How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance

Tendon actuation is one of the most prominent actuation principles for continuum robots. To date, a wide variety of modelling approaches has been derived to describe the deformations of tendon-driven continuum robots. Motivated by the need for a comprehensive overview of existing methodologies, this...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in robotics and AI Vol. 7; p. 630245
Main Authors: Rao, Priyanka, Peyron, Quentin, Lilge, Sven, Burgner-Kahrs, Jessica
Format: Journal Article
Language:English
Published: Switzerland Frontiers Media S.A 02.02.2021
Subjects:
ISSN:2296-9144, 2296-9144
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Tendon actuation is one of the most prominent actuation principles for continuum robots. To date, a wide variety of modelling approaches has been derived to describe the deformations of tendon-driven continuum robots. Motivated by the need for a comprehensive overview of existing methodologies, this work summarizes and outlines state-of-the-art modelling approaches. In particular, the most relevant models are classified based on backbone representations and kinematic as well as static assumptions. Numerical case studies are conducted to compare the performance of representative modelling approaches from the current state-of-the-art, considering varying robot parameters and scenarios. The approaches show different performances in terms of accuracy and computation time. Guidelines for the selection of the most suitable approach for given designs of tendon-driven continuum robots and applications are deduced from these results.
AbstractList Tendon actuation is one of the most prominent actuation principles for continuum robots. To date, a wide variety of modelling approaches has been derived to describe the deformations of tendon-driven continuum robots. Motivated by the need for a comprehensive overview of existing methodologies, this work summarizes and outlines state-of-the-art modelling approaches. In particular, the most relevant models are classified based on backbone representations and kinematic as well as static assumptions. Numerical case studies are conducted to compare the performance of representative modelling approaches from the current state-of-the-art, considering varying robot parameters and scenarios. The approaches show different performances in terms of accuracy and computation time. Guidelines for the selection of the most suitable approach for given designs of tendon-driven continuum robots and applications are deduced from these results.
Tendon actuation is one of the most prominent actuation principles for continuum robots. To date, a wide variety of modelling approaches has been derived to describe the deformations of tendon-driven continuum robots. Motivated by the need for a comprehensive overview of existing methodologies, this work summarizes and outlines state-of-the-art modelling approaches. In particular, the most relevant models are classified based on backbone representations and kinematic as well as static assumptions. Numerical case studies are conducted to compare the performance of representative modelling approaches from the current state-of-the-art, considering varying robot parameters and scenarios. The approaches show different performances in terms of accuracy and computation time. Guidelines for the selection of the most suitable approach for given designs of tendon-driven continuum robots and applications are deduced from these results.Tendon actuation is one of the most prominent actuation principles for continuum robots. To date, a wide variety of modelling approaches has been derived to describe the deformations of tendon-driven continuum robots. Motivated by the need for a comprehensive overview of existing methodologies, this work summarizes and outlines state-of-the-art modelling approaches. In particular, the most relevant models are classified based on backbone representations and kinematic as well as static assumptions. Numerical case studies are conducted to compare the performance of representative modelling approaches from the current state-of-the-art, considering varying robot parameters and scenarios. The approaches show different performances in terms of accuracy and computation time. Guidelines for the selection of the most suitable approach for given designs of tendon-driven continuum robots and applications are deduced from these results.
