How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance
Tendon actuation is one of the most prominent actuation principles for continuum robots. To date, a wide variety of modelling approaches has been derived to describe the deformations of tendon-driven continuum robots. Motivated by the need for a comprehensive overview of existing methodologies, this...
Saved in:
| Published in: | Frontiers in robotics and AI Vol. 7; p. 630245 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
Frontiers Media S.A
02.02.2021
|
| Subjects: | |
| ISSN: | 2296-9144, 2296-9144 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Tendon actuation is one of the most prominent actuation principles for continuum robots. To date, a wide variety of modelling approaches has been derived to describe the deformations of tendon-driven continuum robots. Motivated by the need for a comprehensive overview of existing methodologies, this work summarizes and outlines state-of-the-art modelling approaches. In particular, the most relevant models are classified based on backbone representations and kinematic as well as static assumptions. Numerical case studies are conducted to compare the performance of representative modelling approaches from the current state-of-the-art, considering varying robot parameters and scenarios. The approaches show different performances in terms of accuracy and computation time. Guidelines for the selection of the most suitable approach for given designs of tendon-driven continuum robots and applications are deduced from these results. |
|---|---|
| AbstractList | Tendon actuation is one of the most prominent actuation principles for continuum robots. To date, a wide variety of modelling approaches has been derived to describe the deformations of tendon-driven continuum robots. Motivated by the need for a comprehensive overview of existing methodologies, this work summarizes and outlines state-of-the-art modelling approaches. In particular, the most relevant models are classified based on backbone representations and kinematic as well as static assumptions. Numerical case studies are conducted to compare the performance of representative modelling approaches from the current state-of-the-art, considering varying robot parameters and scenarios. The approaches show different performances in terms of accuracy and computation time. Guidelines for the selection of the most suitable approach for given designs of tendon-driven continuum robots and applications are deduced from these results. Tendon actuation is one of the most prominent actuation principles for continuum robots. To date, a wide variety of modelling approaches has been derived to describe the deformations of tendon-driven continuum robots. Motivated by the need for a comprehensive overview of existing methodologies, this work summarizes and outlines state-of-the-art modelling approaches. In particular, the most relevant models are classified based on backbone representations and kinematic as well as static assumptions. Numerical case studies are conducted to compare the performance of representative modelling approaches from the current state-of-the-art, considering varying robot parameters and scenarios. The approaches show different performances in terms of accuracy and computation time. Guidelines for the selection of the most suitable approach for given designs of tendon-driven continuum robots and applications are deduced from these results.Tendon actuation is one of the most prominent actuation principles for continuum robots. To date, a wide variety of modelling approaches has been derived to describe the deformations of tendon-driven continuum robots. Motivated by the need for a comprehensive overview of existing methodologies, this work summarizes and outlines state-of-the-art modelling approaches. In particular, the most relevant models are classified based on backbone representations and kinematic as well as static assumptions. Numerical case studies are conducted to compare the performance of representative modelling approaches from the current state-of-the-art, considering varying robot parameters and scenarios. The approaches show different performances in terms of accuracy and computation time. Guidelines for the selection of the most suitable approach for given designs of tendon-driven continuum robots and applications are deduced from these results. |
