
10.1021/mp700113r
10.1093/nar/gkx1037
10.1021/acsnano.5b01326
10.1016/j.lfs.2016.01.025
10.1016/s0169-409x(01)00105-3
10.1016/j.ijpharm.2019.03.056
10.1016/j.ejpb.2013.01.001
10.1038/nrd2742
10.1080/02652048.2019.1573857
10.1016/J.ACTBIO.2013.04.009
10.1007/978-3-030-34544-0_13
10.1089/nat.2018.0721
10.1016/j.msec.2019.03.060
10.1155/2017/9042851
10.1016/J.CARBPOL.2014.12.084
10.1021/mp5004674
10.1016/j.msec.2016.03.031
10.2147/IJN.S225086
10.1111/cbdd.13007
10.1556/1646.10.2018.45
10.1016/J.DRUDIS.2014.04.011
10.1016/J.ADDR.2016.04.025
10.1016/j.ymthe.2019.02.012
10.1007/3-540-32702-9_3
10.1126/sciadv.1601556
10.1038/nrd.2018.132
10.1208/s12249-016-0573-4
10.1021/acs.molpharmaceut.7b00169
10.1016/j.bbapap.2020.140466
10.1038/s41598-020-57943-6
10.1016/j.ijpharm.2017.06.045
10.1186/s12883-017-0948-5
10.1016/j.jddst.2016.10.012
10.1021/acschemneuro.9b00343
10.1038/nrgastro.2017.79
10.1080/03639045.2016.1185437
10.3389/fnagi.2019.00373
10.1080/21691401.2018.1434186
10.1016/j.ijpharm.2016.10.054
10.1080/21691401.2018.1465068
10.1155/2013/584549
10.1016/S0939-6411(02)00081-4
10.1208/s12249-017-0944-5
10.1038/nrg908
10.2217/nnm-2018-0139
10.1080/21691401.2017.1396996
10.1208/s12249-019-1337-8
10.2217/nnm-2018-0417
10.2217/nnm-2016-0336
10.1016/j.colsurfb.2018.02.011
10.1007/978-3-319-99593-9_6
10.1016/j.ijpharm.2015.05.005
10.1016/j.ejps.2013.03.013
10.1080/21691401.2019.1593858
10.1088/2053-1591/aaf8a3
10.1080/10408444.2020.1719974
10.1002/adma.201805730
10.2147/IJN.S215153
10.1016/S0169-409X(02)00118-7
10.1016/j.molliq.2018.05.075
10.1021/mp300649z
10.1080/02652048.2019.1665723
10.1016/J.IMPACT.2016.12.001
10.1039/c9nj01634a
10.1016/j.jconrel.2014.06.055
10.1002/smll.201903156
10.1615/CritRevTherDrugCarrierSyst.v26.i6.10
10.1016/j.clinbiochem.2020.06.011
10.1016/j.ejps.2017.12.006
10.1016/j.ejpb.2018.10.017
10.1016/j.ejps.2018.11.022
10.1016/j.ijpharm.2013.12.022
10.2174/157015908785777210
10.1002/jps.23359
10.25258/ijddt.v7i1.8917
10.1016/j.colsurfb.2015.10.041
10.53879/id.56.08.11694
10.1155/2014/363404
10.1038/nrd1470
10.1111/jcmm.13695
10.1016/j.biomaterials.2012.09.067
10.1016/J.ADDR.2016.04.007
10.1016/j.ejpb.2018.09.012
10.1016/j.conb.2018.12.014
10.1038/s41598-018-20632-6
10.1016/j.biomaterials.2017.11.040
10.1016/S0165-6147(96)90065-6
10.1021/acs.molpharmaceut.9b00861
10.1016/s0378-5173(02)00180-1
10.1080/03639045.2020.1752707
10.1016/j.colsurfb.2018.01.046
10.1002/btpr.1834
10.1039/tf9191400008
10.1016/j.ijbiomac.2020.02.132
10.1016/j.ijpharm.2018.07.014
10.1007/s11051-013-1960-3
10.1038/nrg3978
10.1038/196476a0
10.1016/j.ijpharm.2014.06.022
10.1016/j.colsurfa.2015.10.011
10.1007/s12668-019-00680-6
10.3109/10837450.2014.882935
10.1016/j.carbpol.2019.115682
10.1007/978-1-4614-1308-0_2
10.1080/1061186X.2019.1613409
10.1016/j.ejpb.2016.10.006
10.1016/J.EJPB.2016.10.024
10.1039/c5nr07474f
10.1016/0168-3659(94)90047-7
10.1021/mp400685v
10.1021/acsami.8b00507
10.1016/j.jconrel.2019.10.053
10.1080/03639045.2017.1291666
10.1016/j.jconrel.2014.09.005
10.1016/j.jconrel.2009.03.002
10.1186/s13756-019-0504-8
10.1080/10717544.2017.1388451
10.1016/j.addr.2012.09.006
10.3109/21691401.2016.1173046
10.1155/2013/750690
10.4314/tjpr.v16i8.3
10.1038/s41598-018-31693-y
10.1016/j.colsurfb.2018.03.052
10.3390/nano9020230
10.1016/j.ijpharm.2017.04.034
10.1016/j.nano.2017.07.014
10.1016/j.colsurfb.2020.111305
10.1002/ppsc.201800359
10.2147/IJN.S100625
10.3109/1061186X.2014.965717
10.1016/j.biomaterials.2019.119491
10.1002/smll.201100442
10.3109/03639045.2015.1062896
10.1166/jnn.2014.8722
10.1016/j.biopha.2019.109006
10.1007/s00239-019-09914-3
10.1351/goldbook.C01172
10.1080/03639045.2016.1275666
10.1016/j.ejpb.2014.06.011
10.1016/j.biomaterials.2011.01.021
10.1007/s11095-017-2283-3
10.1038/nbt936
10.26452/ijrps.v10i1.1783
10.1016/S0378-5173(96)04731-X
10.1038/natrevmats.2017.14
10.1016/J.COLSURFA.2013.12.023
10.1016/j.exppara.2013.07.017
10.1021/acs.bioconjchem.9b00348
10.1016/J.ADDR.2016.01.022
10.2174/156720181006131125150023
10.1016/S1470-2045(17)30698-8
10.1016/J.JCONREL.2010.01.036
10.1016/j.jconrel.2019.10.004
10.1016/j.ijpharm.2015.11.050
10.1016/j.nano.2015.11.017
10.1080/21691401.2017.1313267
10.1166/jbn.2014.1834
10.1146/annurev-food-032818-121738
10.1016/j.colsurfb.2018.01.054
10.1016/j.colsurfb.2015.03.049
10.1016/B978-0-12-060309-1.50011-2
10.1080/02652048.2016.1200150
10.1016/J.JCONREL.2016.05.044
10.1016/j.ejpb.2005.02.006
10.1098/rsif.2017.0932
10.1080/21691401.2018.1546186
10.1080/21691401.2017.1366338
10.3390/pharmaceutics10020057
10.1021/acs.bioconjchem.6b00705
10.1021/acs.molpharmaceut.7b00846
10.1021/acsnano.7b04855
10.1016/j.ejps.2005.08.002
10.3109/10611869609015973
10.1080/10611860310001615956
10.1016/j.ijpharm.2014.11.017
10.1016/j.colsurfb.2020.111073
10.3390/pharmaceutics11110565
10.1080/17425247.2017.1262346
10.1021/ed032p2
10.1080/03639045.2019.1593434
10.1016/j.colsurfb.2019.01.027
10.1016/b978-0-12-817778-5.00008-7
10.1208/s12248-012-9432-8
10.2147/DDDT.S141031
10.1038/274923a0
10.1021/acschemneuro.8b00510
10.1208/s12249-020-01711-2
10.1016/j.colsurfb.2015.12.029
ContentType Journal Article
Copyright Copyright © 2020 Scioli Montoto, Muraca and Ruiz.
Copyright © 2020 Scioli Montoto, Muraca and Ruiz. 2020 Scioli Montoto, Muraca and Ruiz
Copyright_xml – notice: Copyright © 2020 Scioli Montoto, Muraca and Ruiz.