Author Burgner-Kahrs, Jessica
Peyron, Quentin
Lilge, Sven
Rao, Priyanka
AuthorAffiliation Continuum Robotics Laboratory, Department of Mathematical and Computational Sciences, University of Toronto Mississauga, Mississauga , ON , Canada
AuthorAffiliation_xml – name: Continuum Robotics Laboratory, Department of Mathematical and Computational Sciences, University of Toronto Mississauga, Mississauga , ON , Canada
Author_xml – sequence: 1
  givenname: Priyanka
  surname: Rao
  fullname: Rao, Priyanka
– sequence: 2
  givenname: Quentin
  surname: Peyron
  fullname: Peyron, Quentin
– sequence: 3
  givenname: Sven
  surname: Lilge
  fullname: Lilge, Sven
– sequence: 4
  givenname: Jessica
  surname: Burgner-Kahrs
  fullname: Burgner-Kahrs, Jessica
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33604355$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9PFTEUxRuDEUQ-gBszSzfzbKd_Zrox0ScICQZicN102ttHcabFtoPh2zOPQQIuWPWm95zfvbnnLdoJMQBC7wleUdrJTy7Fvqwa3OCVoLhh_BXaaxopakkY23lS76KDnK8wxoR3jLbtG7RLqcCMcr6Hzo7j36rE6ke0MFQXEGwM9bfkbyBU6xiKD9M0Vj9jH0uudLDVVwjmctTp92IZfNhU55BcTKMOBt6h104PGQ4e3n306-jwYn1cn559P1l_Oa0NE7zUILmRRgvLudWOyo5i2XDBpDASwBDMtAHHekeE66lm0nTaMS6pZbY31NB9dLJwbdRX6jr5eaVbFbVX9x8xbZROxZsBlBQcW-gpEOoYaNJrg1vTaG6Ja7HgM-vzwrqe-hGsgVCSHp5Bn3eCv1SbeKParuOCyhnw8QGQ4p8JclGjz2Y-jg4Qp6waJolkWBIxSz88nfU45F8is4AsApNizgnco4RgtQ1e3QevtsGrJfjZ0_7nMb7o4uN2XT-84LwDrKC1Rg
CitedBy_id crossref_primary_10_3390_eng6020029
crossref_primary_10_1109_LRA_2022_3189435
crossref_primary_10_1017_S026357472400184X
crossref_primary_10_1109_LRA_2024_3518106
crossref_primary_10_1109_JSEN_2022_3156381
crossref_primary_10_1109_LRA_2025_3532159
crossref_primary_10_3390_biomimetics8030271
crossref_primary_10_1017_S0263574724001188
crossref_primary_10_3389_frobt_2023_1202584
crossref_primary_10_3390_s23031647
crossref_primary_10_1115_1_4069292
crossref_primary_10_1016_j_mechatronics_2024_103241
crossref_primary_10_3390_biomimetics8020147
crossref_primary_10_1007_s42235_023_00346_w
crossref_primary_10_1080_24735132_2023_2184995
crossref_primary_10_1109_TRO_2022_3226157
crossref_primary_10_1007_s11071_024_09585_w
crossref_primary_10_1109_LRA_2022_3146954
crossref_primary_10_3390_mi14050900
crossref_primary_10_1016_j_mechmachtheory_2024_105814
crossref_primary_10_1109_TCST_2025_3546564
crossref_primary_10_1017_S0263574724000651
crossref_primary_10_1109_TMECH_2021_3112580
crossref_primary_10_3389_frobt_2021_774253
crossref_primary_10_3390_math10162891
crossref_primary_10_1007_s13369_022_07065_0
crossref_primary_10_1016_j_mechmachtheory_2021_104404
crossref_primary_10_1080_01691864_2023_2291137
crossref_primary_10_1016_j_mechatronics_2023_103059
crossref_primary_10_1109_LRA_2021_3097265
crossref_primary_10_1089_soro_2023_0120
crossref_primary_10_1007_s10846_023_02003_0
crossref_primary_10_1002_aisy_202300537
crossref_primary_10_1002_aisy_202500512
crossref_primary_10_3389_frobt_2023_1094114
crossref_primary_10_1109_LRA_2025_3595025
crossref_primary_10_1016_j_compag_2024_109486
crossref_primary_10_1109_LRA_2023_3264869
crossref_primary_10_1109_MCS_2023_3253419
crossref_primary_10_1126_scirobotics_adt7461
crossref_primary_10_1109_MRA_2022_3223220
crossref_primary_10_1109_TCST_2021_3104648
crossref_primary_10_3389_frobt_2022_873446
crossref_primary_10_1002_aisy_202400785
crossref_primary_10_1016_j_rcim_2024_102811
crossref_primary_10_1109_LRA_2023_3346271
crossref_primary_10_1109_LRA_2022_3185377
crossref_primary_10_1177_09544062231210079
crossref_primary_10_1016_j_bspc_2023_105340
crossref_primary_10_1109_LRA_2023_3322078
crossref_primary_10_1109_LRA_2025_3600145