| Author | Burgner-Kahrs, Jessica Peyron, Quentin Lilge, Sven Rao, Priyanka |
| AuthorAffiliation | Continuum Robotics Laboratory, Department of Mathematical and Computational Sciences, University of Toronto Mississauga, Mississauga , ON , Canada |
| AuthorAffiliation_xml | – name: Continuum Robotics Laboratory, Department of Mathematical and Computational Sciences, University of Toronto Mississauga, Mississauga , ON , Canada |
| Author_xml | – sequence: 1 givenname: Priyanka surname: Rao fullname: Rao, Priyanka – sequence: 2 givenname: Quentin surname: Peyron fullname: Peyron, Quentin – sequence: 3 givenname: Sven surname: Lilge fullname: Lilge, Sven – sequence: 4 givenname: Jessica surname: Burgner-Kahrs fullname: Burgner-Kahrs, Jessica |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33604355$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9PFTEUxRuDEUQ-gBszSzfzbKd_Zrox0ScICQZicN102ttHcabFtoPh2zOPQQIuWPWm95zfvbnnLdoJMQBC7wleUdrJTy7Fvqwa3OCVoLhh_BXaaxopakkY23lS76KDnK8wxoR3jLbtG7RLqcCMcr6Hzo7j36rE6ke0MFQXEGwM9bfkbyBU6xiKD9M0Vj9jH0uudLDVVwjmctTp92IZfNhU55BcTKMOBt6h104PGQ4e3n306-jwYn1cn559P1l_Oa0NE7zUILmRRgvLudWOyo5i2XDBpDASwBDMtAHHekeE66lm0nTaMS6pZbY31NB9dLJwbdRX6jr5eaVbFbVX9x8xbZROxZsBlBQcW-gpEOoYaNJrg1vTaG6Ja7HgM-vzwrqe-hGsgVCSHp5Bn3eCv1SbeKParuOCyhnw8QGQ4p8JclGjz2Y-jg4Qp6waJolkWBIxSz88nfU45F8is4AsApNizgnco4RgtQ1e3QevtsGrJfjZ0_7nMb7o4uN2XT-84LwDrKC1Rg |
| CitedBy_id | crossref_primary_10_3390_eng6020029 crossref_primary_10_1109_LRA_2022_3189435 crossref_primary_10_1017_S026357472400184X crossref_primary_10_1109_LRA_2024_3518106 crossref_primary_10_1109_JSEN_2022_3156381 crossref_primary_10_1109_LRA_2025_3532159 crossref_primary_10_3390_biomimetics8030271 crossref_primary_10_1017_S0263574724001188 crossref_primary_10_3389_frobt_2023_1202584 crossref_primary_10_3390_s23031647 crossref_primary_10_1115_1_4069292 crossref_primary_10_1016_j_mechatronics_2024_103241 crossref_primary_10_3390_biomimetics8020147 crossref_primary_10_1007_s42235_023_00346_w crossref_primary_10_1080_24735132_2023_2184995 crossref_primary_10_1109_TRO_2022_3226157 crossref_primary_10_1007_s11071_024_09585_w crossref_primary_10_1109_LRA_2022_3146954 crossref_primary_10_3390_mi14050900 crossref_primary_10_1016_j_mechmachtheory_2024_105814 crossref_primary_10_1109_TCST_2025_3546564 crossref_primary_10_1017_S0263574724000651 crossref_primary_10_1109_TMECH_2021_3112580 crossref_primary_10_3389_frobt_2021_774253 crossref_primary_10_3390_math10162891 crossref_primary_10_1007_s13369_022_07065_0 crossref_primary_10_1016_j_mechmachtheory_2021_104404 crossref_primary_10_1080_01691864_2023_2291137 crossref_primary_10_1016_j_mechatronics_2023_103059 crossref_primary_10_1109_LRA_2021_3097265 crossref_primary_10_1089_soro_2023_0120 crossref_primary_10_1007_s10846_023_02003_0 crossref_primary_10_1002_aisy_202300537 crossref_primary_10_1002_aisy_202500512 crossref_primary_10_3389_frobt_2023_1094114 crossref_primary_10_1109_LRA_2025_3595025 crossref_primary_10_1016_j_compag_2024_109486 crossref_primary_10_1109_LRA_2023_3264869 crossref_primary_10_1109_MCS_2023_3253419 crossref_primary_10_1126_scirobotics_adt7461 crossref_primary_10_1109_MRA_2022_3223220 crossref_primary_10_1109_TCST_2021_3104648 crossref_primary_10_3389_frobt_2022_873446 crossref_primary_10_1002_aisy_202400785 crossref_primary_10_1016_j_rcim_2024_102811 crossref_primary_10_1109_LRA_2023_3346271 crossref_primary_10_1109_LRA_2022_3185377 crossref_primary_10_1177_09544062231210079 crossref_primary_10_1016_j_bspc_2023_105340 crossref_primary_10_1109_LRA_2023_3322078 crossref_primary_10_1109_LRA_2025_3600145 