Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
Circadian clocks in peripheral organs are tightly coupled to cellular metabolism and are readily entrained by feeding-fasting cycles. However, the molecular mechanisms involved are largely unknown. Here we show that in liver the activity of PARP-1, an NAD(+)-dependent ADP-ribosyltransferase, oscilla...
Uložené v:
| Vydané v: | Cell Ročník 142; číslo 6; s. 943 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
17.09.2010
|
| Predmet: | |
| ISSN: | 1097-4172, 1097-4172 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Circadian clocks in peripheral organs are tightly coupled to cellular metabolism and are readily entrained by feeding-fasting cycles. However, the molecular mechanisms involved are largely unknown. Here we show that in liver the activity of PARP-1, an NAD(+)-dependent ADP-ribosyltransferase, oscillates in a daily manner and is regulated by feeding. We provide biochemical evidence that PARP-1 binds and poly(ADP-ribosyl)ates CLOCK at the beginning of the light phase. The loss of PARP-1 enhances the binding of CLOCK-BMAL1 to DNA and leads to a phase-shift of the interaction of CLOCK-BMAL1 with PER and CRY repressor proteins. As a consequence, CLOCK-BMAL1-dependent gene expression is altered in PARP-1-deficient mice, in particular in response to changes in feeding times. Our results show that Parp-1 knockout mice exhibit impaired food entrainment of peripheral circadian clocks and support a role for PARP-1 in connecting feeding with the mammalian timing system. |
|---|---|
| AbstractList | Circadian clocks in peripheral organs are tightly coupled to cellular metabolism and are readily entrained by feeding-fasting cycles. However, the molecular mechanisms involved are largely unknown. Here we show that in liver the activity of PARP-1, an NAD(+)-dependent ADP-ribosyltransferase, oscillates in a daily manner and is regulated by feeding. We provide biochemical evidence that PARP-1 binds and poly(ADP-ribosyl)ates CLOCK at the beginning of the light phase. The loss of PARP-1 enhances the binding of CLOCK-BMAL1 to DNA and leads to a phase-shift of the interaction of CLOCK-BMAL1 with PER and CRY repressor proteins. As a consequence, CLOCK-BMAL1-dependent gene expression is altered in PARP-1-deficient mice, in particular in response to changes in feeding times. Our results show that Parp-1 knockout mice exhibit impaired food entrainment of peripheral circadian clocks and support a role for PARP-1 in connecting feeding with the mammalian timing system.Circadian clocks in peripheral organs are tightly coupled to cellular metabolism and are readily entrained by feeding-fasting cycles. However, the molecular mechanisms involved are largely unknown. Here we show that in liver the activity of PARP-1, an NAD(+)-dependent ADP-ribosyltransferase, oscillates in a daily manner and is regulated by feeding. We provide biochemical evidence that PARP-1 binds and poly(ADP-ribosyl)ates CLOCK at the beginning of the light phase. The loss of PARP-1 enhances the binding of CLOCK-BMAL1 to DNA and leads to a phase-shift of the interaction of CLOCK-BMAL1 with PER and CRY repressor proteins. As a consequence, CLOCK-BMAL1-dependent gene expression is altered in PARP-1-deficient mice, in particular in response to changes in feeding times. Our results show that Parp-1 knockout mice exhibit impaired food entrainment of peripheral circadian clocks and support a role for PARP-1 in connecting feeding with the mammalian timing system. Circadian clocks in peripheral organs are tightly coupled to cellular metabolism and are readily entrained by feeding-fasting cycles. However, the molecular mechanisms involved are largely unknown. Here we show that in liver the activity of PARP-1, an NAD(+)-dependent ADP-ribosyltransferase, oscillates in a daily manner