– notice: Copyright © 2020 Scioli Montoto, Muraca and Ruiz. 2020 Scioli Montoto, Muraca and Ruiz
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmolb.2020.587997
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2296-889X
ExternalDocumentID oai_doaj_org_article_e10327c08683416e91ca18586bc52722
PMC7662460
33195435
10_3389_fmolb_2020_587997
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
GROUPED_DOAJ
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
ACXDI
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c465t-fcb63e3437e288924dd68af0fcdf70b5530345bd9d89836d97c7f2ae2aa01c1a3
IEDL.DBID DOA
ISICitedReferencesCount 421
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588780700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-889X
IngestDate Fri Oct 03 12:37:05 EDT 2025
Thu Aug 21 14:11:08 EDT 2025
Thu Oct 02 06:40:07 EDT 2025
Mon Jul 21 05:52:15 EDT 2025
Tue Nov 18 22:31:04 EST 2025
Sat Nov 29 05:32:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords nanotoxicity
pharmacodynamics
solid lipid nanoparticles
pharmacokinetics
clinical trials
routes of administration
drug delivery
nanostructured lipid carriers
Language English
License Copyright © 2020 Scioli Montoto, Muraca and Ruiz.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-fcb63e3437e288924dd68af0fcdf70b5530345bd9d89836d97c7f2ae2aa01c1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
This article was submitted to Nanobiotechnology, a section of the journal Frontiers in Molecular Biosciences
Edited by: Michele Iafisco, National Research Council (CNR), Italy
Reviewed by: Amedea Barozzi Seabra, Universidade Federal do ABC, Brazil; Jyothi U. Menon, University of Rhode Island, United States
OpenAccessLink https://doaj.org/article/e10327c08683416e91ca18586bc52722
PMID 33195435
PQID 2461005259
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e10327c08683416e91ca18586bc52722
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7662460
proquest_miscellaneous_2461005259
pubmed_primary_33195435
crossref_citationtrail_10_3389_fmolb_2020_587997
crossref_primary_10_3389_fmolb_2020_587997
PublicationCentury 2000
PublicationDate 2020-10-30
PublicationDateYYYYMMDD 2020-10-30
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-30
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in molecular biosciences
PublicationTitleAlternate Front Mol Biosci
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Bauer (B17) 2019; 79
Yang (B236) 2019; 31
Yu (B241) 2019; 16
Lima (B122) 2020; 10
Rajpoot (B170) 2018; 46
Ruiz (B183) 2018
Anand (B10) 2007; 4
Ravi (B174) 2014; 66
Keck (B100) 2013; 84
Senthil Kumar (B193) 2020; 231
Chirio (B34) 2019; 9
Sharma (B199) 2013; 5
Kurakula (B117) 2016; 26
Maretti (B130) 2017; 528
Dudhipala (B51) 2018; 46
Neves (B148) 2017; 28
Geetha (B66) 2015; 23
Dara (B40) 2019; 178
Hecq (B87) 2016; 36
Müller (B140); 4
von Roemeling (B223) 2017; 35
Jain (B93) 2020
Neves (B150) 2015; 26
Fang (B56) 2017; 24
Zhao (B245) 2011; 7
Pink (B167) 2019; 15
le Chatelier (B119) 1919; 14
Pelaz (B161) 2015; 9
van der Meel (B219) 2017; 14
Diwan (B47) 2020; 193
Krishna (B109) 2019; 10
Vaghasiya (B218) 2013; 49
Ahmad (B5) 2019; 100
Shah (B197); 140
Doktorovová (B48) 2016; 108
Puri (B168) 2009; 26
Costa (B36) 2018; 114
Di Ianni (B45) 2017; 2017
Jaffee (B92) 2017; 18
Reynolds (B177) 2004; 22
Beguin (B19) 2013; 4
Kuo (B115) 2019; 103
Rosales (B179) 2017; 2017
Souto (B209) 2019; 128
Alsulays (B8) 2019; 14
Stamatovic (B211) 2008; 6
Fang (B55) 2006; 27
Whitehead (B229) 2009; 8
Amasya (B9) 2019; 563
Peng (B162) 2020; 84
Gaur (B65) 2013; 2013
Kumar (B113) 2018; 10
Rajpoot (B171); 36
Ma (B125) 2017; 13
Cacicedo (B26) 2019; 43
Haque (B83) 2018; 125
Bhalekar (B22) 2017; 43
McNaught (B136) 1997
Muller (B144) 1993; 20
Kakkar (B96) 2013; 85
Shah (B195); 515
Scioli Montoto (B192) 2018; 167
El-Assal (B52) 2017; 7
Mahmoud (B128) 2020; 46
Gaur (B64) 2014; 2014
You (B238) 2017; 11
Ghanbarzadeh (B70) 2015; 136
He (B86) 2020; 21
Wang (B227) 2019; 14
Rudhrabatla (B182) 2020; 10
Keck (B99) 2014; 474
Yu (B240) 2013; 9
Hadjesfandiari (B80) 2018
Shah (B196) 2019; 36
Fàbregas (B53) 2014; 473
Kong (B104) 2013; 34
Vijayakumar (B222) 2017; 18
Ayloo (B11) 2019; 57
Hare (B84) 2017; 108
Gessner (B67) 2002; 54
Shi (B202) 2014; 194
Shangguan (B198) 2015; 489
Troy (B216) 2000
Aljaeid (B7) 2016; 11
Saraiva (B188) 2016; 235
Ramalingam (B173) 2015; 32
Dasgupta (B41) 2013; 10
Hamishehkar (B81) 2016; 42
Gordon (B76) 2016; 44
Gupta (B78) 2017; 2017
Rehman (B176) 2018; 46
McManus (B135) 2002; 3
Beg (B18) 2017; 12
Benet (B20) 2013; 102
(B57) 2017
(B91) 2009
Dimitriadis (B46) 1978; 274
Salah (B186) 2020; 196
Patel (B159); 47
Chai (B29) 2014; 11
Gide (B71) 2013; 75
Veni (B220) 2020; 69
Xu (B235) 2018; 10
Cavaco (B27) 2017; 110
Wang (B228) 2018; 550
Daneshmand (B39) 2018; 164
Kang (B97) 2019; 14
Kovačević (B107) 2014; 444
Yuan (B242) 2013; 10
Sathya (B189) 2018; 264
Zhang (B244) 2014; 11
Kuo (B114) 2016; 146
Patel (B160) 2013; 10
Shi (B201) 2015; 478
Di (B44) 2016
Mazuryk (B133) 2016; 502
Perez-Garcia (B164) 2019
Geszke-Moritz (B68) 2016; 68
Youssef (B239) 2018; 548
Patel (B158); 45
de Jesus (B43) 2013; 15
Kumar (B112) 2016; 42
Yao (B237) 2017; 5
Hosseini (B89) 2019; 8
Peralta (B163) 2018; 8
Omwoyo (B153) 2016; 12
Talegaonkar (B212) 2019; 20
Agrawal (B4) 2014; 19
Cheng (B32) 2016
Banerjee (B16) 2020; 28
Doktorovova (B49) 2018; 23
Pandya (B154) 2018; 165
Han (B82) 2019; 7
Montgomery (B139) 2017
Gupta (B79) 2013; 15
Ahmadnia (B6) 2013; 135
Rajpoot (B172) 2020; 151
Müller (B143); 144
Zensi (B243) 2009; 137
Nooli (B151) 2017; 43
Souza (B210) 2014; 463
Lahkar (B118) 2018; 35
Liu (B123) 2017; 16
Gaspar (B63) 2017; 14
Sonawane (B208) 2014; 11
(B58) 2015
Cullis (B37) 2017; 25
Pignatello (B166) 2017; 7
Danaei (B38) 2018; 10
Mehnert (B137) 2001; 47
Tupal (B217) 2016; 33
Pardridge (B155) 2020; 11
Wang (B226) 2011; 7
Martínez-Jothar (B131) 2020; 10
Shi (B200) 2017; 17
Martins (B132) 2007; 2
Xie (B234) 2019; 224
Mohanty (B138) 2015; 20
Raj (B169) 2016; 44
Maaßen (B127) 1993; 20
Schwarz (B191) 1994; 30
Küçüktürkmen (B110) 2018; 44
Rosière (B180) 2018; 15
Rudhrabatla (B181) 2019; 10
Gupta (B77) 2019; 9
Dudhipala (B50) 2017; 43
Brigger (B24) 2012; 64
Park (B156) 2017; 2
Wang (B225) 2020; 26
Sahay (B185) 2010; 145
Vroman (B224) 1962; 196
Hu (B90) 2016; 8
Wittrup (B231) 2015; 16
Fan (B54) 2014; 88
Leite (B120) 2012
Singh (B207) 2013; 2013
Gordillo-Galeano (B75) 2018; 133
Taveira (B214) 2014; 10
Vieira (B221) 2018; 46
Silki (B206) 2018; 19
Wu (B232) 2018; 156
Xiao (B233) 2011; 32
Göppert (B74) 2003; 11
Müller (B141) 2002; 54
Fire (B61) 1998; 391
Kotmakçı (B105) 2017; 525
Luo (B124) 2015; 122
Azarnezhad (B12) 2020; 50
Kola (B103) 2004; 3
Chen (B31) 2013; 8
Sanidad (B187) 2019; 10
Zheng (B246) 2019; 116
Bernier-Latmani (B21) 2017; 14
Bjö (B23) 2017; 11
Karn-orachai (B98) 2016; 488
Kowalski (B108) 2019; 27
Khatri (B102) 2019; 6
Abdel Hady (B1) 2020; 193
Schneider (B190) 2017; 3
Kulkarni (B111) 2018; 28
Talluri (B213) 2017; 45
Ball (B15) 2018; 8
Christaki (B35) 2020; 88
Khallaf (B101) 2016; 23
Pastor (B157) 2018; 17
O’Driscoll (B152) 2002; 15
Permana (B165) 2019; 316
Rodenak-Kladniew (B178) 2019; 569
Joshy (B94) 2016; 66
Baek (B13) 2017; 117
Kovačević (B106) 2020
Chetoni (B33) 2016; 109
Tran (B215) 2014; 14
Müller (B145) 2014; 9
Siddhartha (B204) 2018; 46
Feeney (B59) 2016; 101
Ma (B126) 2019; 316
Severino (B194) 2015; 129
Abd-Rabou (B2) 2018; 35
Hauser (B85) 1955; 32
Nafee (B146) 2014; 192
González-Paredes (B72) 2019; 134
Neves (B149) 2016; 14
Kadari (B95) 2018; 132
Holm (B88) 2020; 1868
Sadegh Malvajerd (B184) 2019; 10
Adams (B3) 2017; 17
Siepmann (B205) 2006
Ghaderkhani (B69) 2019; 47
Chaves (B30) 2018; 15
de Blaey (B42) 1980
Kuo (B116) 2014; 30
McCartney (B134) 2019; 11
Bummer (B25) 2004; 21
Maisel (B129) 2015; 197
Baimanov (B14) 2019; 30
Ravindra Babu (B175) 2019; 10
Wishart (B230) 2018; 46
Li (B121) 2018; 22
Shinde (B203) 2019; 56
Gaspar (B62) 2016; 497
Feng (B60) 2017; 90
Nakhlband (B147) 2018; 164
Muller (B142) 2002; 242
Goppert (B73) 2005; 60
Ceña (B28) 2018; 13
References_xml – volume: 9
  year: 2019
  ident: B77
  article-title: Effect of chemical permeation enhancers on skin permeability: in silico screening using molecular dynamics simulations.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37900-0
– volume: 569
  year: 2019
  ident: B178
  article-title: Hybrid Ofloxacin/eugenol co-loaded solid lipid nanoparticles with enhanced and targetable antimicrobial properties.