crossref_primary_10_1177_02783649221128843 crossref_primary_10_1109_TRO_2023_3238171 crossref_primary_10_1109_TRO_2022_3231360 crossref_primary_10_1109_ACCESS_2022_3210120 crossref_primary_10_3389_frobt_2021_706070 crossref_primary_10_1109_LRA_2024_3432344 crossref_primary_10_1016_j_mechmachtheory_2024_105830 crossref_primary_10_3389_frobt_2025_1576209 crossref_primary_10_1177_17298806241246886 crossref_primary_10_1109_LRA_2024_3524898 crossref_primary_10_3390_machines12110755 crossref_primary_10_1109_LRA_2024_3383211 crossref_primary_10_1017_S0263574724001966 crossref_primary_10_1109_TRO_2024_3400944 crossref_primary_10_3389_frobt_2024_1272403 crossref_primary_10_3390_act13120500 crossref_primary_10_1002_aisy_202401027 crossref_primary_10_1109_LRA_2022_3147903 crossref_primary_10_3389_frobt_2025_1488869 crossref_primary_10_1002_rcs_2638 crossref_primary_10_1089_soro_2023_0020 crossref_primary_10_3390_mi15030313 crossref_primary_10_1109_LRA_2025_3526560 crossref_primary_10_3389_frobt_2021_732643 crossref_primary_10_1016_j_cmpb_2022_107036 crossref_primary_10_3390_robotics13090128 crossref_primary_10_3390_math11194215 crossref_primary_10_1007_s11465_023_0756_0 crossref_primary_10_1002_adem_202301502 crossref_primary_10_1142_S2424905X25400021 crossref_primary_10_3389_frobt_2022_1082185 crossref_primary_10_1109_LRA_2023_3234821 crossref_primary_10_1016_j_mechmachtheory_2024_105804 crossref_primary_10_1109_TRO_2023_3324571 crossref_primary_10_1109_ACCESS_2023_3286300 crossref_primary_10_1016_j_robot_2022_104344 |
| Cites_doi | 10.1016/j.precisioneng.2011.02.006 10.1007/978-981-15-4477-4_27 10.1109/TRO.2011.2160469 10.1109/TRO.2015.2428511 10.1109/IROS40897.2019.8968526 10.1109/tra.2002.1019457 10.1109/TRO.2018.2885923 10.1109/TRO.2016.2527047 10.1109/RoboSoft48309.2020.9116015 10.1016/j.mechmachtheory.2020.104043 10.1109/TMECH.2014.2364625 10.1109/ACCESS.2018.2881261 10.1109/ICRA.2012.6224703 10.1109/ROSE.2013.6698415 10.1007/978-3-319-32552-1_20 10.1109/IranianCEE.2013.6599741 10.1109/ROBOT.1995.525733 10.1109/IROS.2011.6094941 10.1109/ICRA.2011.5980285 10.1109/ICRoM.2014.6990947 10.1109/TMECH.2014.2372635 10.1109/ICRA.2011.5979607 10.1109/TRO.2013.2281564 10.1186/s40638-016-0035-1 10.1109/IROS.2017.8206554 10.1177/0278364919886047 10.1109/LRA.2019.2955936 10.1016/j.rcim.2020.102019 10.1115/1.4036719 10.1109/ROBOT.2008.4543656 10.1109/TRO.2014.2309835 10.1109/TRO.2018.2838548 10.1109/TRO.2008.2002311 10.1088/1748-3190/10/3/035002 10.1061/40476(299)38 10.1109/IROS.2011.6094477 10.1109/TRO.2006.886268 10.1016/j.mechmachtheory.2019.02.005 10.1016/j.rcim.2017.07.002 10.1109/TMECH.2003.812829 10.1080/01691864.2015.1052848 10.1007/s12206-019-0231-3 10.5402/2013/726506 10.1109/ROBOT.2003.1241993 10.1109/IROS.2017.8202190 10.1007/s11548-015-1310-2 10.1109/IROS.2009.5354199 10.1115/1.1447546 10.1177/0278364919842269 10.1002/rcs.1774 10.1109/TRO.2015.2489500 10.1109/ICRoM.2014.6990948 10.1109/ROBOT.2000.846411 10.1016/S0167-8493(85)90306-7 10.1109/AIM.2011.6027137 10.1115/1.4027235 10.1109/ICRoM.2013.6510074 10.1016/j.mechmachtheory.2014.11.003 10.1109/LRA.2018.2849557 10.1002/rob.10070 10.3390/biomimetics3010003 10.1177/0278364910368147 10.1109/IROS.2016.7759333 10.1109/ACC.2013.6580605 10.1007/978-3-7091-1371-4_4 10.1007/978-3-030-20131-9_186 10.1109/ROBOT.2000.844034 10.1109/ROBOT.2004.1307175 10.1109/IROS.2011.6094526 10.1177/0278364908104278 10.1007/978-90-481-2516-6 10.1109/TRO.2005.861458 10.1115/1.3046148 10.1109/IROS.2015.7353821 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Rao, Peyron, Lilge and Burgner-Kahrs. Copyright © 2021 Rao, Peyron, Lilge and Burgner-Kahrs. 2021 Rao, Peyron, Lilge and Burgner-Kahrs |
| Copyright_xml | – notice: Copyright © 2021 Rao, Peyron, Lilge and Burgner-Kahrs. – notice: Copyright © 2021 Rao, Peyron, Lilge and Burgner-Kahrs. 2021 Rao, Peyron, Lilge and Burgner-Kahrs |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3389/frobt.2020.630245 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Rao et al |
| EISSN | 2296-9144 |