crossref_primary_10_1177_02783649221128843
crossref_primary_10_1109_TRO_2023_3238171
crossref_primary_10_1109_TRO_2022_3231360
crossref_primary_10_1109_ACCESS_2022_3210120
crossref_primary_10_3389_frobt_2021_706070
crossref_primary_10_1109_LRA_2024_3432344
crossref_primary_10_1016_j_mechmachtheory_2024_105830
crossref_primary_10_3389_frobt_2025_1576209
crossref_primary_10_1177_17298806241246886
crossref_primary_10_1109_LRA_2024_3524898
crossref_primary_10_3390_machines12110755
crossref_primary_10_1109_LRA_2024_3383211
crossref_primary_10_1017_S0263574724001966
crossref_primary_10_1109_TRO_2024_3400944
crossref_primary_10_3389_frobt_2024_1272403
crossref_primary_10_3390_act13120500
crossref_primary_10_1002_aisy_202401027
crossref_primary_10_1109_LRA_2022_3147903
crossref_primary_10_3389_frobt_2025_1488869
crossref_primary_10_1002_rcs_2638
crossref_primary_10_1089_soro_2023_0020
crossref_primary_10_3390_mi15030313
crossref_primary_10_1109_LRA_2025_3526560
crossref_primary_10_3389_frobt_2021_732643
crossref_primary_10_1016_j_cmpb_2022_107036
crossref_primary_10_3390_robotics13090128
crossref_primary_10_3390_math11194215
crossref_primary_10_1007_s11465_023_0756_0
crossref_primary_10_1002_adem_202301502
crossref_primary_10_1142_S2424905X25400021
crossref_primary_10_3389_frobt_2022_1082185
crossref_primary_10_1109_LRA_2023_3234821
crossref_primary_10_1016_j_mechmachtheory_2024_105804
crossref_primary_10_1109_TRO_2023_3324571
crossref_primary_10_1109_ACCESS_2023_3286300
crossref_primary_10_1016_j_robot_2022_104344
Cites_doi 10.1016/j.precisioneng.2011.02.006
10.1007/978-981-15-4477-4_27
10.1109/TRO.2011.2160469
10.1109/TRO.2015.2428511
10.1109/IROS40897.2019.8968526
10.1109/tra.2002.1019457
10.1109/TRO.2018.2885923
10.1109/TRO.2016.2527047
10.1109/RoboSoft48309.2020.9116015
10.1016/j.mechmachtheory.2020.104043
10.1109/TMECH.2014.2364625
10.1109/ACCESS.2018.2881261
10.1109/ICRA.2012.6224703
10.1109/ROSE.2013.6698415
10.1007/978-3-319-32552-1_20
10.1109/IranianCEE.2013.6599741
10.1109/ROBOT.1995.525733
10.1109/IROS.2011.6094941
10.1109/ICRA.2011.5980285
10.1109/ICRoM.2014.6990947
10.1109/TMECH.2014.2372635
10.1109/ICRA.2011.5979607
10.1109/TRO.2013.2281564
10.1186/s40638-016-0035-1
10.1109/IROS.2017.8206554
10.1177/0278364919886047
10.1109/LRA.2019.2955936
10.1016/j.rcim.2020.102019
10.1115/1.4036719
10.1109/ROBOT.2008.4543656
10.1109/TRO.2014.2309835
10.1109/TRO.2018.2838548
10.1109/TRO.2008.2002311
10.1088/1748-3190/10/3/035002
10.1061/40476(299)38
10.1109/IROS.2011.6094477
10.1109/TRO.2006.886268
10.1016/j.mechmachtheory.2019.02.005
10.1016/j.rcim.2017.07.002
10.1109/TMECH.2003.812829
10.1080/01691864.2015.1052848
10.1007/s12206-019-0231-3
10.5402/2013/726506
10.1109/ROBOT.2003.1241993
10.1109/IROS.2017.8202190
10.1007/s11548-015-1310-2
10.1109/IROS.2009.5354199
10.1115/1.1447546
10.1177/0278364919842269
10.1002/rcs.1774
10.1109/TRO.2015.2489500
10.1109/ICRoM.2014.6990948
10.1109/ROBOT.2000.846411
10.1016/S0167-8493(85)90306-7
10.1109/AIM.2011.6027137
10.1115/1.4027235
10.1109/ICRoM.2013.6510074
10.1016/j.mechmachtheory.2014.11.003
10.1109/LRA.2018.2849557
10.1002/rob.10070
10.3390/biomimetics3010003
10.1177/0278364910368147
10.1109/IROS.2016.7759333
10.1109/ACC.2013.6580605
10.1007/978-3-7091-1371-4_4
10.1007/978-3-030-20131-9_186
10.1109/ROBOT.2000.844034
10.1109/ROBOT.2004.1307175
10.1109/IROS.2011.6094526
10.1177/0278364908104278
10.1007/978-90-481-2516-6
10.1109/TRO.2005.861458
10.1115/1.3046148
10.1109/IROS.2015.7353821
ContentType Journal Article
Copyright Copyright © 2021 Rao, Peyron, Lilge and Burgner-Kahrs.
