Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects
In the golden age of pharmaceutical nanocarriers, we are witnessing a maturation stage of the original concepts and ideas. There is no doubt that nanoformulations are extremely valuable tools for drug delivery applications; the current challenge is how to optimize them to ensure that they are safe,...
Gespeichert in:
| Veröffentlicht in: | Frontiers in molecular biosciences Jg. 7; S. 587997 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
Frontiers Media S.A
30.10.2020
|
| Schlagworte: | |
| ISSN: | 2296-889X, 2296-889X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the golden age of pharmaceutical nanocarriers, we are witnessing a maturation stage of the original concepts and ideas. There is no doubt that nanoformulations are extremely valuable tools for drug delivery applications; the current challenge is how to optimize them to ensure that they are safe, effective and scalable, so that they can be manufactured at an industrial level and advance to clinical use. In this context, lipid nanoparticles have gained ground, since they are generally regarded as non-toxic, biocompatible and easy-to-produce formulations. Pharmaceutical applications of lipid nanocarriers are a burgeoning field for the transport and delivery of a diversity of therapeutic agents, from biotechnological products to small drug molecules. This review starts with a brief overview of the characteristics of solid lipid nanoparticles and discusses the relevancy of performing systematic preformulation studies. The main applications, as well as the advantages that this type of nanovehicles offers in certain therapeutic scenarios are discussed. Next, pharmacokinetic aspects are described, such as routes of administration, absorption after oral administration, distribution in the organism (including brain penetration) and elimination processes. Safety and toxicity issues are also addressed. Our work presents an original point of view, addressing the biopharmaceutical aspects of these nanovehicles by means of descriptive statistics of the state-of-the-art of solid lipid nanoparticles research. All the presented results, trends, graphs and discussions are based in a systematic (and reproducible) bibliographic search that considered only original papers in the subject, covering a 7 years range (2013-today), a period that accounts for more than 60% of the total number of publications in the topic in the main bibliographic databases and search engines. Focus was placed on the therapeutic fields of application, absorption and distribution processes and current efforts for the translation into the clinical practice of lipid-based nanoparticles. For this, the currently active clinical trials on lipid nanoparticles were reviewed, with a brief discussion on what achievements or milestones are still to be reached, as a way of understanding the reasons for the scarce number of solid lipid nanoparticles undergoing clinical trials. |
|---|---|
| AbstractList | In the golden age of pharmaceutical nanocarriers, we are witnessing a maturation stage of the original concepts and ideas. There is no doubt that nanoformulations are extremely valuable tools for drug delivery applications; the current challenge is how to optimize them to ensure that they are safe, effective and scalable, so that they can be manufactured at an industrial level and advance to clinical use. In this context, lipid nanoparticles have gained ground, since they are generally regarded as non-toxic, biocompatible and easy-to-produce formulations. Pharmaceutical applications of lipid nanocarriers are a burgeoning field for the transport and delivery of a diversity of therapeutic agents, from biotechnological products to small drug molecules. This review starts with a brief overview of the characteristics of solid lipid nanoparticles and discusses the relevancy of performing systematic preformulation studies. The main applications, as well as the advantages that this type of nanovehicles offers in certain therapeutic scenarios are discussed. Next, pharmacokinetic aspects are described, such as routes of administration, absorption after oral administration, distribution in the organism (including brain penetration) and elimination processes. Safety and toxicity issues are also addressed. Our work presents an original point of view, addressing the biopharmaceutical aspects of these nanovehicles by means of descriptive statistics of the state-of-the-art of solid lipid nanoparticles research. All the presented results, trends, graphs and discussions are based in a systematic (and reproducible) bibliographic search that considered only original papers in the subject, covering a 7 years range (2013-today), a period that accounts for more than 60% of the total number of publications in the topic in the main bibliographic databases and search engines. Focus was placed on the therapeutic fields of application, absorption and distribution processes and current efforts for the translation into the clinical practice of lipid-based nanoparticles. For this, the currently active clinical trials on lipid nanoparticles were reviewed, with a brief discussion on what achievements or milestones are still to be reached, as a way of understanding the reasons for the scarce number of solid lipid nanoparticles undergoing clinical trials.In the golden age of pharmaceutical nanocarriers, we are witnessing a maturation stage of the original concepts and ideas. There is no doubt that nanoformulations are extremely valuable tools for drug delivery applications; the current challenge is how to optimize them to ensure that they are safe, effective and scalable, so that they can be manufactured at an industrial level and advance to clinical use. In this context, lipid nanoparticles have gained ground, since they are generally regarded as non-toxic, biocompatible and easy-to-produce formulations. Pharmaceutical applications of lipid nanocarriers are a burgeoning field for the transport and delivery of a diversity of therapeutic agents, from biotechnological products to small drug molecules. This review starts with a brief overview of the characteristics of solid lipid nanoparticles and discusses the relevancy of performing systematic preformulation studies. The main applications, as well as the advantages that this type of nanovehicles offers in certain therapeutic scenarios are discussed. Next, pharmacokinetic aspects are described, such as routes of administration, absorption after oral administration, distribution in the organism (including brain penetration) and elimination processes. Safety and toxicity issues are also addressed. Our work presents an original point of view, addressing the biopharmaceutical aspects of these nanovehicles by means of descriptive statistics of the state-of-the-art of solid lipid nanoparticles research. All the presented results, trends, graphs and discussions are based in a systematic (and reproducible) bibliographic search that considered only original papers in the subject, covering a 7 years range (2013-today), a period that accounts for more than 60% of the total number of publications in the topic in the main bibliographic databases and search engines. Focus was placed on the therapeutic fields of application, absorption and distribution processes and current efforts for the translation into the clinical practice of lipid-based nanoparticles. For this, the currently active clinical trials on lipid nanoparticles were reviewed, with a brief discussion on what achievements or milestones are still to be reached, as a way of understanding the reasons for the scarce number of solid lipid nanoparticles undergoing clinical trials. In the golden age of pharmaceutical nanocarriers, we are witnessing a maturation stage of the original concepts and ideas. There is no doubt that nanoformulations are extremely valuable tools for drug delivery applications; the current challenge is how to optimize them to ensure that they are safe, effective and scalable, so that they can be manufactured at an industrial level and advance to clinical use. In this context, lipid nanoparticles have gained ground, since they are generally regarded as non-toxic, biocompatible and easy-to-produce formulations. Pharmaceutical applications of lipid nanocarriers are a burgeoning field for the transport and delivery of a diversity of therapeutic agents, from biotechnological products to small drug molecules. This review starts with a brief overview of the characteristics of solid lipid nanoparticles and discusses the relevancy of performing systematic preformulation studies. The main applications, as well as the advantages that this type of nanovehicles offers in certain therapeutic scenarios are discussed. Next, pharmacokinetic aspects are described, such as routes of administration, absorption after oral administration, distribution in the organism (including brain penetration) and elimination processes. Safety and toxicity issues are also addressed. Our work presents an original point of view, addressing the biopharmaceutical aspects of these nanovehicles by means of descriptive statistics of the state-of-the-art of solid lipid nanoparticles research. All the presented results, trends, graphs and discussions are based in a systematic (and reproducible) bibliographic search that considered only original papers in the subject, covering a 7 years range (2013-today), a period that accounts for more than 60% of the total number of publications in the topic in the main bibliographic databases and search engines. Focus was placed on the therapeutic fields of application, absorption and distribution processes and current efforts for the translation into the clinical practice of lipid-based nanoparticles. For this, the currently active clinical trials on lipid nanoparticles were reviewed, with a brief discussion on what achievements or milestones are still to be reached, as a way of understanding the reasons for the scarce number of solid lipid nanoparticles undergoing clinical trials. |
| Author | Ruiz, María Esperanza Muraca, Giuliana Scioli Montoto, Sebastián |
| AuthorAffiliation | 2 Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires , Argentina 3 Instituto Nacional de Medicamentos (INAME, ANMAT) , Buenos Aires , Argentina 1 Laboratorio de Investigación y Desarrollo de Bioactivos, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , La Plata , Argentina |
| AuthorAffiliation_xml | – name: 3 Instituto Nacional de Medicamentos (INAME, ANMAT) , Buenos Aires , Argentina – name: 2 Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires , Argentina – name: 1 Laboratorio de Investigación y Desarrollo de Bioactivos, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , La Plata , Argentina |
| Author_xml | – sequence: 1 givenname: Sebastián surname: Scioli Montoto fullname: Scioli Montoto, Sebastián – sequence: 2 givenname: Giuliana surname: Muraca fullname: Muraca, Giuliana – sequence: 3 givenname: María Esperanza surname: Ruiz fullname: Ruiz, María Esperanza |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33195435$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kl1rFDEUhoNUbK39Ad7IXHqzaz4mX14ItbW1sKiggngTziSZbUpmMk1mC_33zu5spRW8ScKb9zznhLwv0UGfeo_Qa4KXjCn9ru1SbJYUU7zkSmotn6EjSrVYKKV_HTw6H6KTUm4wxoRjJkX9Ah0yRjSvGT9Cv7-nGFy1CsO0foE-DZDHYKMvVZtydZ436-rcx3Dn8_376ts15A5simkdLMQKeld9DGmYZb8Zd-ppGbwdyyv0vIVY_Ml-P0Y_Lz79OPu8WH29vDo7XS1sLfi4aG0jmGc1k55O49LaOaGgxa11rcQN5wyzmjdOO6UVE05LK1sKngJgYgmwY3Q1c12CGzPk0EG-NwmC2Qkpr83-TcYTzKi0WAnFaiK8JhaI4ko0llNJ6cT6MLOGTdN5Z30_ZohPoE9v-nBt1unOSCFoLfAEeLsH5HS78WU0XSjWxwi9T5tiJhPBmFOuJ-ubx73-Nnn4nMkgZ4PNqZTsW2PDCGNI29YhGoLNNglmlwSzTYKZkzBVkn8qH-D_r_kDQWe4VQ |