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.118575
– volume: 68
  start-page: 982
  year: 2016
  ident: B68
  article-title: Solid lipid nanoparticles as attractive drug vehicles: composition, properties and therapeutic strategies.
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/J.MSEC.2016.05.119
– volume: 43
  start-page: 1205
  year: 2017
  ident: B50
  article-title: Lipid nanoparticles of zaleplon for improved oral delivery by Box–Behnken design: optimization, in vitro and in vivo evaluation.
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1080/03639045.2017.1304957
– volume: 197
  start-page: 48
  year: 2015
  ident: B129
  article-title: Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse.
  publication-title: J. Control. Release
  doi: 10.1016/J.JCONREL.2014.10.026
– volume: 15
  start-page: 405
  year: 2002
  ident: B152
  article-title: Lipid-based formulations for intestinal lymphatic delivery.
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/S0928-0987(02)00051-9
– volume: 10
  start-page: 1143
  year: 2019
  ident: B175
  article-title: Absorption enhancement effect of piperine and chitosan on ganciclovir sol-id lipid nanoparticles: formulation, optimization and invivo pharmacoki-netics.
  publication-title: Int. J. Res. Pharm. Sci.
  doi: 10.26452/ijrps.v10i2.395
– volume: 125
  start-page: 1
  year: 2018
  ident: B83
  article-title: A comparison of the lung clearance kinetics of solid lipid nanoparticles and liposomes by following the3H-labelled structural lipids after pulmonary delivery in rats.
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2018.01.001
– volume: 14
  year: 2016
  ident: B149
  article-title: Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E.
  publication-title: J. Nanobiotechnology
  doi: 10.1186/s12951-016-0177-x
– year: 2019
  ident: B164
  article-title: Compositions and methods for treating ornithine transcarbamylase deficiency
– volume: 10
  year: 2020
  ident: B131
  article-title: Endothelial cell targeting by crgd-functionalized polymeric nanoparticles under static and flow conditions.
  publication-title: Nanomaterials
  doi: 10.3390/nano10071353
– volume: 8
  start-page: 1085
  year: 2013
  ident: B31
  article-title: Orally delivered salmon calcitonin-loaded solid lipid nanoparticles prepared by micelle-double emulsion method via the combined use of different solid lipids.
  publication-title: Nanomedicine
  doi: 10.2217/nnm.12.141
– year: 2017
  ident: B57
  publication-title: Route of Administration.
– volume: 85
  start-page: 339
  year: 2013
  ident: B96
  article-title: Curcumin loaded solid lipid nanoparticles: an efficient formulation approach for cerebral ischemic reperfusion injury in rats.
  publication-title: Eur. J. Pharm. Biopharm
  doi: 10.1016/J.EJPB.2013.02.005
– volume: 44
  start-page: 1434
  year: 2016
  ident: B169
  article-title: Enhanced skin delivery of aceclofenac via hydrogel-based solid lipid nanoparticles.
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.3109/21691401.2015.1036997
– volume: 134
  start-page: 166
  year: 2019
  ident: B72
  article-title: Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides.
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2018.11.017
– volume: 23
  start-page: 3452
  year: 2016
  ident: B101
  article-title: 5-Fluorouracil shell-enriched solid lipid nanoparticles (SLN) for effective skin carcinoma treatment.
  publication-title: Drug Deliv.
  doi: 10.1080/10717544.2016.1194498
– volume: 17
  start-page: 20
  year: 2017
  ident: B200
  article-title: Cancer nanomedicine: progress, challenges and opportunities.
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2016.108
– volume: 23
  start-page: 96
  year: 2018
  ident: B49
  article-title: Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines.
  publication-title: Pharm. Dev. Technol.
  doi: 10.1080/10837450.2017.1384491
– volume: 2017
  year: 2017
  ident: B78
  article-title: Systematic approach for the formulation and optimization of solid lipid nanoparticles of Efavirenz by high pressure homogenization using design of experiments for brain targeting and enhanced bioavailability.
  publication-title: Biomed Res. Int.
  doi: 10.1155/2017/5984014
– volume: 21
  start-page: 1
  year: 2004
  ident: B25
  article-title: Physical chemical considerations of lipid-based oral drug delivery–solid lipid nanoparticles.
  publication-title: Crit. Rev. Ther. Drug Carrier Syst.
  doi: 10.1002/chin.200502271
– volume: 502
  start-page: 54
  year: 2016
  ident: B133
  article-title: Rapamycin-loaded solid lipid nanoparticles: morphology and impact of the drug loading on the phase transition between lipid polymorphs.
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2016.05.017
– volume: 44
  start-page: 463
  year: 2016
  ident: B76
  article-title: Phagocytosis: an immunobiologic process.
  publication-title: Immunity
  doi: 10.1016/J.IMMUNI.2016.02.026
– volume: 26
  year: 2020
  ident: B225
  article-title: An evidence based perspective on mRNA-SARS-CoV-2 vaccine development.
  publication-title: Med. Sci. Monit.
  doi: 10.12659/MSM.924700
– volume: 69
  start-page: 407
  year: 2020
  ident: B220
  article-title: Development and evaluation of Eudragit coated environmental sensitive solid lipid nanoparticles using central composite design module for enhancement of oral bioavailability of linagliptin.
  publication-title: Int. J. Polym. Mater. Polym. Biomater.
  doi: 10.1080/00914037.2019.1570513
– volume: 550
  start-page: 24
  year: 2018
  ident: B228
  article-title: Enhanced oral bioavailability and anti-gout activity of [6]-shogaol-loaded solid lipid nanoparticles.
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.08.028
– volume: 79
  year: 2019
  ident: B17
  article-title: Abstract CT210: A Phase I, open-label, multicenter, dose escalation study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36γ, for intratumoral injection alone and in combination with immune checkpoint blockade.
  publication-title: Cancer Res.
  doi: 10.1158/1538-7445.am2019-ct210
– volume: 7
  start-page: 1322
  year: 2011
  ident: B245
  article-title: Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials.
  publication-title: Small
  doi: 10.1002/smll.201100001
– start-page: 345
  year: 2018
  ident: B80
  article-title: Stealth coatings for nanoparticles: Polyethylene glycol alternatives
  publication-title: Engineering of Biomaterials for Drug Delivery Systems: Beyond Polyethylene Glycol
  doi: 10.1016/B978-0-08-101750-0.00013-1
– volume: 66
  start-page: 912
  year: 2014
  ident: B174
  article-title: A hybrid design to optimize preparation of lopinavir loaded solid lipid nanoparticles and comparative pharmacokinetic evaluation with marketed lopinavir/ritonavir coformulation.
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/jphp.12217
– volume: 2017
  year: 2017
  ident: B45
  article-title: Interaction of solid lipid nanoparticles and specific proteins of the Corona studied by surface plasmon resonance.
  publication-title: J. Nanomater.
  doi: 10.1155/2017/6509184
– volume: 103
  start-page: 167
  year: 2019
  ident: B115
  article-title: Electrophoretic mobility of neuron-like cells regenerated from iPSCs with induction of retinoic acid- and nerve growth factor-loaded solid lipid nanoparticles.
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2019.07.010
– volume: 32
  start-page: 389
  year: 2015
  ident: B173
  article-title: Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations.
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-014-1469-1
– volume: 10
  start-page: 889
  year: 2013
  ident: B160
  article-title: Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles.
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1517/17425247.2013.784742
– volume: 11
  start-page: 1833
  year: 2014
  ident: B208
  article-title: Solid lipid nanoparticles-loaded topical gel containing combination drugs: an approach to offset psoriasis.