Copyright © 2021 Rao, Peyron, Lilge and Burgner-Kahrs. 2021 Rao, Peyron, Lilge and Burgner-Kahrs
Copyright_xml – notice: Copyright © 2021 Rao, Peyron, Lilge and Burgner-Kahrs.
– notice: Copyright © 2021 Rao, Peyron, Lilge and Burgner-Kahrs. 2021 Rao, Peyron, Lilge and Burgner-Kahrs
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/frobt.2020.630245
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Rao et al
EISSN 2296-9144
ExternalDocumentID oai_doaj_org_article_9650deb3e13f4ea1bac07c2a5d1f7065
PMC7885639
33604355
10_3389_frobt_2020_630245
Genre Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-2019-04846
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
PGMZT
RPM
ACXDI
IAO
ICD
IEA
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c465t-e95c9ca6d55daf398309256496c9eec104acef4bf16fb3a49c8af4593d4dbc3c3
IEDL.DBID DOA
ISICitedReferencesCount 138
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000618363900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-9144
IngestDate Fri Oct 03 12:27:43 EDT 2025
Thu Aug 21 14:11:14 EDT 2025
Thu Oct 02 06:56:30 EDT 2025
Thu Jan 02 22:58:24 EST 2025
Sat Nov 29 05:50:04 EST 2025
Tue Nov 18 22:42:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords soft manipulator
modelling
soft arm
soft robot
tendon actuation
Language English
License Copyright © 2021 Rao, Peyron, Lilge and Burgner-Kahrs.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-e95c9ca6d55daf398309256496c9eec104acef4bf16fb3a49c8af4593d4dbc3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Ashwin K. P., FeatherDyn Pvt Ltd., India
Edited by: Matteo Cianchetti, Sant’Anna School of Advanced Studies, Italy
Kristin M. De Payrebrune, University of Kaiserslautern, Germany
This article was submitted to Soft Robotics, a section of the journal Frontiers in Robotics and AI
OpenAccessLink https://doaj.org/article/9650deb3e13f4ea1bac07c2a5d1f7065
PMID 33604355
PQID 2491940916
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_9650deb3e13f4ea1bac07c2a5d1f7065
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7885639
proquest_miscellaneous_2491940916
pubmed_primary_33604355
crossref_primary_10_3389_frobt_2020_630245
crossref_citationtrail_10_3389_frobt_2020_630245
PublicationCentury 2000
PublicationDate 2021-02-02
PublicationDateYYYYMMDD 2021-02-02
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-02
  day: 02
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in robotics and AI
PublicationTitleAlternate Front Robot AI
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Do (B20) 2015; 85
Gravagne (B30); 8
Starke (B67) 2017
Webster (B73) 1988
Mahl (B49) 2013
Kutzer (B47) 2011
Roesthuis (B56) 2016; 32
Huang (B37) 2018; 6
Jones (B41); 22
Ryu (B63) 2019; 33
Walker (B70) 2016
Back (B6) 2016
Dehghani (B18)
Ashwin (B5) 2019
Gravagne (B33)
Gravagne (B32); 299
Hsiao (B36) 2017
Li (B48) 2002; 124
Camarillo (B11); 24
Godage (B26)
Till (B69) 2019; 38
Yuan (B76) 2018; 49
Ashwin (B4) 2021
Kato (B44) 2016; 11
Peirs (B54) 2003
Webster (B72) 2010; 29
Walker (B71) 2013; 2013
Jung (B43) 2011
Rone (B57); 30
Oliver-Butler (B52) 2019; 35
Rone (B59) 2013
Rucker (B60) 2018; 3
Chen (B12) 2011; 35
Rone (B58); 6
Godage (B25)
Burgner-Kahrs (B9) 2015; 31
Mishra (B50) 2018; 3
Allen (B1) 2020
Jones (B42) 2009
Amanov (B3) 2019
Gao (B21) 2017; 9
Norouzi-Ghazbi (B51) 2020; 154
Simaan (B66) 2004
Yuan (B77) 2019; 135
Camarillo (B10)
Rucker (B62)
Dehghani (B16)
Immega (B39) 1995; 3
Ouyang (B53) 2016; 3
Gravagne (B31)
Xu (B75) 2017; 13
Goldman (B27) 2014; 30
Godage (B23) 2015; 10
Gravagne (B29); 8
Jones (B40); 22
Barrientos-Diez (B7) 2021; 67
Chirikjian (B13) 2015; 29
Kato (B45) 2015; 20
Khoshnam (B46) 2015
Simaan (B65) 2009; 28
Bauchau (B8) 2009
Su (B68) 2009; 1
Dehghani (B17) 2011
Dalvand (B14) 2018; 34
Dehghani (B19)
Hemami (B35) 1985; 1