| CitedBy_id | crossref_primary_10_1002_adfm_202510532 crossref_primary_10_2174_2210303113666221226092547 crossref_primary_10_1208_s12249_021_02189_2 crossref_primary_10_1016_j_ijbiomac_2022_12_076 crossref_primary_10_3390_app112110250 crossref_primary_10_1038_s41598_022_23013_2 crossref_primary_10_1007_s00216_024_05283_z crossref_primary_10_1016_j_envres_2023_117264 crossref_primary_10_3390_jpm13091328 crossref_primary_10_1080_17425247_2022_2138328 crossref_primary_10_7759_cureus_90291 crossref_primary_10_1007_s10876_024_02751_5 crossref_primary_10_1007_s40005_024_00694_7 crossref_primary_10_1016_j_ijpharm_2024_124345 crossref_primary_10_3390_ijms23084101 crossref_primary_10_1186_s43094_022_00414_8 crossref_primary_10_1080_1040841X_2023_2274835 crossref_primary_10_1016_j_prp_2024_155489 crossref_primary_10_3390_pharmaceutics14112403 crossref_primary_10_3390_biomedicines10123051 crossref_primary_10_1080_09205063_2022_2054399 crossref_primary_10_26599_NBE_2024_9290081 crossref_primary_10_1080_20415990_2025_2484170 crossref_primary_10_1016_j_biopha_2024_117149 crossref_primary_10_1038_s41392_022_01082_z crossref_primary_10_1186_s12951_022_01309_9 crossref_primary_10_3390_pharmaceutics17060707 crossref_primary_10_2174_1574885518666230727100812 crossref_primary_10_3390_ph17101389 crossref_primary_10_1007_s12032_025_02609_4 crossref_primary_10_1002_anbr_202100109 crossref_primary_10_3390_ijms23052606 crossref_primary_10_1080_02652048_2024_2326091 crossref_primary_10_3389_fphar_2021_713616 crossref_primary_10_1016_j_jddst_2021_102886 crossref_primary_10_3390_antiox12020393 crossref_primary_10_3390_biomedicines10020283 crossref_primary_10_1080_17425247_2024_2421402 crossref_primary_10_1016_j_apsb_2022_12_005 crossref_primary_10_1002_slct_202404746 crossref_primary_10_1016_j_jconrel_2022_08_021 crossref_primary_10_1016_j_scitotenv_2023_169748 crossref_primary_10_1002_bit_28205 crossref_primary_10_1080_02652048_2024_2437362 crossref_primary_10_1016_j_ijpharm_2024_124800 crossref_primary_10_2174_1574885518666230727125109 crossref_primary_10_3390_microorganisms10081504 crossref_primary_10_1007_s11033_022_07683_9 crossref_primary_10_3390_nano12071146 crossref_primary_10_3390_pharmaceutics16121574 crossref_primary_10_3390_pharmaceutics17010121 crossref_primary_10_1016_j_jinorgbio_2022_111751 crossref_primary_10_3390_polym16233265 crossref_primary_10_3390_pharmaceutics14102180 crossref_primary_10_1016_j_biopha_2024_116271 crossref_primary_10_1016_j_nxnano_2025_100137 crossref_primary_10_1515_ntrev_2024_0134 crossref_primary_10_1080_1061186X_2024_2409884 crossref_primary_10_3390_ijms251910712 crossref_primary_10_3389_fnano_2022_836674 crossref_primary_10_1049_nbt2_12094 crossref_primary_10_52711_0974_360X_2023_00547 crossref_primary_10_2174_0113816128337166241219081400 crossref_primary_10_1080_14760584_2021_1984890 crossref_primary_10_1007_s11095_025_03836_0 crossref_primary_10_1007_s40005_021_00557_5 crossref_primary_10_3390_medicina60020208 crossref_primary_10_1016_j_jddst_2022_103938 crossref_primary_10_3389_fphar_2022_900610 crossref_primary_10_2174_1574885517666221006105306 crossref_primary_10_1016_j_jddst_2025_107319 crossref_primary_10_3390_pharmaceutics16121584 crossref_primary_10_1002_adma_202303266 crossref_primary_10_3389_fimmu_2023_1129296 crossref_primary_10_3390_antibiotics13111042 crossref_primary_10_1007_s11696_024_03531_1 crossref_primary_10_3389_fchem_2024_1449380 crossref_primary_10_2147_IJN_S526731 crossref_primary_10_1089_adt_2024_120 crossref_primary_10_3389_fmolb_2021_655435 crossref_primary_10_3762_bjnano_14_66 crossref_primary_10_3390_nano15171326 crossref_primary_10_1208_s12249_025_03133_4 crossref_primary_10_1016_j_ijbiomac_2024_136496 crossref_primary_10_3390_pharmaceutics13122162 crossref_primary_10_3390_ijms251910382 crossref_primary_10_1016_j_ijpharm_2024_124662 crossref_primary_10_1007_s40199_022_00446_8 crossref_primary_10_1088_2399_1984_ada900 crossref_primary_10_1186_s12951_020_00766_4 crossref_primary_10_3390_membranes13030343 crossref_primary_10_3390_foods12122327 crossref_primary_10_3390_pharmaceutics16050618 crossref_primary_10_1007_s12247_022_09617_1 crossref_primary_10_1016_j_jddst_2023_105270 crossref_primary_10_1089_bio_2024_0156 crossref_primary_10_1016_j_jconrel_2023_11_012 crossref_primary_10_1016_j_ejphar_2025_178121 crossref_primary_10_1186_s12943_023_01797_9 crossref_primary_10_3390_pharmaceutics17081079 crossref_primary_10_1002_btm2_10601 crossref_primary_10_1016_j_ijbiomac_2021_06_059 crossref_primary_10_3390_cancers13143539 crossref_primary_10_1002_ptr_8054 crossref_primary_10_1016_j_ejps_2024_106928 crossref_primary_10_4155_tde_2023_0116 crossref_primary_10_1016_j_talanta_2022_123945 crossref_primary_10_1016_j_addr_2021_03_004 crossref_primary_10_3389_fbioe_2024_1349077 crossref_primary_10_1002_ddr_22097 crossref_primary_10_1007_s12668_024_01730_4 crossref_primary_10_1016_j_ijpharm_2022_122498 crossref_primary_10_1016_j_ijpharm_2025_125819 crossref_primary_10_3389_fchem_2021_580118 crossref_primary_10_1016_j_semcancer_2022_06_003 crossref_primary_10_1016_j_fbio_2025_106305 crossref_primary_10_1007_s00210_023_02522_5 crossref_primary_10_1016_j_ejpb_2022_05_016 crossref_primary_10_1016_j_addr_2022_114293 crossref_primary_10_3390_cosmetics11040112 crossref_primary_10_3390_pharmaceutics14051034 crossref_primary_10_1002_smll_202502315 crossref_primary_10_3389_fphar_2024_1435133 crossref_primary_10_1002_mabi_202300102 crossref_primary_10_1007_s12033_022_00479_z crossref_primary_10_1016_j_bbcan_2022_188703 crossref_primary_10_1016_j_ijpharm_2021_120321 crossref_primary_10_1039_D5BM01176K crossref_primary_10_3390_foods13172812 crossref_primary_10_1111_jcmm_17677 crossref_primary_10_3390_antiox12030633 crossref_primary_10_3390_pharmaceutics16111366 crossref_primary_10_1016_j_jddst_2023_104616 crossref_primary_10_1016_j_biopha_2022_113429 crossref_primary_10_1007_s00210_025_04003_3 crossref_primary_10_1016_j_jconrel_2022_04_007 crossref_primary_10_1016_j_colsurfb_2025_115122 crossref_primary_10_3390_vaccines12070764 crossref_primary_10_1016_j_foodres_2025_115861 crossref_primary_10_3390_nano11010171 crossref_primary_10_1016_j_colsurfb_2023_113148 crossref_primary_10_2174_0115734137301584240722054651 crossref_primary_10_1016_j_jsps_2024_102209 crossref_primary_10_1038_s41392_023_01561_x crossref_primary_10_1080_01932691_2024_2399122 crossref_primary_10_1080_09712119_2025_2497329 crossref_primary_10_3390_mi16040389 crossref_primary_10_1016_j_ccr_2024_216206 crossref_primary_10_1680_jbibn_23_00004 crossref_primary_10_2174_0118722105250901231201024930 crossref_primary_10_1016_j_carpta_2025_100942 crossref_primary_10_1007_s00210_024_03581_y crossref_primary_10_1002_wnan_1898 crossref_primary_10_1007_s11224_022_01950_y crossref_primary_10_1208_s12249_024_02925_4 crossref_primary_10_1007_s12088_024_01392_6 crossref_primary_10_1007_s00210_024_03082_y crossref_primary_10_1515_tnsci_2022_0359 crossref_primary_10_1177_15330338221080974 crossref_primary_10_1039_D3BM00219E crossref_primary_10_1016_j_pmatsci_2025_101499 crossref_primary_10_1002_elsc_202200037 crossref_primary_10_3390_app11083553 crossref_primary_10_7759_cureus_68339 crossref_primary_10_1016_j_jddst_2021_103032 crossref_primary_10_1080_17435889_2024_2440301 crossref_primary_10_3390_antiox10030436 crossref_primary_10_1016_j_addr_2024_115283 crossref_primary_10_1016_j_colsurfa_2024_133207 crossref_primary_10_3390_pharmaceutics14112463 crossref_primary_10_4155_tde_2021_0068 crossref_primary_10_3390_ijms22052318 crossref_primary_10_3390_pharmaceutics14112464 crossref_primary_10_3390_pharmaceutics14040813 crossref_primary_10_1155_2021_9571286 crossref_primary_10_3390_molecules29163828 crossref_primary_10_1208_s12249_022_02410_w crossref_primary_10_1016_j_apsb_2023_01_018 crossref_primary_10_3390_molecules27061943 crossref_primary_10_3390_ph15091115 crossref_primary_10_56294_saludcyt20251814 crossref_primary_10_4103_1673_5374_374137 crossref_primary_10_1016_j_apsb_2022_11_026 crossref_primary_10_1016_j_addr_2021_113855 crossref_primary_10_1002_adtp_202300275 crossref_primary_10_3390_ani14040655 crossref_primary_10_3390_ijms25168720 crossref_primary_10_1007_s13596_024_00787_6 crossref_primary_10_1016_j_biopha_2023_115512 crossref_primary_10_1016_j_biopha_2021_111940 crossref_primary_10_1016_j_ejpb_2021_04_025 crossref_primary_10_1016_j_ijpharm_2024_124866 crossref_primary_10_3390_ma14092440 crossref_primary_10_3390_vaccines9050535 crossref_primary_10_1016_j_jddst_2022_103982 crossref_primary_10_2147_DDDT_S461969 crossref_primary_10_1002_adma_202108757 crossref_primary_10_1002_adbi_202400623 crossref_primary_10_3390_ph16121634 crossref_primary_10_3390_molecules27113460 crossref_primary_10_1007_s00210_024_03543_4 crossref_primary_10_3390_pharmaceutics15030831 crossref_primary_10_1002_wnan_1956 crossref_primary_10_1016_j_ijpharm_2024_124876 crossref_primary_10_1016_j_jiec_2025_08_042 crossref_primary_10_3390_ma15072388 crossref_primary_10_4155_tde_2021_0086 crossref_primary_10_3390_pharmaceutics14030533 crossref_primary_10_1016_j_jddst_2023_105182 crossref_primary_10_3389_fcell_2021_805336 crossref_primary_10_3390_pharmaceutics13010038 crossref_primary_10_3390_encyclopedia2020063 crossref_primary_10_1080_17425247_2024_2410951 crossref_primary_10_1007_s00210_024_03033_7 crossref_primary_10_1007_s11244_022_01697_0 crossref_primary_10_1080_03639045_2025_2495848 crossref_primary_10_1016_j_biopha_2021_112137 crossref_primary_10_1016_j_actatropica_2023_106846 crossref_primary_10_1080_09205063_2022_2121589 crossref_primary_10_1007_s10924_024_03374_7 crossref_primary_10_1186_s12951_025_03378_y crossref_primary_10_1016_j_biopha_2022_113868 crossref_primary_10_1039_D4MH01891E crossref_primary_10_2217_nnm_2023_0243 crossref_primary_10_3390_ijms26051868 crossref_primary_10_1016_j_ejpb_2023_07_013 crossref_primary_10_2174_0113816128319233240725103706 crossref_primary_10_1002_smll_202501431 crossref_primary_10_3389_fphar_2025_1592066 crossref_primary_10_2147_DDDT_S441325 crossref_primary_10_2174_1381612829666230330144614 crossref_primary_10_1002_jat_4379 crossref_primary_10_2147_IJN_S462213 crossref_primary_10_1016_j_biopha_2024_116433 crossref_primary_10_3389_fmolb_2022_887678 crossref_primary_10_1002_ptr_8230 crossref_primary_10_3390_life12101618 crossref_primary_10_1016_j_lfs_2024_122614 crossref_primary_10_3390_ph18030366 crossref_primary_10_1016_j_biopha_2024_117404 crossref_primary_10_1016_j_biopha_2023_114505 crossref_primary_10_1016_j_xphs_2022_02_014 crossref_primary_10_1007_s12272_022_01413_2 crossref_primary_10_1016_j_jddst_2022_103411 crossref_primary_10_1016_j_jddst_2022_103656 crossref_primary_10_1002_adtp_202200326 crossref_primary_10_3390_pharmaceutics15051503 crossref_primary_10_3390_plants10061238 crossref_primary_10_1080_02652048_2021_2021307 crossref_primary_10_2174_0122117385312175240502100018 crossref_primary_10_38124_ijisrt_25sep096 crossref_primary_10_22159_ijap_2025v17i5_54465 crossref_primary_10_3389_fchem_2022_914126 crossref_primary_10_1002_cbdv_202401581 crossref_primary_10_1002_advs_202403473 crossref_primary_10_1002_cbf_3909 crossref_primary_10_3390_colloids8050055 crossref_primary_10_1002_fsn3_4043 crossref_primary_10_1080_10717544_2022_2026535 crossref_primary_10_3390_pharmaceutics13020267 crossref_primary_10_1016_j_apmt_2022_101631 crossref_primary_10_1038_s41598_024_62676_x crossref_primary_10_3390_pharmaceutics16081017 crossref_primary_10_1007_s44174_025_00276_7 crossref_primary_10_1016_j_jmgm_2023_108539 crossref_primary_10_3390_pharmaceutics15122753 crossref_primary_10_1007_s13346_022_01149_y crossref_primary_10_2174_0115672018276382231207103955 crossref_primary_10_3389_fmedt_2022_893056 crossref_primary_10_1002_elps_202100182 crossref_primary_10_1016_j_biopha_2024_117465 crossref_primary_10_1007_s13204_021_02018_9 crossref_primary_10_3390_pharmaceutics16101297 crossref_primary_10_1557_s43579_022_00257_7 crossref_primary_10_3390_biomedicines11030705 crossref_primary_10_3390_ph18050615 crossref_primary_10_1007_s13346_025_01962_1 crossref_primary_10_1080_09205063_2022_2103625 crossref_primary_10_2147_IJN_S443692 crossref_primary_10_12923_cipms_2025_0002 crossref_primary_10_1186_s40824_023_00343_4 crossref_primary_10_1016_j_biopha_2022_113932 crossref_primary_10_1080_13880209_2025_2469607 crossref_primary_10_1016_j_heliyon_2023_e13676 crossref_primary_10_2174_0113816128329768241230071303 crossref_primary_10_1093_jpp_rgae155 crossref_primary_10_1007_s12668_024_01373_5 crossref_primary_10_3390_ph16030362 crossref_primary_10_1155_2022_5288698 crossref_primary_10_1016_j_ijpharm_2021_120960 crossref_primary_10_1124_dmd_122_000980 crossref_primary_10_3389_fchem_2022_908386 crossref_primary_10_3390_pharmaceutics15030863 crossref_primary_10_1039_D5PM00109A crossref_primary_10_1016_j_ijpharm_2025_125669 crossref_primary_10_2174_0113816128304923240704113319 crossref_primary_10_3390_biomedicines10092179 crossref_primary_10_3390_antibiotics12010184 crossref_primary_10_1016_j_addr_2023_114721 crossref_primary_10_3390_pharmaceutics15010221 crossref_primary_10_3390_ph16020311 crossref_primary_10_1016_j_jddst_2021_102912 crossref_primary_10_1016_j_jddst_2024_105948 crossref_primary_10_3390_antiox11040742 crossref_primary_10_1007_s10311_021_01276_x crossref_primary_10_3390_jcm12216867 crossref_primary_10_1016_j_colsurfb_2024_113869 crossref_primary_10_3390_ph16030474 crossref_primary_10_3389_fcimb_2023_1328519 crossref_primary_10_2174_0124522716311647240613050008 crossref_primary_10_1016_j_jinorgbio_2025_112900 crossref_primary_10_3390_pharmaceutics13040437 crossref_primary_10_3390_pharmaceutics14030506 crossref_primary_10_1016_j_ijpharm_2024_124972 crossref_primary_10_1016_j_actatropica_2022_106342 crossref_primary_10_1016_j_ijpharm_2022_121782 crossref_primary_10_1002_aoc_7862 crossref_primary_10_3390_mps6050097 crossref_primary_10_1007_s00210_024_03559_w |