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1517/17425247.2014.938634
– volume: 391
  start-page: 806
  year: 1998
  ident: B61
  article-title: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.
  publication-title: Nature
  doi: 10.1038/35888
– volume: 4
  start-page: 923
  year: 2013
  ident: B19
  article-title: Effect of polyunsaturated fatty acids on tight junctions in a model of the human intestinal epithelium under normal and inflammatory conditions.
  publication-title: Food Funct.
  doi: 10.1039/c3fo60036j
– year: 2016
  ident: B44
  publication-title: Drug-Like Properties.
  doi: 10.1016/B978-0-12-801076-1.00023-X
– volume: 35
  start-page: 159
  year: 2017
  ident: B223
  article-title: Breaking down the barriers to precision cancer nanomedicine.
  publication-title: Trends Biotechnol.
  doi: 10.1016/J.TIBTECH.2016.07.006
– volume: 25
  start-page: 1467
  year: 2017
  ident: B37
  article-title: Lipid nanoparticle systems for enabling gene therapies.
  publication-title: Mol. Ther.
  doi: 10.1016/J.YMTHE.2017.03.013
– volume: 7
  start-page: 6310
  year: 2019
  ident: B82
  article-title: Biomaterial-tight junction interaction and potential impacts.
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c9tb01081e
– volume: 474
  start-page: 33
  year: 2014
  ident: B99
  article-title: Formulation of solid lipid nanoparticles (SLN): The value of different alkyl polyglucoside surfactants.
  publication-title: Int. J. Pharm.
  doi: 10.1016/J.IJPHARM.2014.08.008
– volume: 75
  start-page: 138
  year: 2013
  ident: B71
  article-title: Enhancement of transdermal penetration and bioavailability of poorly soluble acyclovir using solid lipid nanoparticles incorporated in gel cream.
  publication-title: Indian J. Pharm. Sci.
  doi: 10.4103/0250-474X.115457
– volume: 44
  start-page: 306
  year: 2018
  ident: B110
  article-title: Development and characterization of cationic solid lipid nanoparticles for co-delivery of pemetrexed and miR-21 antisense oligonucleotide to glioblastoma cells.
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1080/03639045.2017.1391835
– volume: 117
  start-page: 132
  year: 2017
  ident: B13
  article-title: Surface modification of solid lipid nanoparticles for oral delivery of curcumin: improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake.
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2017.04.013
– volume: 26
  start-page: 288
  year: 2016
  ident: B117
  article-title: Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies.
  publication-title: J. Liposome Res.
  doi: 10.3109/08982104.2015.1117490
– volume: 193
  year: 2020
  ident: B1
  article-title: Brain uptake and accumulation of new levofloxacin-doxycycline combination through the use of solid lipid nanoparticles: formulation; Optimization and in-vivo evaluation.
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2020.111076
– volume: 26
  year: 2015
  ident: B150
  article-title: Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E.
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/49/495103
– volume: 108
  start-page: 235
  year: 2016
  ident: B48
  article-title: Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation.
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2016.08.001
– volume: 4
  start-page: 807
  year: 2007
  ident: B10
  article-title: Bioavailability of curcumin: problems and promises.
  publication-title: Mol. Pharm.
  doi: 10.1021/mp700113r
– volume: 46
  start-page: D1074
  year: 2018
  ident: B230
  article-title: DrugBank 5.0: a major update to the DrugBank database for 2018.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1037
– volume: 9
  start-page: 6996
  year: 2015
  ident: B161
  article-title: Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake.
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01326
– volume: 146
  start-page: 222
  year: 2016
  ident: B114
  article-title: Dual targeting of solid lipid nanoparticles grafted with 83-14 MAb and anti-EGF receptor for malignant brain tumor therapy.
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2016.01.025
– volume: 47
  start-page: 165
  year: 2001
  ident: B137
  article-title: Solid lipid nanoparticles: production, characterization and applications.
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/s0169-409x(01)00105-3
– volume: 563
  start-page: 110
  year: 2019
  ident: B9
  article-title: QbD guided early pharmaceutical development study: Production of lipid nanoparticles by high pressure homogenization for skin cancer treatment.
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.03.056
– volume: 84
  start-page: 445
  year: 2013
  ident: B100
  article-title: Nanotoxicological classification system (NCS) - a guide for the risk-benefit assessment of nanoparticulate drug delivery systems.
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2013.01.001
– volume: 8
  start-page: 129
  year: 2009
  ident: B229
  article-title: Knocking down barriers: advances in siRNA delivery.
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2742
– volume: 35
  start-page: 680
  year: 2018
  ident: B118
  article-title: Surface modified kokum butter lipid nanoparticles for the brain targeted delivery of nevirapine.
  publication-title: J. Microencapsul.
  doi: 10.1080/02652048.2019.1573857
– volume: 9
  start-page: 7449
  year: 2013
  ident: B240
  article-title: Nanoparticle-induced tight-junction opening for the transport of an anti-angiogenic sulfated polysaccharide across Caco-2 cell monolayers.
  publication-title: Acta Biomater.
  doi: 10.1016/J.ACTBIO.2013.04.009
– start-page: 221
  year: 2020
  ident: B93
  article-title: Solid lipid nanoparticles
  publication-title: Nanomaterials and Environmental Biotechnology
  doi: 10.1007/978-3-030-34544-0_13
– volume: 28
  start-page: 146
  year: 2018
  ident: B111
  article-title: Lipid nanoparticles enabling gene therapies: from concepts to clinical utility.
  publication-title: Nucleic Acid Ther.
  doi: 10.1089/nat.2018.0721
– volume: 5
  start-page: 137
  year: 2013
  ident: B199
  article-title: Solid lipid nanoparticles as a carrier of metformin for transdermal delivery.
  publication-title: Int. J. Drug Deliv.
– volume: 100
  start-page: 959
  year: 2019
  ident: B5
  article-title: Optimization by design of etoposide loaded solid lipid nanoparticles for ocular delivery: characterization, pharmacokinetic and deposition study.
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2019.03.060
– volume: 2017
  year: 2017
  ident: B179
  article-title: Phagocytosis: a fundamental process in immunity.
  publication-title: Biomed Res. Int.
  doi: 10.1155/2017/9042851
– volume: 122
  start-page: 221
  year: 2015
  ident: B124
  article-title: Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake.
  publication-title: Carbohydr. Polym.
  doi: 10.1016/J.CARBPOL.2014.12.084
– volume: 11
  start-page: 3716
  year: 2014
  ident: B29
  article-title: Transport pathways of solid lipid nanoparticles across Madin–Darby canine kidney epithelial cell monolayer.
  publication-title: Mol. Pharm.
  doi: 10.1021/mp5004674
– volume: 66
  start-page: 40
  year: 2016
  ident: B94
  article-title: Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells.
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.03.031
– volume: 14
  start-page: 9127
  year: 2019
  ident: B8
  article-title: Impact of penetratin stereochemistry on the oral bioavailability of insulin-loaded solid lipid nanoparticles.
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S225086
– volume: 90
  start-page: 867
  year: 2017
  ident: B60
  article-title: Preparation, characterization, and in vivo study of rhein solid lipid nanoparticles for oral delivery.
  publication-title: Chem. Biol. Drug Des.
  doi: 10.1111/cbdd.13007
– volume: 10
  start-page: 236
  year: 2018
  ident: B113
  article-title: Development and evaluation of isradipine via rutin-loaded coated solid–lipid nanoparticles.
  publication-title: Interv. Med. Appl. Sci.
  doi: 10.1556/1646.10.2018.45
– volume: 19
  start-page: 1530
  year: 2014
  ident: B4
  article-title: Is nanotechnology a boon for oral drug delivery?
  publication-title: Drug Discov. Today
  doi: 10.1016/J.DRUDIS.2014.04.011
– year: 2017
  ident: B139
  publication-title: Design and Analysis of Experiments.
– volume: 108
  start-page: 25
  year: 2017
  ident: B84
  article-title: Challenges and strategies in anti-cancer nanomedicine development: an industry perspective.
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/J.ADDR.2016.04.025
– volume: 27
  start-page: 710
  year: 2019
  ident: B108
  article-title: Delivering the messenger: advances in technologies for therapeutic mRNA delivery.
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2019.02.012
– start-page: 15
  year: 2006
  ident: B205
  article-title: Microparticles used as drug delivery systems
  publication-title: Smart Colloidal Materials
  doi: 10.1007/3-540-32702-9_3
– volume: 3
  year: 2017
  ident: B190
  article-title: Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation.
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601556
– volume: 17
  start-page: 751
  year: 2018
  ident: B157
  article-title: An RNA toolbox for cancer immunotherapy.
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2018.132
– volume: 18
  start-page: 875
  year: 2017
  ident: B222
  article-title: Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake.
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-016-0573-4
– volume: 14
  start-page: 2977
  year: 2017
  ident: B63
  article-title: Microencapsulated solid lipid nanoparticles as a hybrid platform for pulmonary antibiotic delivery.