| ExternalDocumentID | oai_doaj_org_article_9650deb3e13f4ea1bac07c2a5d1f7065 PMC7885639 33604355 10_3389_frobt_2020_630245 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: RGPIN-2019-04846 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 PGMZT RPM ACXDI IAO ICD IEA IPNFZ ISR NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c465t-e95c9ca6d55daf398309256496c9eec104acef4bf16fb3a49c8af4593d4dbc3c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 138 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000618363900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2296-9144 |
| IngestDate | Fri Oct 03 12:27:43 EDT 2025 Thu Aug 21 14:11:14 EDT 2025 Thu Oct 02 06:56:30 EDT 2025 Thu Jan 02 22:58:24 EST 2025 Sat Nov 29 05:50:04 EST 2025 Tue Nov 18 22:42:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | soft manipulator modelling soft arm soft robot tendon actuation |
| Language | English |
| License | Copyright © 2021 Rao, Peyron, Lilge and Burgner-Kahrs. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c465t-e95c9ca6d55daf398309256496c9eec104acef4bf16fb3a49c8af4593d4dbc3c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Ashwin K. P., FeatherDyn Pvt Ltd., India Edited by: Matteo Cianchetti, Sant’Anna School of Advanced Studies, Italy Kristin M. De Payrebrune, University of Kaiserslautern, Germany This article was submitted to Soft Robotics, a section of the journal Frontiers in Robotics and AI |
| OpenAccessLink | https://doaj.org/article/9650deb3e13f4ea1bac07c2a5d1f7065 |
| PMID | 33604355 |
| PQID | 2491940916 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9650deb3e13f4ea1bac07c2a5d1f7065 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7885639 proquest_miscellaneous_2491940916 pubmed_primary_33604355 crossref_primary_10_3389_frobt_2020_630245 crossref_citationtrail_10_3389_frobt_2020_630245 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-02 |
| PublicationDateYYYYMMDD | 2021-02-02 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in robotics and AI |
| PublicationTitleAlternate | Front Robot AI |
| PublicationYear | 2021 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Do (B20) 2015; 85 Gravagne (B30); 8 Starke (B67) 2017 Webster (B73) 1988 Mahl (B49) 2013 Kutzer (B47) 2011 Roesthuis (B56) 2016; 32 Huang (B37) 2018; 6 Jones (B41); 22 Ryu (B63) 2019; 33 Walker (B70) 2016 Back (B6) 2016 Dehghani (B18) Ashwin (B5) 2019 Gravagne (B33) Gravagne (B32); 299 Hsiao (B36) 2017 Li (B48) 2002; 124 Camarillo (B11); 24 Godage (B26) Till (B69) 2019; 38 Yuan (B76) 2018; 49 Ashwin (B4) 2021 Kato (B44) 2016; 11 Peirs (B54) 2003 Webster (B72) 2010; 29 Walker (B71) 2013; 2013 Jung (B43) 2011 Rone (B57); 30 Oliver-Butler (B52) 2019; 35 Rone (B59) 2013 Rucker (B60) 2018; 3 Chen (B12) 2011; 35 Rone (B58); 6 Godage (B25) Burgner-Kahrs (B9) 2015; 31 Mishra (B50) 2018; 3 Allen (B1) 2020 Jones (B42) 2009 Amanov (B3) 2019 Gao (B21) 2017; 9 Norouzi-Ghazbi (B51) 2020; 154 Simaan (B66) 2004 Yuan (B77) 2019; 135 Camarillo (B10) Rucker (B62) Dehghani (B16) Immega (B39) 1995; 3 Ouyang (B53) 2016; 3 Gravagne (B31) Xu (B75) 2017; 13 Goldman (B27) 2014; 30 Godage (B23) 2015; 10 Gravagne (B29); 8 Jones (B40); 22 Barrientos-Diez (B7) 2021; 67 Chirikjian (B13) 2015; 29 Kato (B45) 2015; 20 Khoshnam (B46) 2015 Simaan (B65) 2009; 28 Bauchau (B8) 2009 Su (B68) 2009; 1 Dehghani (B17) 2011 Dalvand (B14) 2018; 34 Dehghani (B19) Hemami (B35) 1985; 1 Xu (B74) 2015; 20 Huang (B38) 2019 Dehghani (B15) Hannan (B34) 2003; 20 Giorelli (B22) 2015; 31 Godage (B24) 2015; 10 Rucker (B61); 27 Renda (B55) 2012 Santina (B64) 2020; 5 Altenbach (B2) 2013 Gravagne (B28) 2002; 18 |