| Cites_doi | 10.1038/s41598-018-37900-0 10.1016/j.ijpharm.2019.118575 10.1016/J.MSEC.2016.05.119 10.1080/03639045.2017.1304957 10.1016/J.JCONREL.2014.10.026 10.1016/S0928-0987(02)00051-9 10.26452/ijrps.v10i2.395 10.1016/j.ejpb.2018.01.001 10.1186/s12951-016-0177-x 10.3390/nano10071353 10.2217/nnm.12.141 10.1016/J.EJPB.2013.02.005 10.3109/21691401.2015.1036997 10.1016/j.ejpb.2018.11.017 10.1080/10717544.2016.1194498 10.1038/nrc.2016.108 10.1080/10837450.2017.1384491 10.1155/2017/5984014 10.1002/chin.200502271 10.1016/j.colsurfa.2016.05.017 10.1016/J.IMMUNI.2016.02.026 10.12659/MSM.924700 10.1080/00914037.2019.1570513 10.1016/j.ijpharm.2018.08.028 10.1158/1538-7445.am2019-ct210 10.1002/smll.201100001 10.1016/B978-0-08-101750-0.00013-1 10.1111/jphp.12217 10.1155/2017/6509184 10.1016/j.jtice.2019.07.010 10.1007/s11095-014-1469-1 10.1517/17425247.2013.784742 10.1517/17425247.2014.938634 10.1038/35888 10.1039/c3fo60036j 10.1016/B978-0-12-801076-1.00023-X 10.1016/J.TIBTECH.2016.07.006 10.1016/J.YMTHE.2017.03.013 10.1039/c9tb01081e 10.1016/J.IJPHARM.2014.08.008 10.4103/0250-474X.115457 10.1080/03639045.2017.1391835 10.1016/j.ejpb.2017.04.013 10.3109/08982104.2015.1117490 10.1016/j.colsurfb.2020.111076 10.1088/0957-4484/26/49/495103 10.1016/j.ejpb.2016.08.001 10.1021/mp700113r 10.1093/nar/gkx1037 10.1021/acsnano.5b01326 10.1016/j.lfs.2016.01.025 10.1016/s0169-409x(01)00105-3 10.1016/j.ijpharm.2019.03.056 10.1016/j.ejpb.2013.01.001 10.1038/nrd2742 10.1080/02652048.2019.1573857 10.1016/J.ACTBIO.2013.04.009 10.1007/978-3-030-34544-0_13 10.1089/nat.2018.0721 10.1016/j.msec.2019.03.060 10.1155/2017/9042851 10.1016/J.CARBPOL.2014.12.084 10.1021/mp5004674 10.1016/j.msec.2016.03.031 10.2147/IJN.S225086 10.1111/cbdd.13007 10.1556/1646.10.2018.45 10.1016/J.DRUDIS.2014.04.011 10.1016/J.ADDR.2016.04.025 10.1016/j.ymthe.2019.02.012 10.1007/3-540-32702-9_3 10.1126/sciadv.1601556 10.1038/nrd.2018.132 10.1208/s12249-016-0573-4 10.1021/acs.molpharmaceut.7b00169 10.1016/j.bbapap.2020.140466 10.1038/s41598-020-57943-6 10.1016/j.ijpharm.2017.06.045 10.1186/s12883-017-0948-5 10.1016/j.jddst.2016.10.012 10.1021/acschemneuro.9b00343 10.1038/nrgastro.2017.79 10.1080/03639045.2016.1185437 10.3389/fnagi.2019.00373 10.1080/21691401.2018.1434186 10.1016/j.ijpharm.2016.10.054 10.1080/21691401.2018.1465068 10.1155/2013/584549 10.1016/S0939-6411(02)00081-4 10.1208/s12249-017-0944-5 10.1038/nrg908 10.2217/nnm-2018-0139 10.1080/21691401.2017.1396996 10.1208/s12249-019-1337-8 10.2217/nnm-2018-0417 10.2217/nnm-2016-0336 10.1016/j.colsurfb.2018.02.011 10.1007/978-3-319-99593-9_6 10.1016/j.ijpharm.2015.05.005 10.1016/j.ejps.2013.03.013 10.1080/21691401.2019.1593858 10.1088/2053-1591/aaf8a3 10.1080/10408444.2020.1719974 10.1002/adma.201805730 10.2147/IJN.S215153 10.1016/S0169-409X(02)00118-7 10.1016/j.molliq.2018.05.075 10.1021/mp300649z 10.1080/02652048.2019.1665723 10.1016/J.IMPACT.2016.12.001 10.1039/c9nj01634a 10.1016/j.jconrel.2014.06.055 10.1002/smll.201903156 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10 10.1016/j.clinbiochem.2020.06.011 10.1016/j.ejps.2017.12.006 10.1016/j.ejpb.2018.10.017 10.1016/j.ejps.2018.11.022 10.1016/j.ijpharm.2013.12.022 10.2174/157015908785777210 10.1002/jps.23359 10.25258/ijddt.v7i1.8917 10.1016/j.colsurfb.2015.10.041 10.53879/id.56.08.11694 10.1155/2014/363404 10.1038/nrd1470 10.1111/jcmm.13695 10.1016/j.biomaterials.2012.09.067 10.1016/J.ADDR.2016.04.007 10.1016/j.ejpb.2018.09.012 10.1016/j.conb.2018.12.014 10.1038/s41598-018-20632-6 10.1016/j.biomaterials.2017.11.040 10.1016/S0165-6147(96)90065-6 10.1021/acs.molpharmaceut.9b00861 10.1016/s0378-5173(02)00180-1 10.1080/03639045.2020.1752707 10.1016/j.colsurfb.2018.01.046 10.1002/btpr.1834 10.1039/tf9191400008 10.1016/j.ijbiomac.2020.02.132 10.1016/j.ijpharm.2018.07.014 10.1007/s11051-013-1960-3 10.1038/nrg3978 10.1038/196476a0 10.1016/j.ijpharm.2014.06.022 10.1016/j.colsurfa.2015.10.011 10.1007/s12668-019-00680-6 10.3109/10837450.2014.882935 10.1016/j.carbpol.2019.115682 10.1007/978-1-4614-1308-0_2 10.1080/1061186X.2019.1613409 10.1016/j.ejpb.2016.10.006 10.1016/J.EJPB.2016.10.024 10.1039/c5nr07474f 10.1016/0168-3659(94)90047-7 10.1021/mp400685v 10.1021/acsami.8b00507 10.1016/j.jconrel.2019.10.053 10.1080/03639045.2017.1291666 10.1016/j.jconrel.2014.09.005 10.1016/j.jconrel.2009.03.002 10.1186/s13756-019-0504-8 10.1080/10717544.2017.1388451 10.1016/j.addr.2012.09.006 10.3109/21691401.2016.1173046 10.1155/2013/750690 10.4314/tjpr.v16i8.3 10.1038/s41598-018-31693-y 10.1016/j.colsurfb.2018.03.052 10.3390/nano9020230 10.1016/j.ijpharm.2017.04.034 10.1016/j.nano.2017.07.014 10.1016/j.colsurfb.2020.111305 10.1002/ppsc.201800359 10.2147/IJN.S100625 10.3109/1061186X.2014.965717 10.1016/j.biomaterials.2019.119491 10.1002/smll.201100442 10.3109/03639045.2015.1062896 10.1166/jnn.2014.8722 10.1016/j.biopha.2019.109006 10.1007/s00239-019-09914-3 10.1351/goldbook.C01172 10.1080/03639045.2016.1275666 10.1016/j.ejpb.2014.06.011 10.1016/j.biomaterials.2011.01.021 10.1007/s11095-017-2283-3 10.1038/nbt936 10.26452/ijrps.v10i1.1783 10.1016/S0378-5173(96)04731-X 10.1038/natrevmats.2017.14 10.1016/J.COLSURFA.2013.12.023 10.1016/j.exppara.2013.07.017 10.1021/acs.bioconjchem.9b00348 10.1016/J.ADDR.2016.01.022 10.2174/156720181006131125150023 10.1016/S1470-2045(17)30698-8 10.1016/J.JCONREL.2010.01.036 10.1016/j.jconrel.2019.10.004 10.1016/j.ijpharm.2015.11.050 10.1016/j.nano.2015.11.017 10.1080/21691401.2017.1313267 10.1166/jbn.2014.1834 10.1146/annurev-food-032818-121738 10.1016/j.colsurfb.2018.01.054 10.1016/j.colsurfb.2015.03.049 10.1016/B978-0-12-060309-1.50011-2 10.1080/02652048.2016.1200150 10.1016/J.JCONREL.2016.05.044 10.1016/j.ejpb.2005.02.006 10.1098/rsif.2017.0932 10.1080/21691401.2018.1546186 10.1080/21691401.2017.1366338 10.3390/pharmaceutics10020057 10.1021/acs.bioconjchem.6b00705 10.1021/acs.molpharmaceut.7b00846 10.1021/acsnano.7b04855 10.1016/j.ejps.2005.08.002 10.3109/10611869609015973 10.1080/10611860310001615956 10.1016/j.ijpharm.2014.11.017 10.1016/j.colsurfb.2020.111073 10.3390/pharmaceutics11110565 10.1080/17425247.2017.1262346 10.1021/ed032p2 10.1080/03639045.2019.1593434 10.1016/j.colsurfb.2019.01.027 10.1016/b978-0-12-817778-5.00008-7 10.1208/s12248-012-9432-8 10.2147/DDDT.S141031 10.1038/274923a0 10.1021/acschemneuro.8b00510 10.1208/s12249-020-01711-2 10.1016/j.colsurfb.2015.12.029 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Scioli Montoto, Muraca and Ruiz. Copyright © 2020 Scioli Montoto, Muraca and Ruiz. 2020 Scioli Montoto, Muraca and Ruiz |
| Copyright_xml | – notice: Copyright © 2020 Scioli Montoto, Muraca and Ruiz. – notice: Copyright © 2020 Scioli Montoto, Muraca and Ruiz. 2020 Scioli Montoto, Muraca and Ruiz |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3389/fmolb.2020.587997 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2296-889X |
| ExternalDocumentID | oai_doaj_org_article_e10327c08683416e91ca18586bc52722 PMC7662460 33195435 10_3389_fmolb_2020_587997 |
| Genre | Journal Article Review |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION GROUPED_DOAJ HYE KQ8 M48 M~E OK1 PGMZT RPM ACXDI IPNFZ NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c465t-fcb63e3437e288924dd68af0fcdf70b5530345bd9d89836d97c7f2ae2aa01c1a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 421 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588780700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2296-889X |
| IngestDate | Fri Oct 03 12:37:05 EDT 2025 Thu Aug 21 14:11:08 EDT 2025 Thu Oct 02 06:40:07 EDT 2025 Mon Jul 21 05:52:15 EDT 2025 Tue Nov 18 22:31:04 EST 2025 Sat Nov 29 05:32:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | nanotoxicity pharmacodynamics solid lipid nanoparticles pharmacokinetics clinical trials routes of administration drug delivery nanostructured lipid carriers |
| Language | English |
| License | Copyright © 2020 Scioli Montoto, Muraca and Ruiz. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c465t-fcb63e3437e288924dd68af0fcdf70b5530345bd9d89836d97c7f2ae2aa01c1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 This article was submitted to Nanobiotechnology, a section of the journal Frontiers in Molecular Biosciences Edited by: Michele Iafisco, National Research Council (CNR), Italy Reviewed by: Amedea Barozzi Seabra, Universidade Federal do ABC, Brazil; Jyothi U. Menon, University of Rhode Island, United States |
| OpenAccessLink | https://doaj.org/article/e10327c08683416e91ca18586bc52722 |
| PMID | 33195435 |
| PQID | 2461005259 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e10327c08683416e91ca18586bc52722 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7662460 proquest_miscellaneous_2461005259 pubmed_primary_33195435 crossref_citationtrail_10_3389_fmolb_2020_587997 crossref_primary_10_3389_fmolb_2020_587997 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-30 |
| PublicationDateYYYYMMDD | 2020-10-30 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in molecular biosciences |
| PublicationTitleAlternate | Front Mol Biosci |