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.7b00169
– volume: 1868
  year: 2020
  ident: B88
  article-title: Characterization of soluble folate receptors (folate binding proteins) in humans. Biological roles and clinical potentials in infection and malignancy.
  publication-title: Biochim. Biophys. Acta Proteins Proteom.
  doi: 10.1016/j.bbapap.2020.140466
– volume: 10
  year: 2020
  ident: B122
  article-title: Understanding the lipid and protein corona formation on different sized polymeric nanoparticles.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-57943-6
– volume: 528
  start-page: 440
  year: 2017
  ident: B130
  article-title: Surface engineering of Solid Lipid Nanoparticle assemblies by methyl α-D-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy.
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.06.045
– volume: 17
  year: 2017
  ident: B3
  article-title: Trial design and rationale for APOLLO, a Phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy.
  publication-title: BMC Neurol.
  doi: 10.1186/s12883-017-0948-5
– volume: 36
  start-page: 192
  year: 2016
  ident: B87
  article-title: Development and evaluation of insulin-loaded cationic solid lipid nanoparticles for oral delivery.
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2016.10.012
– volume: 10
  start-page: 4124
  year: 2019
  ident: B109
  article-title: Design and biological evaluation of lipoprotein-based donepezil nanocarrier for enhanced Brain uptake through oral delivery.
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/acschemneuro.9b00343
– volume: 14
  start-page: 510
  year: 2017
  ident: B21
  article-title: Intestinal lymphatic vasculature: structure, mechanisms and functions.
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2017.79
– volume: 42
  start-page: 1956
  year: 2016
  ident: B112
  article-title: Solid lipid nanoparticle: an efficient carrier for improved ocular permeation of voriconazole.
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1080/03639045.2016.1185437
– volume: 11
  year: 2020
  ident: B155
  article-title: Blood-brain barrier and delivery of protein and gene therapeutics to brain.
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2019.00373
– volume: 46
  start-page: 653
  year: 2018
  ident: B221
  article-title: Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages.
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2018.1434186
– volume: 515
  start-page: 543
  ident: B195
  article-title: Microwave-assisted formulation of solid lipid nanoparticles loaded with non-steroidal anti-inflammatory drugs.
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2016.10.054
– volume: 46
  start-page: 616
  year: 2018
  ident: B51
  article-title: Comparative study of nisoldipine-loaded nanostructured lipid carriers and solid lipid nanoparticles for oral delivery: preparation, characterization, permeation and pharmacokinetic evaluation.
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2018.1465068
– volume: 2013
  year: 2013
  ident: B207
  article-title: Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability.
  publication-title: Biomed Res. Int.
  doi: 10.1155/2013/584549
– volume: 54
  start-page: 165
  year: 2002
  ident: B67
  article-title: Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis.
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/S0939-6411(02)00081-4
– volume: 19
  start-page: 1264
  year: 2018
  ident: B206
  article-title: Enhancement of in vivo efficacy and oral bioavailability of aripiprazole with solid lipid nanoparticles.
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-017-0944-5
– volume: 3
  start-page: 737
  year: 2002
  ident: B135
  article-title: Gene silencing in mammals by small interfering RNAs.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg908
– volume: 20
  start-page: 480
  year: 1993
  ident: B144
  article-title: Production of solid lipid nanoparticles (SLN) for controlled drug delivery.
  publication-title: Proc. Control. Release Soc.
– volume: 13
  start-page: 1513
  year: 2018
  ident: B28
  article-title: Nanoparticle crossing of blood–brain barrier: a road to new therapeutic approaches to central nervous system diseases.
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2018-0139
– volume: 46
  start-page: 1926
  year: 2018
  ident: B176
  article-title: Fabrication of Niclosamide loaded solid lipid nanoparticles: in vitro characterization and comparative in vivo evaluation.
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2017.1396996
– volume: 20
  year: 2019
  ident: B212
  article-title: Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability.
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-019-1337-8
– volume: 14
  start-page: 2105
  year: 2019
  ident: B227
  article-title: Improved brain delivery of pueraria flavones via intranasal administration of borneol-modified solid lipid nanoparticles.
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2018-0417
– volume: 12
  start-page: 333
  year: 2017
  ident: B18
  article-title: Novel surface-engineered solid lipid nanoparticles of rosuvastatin calcium for low-density lipoprotein-receptor targeting: a quality by design-driven perspective.
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2016-0336
– volume: 165
  start-page: 37
  year: 2018
  ident: B154
  article-title: Solid lipid nanoparticles as an efficient drug delivery system of olmesartan medoxomil for the treatment of hypertension.
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2018.02.011
– start-page: 97
  year: 2018
  ident: B183
  article-title: Routes of drug administration
  publication-title: ADME Processes in Pharmaceutical Sciences
  doi: 10.1007/978-3-319-99593-9_6
– volume: 489
  start-page: 195
  year: 2015
  ident: B198
  article-title: Comparison of the oral bioavailability of silymarin-loaded lipid nanoparticles with their artificial lipolysate counterparts: implications on the contribution of integral structure.
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2015.05.005
– volume: 49
  start-page: 311
  year: 2013
  ident: B218
  article-title: Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride.
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2013.03.013
– volume: 47
  start-page: 1181
  year: 2019
  ident: B69
  article-title: Improved antibacterial function of Rifampicin-loaded solid lipid nanoparticles on Brucella abortus.
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2019.1593858
– volume: 6
  year: 2019
  ident: B102
  article-title: Fabrication, characterization and optimization of artemether loaded PEGylated solid lipid nanoparticles for the treatment of lung cancer.
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aaf8a3
– volume: 50
  start-page: 148
  year: 2020
  ident: B12
  article-title: Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers?
  publication-title: Crit. Rev. Toxicol.
  doi: 10.1080/10408444.2020.1719974
– volume: 31
  year: 2019
  ident: B236
  article-title: Degradability and clearance of inorganic nanoparticles for biomedical applications.
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805730
– volume: 14
  start-page: 5381
  year: 2019
  ident: B97
  article-title: Preparation and evaluation of tacrolimus-loaded thermosensitive solid lipid nanoparticles for improved dermal distribution.
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S215153
– volume: 54
  start-page: S131
  year: 2002
  ident: B141
  article-title: Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations.
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(02)00118-7
– volume: 264
  start-page: 431
  year: 2018
  ident: B189
  article-title: α-Bisabolol loaded solid lipid nanoparticles attenuates Aβ aggregation and protects Neuro-2a cells from Aβ induced neurotoxicity.
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.05.075
– volume: 10
  start-page: 1865
  year: 2013
  ident: B242
  article-title: Improved transport and absorption through gastrointestinal tract by pegylated solid lipid nanoparticles.
  publication-title: Mol. Pharm.
  doi: 10.1021/mp300649z
– volume: 36
  start-page: 659
  ident: B171
  article-title: Irinotecan hydrochloride trihydrate loaded folic acid-tailored solid lipid nanoparticles for targeting colorectal cancer: development, characterization, and in vitro cytotoxicity study using HT-29 cells.
  publication-title: J. Microencapsul.
  doi: 10.1080/02652048.2019.1665723
– volume: 5
  start-page: 13
  year: 2017
  ident: B237
  article-title: Controlling the gastrointestinal fate of nutraceutical and pharmaceutical-enriched lipid nanoparticles: from mixed micelles to chylomicrons.
  publication-title: Nanoimpact
  doi: 10.1016/J.IMPACT.2016.12.001
– volume: 43
  start-page: 17726
  year: 2019
  ident: B26
  article-title: Lipid nanoparticles-Metvan: revealing a novel way to deliver a vanadium compound to bone cancer cells.
  publication-title: New J. Chem.
  doi: 10.1039/c9nj01634a
– volume: 192
  start-page: 131
  year: 2014
  ident: B146
  article-title: Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors.
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.06.055
– volume: 15
  year: 2019
  ident: B167
  article-title: On the structure of solid lipid nanoparticles.
  publication-title: Small
  doi: 10.1002/smll.201903156
– volume: 9
  start-page: 18
  year: 2014
  ident: B145
  article-title: Lipid Nanoparticles (SLN, NLC) for innovative consumer care & household products.
  publication-title: Househ. Pers. Care Today
– volume: 26
  start-page: 523
  year: 2009
  ident: B168
  article-title: Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic.
  publication-title: Crit. Rev. Ther. Drug Carrier Syst.
  doi: 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10
– volume: 84
  start-page: 63
  year: 2020
  ident: B162
  article-title: Clinical and biochemical characteristics of patients with ornithine transcarbamylase deficiency.
  publication-title: Clin. Biochem.
  doi: 10.1016/j.clinbiochem.2020.06.011
– volume: 114
  start-page: 103
  year: 2018
  ident: B36
  article-title: Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages.
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2017.12.006
– volume: 133
  start-page: 285
  year: 2018
  ident: B75
  article-title: Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release.
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2018.10.017
– volume: 128
  start-page: 27
  year: 2019
  ident: B209
  article-title: Surface-tailored anti-HER2/neu-solid lipid nanoparticles for site-specific targeting MCF-7 and BT-474 breast cancer cells.
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2018.11.022
– volume: 463
  start-page: 31
  year: 2014
  ident: B210
  article-title: In vitro evaluation of permeation, toxicity and effect of praziquantel-loaded solid lipid nanoparticles against Schistosoma mansoni as a strategy to improve efficacy of the schistosomiasis treatment.