| References_xml | – volume: 35 start-page: 505 year: 2011 ident: B12 article-title: Finding the optimal characteristic parameters for 3R pseudo-rigid-body model using an improved particle swarm optimizer publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2011.02.006 – start-page: 391 volume-title: Mechanism and Machine Science year: 2021 ident: B4 article-title: Forward kinematics of cable-driven continuum robot using optimization method doi: 10.1007/978-981-15-4477-4_27 – volume: 27 start-page: 1033 ident: B61 article-title: Statics and dynamics of continuum robots with general tendon routing and external loading publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2011.2160469 – volume: 31 start-page: 823 year: 2015 ident: B22 article-title: Neural network and jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature publication-title: IEEE Transactions on Robotics. doi: 10.1109/TRO.2015.2428511 – year: 2019 ident: B38 article-title: A 3D Static Modeling Method and Experimental Verification of Continuum Robots Based on Pseudo-Rigid Body Theory doi: 10.1109/IROS40897.2019.8968526 – volume-title: Steerable catheters year: 1988 ident: B73 – volume: 18 start-page: 263 year: 2002 ident: B28 article-title: Manipulability, force, and compliance analysis for planar continuum manipulators publication-title: IEEE Trans. Rob. Autom. doi: 10.1109/tra.2002.1019457 – volume: 35 start-page: 403 year: 2019 ident: B52 article-title: Continuum robot stiffness under external loads and prescribed tendon displacements publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2018.2885923 – volume: 32 start-page: 372 year: 2016 ident: B56 article-title: Steering of multisegment continuum manipulators using rigid-link modeling and FBG-based shape sensing publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2016.2527047 – year: 2020 ident: B1 article-title: Closed-Form Non-Singular Constant-Curvature Continuum Manipulator Kinematics doi: 10.1109/RoboSoft48309.2020.9116015 – volume: 154 start-page: 104043 year: 2020 ident: B51 article-title: Dynamic modeling and system identification of internally actuated, small-sized continuum robots publication-title: Mech. Mach. Theor. doi: 10.1016/j.mechmachtheory.2020.104043 – volume: 20 start-page: 2133 year: 2015 ident: B74 article-title: Development of the SJTU unfoldable robotic system (SURS) for single port laparoscopy publication-title: IEEE ASME Trans. Mechatron. doi: 10.1109/TMECH.2014.2364625 – volume: 6 start-page: 70854 year: 2018 ident: B37 article-title: Statics of continuum space manipulators with nonconstant curvature via pseudorigid-body 3R model publication-title: IEEE Access. doi: 10.1109/ACCESS.2018.2881261 – year: 2012 ident: B55 article-title: A general mechanical model for tendon-driven continuum manipulators doi: 10.1109/ICRA.2012.6224703 – year: 2013 ident: B59 article-title: Multi-segment continuum robot shape estimation using passive cable displacement doi: 10.1109/ROSE.2013.6698415 – start-page: 481 volume-title: Springer Handbook of Robotics year: 2016 ident: B70 article-title: Snake-like and continuum robots doi: 10.1007/978-3-319-32552-1_20 – ident: B19 article-title: Static modeling of continuum robots by circular elements doi: 10.1109/IranianCEE.2013.6599741 – volume: 3 start-page: 3149 year: 1995 ident: B39 article-title: The KSI tentacle manipulator publication-title: IEEE Int. Conf. Robot. Autom. doi: 10.1109/ROBOT.1995.525733 – year: 2011 ident: B43 article-title: A modeling approach for continuum robotic manipulators: Effects of nonlinear internal device friction doi: 10.1109/IROS.2011.6094941 – year: 2011 ident: B47 article-title: Design of a new cable-driven manipulator with a large open lumen: Preliminary applications in the minimally-invasive removal of osteolysis doi: 10.1109/ICRA.2011.5980285 – ident: B16 article-title: Statics modeling of planar continuum robots using virtual energy method doi: 10.1109/ICRoM.2014.6990947 – volume: 20 start-page: 2252 year: 2015 ident: B45 article-title: Tendon-driven continuum robot for endoscopic surgery: preclinical development and validation of a tension propagation model publication-title: IEEE ASME Trans. Mechatron. doi: 10.1109/TMECH.2014.2372635 – ident: B25 article-title: Shape function-based kinematics and dynamics for variable length continuum robotic arms doi: 10.1109/ICRA.2011.5979607 – volume: 30 start-page: 275 ident: B57 article-title: Continuum robot dynamics utilizing the principle of virtual power publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2013.2281564 – volume: 3 start-page: 2 year: 2016 ident: B53 article-title: Design of a three-segment continuum robot for minimally invasive surgery publication-title: Robotics Biomim. doi: 10.1186/s40638-016-0035-1 – year: 2017 ident: B67 article-title: On the merits of helical tendon routing in continuum robots doi: 10.1109/IROS.2017.8206554 – year: 2019 ident: B3 article-title: Tendon-driven continuum robots with extensible sections—a model-based evaluation of path-following motions publication-title: Int. J. Robot Res doi: 10.1177/0278364919886047 – volume: 5 start-page: 290 year: 2020 ident: B64 article-title: Control oriented modeling of soft robots: the polynomial curvature case publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2019.2955936 – volume: 67 start-page: 102019 year: 2021 ident: B7 article-title: Real-time kinematics of continuum robots: modelling and validation publication-title: Robot. Comput. Integrated Manuf. doi: 10.1016/j.rcim.2020.102019 – volume: 9 start-page: 4036719 year: 2017 ident: B21 article-title: A general friction model of discrete interactions for tendon actuated dexterous manipulators publication-title: J. Mech. Robot. doi: 10.1115/1.4036719 – ident: B10 article-title: Vision based 3-D shape sensing of flexible manipulators doi: 10.1109/ROBOT.2008.4543656 – volume: 30 start-page: 890 year: 2014 ident: B27 article-title: Compliant motion control for multisegment continuum robots with actuation force sensing publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2014.2309835 – volume: 34 start-page: 1215 year: 2018 ident: B14 article-title: An analytical loading model for n-tendon continuum robots publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2018.2838548 – volume: 24 start-page: 1262 ident: B11 article-title: Mechanics modeling of tendon-driven continuum manipulators publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2008.2002311 – volume: 10 start-page: 035002 year: 2015 ident: B23 article-title: Modal kinematics for multisection continuum arms publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3190/10/3/035002 – volume: 10 start-page: 035002 year: 2015 ident: B24 article-title: Modal kinematics for multisection continuum arms publication-title: Bioinspir Biomim doi: 10.1088/1748-3190/10/3/035002 – volume: 299 start-page: 292 ident: B32 article-title: Kinematics for constrained continuum robots using wavelet decomposition doi: 10.1061/40476(299)38 – ident: B26 article-title: Novel modal approach for kinematics of multisection continuum arms doi: 10.1109/IROS.2011.6094477 – volume: 22 start-page: 1087 ident: B40 article-title: Practical kinematics for real-time implementation of continuum robots publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2006.886268 – volume: 135 start-page: 130 year: 2019 ident: B77 article-title: A comprehensive static model of cable-driven multi-section continuum robots considering friction effect publication-title: Mech. Mach. Theor. doi: 10.1016/j.mechmachtheory.2019.02.005 – volume: 49 start-page: 240 year: 2018 ident: B76 article-title: Workspace analysis of cable-driven continuum manipulators based on static model publication-title: Robot. Comput. Integrated Manuf. doi: 10.1016/j.rcim.2017.07.002 – volume: 8 start-page: 299 ident: B29 article-title: Large deflection dynamics and control for planar continuum robots publication-title: IEEE ASME Trans. Mechatron. doi: 10.1109/TMECH.2003.812829 – volume: 29 start-page: 817 year: 2015 ident: B13 article-title: Conformational modeling of continuum structures in robotics and structural biology: a review publication-title: Adv. Robot. doi: 10.1080/01691864.2015.1052848 – volume: 33 start-page: 1305 year: 2019 ident: B63 article-title: Analysis and simulation of large deflection of a multi-segmented catheter tube under wire