| PublicationYear | 2020 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Bauer (B17) 2019; 79 Yang (B236) 2019; 31 Yu (B241) 2019; 16 Lima (B122) 2020; 10 Rajpoot (B170) 2018; 46 Ruiz (B183) 2018 Anand (B10) 2007; 4 Ravi (B174) 2014; 66 Keck (B100) 2013; 84 Senthil Kumar (B193) 2020; 231 Chirio (B34) 2019; 9 Sharma (B199) 2013; 5 Kurakula (B117) 2016; 26 Maretti (B130) 2017; 528 Dudhipala (B51) 2018; 46 Neves (B148) 2017; 28 Geetha (B66) 2015; 23 Dara (B40) 2019; 178 Hecq (B87) 2016; 36 Müller (B140); 4 von Roemeling (B223) 2017; 35 Jain (B93) 2020 Neves (B150) 2015; 26 Fang (B56) 2017; 24 Zhao (B245) 2011; 7 Pink (B167) 2019; 15 le Chatelier (B119) 1919; 14 Pelaz (B161) 2015; 9 van der Meel (B219) 2017; 14 Diwan (B47) 2020; 193 Krishna (B109) 2019; 10 Vaghasiya (B218) 2013; 49 Ahmad (B5) 2019; 100 Shah (B197); 140 Doktorovová (B48) 2016; 108 Puri (B168) 2009; 26 Costa (B36) 2018; 114 Di Ianni (B45) 2017; 2017 Jaffee (B92) 2017; 18 Reynolds (B177) 2004; 22 Beguin (B19) 2013; 4 Kuo (B115) 2019; 103 Rosales (B179) 2017; 2017 Souto (B209) 2019; 128 Alsulays (B8) 2019; 14 Stamatovic (B211) 2008; 6 Fang (B55) 2006; 27 Whitehead (B229) 2009; 8 Amasya (B9) 2019; 563 Peng (B162) 2020; 84 Gaur (B65) 2013; 2013 Kumar (B113) 2018; 10 Rajpoot (B171); 36 Ma (B125) 2017; 13 Cacicedo (B26) 2019; 43 Haque (B83) 2018; 125 Bhalekar (B22) 2017; 43 McNaught (B136) 1997 Muller (B144) 1993; 20 Kakkar (B96) 2013; 85 Shah (B195); 515 Scioli Montoto (B192) 2018; 167 El-Assal (B52) 2017; 7 Mahmoud (B128) 2020; 46 Gaur (B64) 2014; 2014 You (B238) 2017; 11 Ghanbarzadeh (B70) 2015; 136 He (B86) 2020; 21 Wang (B227) 2019; 14 Rudhrabatla (B182) 2020; 10 Keck (B99) 2014; 474 Yu (B240) 2013; 9 Hadjesfandiari (B80) 2018 Shah (B196) 2019; 36 Fàbregas (B53) 2014; 473 Kong (B104) 2013; 34 Vijayakumar (B222) 2017; 18 Ayloo (B11) 2019; 57 Hare (B84) 2017; 108 Gessner (B67) 2002; 54 Shi (B202) 2014; 194 Shangguan (B198) 2015; 489 Troy (B216) 2000 Aljaeid (B7) 2016; 11 Saraiva (B188) 2016; 235 Ramalingam (B173) 2015; 32 Dasgupta (B41) 2013; 10 Hamishehkar (B81) 2016; 42 Gordon (B76) 2016; 44 Gupta (B78) 2017; 2017 Rehman (B176) 2018; 46 McManus (B135) 2002; 3 Beg (B18) 2017; 12 Benet (B20) 2013; 102 (B57) 2017 (B91) 2009 Dimitriadis (B46) 1978; 274 Salah (B186) 2020; 196 Patel (B159); 47 Chai (B29) 2014; 11 Gide (B71) 2013; 75 Veni (B220) 2020; 69 Xu (B235) 2018; 10 Cavaco (B27) 2017; 110 Wang (B228) 2018; 550 Daneshmand (B39) 2018; 164 Kang (B97) 2019; 14 Kovačević (B107) 2014; 444 Yuan (B242) 2013; 10 Sathya (B189) 2018; 264 Zhang (B244) 2014; 11 Kuo (B114) 2016; 146 Patel (B160) 2013; 10 Shi (B201) 2015; 478 Di (B44) 2016 Mazuryk (B133) 2016; 502 Perez-Garcia (B164) 2019 Geszke-Moritz (B68) 2016; 68 Youssef (B239) 2018; 548 Patel (B158); 45 de Jesus (B43) 2013; 15 Kumar (B112) 2016; 42 Yao (B237) 2017; 5 Hosseini (B89) 2019; 8 Peralta (B163) 2018; 8 Omwoyo (B153) 2016; 12 Talegaonkar (B212) 2019; 20 Agrawal (B4) 2014; 19 Cheng (B32) 2016 Banerjee (B16) 2020; 28 Doktorovova (B49) 2018; 23 Pandya (B154) 2018; 165 Han (B82) 2019; 7 Montgomery (B139) 2017 Gupta (B79) 2013; 15 Ahmadnia (B6) 2013; 135 Rajpoot (B172) 2020; 151 Müller (B143); 144 Zensi (B243) 2009; 137 Nooli (B151) 2017; 43 Souza (B210) 2014; 463 Lahkar (B118) 2018; 35 Liu (B123) 2017; 16 Gaspar (B63) 2017; 14 Sonawane (B208) 2014; 11 (B58) 2015 Cullis (B37) 2017; 25 Pignatello (B166) 2017; 7 Danaei (B38) 2018; 10 Mehnert (B137) 2001; 47 Tupal (B217) 2016; 33 Pardridge (B155) 2020; 11 Wang (B226) 2011; 7 Martínez-Jothar (B131) 2020; 10 Shi (B200) 2017; 17 Martins (B132) 2007; 2 Xie (B234) 2019; 224 Mohanty (B138) 2015; 20 Raj (B169) 2016; 44 Maaßen (B127) 1993; 20 Schwarz (B191) 1994; 30 Küçüktürkmen (B110) 2018; 44 Rosière (B180) 2018; 15 Rudhrabatla (B181) 2019; 10 Gupta (B77) 2019; 9 Dudhipala (B50) 2017; 43 Brigger (B24) 2012; 64 Park (B156) 2017; 2 Wang (B225) 2020; 26 Sahay (B185) 2010; 145 Vroman (B224) 1962; 196 Hu (B90) 2016; 8 Wittrup (B231) 2015; 16 Fan (B54) 2014; 88 Leite (B120) 2012 Singh (B207) 2013; 2013 Gordillo-Galeano (B75) 2018; 133 Taveira (B214) 2014; 10 Vieira (B221) 2018; 46 Silki (B206) 2018; 19 Wu (B232) 2018; 156 Xiao (B233) 2011; 32 Göppert (B74) 2003; 11 Müller (B141) 2002; 54 Fire (B61) 1998; 391 Kotmakçı (B105) 2017; 525 Luo (B124) 2015; 122 Azarnezhad (B12) 2020; 50 Kola (B103) 2004; 3 Chen (B31) 2013; 8 Sanidad (B187) 2019; 10 Zheng (B246) 2019; 116 Bernier-Latmani (B21) 2017; 14 Bjö (B23) 2017; 11 Karn-orachai (B98) 2016; 488 Kowalski (B108) 2019; 27 Khatri (B102) 2019; 6 Abdel Hady (B1) 2020; 193 Schneider (B190) 2017; 3 Kulkarni (B111) 2018; 28 Talluri (B213) 2017; 45 Ball (B15) 2018; 8 Christaki (B35) 2020; 88 Khallaf (B101) 2016; 23 Pastor (B157) 2018; 17 O’Driscoll (B152) 2002; 15 Permana (B165) 2019; 316 Rodenak-Kladniew (B178) 2019; 569 Joshy (B94) 2016; 66 Baek (B13) 2017; 117 Kovačević (B106) 2020 Chetoni (B33) 2016; 109 Tran (B215) 2014; 14 Müller (B145) 2014; 9 Siddhartha (B204) 2018; 46 Feeney (B59) 2016; 101 Ma (B126) 2019; 316 Severino (B194) 2015; 129 Abd-Rabou (B2) 2018; 35 Hauser (B85) 1955; 32 Nafee (B146) 2014; 192 González-Paredes (B72) 2019; 134 Neves (B149) 2016; 14 Kadari (B95) 2018; 132 Holm (B88) 2020; 1868 Sadegh Malvajerd (B184) 2019; 10 Adams (B3) 2017; 17 Siepmann (B205) 2006 Ghaderkhani (B69) 2019; 47 Chaves (B30) 2018; 15 de Blaey (B42) 1980 Kuo (B116) 2014; 30 McCartney (B134) 2019; 11 Bummer (B25) 2004; 21 Maisel (B129) 2015; 197 Baimanov (B14) 2019; 30 Ravindra Babu (B175) 2019; 10 Wishart (B230) 2018; 46 Li (B121) 2018; 22 Shinde (B203) 2019; 56 Gaspar (B62) 2016; 497 Feng (B60) 2017; 90 Nakhlband (B147) 2018; 164 Muller (B142) 2002; 242 Goppert (B73) 2005; 60 Ceña (B28) 2018; 13 |
| References_xml | – volume: 9 year: 2019 ident: B77 article-title: Effect of chemical permeation enhancers on skin permeability: in silico screening using molecular dynamics simulations. publication-title: Sci. Rep. doi: 10.1038/s41598-018-37900-0 – volume: 569 year: 2019 ident: B178 article-title: Hybrid Ofloxacin/eugenol co-loaded solid lipid nanoparticles with enhanced and targetable antimicrobial properties. publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.118575 – volume: 68 start-page: 982 year: 2016 ident: B68 article-title: Solid lipid nanoparticles as attractive drug vehicles: composition, properties and therapeutic strategies. publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. doi: 10.1016/J.MSEC.2016.05.119 – volume: 43 start-page: 1205 year: 2017 ident: B50 article-title: Lipid nanoparticles of zaleplon for improved oral delivery by Box–Behnken design: optimization, in vitro and in vivo evaluation. publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2017.1304957 – volume: 197 start-page: 48 year: 2015 ident: B129 article-title: Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. publication-title: J. Control. Release doi: 10.1016/J.JCONREL.2014.10.026 – volume: 15 start-page: 405 year: 2002 ident: B152 article-title: Lipid-based formulations for intestinal lymphatic delivery. publication-title: Eur. J. Pharm. Sci. doi: 10.1016/S0928-0987(02)00051-9 – volume: 10 start-page: 1143 year: 2019 ident: B175 article-title: Absorption enhancement effect of piperine and chitosan on ganciclovir sol-id lipid nanoparticles: formulation, optimization and invivo pharmacoki-netics. publication-title: Int. J. Res. Pharm. Sci. doi: 10.26452/ijrps.v10i2.395 – volume: 125 start-page: 1 year: 2018 ident: B83 article-title: A comparison of the lung clearance kinetics of solid lipid nanoparticles and liposomes by following the3H-labelled structural lipids after pulmonary delivery in rats. publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2018.01.001 – volume: 14 year: 2016 ident: B149 article-title: Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. publication-title: J. Nanobiotechnology doi: 10.1186/s12951-016-0177-x – year: 2019 ident: B164 article-title: Compositions and methods for treating ornithine transcarbamylase deficiency – volume: 10 year: 2020 ident: B131 article-title: Endothelial cell targeting by crgd-functionalized polymeric nanoparticles under static and flow conditions. publication-title: Nanomaterials doi: 10.3390/nano10071353 – volume: 8 start-page: 1085 year: 2013 ident: B31 article-title: Orally delivered salmon calcitonin-loaded solid lipid nanoparticles prepared by micelle-double emulsion method via the combined use of different solid lipids. publication-title: Nanomedicine doi: 10.2217/nnm.12.141 – year: 2017 ident: B57 publication-title: Route of Administration. – volume: 85 start-page: 339 year: 2013 ident: B96 article-title: Curcumin loaded solid lipid nanoparticles: an efficient formulation approach for cerebral ischemic reperfusion injury in rats. publication-title: Eur. J. Pharm. Biopharm doi: 10.1016/J.EJPB.2013.02.005 – volume: 44 start-page: 1434 year: 2016 ident: B169 article-title: Enhanced skin delivery of aceclofenac via hydrogel-based solid lipid nanoparticles. publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.3109/21691401.2015.1036997 – volume: 134 start-page: 166 year: 2019 ident: B72 article-title: Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides. publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2018.11.017 – volume: 23 start-page: 3452 year: 2016 ident: B101 article-title: 5-Fluorouracil shell-enriched solid lipid nanoparticles (SLN) for effective skin carcinoma treatment. publication-title: Drug Deliv. doi: 10.1080/10717544.2016.1194498 – volume: 17 start-page: 20 year: 2017 ident: B200 article-title: Cancer nanomedicine: progress, challenges and opportunities. publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.108 – volume: 23 start-page: 96 year: 2018 ident: B49 article-title: Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. publication-title: Pharm. Dev. Technol. doi: 10.1080/10837450.2017.1384491 – volume: 2017 year: 2017 ident: B78 article-title: Systematic approach for the formulation and optimization of solid lipid nanoparticles of Efavirenz by high pressure homogenization using design of experiments for brain targeting and enhanced bioavailability. publication-title: Biomed Res. Int. doi: 10.1155/2017/5984014 – volume: 21 start-page: 1 year: 2004 ident: B25 article-title: Physical chemical considerations of lipid-based oral drug delivery–solid lipid nanoparticles. publication-title: Crit. Rev. Ther. Drug Carrier Syst. doi: 10.1002/chin.200502271 – volume: 502 start-page: 54 year: 2016 ident: B133 article-title: Rapamycin-loaded solid lipid nanoparticles: morphology and impact of the drug loading on the phase transition between lipid polymorphs. publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2016.05.017 – volume: 44 start-page: 463 year: 2016 ident: B76 article-title: Phagocytosis: an immunobiologic process. publication-title: Immunity doi: 10.1016/J.IMMUNI.2016.02.026 – volume: 26 year: 2020 ident: B225 article-title: An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. publication-title: Med. Sci. Monit. doi: 10.12659/MSM.924700 – volume: 69 start-page: 407 year: 2020 ident: B220 article-title: Development and evaluation of Eudragit coated environmental sensitive solid lipid nanoparticles using central composite design module for enhancement of oral bioavailability of linagliptin. publication-title: Int. J. Polym. Mater. Polym. Biomater. doi: 10.1080/00914037.2019.1570513 – volume: 550 start-page: 24 year: 2018 ident: B228 article-title: Enhanced oral bioavailability and anti-gout activity of [6]-shogaol-loaded solid lipid nanoparticles. publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.08.028 – volume: 79 year: 2019 ident: B17 article-title: Abstract CT210: A Phase I, open-label, multicenter, dose escalation study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36γ, for intratumoral injection alone and in combination with immune checkpoint blockade. publication-title: Cancer Res. doi: 10.1158/1538-7445.am2019-ct210 – volume: 7 start-page: 1322 year: 2011 ident: B245 article-title: Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. publication-title: Small doi: 10.1002/smll.201100001 – start-page: 345 year: 2018 ident: B80 article-title: Stealth coatings for nanoparticles: Polyethylene glycol alternatives publication-title: Engineering of Biomaterials for Drug Delivery Systems: Beyond Polyethylene Glycol doi: 10.1016/B978-0-08-101750-0.00013-1 – volume: 66 start-page: 912 year: 2014 ident: B174 article-title: A hybrid design to optimize preparation of lopinavir loaded solid lipid nanoparticles and comparative pharmacokinetic evaluation with marketed lopinavir/ritonavir coformulation. publication-title: J. Pharm. Pharmacol. doi: 10.1111/jphp.12217 – volume: 2017 year: 2017 ident: B45 article-title: Interaction of solid lipid nanoparticles and specific proteins of the Corona studied by surface plasmon resonance. publication-title: J. Nanomater. doi: 10.1155/2017/6509184 – volume: 103 start-page: 167 year: 2019 ident: B115 article-title: Electrophoretic mobility of neuron-like cells regenerated from iPSCs with induction of retinoic acid- and nerve growth factor-loaded solid lipid nanoparticles. publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2019.07.010 – volume: 32 start-page: 389 year: 2015 ident: B173 article-title: Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. publication-title: Pharm. Res. doi: 10.1007/s11095-014-1469-1 – volume: 10 start-page: 889 year: 2013 ident: B160 article-title: Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles. publication-title: Expert Opin. Drug Deliv. doi: 10.1517/17425247.2013.784742 – volume: 11 start-page: 