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2013.12.022
– volume: 6
  start-page: 179
  year: 2008
  ident: B211
  article-title: Brain endothelial cell-cell junctions: how to “open” the blood brain barrier.
  publication-title: Curr. Neuropharmacol.
  doi: 10.2174/157015908785777210
– volume: 102
  start-page: 34
  year: 2013
  ident: B20
  article-title: The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development.
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.23359
– volume: 7
  start-page: 52
  year: 2017
  ident: B52
  article-title: Acyclovir loaded solid lipid nanoparticle based cream: a novel drug delivery system.
  publication-title: Int. J. Drug Deliv. Technol.
  doi: 10.25258/ijddt.v7i1.8917
– volume: 20
  start-page: 490
  year: 1993
  ident: B127
  article-title: Comparison of cytotoxicity between polyester nanoparticles and solid lipid nanoparticles (SLN).
  publication-title: Proc. Int. Symp. Control. Rel. Bioact. Mater.
– volume: 136
  start-page: 1004
  year: 2015
  ident: B70
  article-title: Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles.
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2015.10.041
– volume: 56
  start-page: 38
  year: 2019
  ident: B203
  article-title: Lipid nanoparticles for transdermal delivery of celecoxib: an in vitro and in vivo investigation.
  publication-title: Indian Drugs
  doi: 10.53879/id.56.08.11694
– volume: 2014
  year: 2014
  ident: B64
  article-title: Enhanced oral bioavailability of Efavirenz by solid lipid nanoparticles: in vitro drug release and pharmacokinetics studies.
  publication-title: Biomed Res. Int.
  doi: 10.1155/2014/363404
– volume: 3
  start-page: 711
  year: 2004
  ident: B103
  article-title: Can the pharmaceutical industry reduce attrition rates?
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1470
– volume: 22
  start-page: 4171
  year: 2018
  ident: B121
  article-title: Mechanisms of enhanced antiglioma efficacy of polysorbate 80-modified paclitaxel-loaded PLGA nanoparticles by focused ultrasound.
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.13695
– volume: 34
  start-page: 542
  year: 2013
  ident: B104
  article-title: Cationic solid lipid nanoparticles derived from apolipoprotein-free LDLs for target specific systemic treatment of liver fibrosis.
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.09.067
– volume: 101
  start-page: 167
  year: 2016
  ident: B59
  article-title: 50 years of oral lipid-based formulations: provenance, progress and future perspectives.
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/J.ADDR.2016.04.007
– volume: 132
  start-page: 168
  year: 2018
  ident: B95
  article-title: Design of multifunctional peptide collaborated and docetaxel loaded lipid nanoparticles for antiglioma therapy.
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2018.09.012
– volume: 57
  start-page: 32
  year: 2019
  ident: B11
  article-title: Transcytosis at the blood-brain barrier.
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2018.12.014
– volume: 8
  year: 2018
  ident: B15
  article-title: Oral delivery of siRNA lipid nanoparticles: fate in the GI tract.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-20632-6
– volume: 156
  start-page: 77
  year: 2018
  ident: B232
  article-title: Inhibition of intrinsic coagulation improves safety and tumor-targeted drug delivery of cationic solid lipid nanoparticles.
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.11.040
– year: 2000
  ident: B216
  publication-title: Remington: The Science and Practice of Pharmacy.
  doi: 10.1016/S0165-6147(96)90065-6
– volume: 16
  start-page: 5013
  year: 2019
  ident: B241
  article-title: Effect of surface charges on oral absorption of intact solid lipid nanoparticles.
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.9b00861
– volume: 242
  start-page: 121
  year: 2002
  ident: B142
  article-title: Nanostructured lipid matrices for improved microencapsulation of drugs.
  publication-title: Int. J. Pharm.
  doi: 10.1016/s0378-5173(02)00180-1
– volume: 46
  start-page: 706
  year: 2020
  ident: B128
  article-title: Oxiconazole nitrate solid lipid nanoparticles: formulation, in-vitro characterization and clinical assessment of an analogous loaded carbopol gel.
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1080/03639045.2020.1752707
– volume: 164
  start-page: 299
  year: 2018
  ident: B147
  article-title: Marrubiin-loaded solid lipid nanoparticles’ impact on TNF-α treated umbilical vein endothelial cells: a study for cardioprotective effect.
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2018.01.046
– volume: 30
  start-page: 198
  year: 2014
  ident: B116
  article-title: Cationic solid lipid nanoparticles with cholesterol-mediated surface layer for transporting saquinavir to the brain.
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.1834
– volume: 14
  start-page: 8
  year: 1919
  ident: B119
  article-title: Crystalloids against colloids in the theory of cements.
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9191400008
– volume: 151
  start-page: 830
  year: 2020
  ident: B172
  article-title: Oral delivery of pH-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: a dual-targeted approach.
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.02.132
– volume: 548
  start-page: 609
  year: 2018
  ident: B239
  article-title: A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: preparation, characterization and in vivo evaluation.
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.07.014
– volume: 15
  year: 2013
  ident: B43
  article-title: Microemulsion extrusion technique: a new method to produce lipid nanoparticles.
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-013-1960-3
– volume: 16
  start-page: 543
  year: 2015
  ident: B231
  article-title: Knocking down disease: a progress report on siRNA therapeutics.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3978
– volume: 196
  start-page: 476
  year: 1962
  ident: B224
  article-title: Effect of absorbed proteins on the wettability of hydrophilic and hydrophobic solids.
  publication-title: Nature
  doi: 10.1038/196476a0
– volume: 473
  start-page: 270
  year: 2014
  ident: B53
  article-title: A new optimized formulation of cationic solid lipid nanoparticles intended for gene delivery: development, characterization and DNA binding efficiency of TCERG1 expression plasmid.
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2014.06.022
– volume: 488
  start-page: 118
  year: 2016
  ident: B98
  article-title: Surfactant effect on the physicochemical characteristics of γ-oryanol-containing solid lipid nanoparticles.
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2015.10.011
– volume: 10
  start-page: 168
  year: 2020
  ident: B182
  article-title: In vitro and in vivo assessment of designed melphalan loaded stealth solid lipid nanoparticles for parenteral delivery.
  publication-title: Bionanoscience
  doi: 10.1007/s12668-019-00680-6
– volume: 20
  start-page: 458
  year: 2015
  ident: B138
  article-title: Development and characterization of itraconazole-loaded solid lipid nanoparticles for ocular delivery.
  publication-title: Pharm. Dev. Technol.
  doi: 10.3109/10837450.2014.882935
– volume: 231
  year: 2020
  ident: B193
  article-title: Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells.
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2019.115682
– start-page: 7
  year: 2012
  ident: B120
  article-title: Basic principles: thermodynamics and colloidal chemistry
  publication-title: Crystallization and Growth of Colloidal Nanocrystals
  doi: 10.1007/978-1-4614-1308-0_2
– volume: 28
  start-page: 55
  year: 2020
  ident: B16
  article-title: Mechanisms of the effectiveness of lipid nanoparticle formulations loaded with anti-tubercular drugs combinations toward overcoming drug bioavailability in tuberculosis.
  publication-title: J. Drug Target.
  doi: 10.1080/1061186X.2019.1613409
– volume: 109
  start-page: 214
  year: 2016
  ident: B33
  article-title: Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: pharmacokinetic studies on rabbits.
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2016.10.006
– volume: 110
  start-page: 76
  year: 2017
  ident: B27
  article-title: Evading P-glycoprotein mediated-efflux chemoresistance using Solid Lipid Nanoparticles.
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/J.EJPB.2016.10.024
– volume: 8
  start-page: 7024
  year: 2016
  ident: B90
  article-title: Evidence does not support absorption of intact solid lipid nanoparticles via oral delivery.
  publication-title: Nanoscale
  doi: 10.1039/c5nr07474f
– volume: 30
  start-page: 83
  year: 1994
  ident: B191
  article-title: Solid lipid nanoparticles (SLN) for controlled drug delivery I. Production, characterization and sterilization.
  publication-title: J. Control. Release
  doi: 10.1016/0168-3659(94)90047-7
– volume: 11
  start-page: 1520
  year: 2014
  ident: B244
  article-title: Mechanism study of cellular uptake and tight junction opening mediated by goblet cell-specific trimethyl chitosan nanoparticles.
  publication-title: Mol. Pharm.
  doi: 10.1021/mp400685v
– volume: 10
  start-page: 9315
  year: 2018
  ident: B235
  article-title: Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin.
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00507
– volume: 316
  start-page: 359
  year: 2019
  ident: B126
  article-title: Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application.
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.10.053
– volume: 43
  start-page: 1003
  year: 2017
  ident: B22
  article-title: Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis.
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1080/03639045.2017.1291666
– year: 2009
  ident: B91
  publication-title: Pharmaceutical Development Q8-R2. ICH Harmonized Tripartite Guideline.
– volume: 194
  start-page: 228
  year: 2014
  ident: B202
  article-title: Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression.
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.09.005
– volume: 137
  start-page: 78
  year: 2009
  ident: B243
  article-title: Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones.