tension publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-019-0231-3 – volume: 2013 start-page: 1 year: 2013 ident: B71 article-title: Continuous backbone “continuum” robot manipulators publication-title: ISRN Robotics. doi: 10.5402/2013/726506 – year: 2003 ident: B54 article-title: Design of an advanced tool guiding system for robotic surgery doi: 10.1109/ROBOT.2003.1241993 – year: 2017 ident: B36 article-title: A wire-driven continuum manipulator model without assuming shape curvature constancy doi: 10.1109/IROS.2017.8202190 – volume: 11 start-page: 589 year: 2016 ident: B44 article-title: Tendon-driven continuum robot for neuroendoscopy: validation of extended kinematic mapping for hysteresis operation publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-015-1310-2 – year: 2009 ident: B42 article-title: Three dimensional statics for continuum robotics doi: 10.1109/IROS.2009.5354199 – volume: 124 start-page: 265 year: 2002 ident: B48 article-title: Design of continuous backbone, cable-driven robots publication-title: J. Mech. Des. doi: 10.1115/1.1447546 – volume: 38 start-page: 723 year: 2019 ident: B69 article-title: Real-time dynamics of soft and continuum robots based on Cosserat rod models publication-title: Int. J. Robot. Res. doi: 10.1177/0278364919842269 – volume: 13 start-page: e1774 year: 2017 ident: B75 article-title: Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators publication-title: Int. J. Med. Robot. doi: 10.1002/rcs.1774 – volume: 31 start-page: 1261 year: 2015 ident: B9 article-title: Continuum robots for medical applications: a survey publication-title: IEEE Transactions on Robotics. doi: 10.1109/TRO.2015.2489500 – ident: B15 article-title: Finite circular elements for modeling of continuum robots doi: 10.1109/ICRoM.2014.6990948 – ident: B33 article-title: On the kinematics of remotely-actuated continuum robots doi: 10.1109/ROBOT.2000.846411 – volume: 1 start-page: 27 year: 1985 ident: B35 article-title: Studies on a light weight and flexible robot manipulator publication-title: Robotics doi: 10.1016/S0167-8493(85)90306-7 – year: 2011 ident: B17 article-title: Modeling and control of a planar continuum robot doi: 10.1109/AIM.2011.6027137 – volume: 6 start-page: 4027235 ident: B58 article-title: Mechanics modeling of multisegment rod-driven continuum robots publication-title: J. Mech. Robot. doi: 10.1115/1.4027235 – ident: B18 article-title: Modeling of continuum robots with twisted tendon actuation systems doi: 10.1109/ICRoM.2013.6510074 – volume: 85 start-page: 14 year: 2015 ident: B20 article-title: A new approach of friction model for tendon-sheath actuated surgical systems: nonlinear modelling and parameter identification publication-title: Mech. Mach. Theor. doi: 10.1016/j.mechmachtheory.2014.11.003 – volume: 3 start-page: 2979 year: 2018 ident: B60 article-title: Integrating rotations using nonunit quaternions publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2018.2849557 – volume: 20 start-page: 45 year: 2003 ident: B34 article-title: Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots publication-title: J. Robot. Syst. doi: 10.1002/rob.10070 – volume: 3 start-page: 3 year: 2018 ident: B50 article-title: Modular continuum manipulator: analysis and characterization of its basic module publication-title: Biomimetics doi: 10.3390/biomimetics3010003 – volume: 29 start-page: 1661 year: 2010 ident: B72 article-title: Design and kinematic modeling of constant curvature continuum robots: a review publication-title: Int. J. Robot. Res. doi: 10.1177/0278364910368147 – year: 2016 ident: B6 article-title: New kinematic multi-section model for catheter contact force estimation and steering doi: 10.1109/IROS.2016.7759333 – year: 2013 ident: B49 article-title: A variable curvature modeling approach for kinematic control of continuum manipulators doi: 10.1109/ACC.2013.6580605 – start-page: 179 volume-title: Generalized Continua from the Theory to Engineering Applications year: 2013 ident: B2 