1833 year: 2014 ident: B208 article-title: Solid lipid nanoparticles-loaded topical gel containing combination drugs: an approach to offset psoriasis. publication-title: Expert Opin. Drug Deliv. doi: 10.1517/17425247.2014.938634 – volume: 391 start-page: 806 year: 1998 ident: B61 article-title: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. publication-title: Nature doi: 10.1038/35888 – volume: 4 start-page: 923 year: 2013 ident: B19 article-title: Effect of polyunsaturated fatty acids on tight junctions in a model of the human intestinal epithelium under normal and inflammatory conditions. publication-title: Food Funct. doi: 10.1039/c3fo60036j – year: 2016 ident: B44 publication-title: Drug-Like Properties. doi: 10.1016/B978-0-12-801076-1.00023-X – volume: 35 start-page: 159 year: 2017 ident: B223 article-title: Breaking down the barriers to precision cancer nanomedicine. publication-title: Trends Biotechnol. doi: 10.1016/J.TIBTECH.2016.07.006 – volume: 25 start-page: 1467 year: 2017 ident: B37 article-title: Lipid nanoparticle systems for enabling gene therapies. publication-title: Mol. Ther. doi: 10.1016/J.YMTHE.2017.03.013 – volume: 7 start-page: 6310 year: 2019 ident: B82 article-title: Biomaterial-tight junction interaction and potential impacts. publication-title: J. Mater. Chem. B doi: 10.1039/c9tb01081e – volume: 474 start-page: 33 year: 2014 ident: B99 article-title: Formulation of solid lipid nanoparticles (SLN): The value of different alkyl polyglucoside surfactants. publication-title: Int. J. Pharm. doi: 10.1016/J.IJPHARM.2014.08.008 – volume: 75 start-page: 138 year: 2013 ident: B71 article-title: Enhancement of transdermal penetration and bioavailability of poorly soluble acyclovir using solid lipid nanoparticles incorporated in gel cream. publication-title: Indian J. Pharm. Sci. doi: 10.4103/0250-474X.115457 – volume: 44 start-page: 306 year: 2018 ident: B110 article-title: Development and characterization of cationic solid lipid nanoparticles for co-delivery of pemetrexed and miR-21 antisense oligonucleotide to glioblastoma cells. publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2017.1391835 – volume: 117 start-page: 132 year: 2017 ident: B13 article-title: Surface modification of solid lipid nanoparticles for oral delivery of curcumin: improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake. publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2017.04.013 – volume: 26 start-page: 288 year: 2016 ident: B117 article-title: Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies. publication-title: J. Liposome Res. doi: 10.3109/08982104.2015.1117490 – volume: 193 year: 2020 ident: B1 article-title: Brain uptake and accumulation of new levofloxacin-doxycycline combination through the use of solid lipid nanoparticles: formulation; Optimization and in-vivo evaluation. publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2020.111076 – volume: 26 year: 2015 ident: B150 article-title: Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E. publication-title: Nanotechnology doi: 10.1088/0957-4484/26/49/495103 – volume: 108 start-page: 235 year: 2016 ident: B48 article-title: Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation. publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2016.08.001 – volume: 4 start-page: 807 year: 2007 ident: B10 article-title: Bioavailability of curcumin: problems and promises. publication-title: Mol. Pharm. doi: 10.1021/mp700113r – volume: 46 start-page: D1074 year: 2018 ident: B230 article-title: DrugBank 5.0: a major update to the DrugBank database for 2018. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1037 – volume: 9 start-page: 6996 year: 2015 ident: B161 article-title: Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. publication-title: ACS Nano doi: 10.1021/acsnano.5b01326 – volume: 146 start-page: 222 year: 2016 ident: B114 article-title: Dual targeting of solid lipid nanoparticles grafted with 83-14 MAb and anti-EGF receptor for malignant brain tumor therapy. publication-title: Life Sci. doi: 10.1016/j.lfs.2016.01.025 – volume: 47 start-page: 165 year: 2001 ident: B137 article-title: Solid lipid nanoparticles: production, characterization and applications. publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/s0169-409x(01)00105-3 – volume: 563 start-page: 110 year: 2019 ident: B9 article-title: QbD guided early pharmaceutical development study: Production of lipid nanoparticles by high pressure homogenization for skin cancer treatment. publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.03.056 – volume: 84 start-page: 445 year: 2013 ident: B100 article-title: Nanotoxicological classification system (NCS) - a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2013.01.001 – volume: 8 start-page: 129 year: 2009 ident: B229 article-title: Knocking down barriers: advances in siRNA delivery. publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2742 – volume: 35 start-page: 680 year: 2018 ident: B118 article-title: Surface modified kokum butter lipid nanoparticles for the brain targeted delivery of nevirapine. publication-title: J. Microencapsul. doi: 10.1080/02652048.2019.1573857 – volume: 9 start-page: 7449 year: 2013 ident: B240 article-title: Nanoparticle-induced tight-junction opening for the transport of an anti-angiogenic sulfated polysaccharide across Caco-2 cell monolayers. publication-title: Acta Biomater. doi: 10.1016/J.ACTBIO.2013.04.009 – start-page: 221 year: 2020 ident: B93 article-title: Solid lipid nanoparticles publication-title: Nanomaterials and Environmental Biotechnology doi: 10.1007/978-3-030-34544-0_13 – volume: 28 start-page: 146 year: 2018 ident: B111 article-title: Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. publication-title: Nucleic Acid Ther. doi: 10.1089/nat.2018.0721 – volume: 5 start-page: 137 year: 2013 ident: B199 article-title: Solid lipid nanoparticles as a carrier of metformin for transdermal delivery. publication-title: Int. J. Drug Deliv. – volume: 100 start-page: 959 year: 2019 ident: B5 article-title: Optimization by design of etoposide loaded solid lipid nanoparticles for ocular delivery: characterization, pharmacokinetic and deposition study. publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2019.03.060 – volume: 2017 year: 2017 ident: B179 article-title: Phagocytosis: a fundamental process in immunity. publication-title: Biomed Res. Int. doi: 10.1155/2017/9042851 – volume: 122 start-page: 221 year: 2015 ident: B124 article-title: Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. publication-title: Carbohydr. Polym. doi: 10.1016/J.CARBPOL.2014.12.084 – volume: 11 start-page: 3716 year: 2014 ident: B29 article-title: Transport pathways of solid lipid nanoparticles across Madin–Darby canine kidney epithelial cell monolayer. publication-title: Mol. Pharm. doi: 10.1021/mp5004674 – volume: 66 start-page: 40 year: 2016 ident: B94 article-title: Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells. publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.03.031 – volume: 14 start-page: 9127 year: 2019 ident: B8 article-title: Impact of penetratin stereochemistry on the oral bioavailability of insulin-loaded solid lipid nanoparticles. publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S225086 – volume: 90 start-page: 867 year: 2017 ident: B60 article-title: Preparation, characterization, and in vivo study of rhein solid lipid nanoparticles for oral delivery. publication-title: Chem. Biol. Drug Des. doi: 10.1111/cbdd.13007 – volume: 10 start-page: 236 year: 2018 ident: B113 article-title: Development and evaluation of isradipine via rutin-loaded coated solid–lipid nanoparticles. publication-title: Interv. Med. Appl. Sci. doi: 10.1556/1646.10.2018.45 – volume: 19 start-page: 1530 year: 2014 ident: B4 article-title: Is nanotechnology a boon for oral drug delivery? publication-title: Drug Discov. Today doi: 10.1016/J.DRUDIS.2014.04.011 – year: 2017 ident: B139 publication-title: Design and Analysis of Experiments. – volume: 108 start-page: 25 year: 2017 ident: B84 article-title: Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/J.ADDR.2016.04.025 – volume: 27 start-page: 710 year: 2019 ident: B108 article-title: Delivering the messenger: advances in technologies for therapeutic mRNA delivery. publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2019.02.012 – start-page: 15 year: 2006 ident: B205 article-title: Microparticles used as drug delivery systems publication-title: Smart Colloidal Materials doi: 10.1007/3-540-32702-9_3 – volume: 3 year: 2017 ident: B190 article-title: Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. publication-title: Sci. Adv. doi: 10.1126/sciadv.1601556 – volume: 17 start-page: 751 year: 2018 ident: B157 article-title: An RNA toolbox for cancer immunotherapy. publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2018.132 – volume: 18 start-page: 875 year: 2017 ident: B222 article-title: Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake. publication-title: AAPS PharmSciTech doi: 10.1208/s12249-016-0573-4 – volume: 14 start-page: 2977 year: 2017 ident: B63 article-title: Microencapsulated solid lipid nanoparticles as a hybrid platform for pulmonary antibiotic delivery. publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.7b00169 – volume: 1868 year: 2020 ident: B88 article-title: Characterization of soluble folate receptors (folate binding proteins) in humans. Biological roles and clinical potentials in infection and malignancy. publication-title: Biochim. Biophys. Acta Proteins Proteom. doi: 10.1016/j.bbapap.2020.140466 – volume: 10 year: 2020 ident: B122 article-title: Understanding the lipid and protein corona formation on different sized polymeric nanoparticles. publication-title: Sci. Rep. doi: 10.1038/s41598-020-57943-6 – volume: 528 start-page: 440 year: 2017 ident: B130 article-title: Surface engineering of Solid Lipid Nanoparticle assemblies by methyl α-D-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.06.045 – volume: 17 year: 2017 ident: B3 article-title: Trial design and rationale for APOLLO, a Phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy. publication-title: BMC Neurol. doi: 10.1186/s12883-017-0948-5 – volume: 36 start-page: 192 year: 2016 ident: B87 article-title: Development and evaluation of insulin-loaded cationic solid lipid nanoparticles for oral delivery. publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2016.10.012 – volume: 10 start-page: 4124 year: 2019 ident: B109 article-title: Design and biological evaluation of lipoprotein-based donepezil nanocarrier for enhanced Brain uptake through oral delivery. publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro.9b00343 – volume: 14 start-page: 510 year: 2017 ident: B21 article-title: Intestinal lymphatic vasculature: structure, mechanisms and functions. publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2017.79 – volume: 42 start-page: 1956 year: 2016 ident: B112 article-title: Solid lipid nanoparticle: an efficient carrier for improved ocular permeation of voriconazole. publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2016.1185437 – volume: 11 year: 2020 ident: B155 article-title: Blood-brain barrier and delivery of protein and gene therapeutics to brain. publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2019.00373 – volume: 46 start-page: 653 year: 2018 ident: B221 article-title: Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages. publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2018.1434186 – volume: 515 start-page: 543 ident: B195 article-title: Microwave-assisted formulation of solid lipid nanoparticles loaded with non-steroidal anti-inflammatory drugs. publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2016.10.054 – volume: 46 start-page: 616 year: 2018 ident: B51 article-title: Comparative study of nisoldipine-loaded nanostructured lipid carriers and solid lipid nanoparticles for oral delivery: preparation, characterization, permeation and pharmacokinetic evaluation. publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2018.1465068 – volume: 2013 year: 2013 ident: B207 article-title: Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. publication-title: Biomed Res. Int. doi: 10.1155/2013/584549 – volume: 54 start-page: 165 year: 2002 ident: B67 article-title: Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/S0939-6411(02)00081-4 – volume: 19 start-page: 1264 year: 2018 ident: B206 article-title: Enhancement of in vivo efficacy and oral bioavailability of aripiprazole with solid lipid nanoparticles. publication-title: AAPS PharmSciTech doi: 10.1208/s12249-017-0944-5 – volume: 3 start-page: 737 year: 2002 ident: B135 article-title: Gene silencing in mammals by small interfering RNAs. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg908 – volume: 20 start-page: 480 year: 1993 ident: B144 article-title: Production of solid lipid nanoparticles (SLN) for controlled drug delivery. publication-title: Proc. Control. Release Soc. – volume: 13 start-page: 1513 year: 2018 ident: B28 article-title: Nanoparticle crossing of blood–brain barrier: a road to new therapeutic approaches to central nervous system diseases. publication-title: Nanomedicine doi: 10.2217/nnm-2018-0139 – volume: 46 start-page: 1926 year: 2018 ident: B176 article-title: Fabrication of Niclosamide loaded solid lipid nanoparticles: in vitro characterization and comparative in vivo evaluation. publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2017.1396996 – volume: 20 year: 2019 ident: B212 article-title: Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability. publication-title: AAPS PharmSciTech doi: 10.1208/s12249-019-1337-8 – volume: 14 start-page: 2105 year: 2019 ident: B227 article-title: Improved brain delivery of pueraria flavones via intranasal administration of borneol-modified solid lipid nanoparticles. publication-title: Nanomedicine doi: 10.2217/nnm-2018-0417 – volume: 12 start-page: 333 year: 2017 ident: B18 article-title: Novel surface-engineered solid lipid nanoparticles of rosuvastatin calcium for low-density lipoprotein-receptor targeting: a quality by design-driven perspective. publication-title: Nanomedicine doi: 10.2217/nnm-2016-0336 – volume: 165 start-page: 37 year: 2018 ident: B154 article-title: Solid lipid nanoparticles as an efficient drug delivery system of olmesartan medoxomil for the treatment of hypertension. publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2018.02.011 – start-page: 97 year: 2018 ident: B183 article-title: Routes of drug administration publication-title: ADME Processes in Pharmaceutical Sciences doi: 10.1007/978-3-319-99593-9_6 – volume: 489 start-page: 195 year: 2015 ident: B198 article-title: Comparison of the oral bioavailability of silymarin-loaded lipid nanoparticles with their artificial lipolysate counterparts: implications on the contribution of integral structure. publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2015.05.005 – volume: 49 start-page: 311 year: 2013 ident: B218 article-title: Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2013.03.013 – volume: 47 start-page: 1181 year: 2019 ident: B69 article-title: Improved antibacterial function of Rifampicin-loaded solid lipid nanoparticles on Brucella abortus. publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2019.1593858 – volume: 6 year: 2019 ident: B102 article-title: Fabrication, characterization and optimization of artemether loaded PEGylated solid lipid nanoparticles for the treatment of lung cancer. publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aaf8a3 – volume: 50 start-page: 148 year: 2020 ident: B12 article-title: Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers? publication-title: Crit. Rev. Toxicol. doi: 10.1080/10408444.2020.1719974 – volume: 31 year: 2019 ident: B236 article-title: Degradability and clearance of inorganic nanoparticles for biomedical applications. publication-title: Adv. Mater. doi: 10.1002/adma.201805730 – volume: 14 start-page: 5381 year: 2019 ident: B97 article-title: Preparation and evaluation of tacrolimus-loaded thermosensitive solid lipid nanoparticles for improved dermal distribution. publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S215153 – volume: 54 start-page: S131 year: 2002 ident: B141 article-title: Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(02)00118-7 – volume: 264 start-page: 431 year: 2018 ident: B189 article-title: α-Bisabolol loaded solid lipid nanoparticles attenuates Aβ aggregation and protects Neuro-2a cells from Aβ induced neurotoxicity. publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.05.075 – volume: 10 start-page: 1865 year: 2013 ident: B242 article-title: Improved transport and absorption through gastrointestinal tract by pegylated solid lipid nanoparticles. publication-title: Mol. Pharm. doi: 10.1021/mp300649z – volume: 36 start-page: 659 ident: B171 article-title: Irinotecan hydrochloride trihydrate loaded folic acid-tailored solid lipid nanoparticles for targeting colorectal cancer: development, characterization, and in vitro cytotoxicity study using HT-29 cells. publication-title: J. Microencapsul. doi: 10.1080/02652048.2019.1665723 – volume: 5 start-page: 13 year: 2017 ident: B237 article-title: Controlling the gastrointestinal fate of nutraceutical and pharmaceutical-enriched lipid nanoparticles: from mixed micelles to chylomicrons. publication-title: Nanoimpact doi: 10.1016/J.IMPACT.2016.12.001 – volume: 43 start-page: 17726 year: 2019 ident: B26 article-title: Lipid nanoparticles-Metvan: revealing a novel way to deliver a vanadium compound to bone cancer cells. publication-title: New J. Chem. doi: 10.1039/c9nj01634a – volume: 192 start-page: 131 year: 2014 ident: B146 article-title: Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.06.055 – volume: 15 year: 2019 ident: B167 article-title: On the structure of solid lipid nanoparticles. publication-title: Small doi: 10.1002/smll.201903156 – volume: 9 start-page: 18 year: 2014 ident: B145 article-title: Lipid Nanoparticles (SLN, NLC) for innovative consumer care & household products. publication-title: Househ. Pers. Care Today – volume: 26 start-page: 523 year: 2009 ident: B168 article-title: Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. publication-title: Crit. Rev. Ther. Drug Carrier Syst. doi: 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10 – volume: 84 start-page: 63 year: 2020 ident: B162 article-title: Clinical and biochemical characteristics of patients with ornithine transcarbamylase deficiency. publication-title: Clin. Biochem. doi: 10.1016/j.clinbiochem.2020.06.011 – volume: 114 start-page: 103 year: 2018 ident: B36 article-title: Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2017.12.006 – volume: 133 start-page: 285 year: 2018 ident: B75 article-title: Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2018.10.017 – volume: 128 start-page: 27 year: 2019 ident: B209 article-title: Surface-tailored anti-HER2/neu-solid lipid nanoparticles for site-specific targeting MCF-7 and BT-474 breast cancer cells. publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2018.11.022 – volume: 463 start-page: 31 year: 2014 ident: B210 article-title: In vitro evaluation of permeation, toxicity and effect of praziquantel-loaded solid lipid nanoparticles against Schistosoma mansoni as a strategy to improve efficacy of the schistosomiasis treatment. publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2013.12.022 – volume: 6 start-page: 179 year: 2008 ident: B211 article-title: Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. publication-title: Curr. Neuropharmacol. doi: 10.2174/157015908785777210 – volume: 102 start-page: 34 year: 2013 ident: B20 article-title: The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. publication-title: J. Pharm. Sci. doi: 10.1002/jps.23359 – volume: 7 start-page: 52 year: 2017 ident: B52 article-title: Acyclovir loaded solid lipid nanoparticle based cream: a novel drug delivery system. publication-title: Int. J. Drug Deliv. Technol. doi: 10.25258/ijddt.v7i1.8917 – volume: 20 start-page: 490 year: 1993 ident: B127 article-title: Comparison of cytotoxicity between polyester nanoparticles and solid lipid nanoparticles (SLN). publication-title: Proc. Int. Symp. Control. Rel. Bioact. Mater. – volume: 136 start-page: 1004 year: 2015 ident: B70 article-title: Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles. publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2015.10.041 – volume: 56 start-page: 38 year: 2019 ident: B203 article-title: Lipid nanoparticles for transdermal delivery of celecoxib: an in vitro and in vivo investigation. publication-title: Indian Drugs doi: 10.53879/id.56.08.11694 – volume: 2014 year: 2014 ident: B64 article-title: Enhanced oral bioavailability of Efavirenz by solid lipid nanoparticles: in vitro drug release and pharmacokinetics studies. publication-title: Biomed Res. Int. doi: 10.1155/2014/363404 – volume: 3 start-page: 711 year: 2004 ident: B103 article-title: Can the pharmaceutical industry reduce attrition rates? publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1470 – volume: 22 start-page: 4171 year: 2018 ident: B121 article-title: Mechanisms of enhanced antiglioma efficacy of polysorbate 80-modified paclitaxel-loaded PLGA nanoparticles by focused ultrasound. publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.13695 – volume: 34 start-page: 542 year: 2013 ident: B104 article-title: Cationic solid lipid nanoparticles derived from apolipoprotein-free LDLs for target specific systemic treatment of liver fibrosis. publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.09.067 – volume: 101 start-page: 167 year: 2016 ident: B59 article-title: 50 years of oral lipid-based formulations: provenance, progress and future perspectives. publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/J.ADDR.2016.04.007 – volume: 132 start-page: 168 year: 2018 ident: B95 article-title: Design of multifunctional peptide collaborated and docetaxel loaded lipid nanoparticles for antiglioma therapy. publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2018.09.012 – volume: 57 start-page: 32 year: 2019 ident: B11 article-title: Transcytosis at the blood-brain barrier. publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2018.12.014 – volume: 8 year: 2018 ident: B15 article-title: Oral delivery of siRNA lipid nanoparticles: fate in the GI tract. publication-title: Sci. Rep. doi: 10.1038/s41598-018-20632-6 – volume: 156 start-page: 77 year: 2018 ident: B232 article-title: Inhibition of intrinsic coagulation improves safety and tumor-targeted drug delivery of cationic solid lipid nanoparticles. publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.11.040 – year: 2000 ident: B216 publication-title: Remington: The Science and Practice of Pharmacy. doi: 10.1016/S0165-6147(96)90065-6 – volume: 16 start-page: 5013 year: 2019 ident: B241 article-title: Effect of surface charges on oral absorption of intact solid lipid nanoparticles. publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.9b00861 – volume: 242 start-page: 121 year: 2002 ident: B142 article-title: Nanostructured lipid matrices for improved microencapsulation of drugs. publication-title: Int. J. Pharm. doi: 10.1016/s0378-5173(02)00180-1 – volume: 46 start-page: 706 year: 2020 ident: B128 article-title: Oxiconazole nitrate solid lipid nanoparticles: formulation, in-vitro characterization and clinical assessment of an analogous loaded carbopol gel. publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2020.1752707 – volume: 164 start-page: 299 year: 2018 ident: B147 article-title: Marrubiin-loaded solid lipid nanoparticles’ impact on TNF-α treated umbilical vein endothelial cells: a study for cardioprotective effect. publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2018.01.046 – volume: 30 start-page: 198 year: 2014 ident: B116 article-title: Cationic solid lipid nanoparticles with cholesterol-mediated surface layer for transporting saquinavir to the brain. publication-title: Biotechnol. Prog. doi: 10.1002/btpr.1834 – volume: 14 start-page: 8 year: 1919 ident: B119 article-title: Crystalloids against colloids in the theory of cements. publication-title: Trans. Faraday Soc. doi: 10.1039/tf9191400008 – volume: 151 start-page: 830 year: 2020 ident: B172 article-title: Oral delivery of pH-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: a dual-targeted approach. publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.02.132 – volume: 548 start-page: 609 year: 2018 ident: B239 article-title: A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: preparation, characterization and in vivo evaluation. publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.07.014 – volume: 15 year: 2013 ident: B43 article-title: Microemulsion extrusion technique: a new method to produce lipid nanoparticles. publication-title: J. Nanopart. Res. doi: 10.1007/s11051-013-1960-3 – volume: 16 start-page: 543 year: 2015 ident: B231 article-title: Knocking down disease: a progress report on siRNA therapeutics. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3978 – volume: 196 start-page: 476 year: 1962 ident: B224 article-title: Effect of absorbed proteins on the wettability of hydrophilic and hydrophobic solids. publication-title: Nature doi: 10.1038/196476a0 – volume: 473 start-page: 270 year: 2014 ident: B53 article-title: A new optimized formulation of cationic solid lipid nanoparticles intended for gene delivery: development, characterization and DNA binding efficiency of TCERG1 expression plasmid. publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2014.06.022 – volume: 488 start-page: 118 year: 2016 ident: B98 article-title: Surfactant effect on the physicochemical characteristics of γ-oryanol-containing solid lipid nanoparticles. publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2015.10.011 – volume: 10 start-page: 168 year: 2020 ident: B182 article-title: In vitro and in vivo assessment of designed melphalan loaded stealth solid lipid nanoparticles for parenteral delivery. publication-title: Bionanoscience doi: 10.1007/s12668-019-00680-6 – volume: 20 start-page: 458 year: 2015 ident: B138 article-title: Development and characterization of itraconazole-loaded solid lipid nanoparticles for ocular delivery. publication-title: Pharm. Dev. Technol. doi: 10.3109/10837450.2014.882935 – volume: 231 year: 2020 ident: B193 article-title: Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.115682 – start-page: 7 year: 2012 ident: B120 article-title: Basic principles: thermodynamics and colloidal chemistry publication-title: Crystallization and Growth of Colloidal Nanocrystals doi: 10.1007/978-1-4614-1308-0_2 – volume: 28 start-page: 55 year: 2020 ident: B16 article-title: Mechanisms of the effectiveness of lipid nanoparticle formulations loaded with anti-tubercular drugs combinations toward overcoming drug bioavailability in tuberculosis. publication-title: J. Drug Target. doi: 10.1080/1061186X.2019.1613409 – volume: 109 start-page: 214 year: 2016 ident: B33 article-title: Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: pharmacokinetic studies on rabbits. publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2016.10.006 – volume: 110 start-page: 76 year: 2017 ident: B27 article-title: Evading P-glycoprotein mediated-efflux chemoresistance using Solid Lipid Nanoparticles. publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/J.EJPB.2016.10.024 – volume: 8 start-page: 7024 year: 2016 ident: B90 article-title: Evidence does not support absorption of intact solid lipid nanoparticles via oral delivery. publication-title: Nanoscale doi: 10.1039/c5nr07474f – volume: 30 start-page: 83 year: 1994 ident: B191 article-title: Solid lipid nanoparticles (SLN) for controlled drug delivery I. Production, characterization and sterilization. publication-title: J. Control. Release doi: 10.1016/0168-3659(94)90047-7 – volume: 11 start-page: 1520 year: 2014 ident: B244 article-title: Mechanism study of cellular uptake and tight junction opening mediated by goblet cell-specific trimethyl chitosan nanoparticles. publication-title: Mol. Pharm. doi: 10.1021/mp400685v – volume: 10 start-page: 9315 year: 2018 ident: B235 article-title: Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin. publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00507 – volume: 316 start-page: 359 year: 2019 ident: B126 article-title: Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. publication-title: J. Control. Release doi: 10.1016/j.jconrel.2019.10.053 – volume: 43 start-page: 1003 year: 2017 ident: B22 article-title: Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2017.1291666 – year: 2009 ident: B91 publication-title: Pharmaceutical Development Q8-R2. ICH Harmonized Tripartite Guideline. – volume: 194 start-page: 228 year: 2014 ident: B202 article-title: Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.09.005 – volume: 137 start-page: 78 year: 2009 ident: B243 article-title: Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. publication-title: J. Control. Release doi: 10.1016/j.jconrel.2009.03.002 – volume: 8 year: 2019 ident: B89 article-title: Doxycycline-encapsulated solid lipid nanoparticles as promising tool against Brucella melitensis enclosed in macrophage: a pharmacodynamics study on J774A.1 cell line. publication-title: Antimicrob. Resist. Infect. Control doi: 10.1186/s13756-019-0504-8 – volume: 24 start-page: 22 year: 2017 ident: B56 article-title: Cleavable PEGylation: a strategy for overcoming the “PEG dilemma” in efficient drug delivery. publication-title: Drug Deliv. doi: 10.1080/10717544.2017.1388451 – volume: 64 start-page: 24 year: 2012 ident: B24 article-title: Nanoparticles in cancer therapy and diagnosis. publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.09.006 – volume: 45 start-page: 474 year: 2017 ident: B213 article-title: Application of quality-by-design approach to optimize diallyl disulfide-loaded solid lipid nanoparticles. publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.3109/21691401.2016.1173046 – volume: 2013 year: 2013 ident: B65 article-title: Solid lipid nanoparticles of guggul lipid as drug carrier for transdermal drug delivery. publication-title: Biomed Res. Int. doi: 10.1155/2013/750690 – volume: 16 start-page: 1765 year: 2017 ident: B123 article-title: Preparation of N, N, N-trimethyl chitosan-functionalized retinoic acid-loaded lipid nanoparticles for enhanced drug delivery to glioblastoma. publication-title: Trop. J. Pharm. Res. doi: 10.4314/tjpr.v16i8.3 – volume: 8 year: 2018 ident: B163 article-title: Liposomes can both enhance or reduce drugs penetration through the skin. publication-title: Sci. Rep. doi: 10.1038/s41598-018-31693-y – volume: 167 start-page: 73 year: 2018 ident: B192 article-title: Carbamazepine-loaded solid lipid nanoparticles and nanostructured lipid carriers: physicochemical characterization and in vitro/in vivo evaluation. publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2018.03.052 – volume: 9 year: 2019 ident: B34 article-title: Development of solid lipid nanoparticles by cold dilution of microemulsions: curcumin loading, preliminary in vitro studies, and biodistribution. publication-title: Nanomaterials doi: 10.3390/nano9020230 – volume: 7 start-page: 2145 year: 2017 ident: B166 article-title: Formulation and characterization of erythromycin–loaded solid lipid nanoparticles. publication-title: Biointerface Res. Appl. Chem. – volume: 525 start-page: 101 year: 2017 ident: B105 article-title: Preparation and characterization of lipid nanoparticle/pDNA complexes for STAT3 downregulation and overcoming chemotherapy resistance in lung cancer cells. publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.04.034 – volume: 13 start-page: 2643 year: 2017 ident: B125 article-title: In vivo fate of lipid-silybin conjugate nanoparticles: implications on enhanced oral bioavailability. publication-title: Nanomedicine doi: 10.1016/j.nano.2017.07.014 – volume: 196 year: 2020 ident: B186 article-title: Solid lipid nanoparticles for enhanced oral absorption: a review. publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2020.111305 – volume: 36 year: 2019 ident: B196 article-title: Structure analysis of solid lipid nanoparticles for drug delivery: a combined USANS/SANS study. publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.201800359 – volume: 11 start-page: 441 year: 2016 ident: B7 article-title: Miconazole-loaded solid lipid nanoparticles: formulation and evaluation of a novel formula with high bioavailability and antifungal activity. publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S100625 – volume: 23 start-page: 159 year: 2015 ident: B66 article-title: Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer. publication-title: J. Drug Target. doi: 10.3109/1061186X.2014.965717 – volume: 224 year: 2019 ident: B234 article-title: Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119491 – year: 2015 ident: B58 publication-title: Guidance for Industry: Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a BCS. – volume: 7 start-page: 1919 year: 2011 ident: B226 article-title: More effective nanomedicines through particle design. publication-title: Small doi: 10.1002/smll.201100442 – volume: 42 start-page: 846 year: 2016 ident: B81 article-title: Histological assessment of follicular delivery of flutamide by solid lipid nanoparticles: potential tool for the treatment of androgenic alopecia. publication-title: Drug Dev. Ind. Pharm. doi: 10.3109/03639045.2015.1062896 – volume: 14 start-page: 4820 year: 2014 ident: B215 article-title: Formulation and optimization of raloxifene-loaded solid lipid nanoparticles to enhance oral bioavailability. publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2014.8722 – volume: 116 year: 2019 ident: B246 article-title: Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2019.109006 – volume: 88 start-page: 26 year: 2020 ident: B35 article-title: Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. publication-title: J. Mol. Evol. doi: 10.1007/s00239-019-09914-3 – year: 1997 ident: B136 publication-title: Colloidal. doi: 10.1351/goldbook.C01172 – volume: 43 start-page: 611 year: 2017 ident: B151 article-title: Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: formulation, optimization and in vivo evaluation. publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2016.1275666 – volume: 88 start-page: 518 year: 2014 ident: B54 article-title: Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs. publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2014.06.011 – volume: 32 start-page: 3435 year: 2011 ident: B233 article-title: The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.01.021 – volume: 35 year: 2018 ident: B2 article-title: Taribavirin and 5-Fluorouracil-Loaded Pegylated-Lipid Nanoparticle Synthesis, p38 Docking, and Antiproliferative Effects on MCF-7 Breast Cancer. publication-title: Pharm. Res. doi: 10.1007/s11095-017-2283-3 – volume: 22 start-page: 326 year: 2004 ident: B177 article-title: Rational siRNA design for RNA interference. publication-title: Nat. Biotechnol. doi: 10.1038/nbt936 – volume: 10 start-page: 77 year: 2019 ident: B181 article-title: Ritonavir loaded surface modified stealth solid lipid nanoparticles: full factorial design and pharmacokinetic studies. publication-title: Int. J. Res. Pharm. Sci. doi: 10.26452/ijrps.v10i1.1783 – volume: 144 start-page: 115 ident: B143 article-title: Biodegradation of solid lipid nanoparticles as a function of lipase incubation time. publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(96)04731-X – volume: 2 year: 2017 ident: B156 article-title: Towards clinically translatable in vivo nanodiagnostics. publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.14 – volume: 444 start-page: 15 year: 2014 ident: B107 article-title: Solid lipid nanoparticles (SLN) stabilized with polyhydroxy surfactants: preparation, characterization and physical stability investigation. publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/J.COLSURFA.2013.12.023 – volume: 135 