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2009.03.002
– volume: 8
  year: 2019
  ident: B89
  article-title: Doxycycline-encapsulated solid lipid nanoparticles as promising tool against Brucella melitensis enclosed in macrophage: a pharmacodynamics study on J774A.1 cell line.
  publication-title: Antimicrob. Resist. Infect. Control
  doi: 10.1186/s13756-019-0504-8
– volume: 24
  start-page: 22
  year: 2017
  ident: B56
  article-title: Cleavable PEGylation: a strategy for overcoming the “PEG dilemma” in efficient drug delivery.
  publication-title: Drug Deliv.
  doi: 10.1080/10717544.2017.1388451
– volume: 64
  start-page: 24
  year: 2012
  ident: B24
  article-title: Nanoparticles in cancer therapy and diagnosis.
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.09.006
– volume: 45
  start-page: 474
  year: 2017
  ident: B213
  article-title: Application of quality-by-design approach to optimize diallyl disulfide-loaded solid lipid nanoparticles.
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.3109/21691401.2016.1173046
– volume: 2013
  year: 2013
  ident: B65
  article-title: Solid lipid nanoparticles of guggul lipid as drug carrier for transdermal drug delivery.
  publication-title: Biomed Res. Int.
  doi: 10.1155/2013/750690
– volume: 16
  start-page: 1765
  year: 2017
  ident: B123
  article-title: Preparation of N, N, N-trimethyl chitosan-functionalized retinoic acid-loaded lipid nanoparticles for enhanced drug delivery to glioblastoma.
  publication-title: Trop. J. Pharm. Res.
  doi: 10.4314/tjpr.v16i8.3
– volume: 8
  year: 2018
  ident: B163
  article-title: Liposomes can both enhance or reduce drugs penetration through the skin.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-31693-y
– volume: 167
  start-page: 73
  year: 2018
  ident: B192
  article-title: Carbamazepine-loaded solid lipid nanoparticles and nanostructured lipid carriers: physicochemical characterization and in vitro/in vivo evaluation.
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2018.03.052
– volume: 9
  year: 2019
  ident: B34
  article-title: Development of solid lipid nanoparticles by cold dilution of microemulsions: curcumin loading, preliminary in vitro studies, and biodistribution.
  publication-title: Nanomaterials
  doi: 10.3390/nano9020230
– volume: 7
  start-page: 2145
  year: 2017
  ident: B166
  article-title: Formulation and characterization of erythromycin–loaded solid lipid nanoparticles.
  publication-title: Biointerface Res. Appl. Chem.
– volume: 525
  start-page: 101
  year: 2017
  ident: B105
  article-title: Preparation and characterization of lipid nanoparticle/pDNA complexes for STAT3 downregulation and overcoming chemotherapy resistance in lung cancer cells.
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.04.034
– volume: 13
  start-page: 2643
  year: 2017
  ident: B125
  article-title: In vivo fate of lipid-silybin conjugate nanoparticles: implications on enhanced oral bioavailability.
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2017.07.014
– volume: 196
  year: 2020
  ident: B186
  article-title: Solid lipid nanoparticles for enhanced oral absorption: a review.
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2020.111305
– volume: 36
  year: 2019
  ident: B196
  article-title: Structure analysis of solid lipid nanoparticles for drug delivery: a combined USANS/SANS study.
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201800359
– volume: 11
  start-page: 441
  year: 2016
  ident: B7
  article-title: Miconazole-loaded solid lipid nanoparticles: formulation and evaluation of a novel formula with high bioavailability and antifungal activity.
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S100625
– volume: 23
  start-page: 159
  year: 2015
  ident: B66
  article-title: Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer.
  publication-title: J. Drug Target.
  doi: 10.3109/1061186X.2014.965717
– volume: 224
  year: 2019
  ident: B234
  article-title: Nanomaterial-based blood-brain-barrier (BBB) crossing strategies.
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119491
– year: 2015
  ident: B58
  publication-title: Guidance for Industry: Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a BCS.
– volume: 7
  start-page: 1919
  year: 2011
  ident: B226
  article-title: More effective nanomedicines through particle design.
  publication-title: Small
  doi: 10.1002/smll.201100442
– volume: 42
  start-page: 846
  year: 2016
  ident: B81
  article-title: Histological assessment of follicular delivery of flutamide by solid lipid nanoparticles: potential tool for the treatment of androgenic alopecia.
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.3109/03639045.2015.1062896
– volume: 14
  start-page: 4820
  year: 2014
  ident: B215
  article-title: Formulation and optimization of raloxifene-loaded solid lipid nanoparticles to enhance oral bioavailability.
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2014.8722
– volume: 116
  year: 2019
  ident: B246
  article-title: Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo.
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2019.109006
– volume: 88
  start-page: 26
  year: 2020
  ident: B35
  article-title: Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence.
  publication-title: J. Mol. Evol.
  doi: 10.1007/s00239-019-09914-3
– year: 1997
  ident: B136
  publication-title: Colloidal.
  doi: 10.1351/goldbook.C01172
– volume: 43
  start-page: 611
  year: 2017
  ident: B151
  article-title: Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: formulation, optimization and in vivo evaluation.
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1080/03639045.2016.1275666
– volume: 88
  start-page: 518
  year: 2014
  ident: B54
  article-title: Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs.
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2014.06.011
– volume: 32
  start-page: 3435
  year: 2011
  ident: B233
  article-title: The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles.
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.01.021
– volume: 35
  year: 2018
  ident: B2
  article-title: Taribavirin and 5-Fluorouracil-Loaded Pegylated-Lipid Nanoparticle Synthesis, p38 Docking, and Antiproliferative Effects on MCF-7 Breast Cancer.
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-017-2283-3
– volume: 22
  start-page: 326
  year: 2004
  ident: B177
  article-title: Rational siRNA design for RNA interference.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt936
– volume: 10
  start-page: 77
  year: 2019
  ident: B181
  article-title: Ritonavir loaded surface modified stealth solid lipid nanoparticles: full factorial design and pharmacokinetic studies.
  publication-title: Int. J. Res. Pharm. Sci.
  doi: 10.26452/ijrps.v10i1.1783
– volume: 144
  start-page: 115
  ident: B143
  article-title: Biodegradation of solid lipid nanoparticles as a function of lipase incubation time.
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(96)04731-X
– volume: 2
  year: 2017
  ident: B156
  article-title: Towards clinically translatable in vivo nanodiagnostics.
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.14
– volume: 444
  start-page: 15
  year: 2014
  ident: B107
  article-title: Solid lipid nanoparticles (SLN) stabilized with polyhydroxy surfactants: preparation, characterization and physical stability investigation.
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/J.COLSURFA.2013.12.023
– volume: 135
  start-page: 314
  year: 2013
  ident: B6
  article-title: In vivo evaluation of the efficacy of albendazole sulfoxide and albendazole sulfoxide loaded solid lipid nanoparticles against hydatid cyst.
  publication-title: Exp. Parasitol.
  doi: 10.1016/j.exppara.2013.07.017
– volume: 30
  start-page: 1923
  year: 2019
  ident: B14
  article-title: Understanding the chemical nature of nanoparticle-protein interactions.
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.9b00348
– start-page: 129
  year: 2016
  ident: B32
  article-title: The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery.
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/J.ADDR.2016.01.022
– volume: 10
  start-page: 656
  year: 2013
  ident: B41
  article-title: Solid lipid nanoparticles (SLNs) gels for topical delivery of aceclofenac in vitro and in vivo evaluation.
  publication-title: Curr. Drug Deliv.
  doi: 10.2174/156720181006131125150023
– volume: 18
  start-page: e653
  year: 2017
  ident: B92
  article-title: Future cancer research priorities in the USA: a Lancet Oncology Commission.
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(17)30698-8
– volume: 145
  start-page: 182
  year: 2010
  ident: B185
  article-title: Endocytosis of nanomedicines.
  publication-title: J. Control. Release
  doi: 10.1016/J.JCONREL.2010.01.036
– volume: 316
  start-page: 34
  year: 2019
  ident: B165
  article-title: Solid lipid nanoparticle-based dissolving microneedles: a promising intradermal lymph targeting drug delivery system with potential for enhanced treatment of lymphatic filariasis.
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.10.004
– volume: 497
  start-page: 199
  year: 2016
  ident: B62
  article-title: Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: physicochemical and in vitro studies.
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2015.11.050
– volume: 12
  start-page: 801
  year: 2016
  ident: B153
  article-title: Development, characterization and antimalarial efficacy of dihydroartemisinin loaded solid lipid nanoparticles.
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2015.11.017
– volume: 46
  start-page: 387
  year: 2018
  ident: B204
  article-title: RAGE receptor targeted bioconjuguate lipid nanoparticles of diallyl disulfide for improved apoptotic activity in triple negative breast cancer: in vitro studies.
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2017.1313267
– volume: 10
  start-page: 1382
  year: 2014
  ident: B214
  article-title: Effect of iontophoresis on topical delivery of doxorubicin-loaded solid lipid nanoparticles.
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2014.1834
– volume: 10
  start-page: 597
  year: 2019
  ident: B187
  article-title: Curcumin: recent advances in the development of strategies to improve oral bioavailability.
  publication-title: Annu. Rev. Food Sci. Technol.
  doi: 10.1146/annurev-food-032818-121738
– volume: 164
  start-page: 332
  year: 2018
  ident: B39
  article-title: Preparation, characterization, and optimization of auraptene-loaded solid lipid nanoparticles as a natural anti-inflammatory agent: in vivo and in vitro evaluations.