Xu (B74) 2015; 20
Huang (B38) 2019
Dehghani (B15)
Hannan (B34) 2003; 20
Giorelli (B22) 2015; 31
Godage (B24) 2015; 10
Rucker (B61); 27
Renda (B55) 2012
Santina (B64) 2020; 5
Altenbach (B2) 2013
Gravagne (B28) 2002; 18
References_xml – volume: 35
  start-page: 505
  year: 2011
  ident: B12
  article-title: Finding the optimal characteristic parameters for 3R pseudo-rigid-body model using an improved particle swarm optimizer
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2011.02.006
– start-page: 391
  volume-title: Mechanism and Machine Science
  year: 2021
  ident: B4
  article-title: Forward kinematics of cable-driven continuum robot using optimization method
  doi: 10.1007/978-981-15-4477-4_27
– volume: 27
  start-page: 1033
  ident: B61
  article-title: Statics and dynamics of continuum robots with general tendon routing and external loading
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2011.2160469
– volume: 31
  start-page: 823
  year: 2015
  ident: B22
  article-title: Neural network and jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature
  publication-title: IEEE Transactions on Robotics.
  doi: 10.1109/TRO.2015.2428511
– year: 2019
  ident: B38
  article-title: A 3D Static Modeling Method and Experimental Verification of Continuum Robots Based on Pseudo-Rigid Body Theory
  doi: 10.1109/IROS40897.2019.8968526
– volume-title: Steerable catheters
  year: 1988
  ident: B73
– volume: 18
  start-page: 263
  year: 2002
  ident: B28
  article-title: Manipulability, force, and compliance analysis for planar continuum manipulators
  publication-title: IEEE Trans. Rob. Autom.
  doi: 10.1109/tra.2002.1019457
– volume: 35
  start-page: 403
  year: 2019
  ident: B52
  article-title: Continuum robot stiffness under external loads and prescribed tendon displacements
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2018.2885923
– volume: 32
  start-page: 372
  year: 2016
  ident: B56
  article-title: Steering of multisegment continuum manipulators using rigid-link modeling and FBG-based shape sensing
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2016.2527047
– year: 2020
  ident: B1
  article-title: Closed-Form Non-Singular Constant-Curvature Continuum Manipulator Kinematics
  doi: 10.1109/RoboSoft48309.2020.9116015
– volume: 154
  start-page: 104043
  year: 2020
  ident: B51
  article-title: Dynamic modeling and system identification of internally actuated, small-sized continuum robots
  publication-title: Mech. Mach. Theor.
  doi: 10.1016/j.mechmachtheory.2020.104043
– volume: 20
  start-page: 2133
  year: 2015
  ident: B74
  article-title: Development of the SJTU unfoldable robotic system (SURS) for single port laparoscopy
  publication-title: IEEE ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2014.2364625
– volume: 6
  start-page: 70854
  year: 2018
  ident: B37
  article-title: Statics of continuum space manipulators with nonconstant curvature via pseudorigid-body 3R model
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2018.2881261
– year: 2012
  ident: B55
  article-title: A general mechanical model for tendon-driven continuum manipulators
  doi: 10.1109/ICRA.2012.6224703
– year: 2013
  ident: B59
  article-title: Multi-segment continuum robot shape estimation using passive cable displacement
  doi: 10.1109/ROSE.2013.6698415
– start-page: 481
  volume-title: Springer Handbook of Robotics
  year: 2016
  ident: B70
  article-title: Snake-like and continuum robots
  doi: 10.1007/978-3-319-32552-1_20
– ident: B19
  article-title: Static modeling of continuum robots by circular elements
  doi: 10.1109/IranianCEE.2013.6599741
– volume: 3
  start-page: 3149
  year: 1995
  ident: B39
  article-title: The KSI tentacle manipulator
  publication-title: IEEE Int. Conf. Robot. Autom.