start-page: 314 year: 2013 ident: B6 article-title: In vivo evaluation of the efficacy of albendazole sulfoxide and albendazole sulfoxide loaded solid lipid nanoparticles against hydatid cyst. publication-title: Exp. Parasitol. doi: 10.1016/j.exppara.2013.07.017 – volume: 30 start-page: 1923 year: 2019 ident: B14 article-title: Understanding the chemical nature of nanoparticle-protein interactions. publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.9b00348 – start-page: 129 year: 2016 ident: B32 article-title: The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/J.ADDR.2016.01.022 – volume: 10 start-page: 656 year: 2013 ident: B41 article-title: Solid lipid nanoparticles (SLNs) gels for topical delivery of aceclofenac in vitro and in vivo evaluation. publication-title: Curr. Drug Deliv. doi: 10.2174/156720181006131125150023 – volume: 18 start-page: e653 year: 2017 ident: B92 article-title: Future cancer research priorities in the USA: a Lancet Oncology Commission. publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(17)30698-8 – volume: 145 start-page: 182 year: 2010 ident: B185 article-title: Endocytosis of nanomedicines. publication-title: J. Control. Release doi: 10.1016/J.JCONREL.2010.01.036 – volume: 316 start-page: 34 year: 2019 ident: B165 article-title: Solid lipid nanoparticle-based dissolving microneedles: a promising intradermal lymph targeting drug delivery system with potential for enhanced treatment of lymphatic filariasis. publication-title: J. Control. Release doi: 10.1016/j.jconrel.2019.10.004 – volume: 497 start-page: 199 year: 2016 ident: B62 article-title: Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: physicochemical and in vitro studies. publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2015.11.050 – volume: 12 start-page: 801 year: 2016 ident: B153 article-title: Development, characterization and antimalarial efficacy of dihydroartemisinin loaded solid lipid nanoparticles. publication-title: Nanomedicine doi: 10.1016/j.nano.2015.11.017 – volume: 46 start-page: 387 year: 2018 ident: B204 article-title: RAGE receptor targeted bioconjuguate lipid nanoparticles of diallyl disulfide for improved apoptotic activity in triple negative breast cancer: in vitro studies. publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2017.1313267 – volume: 10 start-page: 1382 year: 2014 ident: B214 article-title: Effect of iontophoresis on topical delivery of doxorubicin-loaded solid lipid nanoparticles. publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2014.1834 – volume: 10 start-page: 597 year: 2019 ident: B187 article-title: Curcumin: recent advances in the development of strategies to improve oral bioavailability. publication-title: Annu. Rev. Food Sci. Technol. doi: 10.1146/annurev-food-032818-121738 – volume: 164 start-page: 332 year: 2018 ident: B39 article-title: Preparation, characterization, and optimization of auraptene-loaded solid lipid nanoparticles as a natural anti-inflammatory agent: in vivo and in vitro evaluations. publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2018.01.054 – volume: 129 start-page: 191 year: 2015 ident: B194 article-title: Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies. publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2015.03.049 – year: 1980 ident: B42 article-title: Rationales in the design of rectal and vaginal delivery forms of drugs publication-title: Medicinal Chemistry doi: 10.1016/B978-0-12-060309-1.50011-2 – volume: 33 start-page: 372 year: 2016 ident: B217 article-title: Dermal delivery of doxorubicin-loaded solid lipid nanoparticles for the treatment of skin cancer. publication-title: J. Microencapsul. doi: 10.1080/02652048.2016.1200150 – volume: 235 start-page: 34 year: 2016 ident: B188 article-title: Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. publication-title: J. Control. Release doi: 10.1016/J.JCONREL.2016.05.044 – volume: 60 start-page: 361 year: 2005 ident: B73 article-title: Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2005.02.006 – volume: 2 start-page: 595 year: 2007 ident: B132 article-title: Lipid-based colloidal carriers for peptide and protein delivery–liposomes versus lipid nanoparticles. publication-title: Int. J. Nanomed. – volume: 15 year: 2018 ident: B30 article-title: Overcoming clofazimine intrinsic toxicity: statistical modelling and characterization of solid lipid nanoparticles. publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2017.0932 – volume: 47 start-page: 144 ident: B159 article-title: Enhanced intestinal absorption of asenapine maleate by fabricating solid lipid nanoparticles using TPGS: elucidation of transport mechanism, permeability across Caco-2 cell line and in vivo pharmacokinetic studies. publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2018.1546186 – volume: 46 start-page: 1236 year: 2018 ident: B170 article-title: Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: preparation, optimization, and in vitro evaluation. publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2017.1366338 – volume: 10 year: 2018 ident: B38 article-title: Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. publication-title: Pharmaceutics doi: 10.3390/pharmaceutics10020057 – volume: 28 start-page: 995 year: 2017 ident: B148 article-title: Apo E-functionalization of Solid Lipid Nanoparticles enhances brain drug delivery: uptake mechanism and transport pathways. publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.6b00705 – volume: 15 start-page: 899 year: 2018 ident: B180 article-title: New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.7b00846 – volume: 11 start-page: 9594 year: 2017 ident: B23 article-title: Bridging bio-nano science and cancer nanomedicine. publication-title: ACS Nano doi: 10.1021/acsnano.7b04855 – volume: 27 start-page: 27 year: 2006 ident: B55 article-title: In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2005.08.002 – volume: 4 start-page: 161 ident: B140 article-title: Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. publication-title: J. Drug Target. doi: 10.3109/10611869609015973 – volume: 11 start-page: 225 year: 2003 ident: B74 article-title: Plasma protein adsorption of Tween 80- and poloxamer 188-stabilized solid lipid nanoparticles. publication-title: J. Drug Target. doi: 10.1080/10611860310001615956 – volume: 478 start-page: 60 year: 2015 ident: B201 article-title: Optimization of process variables of zanamivir-loaded solid lipid nanoparticles and the prediction of their cellular transport in Caco-2 cell model. publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2014.11.017 – volume: 193 year: 2020 ident: B47 article-title: Pharmacodynamic, pharmacokinetic and physical characterization of cilnidipine loaded solid lipid nanoparticles for oral delivery optimized using the principles of design of experiments. publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2020.111073 – volume: 11 year: 2019 ident: B134 article-title: Evaluation of sucrose laurate as an intestinal permeation enhancer for macromolecules: ex vivo and in vivo studies. publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11110565 – volume: 14 start-page: 1 year: 2017 ident: B219 article-title: Cancer nanomedicines: oversold or underappreciated? publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2017.1262346 – volume: 32 year: 1955 ident: B85 article-title: The history of colloid science: in memory of Wolfgang Ostwald. publication-title: J. Chem. Educ. doi: 10.1021/ed032p2 – volume: 45 start-page: 1242 ident: B158 article-title: Fabrication of solid lipid nanoparticles of lurasidone HCl for oral delivery: optimization, in vitro characterization, cell line studies and in vivo efficacy in schizophrenia. publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2019.1593434 – volume: 178 start-page: 307 year: 2019 ident: B40 article-title: Erythropoietin-loaded solid lipid nanoparticles: preparation, optimization, and in vivo evaluation. publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2019.01.027 – start-page: 151 year: 2020 ident: B106 article-title: Lipid nanocarriers for delivery of poorly soluble and poorly permeable drugs publication-title: Nanopharmaceuticals doi: 10.1016/b978-0-12-817778-5.00008-7 – volume: 15 start-page: 195 year: 2013 ident: B79 article-title: Therapeutic roles of curcumin: lessons learned from clinical trials. publication-title: AAPS J. doi: 10.1208/s12248-012-9432-8 – volume: 11 start-page: 2743 year: 2017 ident: B238 article-title: Design and evaluation of lidocaine- and prilocaine-coloaded nanoparticulate drug delivery systems for topical anesthetic analgesic therapy: a comparison between solid lipid nanoparticles and nanostructured lipid carriers. publication-title: Drug Des. Devel. Ther. doi: 10.2147/DDDT.S141031 – volume: 274 start-page: 923 year: 1978 ident: B46 article-title: Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes. publication-title: Nature doi: 10.1038/274923a0 – volume: 10 start-page: 728 year: 2019 ident: B184 article-title: Brain delivery of curcumin using solid lipid nanoparticles and nanostructured lipid carriers: preparation, optimization, and pharmacokinetic evaluation. publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro.8b00510 – volume: 21 year: 2020 ident: B86 article-title: Enhanced oral bioavailability of felodipine from solid lipid nanoparticles prepared through effervescent dispersion technique. publication-title: AAPS PharmSciTech doi: 10.1208/s12249-020-01711-2 – volume: 140 start-page: 204 ident: B197 article-title: Transport of stearic acid-based solid lipid nanoparticles (SLNs) into human epithelial cells. publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2015.12.029 |
| SSID | ssj0001503764 |
| Score | 2.6265326 |
| SecondaryResourceType | review_article |
| Snippet | In the golden age of pharmaceutical nanocarriers, we are witnessing a maturation stage of the original concepts and ideas. There is no doubt that... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 587997 |
| SubjectTerms | clinical trials drug delivery Molecular Biosciences nanostructured lipid carriers nanotoxicity pharmacodynamics pharmacokinetics |
| Title | Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33195435 https://www.proquest.com/docview/2461005259 https://pubmed.ncbi.nlm.nih.gov/PMC7662460 https://doaj.org/article/e10327c08683416e91ca18586bc52722 |
| Volume | 7 |
| WOSCitedRecordID | wos000588780700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2296-889X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001503764 issn: 2296-889X databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2296-889X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001503764 issn: 2296-889X databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC50UfAivm0fSwRPQmsm6by8re4uXlwWVBi8hHSSdgeGnmUewl72t28l6R17RPTipWm60-nwVZKqSipfAbwWoWtQS7A6BknrJnJeuw7vWNsIJ2LSGDonm1AnJ3o6NaejVF8pJqzQAxfg3sXE-KY8Wt4aJ1wZzcQ71DFatl4wxfLsS5UZOVPlfDDFkdOUbUz0wgyKaTFv0R9k9K3QyiSSp5Eiynz9fzIyf4-VHCmf43twd7AayUFp7X24EfsHcLvkkbx4CN-_LOazQFIe6kBwvkRHeIh3I2iTksPl5gc5jPMUgnHxnpz-YqtOEiKuDwSrOj8br26Tg3wGc_UIvh0fff34qR6SJtS-kWJdd76VPPKGq8i0Ru8qBKldRzsfOkXblCWIN6INJmijuQxGedUxF5lzdOInjj-GvX7Rx6dAUHyi1cFJ501DW42oY9HYGSmYjDFWQK8RtH5gFE-JLeYWPYsEus2g2wS6LaBX8Gb7yXmh0_hb4Q9JLNuCiQk7P8D-YQcc7b_6RwWvroVqceSk7RDXx8VmZROTXloVF6aCJ0XI219xnpjwuKhA7Yh_py27b_rZWWbnVlJizfTZ_2j8c7iT8Mi6kr6AvfVyE1_CLf9zPVst9-Gmmur93PHx-vny6ApWvwd0 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solid+Lipid+Nanoparticles+for+Drug+Delivery%3A+Pharmacological+and+Biopharmaceutical+Aspects&rft.jtitle=Frontiers+in+molecular+biosciences&rft.au=Scioli+Montoto%2C+Sebasti%C3%A1n&rft.au=Muraca%2C+Giuliana&rft.au=Ruiz%2C+Mar%C3%ADa+Esperanza&rft.date=2020-10-30&rft.issn=2296-889X&rft.eissn=2296-889X&rft.volume=7&rft.spage=587997&rft_id=info:doi/10.3389%2Ffmolb.2020.587997&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-889X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-889X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-889X&client=summon |