article-title: Cosserat-type rods doi: 10.1007/978-3-7091-1371-4_4 – start-page: 1879 volume-title: Mechanisms and Machine Science year: 2019 ident: B5 article-title: Profile estimation of a cable-driven continuum robot with general cable routing doi: 10.1007/978-3-030-20131-9_186 – ident: B31 article-title: Kinematic transformations for remotely-actuated planar continuum robots publication-title: IEEE Int. Conf. Robot. Autom. doi: 10.1109/ROBOT.2000.844034 – year: 2004 ident: B66 article-title: A dexterous system for laryngeal surgery doi: 10.1109/ROBOT.2004.1307175 – ident: B62 article-title: Deflection-based force sensing for continuum robots: A probabilistic approach doi: 10.1109/IROS.2011.6094526 – volume: 28 start-page: 1134 year: 2009 ident: B65 article-title: Design and integration of a telerobotic system for minimally invasive surgery of the throat publication-title: Int. J. Rob. Res. doi: 10.1177/0278364908104278 – volume-title: Structural Analysis year: 2009 ident: B8 doi: 10.1007/978-90-481-2516-6 – volume: 22 start-page: 43 ident: B41 article-title: Kinematics for multisection continuum robots publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2005.861458 – volume: 1 start-page: 1 year: 2009 ident: B68 article-title: A pseudorigid-body 3r model for determining large deflection of cantilever beams subject to tip loads publication-title: J. Mech. Robot. doi: 10.1115/1.3046148 – volume: 8 start-page: 299 ident: B30 article-title: Large deflection dynamics and control for planar continuum robots publication-title: IEEE Trans. Rob. Autom. doi: 10.1109/TMECH.2003.812829 – year: 2015 ident: B46 article-title: A robotics-assisted catheter manipulation system for cardiac ablation with real-time force estimation doi: 10.1109/IROS.2015.7353821 |
| SSID | ssj0001584377 |
| Score | 2.5483983 |
| Snippet | Tendon actuation is one of the most prominent actuation principles for continuum robots. To date, a wide variety of modelling approaches has been derived to... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 630245 |
| SubjectTerms | modelling Robotics and AI soft arm soft manipulator soft robot tendon actuation |
| Title | How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33604355 https://www.proquest.com/docview/2491940916 https://pubmed.ncbi.nlm.nih.gov/PMC7885639 https://doaj.org/article/9650deb3e13f4ea1bac07c2a5d1f7065 |
| Volume | 7 |
| WOSCitedRecordID | wos000618363900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2296-9144 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001584377 issn: 2296-9144 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2296-9144 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001584377 issn: 2296-9144 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4gAHVN5bSmUkTkihdvxIfGxLqx6gVKhIe7Nsx1ZXtAnKZsuN385MvF12EYILlxwSWxnNTDLzacbfEPJGmiBNKquCcycLCSG5gDDMC6FDMkyB7H6cWvKhOjurp1NzvjbqC3vCMj1wVty-gRSiAcQXuUgyOu5dYFUonWp4whId_n0h61kDU_l8cC1FVeUyJqAws5_6zmPvZMneaYH1xo1ANPL1_ynJ_L1Xci34nGyTh8uskR5kaR-RO7F9TB6scQk-IZ9Ou-906CgON7uiFxGndBTve_yZUaSgmrWLxTX93PlumFPXNvQQ_PPy2vVf8xY8lk7Pfx0jeEq-nBxfHJ0Wy2kJRZBaDUU0KpjgdKNU45IwtWAG8hlpdDAxBoBdLsQkfeI6eeHASLVLUhnRyMYHEcQzstV2bXxBKHMc8iCnYpkUwGdvmroMRkcJAZV5zyaE3arOhiWVOE60uLIAKVDbdtS2RW3brO0Jebva8i3zaPxt8SHaY7UQKbDHG-AYdukY9l-OMSGvb61p4ZPBOohrY7eYW0Cc3ACu5XpCnmfrrl4lhGaQQcLuasPuG7JsPmlnlyMtd1XXCvK9nf8h_Etyv8TmGWwPL3fJ1tAv4ityL9wMs3m_R-5W03pv9Hi4fvxx_BPerght |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+to+Model+Tendon-Driven+Continuum+Robots+and+Benchmark+Modelling+Performance&rft.jtitle=Frontiers+in+robotics+and+AI&rft.au=Rao%2C+Priyanka&rft.au=Peyron%2C+Quentin&rft.au=Lilge%2C+Sven&rft.au=Burgner-Kahrs%2C+Jessica&rft.date=2021-02-02&rft.issn=2296-9144&rft.eissn=2296-9144&rft.volume=7&rft.spage=630245&rft_id=info:doi/10.3389%2Ffrobt.2020.630245&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-9144&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-9144&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-9144&client=summon |