  doi: 10.1109/ROBOT.1995.525733
– year: 2011
  ident: B43
  article-title: A modeling approach for continuum robotic manipulators: Effects of nonlinear internal device friction
  doi: 10.1109/IROS.2011.6094941
– year: 2011
  ident: B47
  article-title: Design of a new cable-driven manipulator with a large open lumen: Preliminary applications in the minimally-invasive removal of osteolysis
  doi: 10.1109/ICRA.2011.5980285
– ident: B16
  article-title: Statics modeling of planar continuum robots using virtual energy method
  doi: 10.1109/ICRoM.2014.6990947
– volume: 20
  start-page: 2252
  year: 2015
  ident: B45
  article-title: Tendon-driven continuum robot for endoscopic surgery: preclinical development and validation of a tension propagation model
  publication-title: IEEE ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2014.2372635
– ident: B25
  article-title: Shape function-based kinematics and dynamics for variable length continuum robotic arms
  doi: 10.1109/ICRA.2011.5979607
– volume: 30
  start-page: 275
  ident: B57
  article-title: Continuum robot dynamics utilizing the principle of virtual power
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2013.2281564
– volume: 3
  start-page: 2
  year: 2016
  ident: B53
  article-title: Design of a three-segment continuum robot for minimally invasive surgery
  publication-title: Robotics Biomim.
  doi: 10.1186/s40638-016-0035-1
– year: 2017
  ident: B67
  article-title: On the merits of helical tendon routing in continuum robots
  doi: 10.1109/IROS.2017.8206554
– year: 2019
  ident: B3
  article-title: Tendon-driven continuum robots with extensible sections—a model-based evaluation of path-following motions
  publication-title: Int. J. Robot Res
  doi: 10.1177/0278364919886047
– volume: 5
  start-page: 290
  year: 2020
  ident: B64
  article-title: Control oriented modeling of soft robots: the polynomial curvature case
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2019.2955936
– volume: 67
  start-page: 102019
  year: 2021
  ident: B7
  article-title: Real-time kinematics of continuum robots: modelling and validation
  publication-title: Robot. Comput. Integrated Manuf.
  doi: 10.1016/j.rcim.2020.102019
– volume: 9
  start-page: 4036719
  year: 2017
  ident: B21
  article-title: A general friction model of discrete interactions for tendon actuated dexterous manipulators
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4036719
– ident: B10
  article-title: Vision based 3-D shape sensing of flexible manipulators
  doi: 10.1109/ROBOT.2008.4543656
– volume: 30
  start-page: 890
  year: 2014
  ident: B27
  article-title: Compliant motion control for multisegment continuum robots with actuation force sensing
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2014.2309835
– volume: 34
  start-page: 1215
  year: 2018
  ident: B14
  article-title: An analytical loading model for n-tendon continuum robots
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2018.2838548
– volume: 24
  start-page: 1262
  ident: B11
  article-title: Mechanics modeling of tendon-driven continuum manipulators
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2008.2002311
– volume: 10
  start-page: 035002
  year: 2015
  ident: B23
  article-title: Modal kinematics for multisection continuum arms
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3190/10/3/035002
– volume: 10
  start-page: 035002
  year: 2015
  ident: B24
  article-title: Modal kinematics for multisection continuum arms
  publication-title: Bioinspir Biomim
  doi: 10.1088/1748-3190/10/3/035002
– volume: 299
  start-page: 292
  ident: B32
  article-title: Kinematics for constrained continuum robots using wavelet decomposition
  doi: 10.1061/40476(299)38
– ident: B26
  article-title: Novel modal approach for kinematics of multisection continuum arms
  doi: 10.1109/IROS.2011.6094477
– volume: 22
  start-page: 1087
  ident: B40
  article-title: Practical kinematics for real-time implementation of continuum robots
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2006.886268
– volume: 135
  start-page: 130
  year: 2019
  ident: B77
  article-title: A comprehensive static model of cable-driven multi-section continuum robots considering friction effect
  publication-title: Mech. Mach. Theor.
  doi: 10.1016/j.mechmachtheory.2019.02.005
– volume: 49
  start-page: 240
  year: 2018
  ident: B76
  article-title: Workspace analysis of cable-driven continuum manipulators based on static model
  publication-title: Robot. Comput. Integrated Manuf.
  doi: 10.1016/j.rcim.2017.07.002
– volume: 8
  start-page: 299
  ident: B29
  article-title: Large deflection dynamics and control for planar continuum robots
  publication-title: IEEE ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2003.812829
– volume: 29
  start-page: 817
  year: 2015
  ident: B13
  article-title: Conformational modeling of continuum structures in robotics and structural biology: a review
  publication-title: Adv. Robot.
  doi: 10.1080/01691864.2015.1052848
– volume: 33
  start-page: 1305
  year: 2019
  ident: B63
  article-title: Analysis and simulation of large deflection of a multi-segmented catheter tube under wire tension
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-019-0231-3
– volume: 2013
  start-page: 1
  year: 2013
  ident: B71
  article-title: Continuous backbone “continuum” robot manipulators
  publication-title: ISRN Robotics.