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2018.01.054
– volume: 129
  start-page: 191
  year: 2015
  ident: B194
  article-title: Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies.
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2015.03.049
– year: 1980
  ident: B42
  article-title: Rationales in the design of rectal and vaginal delivery forms of drugs
  publication-title: Medicinal Chemistry
  doi: 10.1016/B978-0-12-060309-1.50011-2
– volume: 33
  start-page: 372
  year: 2016
  ident: B217
  article-title: Dermal delivery of doxorubicin-loaded solid lipid nanoparticles for the treatment of skin cancer.
  publication-title: J. Microencapsul.
  doi: 10.1080/02652048.2016.1200150
– volume: 235
  start-page: 34
  year: 2016
  ident: B188
  article-title: Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases.
  publication-title: J. Control. Release
  doi: 10.1016/J.JCONREL.2016.05.044
– volume: 60
  start-page: 361
  year: 2005
  ident: B73
  article-title: Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN).
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2005.02.006
– volume: 2
  start-page: 595
  year: 2007
  ident: B132
  article-title: Lipid-based colloidal carriers for peptide and protein delivery–liposomes versus lipid nanoparticles.
  publication-title: Int. J. Nanomed.
– volume: 15
  year: 2018
  ident: B30
  article-title: Overcoming clofazimine intrinsic toxicity: statistical modelling and characterization of solid lipid nanoparticles.
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2017.0932
– volume: 47
  start-page: 144
  ident: B159
  article-title: Enhanced intestinal absorption of asenapine maleate by fabricating solid lipid nanoparticles using TPGS: elucidation of transport mechanism, permeability across Caco-2 cell line and in vivo pharmacokinetic studies.
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2018.1546186
– volume: 46
  start-page: 1236
  year: 2018
  ident: B170
  article-title: Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: preparation, optimization, and in vitro evaluation.
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2017.1366338
– volume: 10
  year: 2018
  ident: B38
  article-title: Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics10020057
– volume: 28
  start-page: 995
  year: 2017
  ident: B148
  article-title: Apo E-functionalization of Solid Lipid Nanoparticles enhances brain drug delivery: uptake mechanism and transport pathways.
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.6b00705
– volume: 15
  start-page: 899
  year: 2018
  ident: B180
  article-title: New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation.
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.7b00846
– volume: 11
  start-page: 9594
  year: 2017
  ident: B23
  article-title: Bridging bio-nano science and cancer nanomedicine.
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04855
– volume: 27
  start-page: 27
  year: 2006
  ident: B55
  article-title: In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size.
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2005.08.002
– volume: 4
  start-page: 161
  ident: B140
  article-title: Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407.
  publication-title: J. Drug Target.
  doi: 10.3109/10611869609015973
– volume: 11
  start-page: 225
  year: 2003
  ident: B74
  article-title: Plasma protein adsorption of Tween 80- and poloxamer 188-stabilized solid lipid nanoparticles.
  publication-title: J. Drug Target.
  doi: 10.1080/10611860310001615956
– volume: 478
  start-page: 60
  year: 2015
  ident: B201
  article-title: Optimization of process variables of zanamivir-loaded solid lipid nanoparticles and the prediction of their cellular transport in Caco-2 cell model.
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2014.11.017
– volume: 193
  year: 2020
  ident: B47
  article-title: Pharmacodynamic, pharmacokinetic and physical characterization of cilnidipine loaded solid lipid nanoparticles for oral delivery optimized using the principles of design of experiments.
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2020.111073
– volume: 11
  year: 2019
  ident: B134
  article-title: Evaluation of sucrose laurate as an intestinal permeation enhancer for macromolecules: ex vivo and in vivo studies.
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics11110565
– volume: 14
  start-page: 1
  year: 2017
  ident: B219
  article-title: Cancer nanomedicines: oversold or underappreciated?
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1080/17425247.2017.1262346
– volume: 32
  year: 1955
  ident: B85
  article-title: The history of colloid science: in memory of Wolfgang Ostwald.
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed032p2
– volume: 45
  start-page: 1242
  ident: B158
  article-title: Fabrication of solid lipid nanoparticles of lurasidone HCl for oral delivery: optimization, in vitro characterization, cell line studies and in vivo efficacy in schizophrenia.
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1080/03639045.2019.1593434
– volume: 178
  start-page: 307
  year: 2019
  ident: B40
  article-title: Erythropoietin-loaded solid lipid nanoparticles: preparation, optimization, and in vivo evaluation.
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2019.01.027
– start-page: 151
  year: 2020
  ident: B106
  article-title: Lipid nanocarriers for delivery of poorly soluble and poorly permeable drugs
  publication-title: Nanopharmaceuticals
  doi: 10.1016/b978-0-12-817778-5.00008-7
– volume: 15
  start-page: 195
  year: 2013
  ident: B79
  article-title: Therapeutic roles of curcumin: lessons learned from clinical trials.
  publication-title: AAPS J.
  doi: 10.1208/s12248-012-9432-8
– volume: 11
  start-page: 2743
  year: 2017
  ident: B238
  article-title: Design and evaluation of lidocaine- and prilocaine-coloaded nanoparticulate drug delivery systems for topical anesthetic analgesic therapy: a comparison between solid lipid nanoparticles and nanostructured lipid carriers.
  publication-title: Drug Des. Devel. Ther.
  doi: 10.2147/DDDT.S141031
– volume: 274
  start-page: 923
  year: 1978
  ident: B46
  article-title: Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes.
  publication-title: Nature
  doi: 10.1038/274923a0
– volume: 10
  start-page: 728
  year: 2019
  ident: B184
  article-title: Brain delivery of curcumin using solid lipid nanoparticles and nanostructured lipid carriers: preparation, optimization, and pharmacokinetic evaluation.
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/acschemneuro.8b00510
– volume: 21
  year: 2020
  ident: B86
  article-title: Enhanced oral bioavailability of felodipine from solid lipid nanoparticles prepared through effervescent dispersion technique.
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-020-01711-2
– volume: 140
  start-page: 204
  ident: B197
  article-title: Transport of stearic acid-based solid lipid nanoparticles (SLNs) into human epithelial cells.
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2015.12.029
SSID ssj0001503764
Score 2.6265326
SecondaryResourceType review_article
Snippet In the golden age of pharmaceutical nanocarriers, we are witnessing a maturation stage of the original concepts and ideas. There is no doubt that...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 587997
SubjectTerms clinical trials
drug delivery
Molecular Biosciences
nanostructured lipid carriers
nanotoxicity
pharmacodynamics
pharmacokinetics
Title Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects
URI https://www.ncbi.nlm.nih.gov/pubmed/33195435
https://www.proquest.com/docview/2461005259
https://pubmed.ncbi.nlm.nih.gov/PMC7662460
https://doaj.org/article/e10327c08683416e91ca18586bc52722
Volume 7
WOSCitedRecordID wos000588780700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-889X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001503764
  issn: 2296-889X
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-889X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001503764
  issn: 2296-889X
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC50UfAivm0fSwRPQmsm6by8re4uXlwWVBi8hHSSdgeGnmUewl72t28l6R17RPTipWm60-nwVZKqSipfAbwWoWtQS7A6BknrJnJeuw7vWNsIJ2LSGDonm1AnJ3o6NaejVF8pJqzQAxfg3sXE-KY8Wt4aJ1wZzcQ71DFatl4wxfLsS5UZOVPlfDDFkdOUbUz0wgyKaTFv0R9k9K3QyiSSp5Eiynz9fzIyf4-VHCmf43twd7AayUFp7X24EfsHcLvkkbx4CN-_LOazQFIe6kBwvkRHeIh3I2iTksPl5gc5jPMUgnHxnpz-YqtOEiKuDwSrOj8br26Tg3wGc_UIvh0fff34qR6SJtS-kWJdd76VPPKGq8i0Ru8qBKldRzsfOkXblCWIN6INJmijuQxGedUxF5lzdOInjj-GvX7Rx6dAUHyi1cFJ501DW42oY9HYGSmYjDFWQK8RtH5gFE-JLeYWPYsEus2g2wS6LaBX8Gb7yXmh0_hb4Q9JLNuCiQk7P8D-YQcc7b_6RwWvroVqceSk7RDXx8VmZROTXloVF6aCJ0XI219xnpjwuKhA7Yh_py27b_rZWWbnVlJizfTZ_2j8c7iT8Mi6kr6AvfVyE1_CLf9zPVst9-Gmmur93PHx-vny6ApWvwd0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solid+Lipid+Nanoparticles+for+Drug+Delivery%3A+Pharmacological+and+Biopharmaceutical+Aspects&rft.jtitle=Frontiers+in+molecular+biosciences&rft.au=Scioli+Montoto%2C+Sebasti%C3%A1n&rft.au=Muraca%2C+Giuliana&rft.au=Ruiz%2C+Mar%C3%ADa+Esperanza&rft.date=2020-10-30&rft.issn=2296-889X&rft.eissn=2296-889X&rft.volume=7&rft.spage=587997&rft_id=info:doi/10.3389%2Ffmolb.2020.587997&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-889X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-889X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-889X&client=summon