  doi: 10.5402/2013/726506
– year: 2003
  ident: B54
  article-title: Design of an advanced tool guiding system for robotic surgery
  doi: 10.1109/ROBOT.2003.1241993
– year: 2017
  ident: B36
  article-title: A wire-driven continuum manipulator model without assuming shape curvature constancy
  doi: 10.1109/IROS.2017.8202190
– volume: 11
  start-page: 589
  year: 2016
  ident: B44
  article-title: Tendon-driven continuum robot for neuroendoscopy: validation of extended kinematic mapping for hysteresis operation
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-015-1310-2
– year: 2009
  ident: B42
  article-title: Three dimensional statics for continuum robotics
  doi: 10.1109/IROS.2009.5354199
– volume: 124
  start-page: 265
  year: 2002
  ident: B48
  article-title: Design of continuous backbone, cable-driven robots
  publication-title: J. Mech. Des.
  doi: 10.1115/1.1447546
– volume: 38
  start-page: 723
  year: 2019
  ident: B69
  article-title: Real-time dynamics of soft and continuum robots based on Cosserat rod models
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364919842269
– volume: 13
  start-page: e1774
  year: 2017
  ident: B75
  article-title: Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators
  publication-title: Int. J. Med. Robot.
  doi: 10.1002/rcs.1774
– volume: 31
  start-page: 1261
  year: 2015
  ident: B9
  article-title: Continuum robots for medical applications: a survey
  publication-title: IEEE Transactions on Robotics.
  doi: 10.1109/TRO.2015.2489500
– ident: B15
  article-title: Finite circular elements for modeling of continuum robots
  doi: 10.1109/ICRoM.2014.6990948
– ident: B33
  article-title: On the kinematics of remotely-actuated continuum robots
  doi: 10.1109/ROBOT.2000.846411
– volume: 1
  start-page: 27
  year: 1985
  ident: B35
  article-title: Studies on a light weight and flexible robot manipulator
  publication-title: Robotics
  doi: 10.1016/S0167-8493(85)90306-7
– year: 2011
  ident: B17
  article-title: Modeling and control of a planar continuum robot
  doi: 10.1109/AIM.2011.6027137
– volume: 6
  start-page: 4027235
  ident: B58
  article-title: Mechanics modeling of multisegment rod-driven continuum robots
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4027235
– ident: B18
  article-title: Modeling of continuum robots with twisted tendon actuation systems
  doi: 10.1109/ICRoM.2013.6510074
– volume: 85
  start-page: 14
  year: 2015
  ident: B20
  article-title: A new approach of friction model for tendon-sheath actuated surgical systems: nonlinear modelling and parameter identification
  publication-title: Mech. Mach. Theor.
  doi: 10.1016/j.mechmachtheory.2014.11.003
– volume: 3
  start-page: 2979
  year: 2018
  ident: B60
  article-title: Integrating rotations using nonunit quaternions
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2018.2849557
– volume: 20
  start-page: 45
  year: 2003
  ident: B34
  article-title: Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots
  publication-title: J. Robot. Syst.
  doi: 10.1002/rob.10070
– volume: 3
  start-page: 3
  year: 2018
  ident: B50
  article-title: Modular continuum manipulator: analysis and characterization of its basic module
  publication-title: Biomimetics
  doi: 10.3390/biomimetics3010003
– volume: 29
  start-page: 1661
  year: 2010
  ident: B72
  article-title: Design and kinematic modeling of constant curvature continuum robots: a review
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364910368147
– year: 2016
  ident: B6
  article-title: New kinematic multi-section model for catheter contact force estimation and steering
  doi: 10.1109/IROS.2016.7759333
– year: 2013
  ident: B49
  article-title: A variable curvature modeling approach for kinematic control of continuum manipulators
  doi: 10.1109/ACC.2013.6580605
– start-page: 179
  volume-title: Generalized Continua from the Theory to Engineering Applications
  year: 2013
  ident: B2
  article-title: Cosserat-type rods
  doi: 10.1007/978-3-7091-1371-4_4
– start-page: 1879
  volume-title: Mechanisms and Machine Science
  year: 2019
  ident: B5
  article-title: Profile estimation of a cable-driven continuum robot with general cable routing
  doi: 10.1007/978-3-030-20131-9_186
– ident: B31
  article-title: Kinematic transformations for remotely-actuated planar continuum robots
  publication-title: IEEE Int. Conf. Robot. Autom.
  doi: 10.1109/ROBOT.2000.844034
– year: 2004
  ident: B66
  article-title: A dexterous system for laryngeal surgery
  doi: 10.1109/ROBOT.2004.1307175
– ident: B62
  article-title: Deflection-based force sensing for continuum robots: A probabilistic approach
  doi: 10.1109/IROS.2011.6094526
– volume: 28
  start-page: 1134
  year: 2009
  ident: B65
  article-title: Design and integration of a telerobotic system for minimally invasive surgery of the throat
  publication-title: Int. J. Rob. Res.
  doi: 10.1177/0278364908104278
– volume-title: Structural Analysis
  year: 2009
  ident: B8
  doi: 10.1007/978-90-481-2516-6
– volume: 22
  start-page: 43
  ident: B41
  article-title: Kinematics for multisection continuum robots
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2005.861458
– volume: 1
  start-page: 1
  year: 2009
  ident: B68
  article-title: A pseudorigid-body 3r model for determining large deflection of cantilever beams subject to tip loads
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.3046148
– volume: 8
  start-page: 299
  ident: B30
  article-title: Large deflection dynamics and control for planar continuum robots
  publication-title: IEEE Trans. Rob. Autom.
  doi: 10.1109/TMECH.2003.812829
– year: 2015
  ident: B46
  article-title: A robotics-assisted catheter manipulation system for cardiac ablation with real-time force estimation
  doi: 10.1109/IROS.2015.7353821
SSID ssj0001584377
Score 2.5483983
Snippet Tendon actuation is one of the most prominent actuation principles for continuum robots. To date, a wide variety of modelling approaches has been derived to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 630245
SubjectTerms modelling
Robotics and AI
soft arm
soft manipulator
soft robot
tendon actuation
Title How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance
URI https://www.ncbi.nlm.nih.gov/pubmed/33604355
https://www.proquest.com/docview/2491940916
https://pubmed.ncbi.nlm.nih.gov/PMC7885639
https://doaj.org/article/9650deb3e13f4ea1bac07c2a5d1f7065
Volume 7
WOSCitedRecordID wos000618363900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-9144
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001584377
  issn: 2296-9144
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-9144
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001584377
  issn: 2296-9144
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4gAHVN5bSmUkTkihdvxIfGxLqx6gVKhIe7Nsx1ZXtAnKZsuN385MvF12EYILlxwSWxnNTDLzacbfEPJGmiBNKquCcycLCSG5gDDMC6FDMkyB7H6cWvKhOjurp1NzvjbqC3vCMj1wVty-gRSiAcQXuUgyOu5dYFUonWp4whId_n0h61kDU_l8cC1FVeUyJqAws5_6zmPvZMneaYH1xo1ANPL1_ynJ_L1Xci34nGyTh8uskR5kaR-RO7F9TB6scQk-IZ9Ou-906CgON7uiFxGndBTve_yZUaSgmrWLxTX93PlumFPXNvQQ_PPy2vVf8xY8lk7Pfx0jeEq-nBxfHJ0Wy2kJRZBaDUU0KpjgdKNU45IwtWAG8hlpdDAxBoBdLsQkfeI6eeHASLVLUhnRyMYHEcQzstV2bXxBKHMc8iCnYpkUwGdvmroMRkcJAZV5zyaE3arOhiWVOE60uLIAKVDbdtS2RW3brO0Jebva8i3zaPxt8SHaY7UQKbDHG-AYdukY9l-OMSGvb61p4ZPBOohrY7eYW0Cc3ACu5XpCnmfrrl4lhGaQQcLuasPuG7JsPmlnlyMtd1XXCvK9nf8h_Etyv8TmGWwPL3fJ1tAv4ityL9wMs3m_R-5W03pv9Hi4fvxx_BPerght
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+to+Model+Tendon-Driven+Continuum+Robots+and+Benchmark+Modelling+Performance&rft.jtitle=Frontiers+in+robotics+and+AI&rft.au=Rao%2C+Priyanka&rft.au=Peyron%2C+Quentin&rft.au=Lilge%2C+Sven&rft.au=Burgner-Kahrs%2C+Jessica&rft.date=2021-02-02&rft.issn=2296-9144&rft.eissn=2296-9144&rft.volume=7&rft.spage=630245&rft_id=info:doi/10.3389%2Ffrobt.2020.630245&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-9144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-9144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-9144&client=summon