and is regulated by feeding. We provide biochemical evidence that PARP-1 binds and poly(ADP-ribosyl)ates CLOCK at the beginning of the light phase. The loss of PARP-1 enhances the binding of CLOCK-BMAL1 to DNA and leads to a phase-shift of the interaction of CLOCK-BMAL1 with PER and CRY repressor proteins. As a consequence, CLOCK-BMAL1-dependent gene expression is altered in PARP-1-deficient mice, in particular in response to changes in feeding times. Our results show that Parp-1 knockout mice exhibit impaired food entrainment of peripheral circadian clocks and support a role for PARP-1 in connecting feeding with the mammalian timing system. |
| Author | Gutierrez-Arcelus, Maria Reinke, Hans Hottiger, Michael O Asher, Gad Schibler, Ueli Altmeyer, Matthias |
| Author_xml | – sequence: 1 givenname: Gad surname: Asher fullname: Asher, Gad email: gad.asher@unige.ch organization: Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland. gad.asher@unige.ch – sequence: 2 givenname: Hans surname: Reinke fullname: Reinke, Hans – sequence: 3 givenname: Matthias surname: Altmeyer fullname: Altmeyer, Matthias – sequence: 4 givenname: Maria surname: Gutierrez-Arcelus fullname: Gutierrez-Arcelus, Maria – sequence: 5 givenname: Michael O surname: Hottiger fullname: Hottiger, Michael O – sequence: 6 givenname: Ueli surname: Schibler fullname: Schibler, Ueli |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20832105$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkD1PwzAYhC1UREvhDzAgb8CQYDtxnIxV-ZQq0QHmyHZeU5fEDnY69N-TiiIx3em50w13jibOO0DoipKUElrcb1MNbZsyMgJSpiM6QTNKKpHkVLDJPz9F5zFuCSEl5_wMTRkpM0YJnyG19u3-dvGwToJVPsId7kfQQZARMMW9DIPVtpcDRGwdHjaA-80hAzcEaV03KvYGaxu0bKx0WLdef0U8eGwAGus-L9CpkW2Ey6PO0cfT4_vyJVm9Pb8uF6tE5wUfEl1VoAtR5iBzUIJxI0jOTEMq1mTcMKkaKowhXFOpgEPGiVIqy6qDp4Vgc3Tzu9sH_72DONSdjYeHpAO_i7XgnFasyouxeX1s7lQHTd0H28mwr_9uYT8sq2ft |
| CitedBy_id | crossref_primary_10_1089_ars_2017_7145 crossref_primary_10_1038_s41594_022_00777_9 crossref_primary_10_3389_fnut_2019_00132 crossref_primary_10_3390_ijms19030781 crossref_primary_10_1080_07420528_2021_1928159 crossref_primary_10_3390_ijms23179826 crossref_primary_10_1371_journal_pone_0065404 crossref_primary_10_1210_er_2016_1083 crossref_primary_10_1016_j_it_2020_04_005 crossref_primary_10_1038_s41576_022_00477_6 crossref_primary_10_1080_09291016_2021_1928386 crossref_primary_10_1080_09291016_2015_1020203 crossref_primary_10_1016_j_freeradbiomed_2017_12_026 crossref_primary_10_1111_liv_12534 crossref_primary_10_1161_CIRCRESAHA_116_303936 crossref_primary_10_1210_me_2015_1295 crossref_primary_10_1016_j_tem_2012_03_004 crossref_primary_10_1038_nrm3376 crossref_primary_10_1093_jb_mvab115 crossref_primary_10_1038_s41580_019_0179_2 crossref_primary_10_1016_j_bbagrm_2023_194958 crossref_primary_10_1016_j_mam_2013_01_005 crossref_primary_10_1016_j_mam_2013_01_004 crossref_primary_10_1016_j_mce_2012_06_017 crossref_primary_10_1016_j_jmb_2020_01_018 crossref_primary_10_1017_S0954422414000055 crossref_primary_10_1038_s43018_022_00429_3 crossref_primary_10_1016_j_febslet_2012_04_044 crossref_primary_10_1002_1873_3468_13898 crossref_primary_10_1017_erm_2024_14 crossref_primary_10_1371_journal_pone_0117519 crossref_primary_10_3109_10409238_2013_831395 crossref_primary_10_1038_nrc3621 crossref_primary_10_1038_s41477_018_0224_8 crossref_primary_10_1038_ncomms12917 crossref_primary_10_1007_s12035_021_02595_4 crossref_primary_10_1089_ars_2011_4413 crossref_primary_10_1016_j_bbagrm_2012_03_001 crossref_primary_10_1101_cshperspect_a027698 crossref_primary_10_1371_journal_pone_0088872 crossref_primary_10_1111_febs_12433 crossref_primary_10_1126_science_1212842 crossref_primary_10_1016_j_bbcan_2025_189282 crossref_primary_10_1016_j_plipres_2021_101117 crossref_primary_10_1111_cobi_13900 crossref_primary_10_1016_j_molcel_2016_11_015 crossref_primary_10_12688_f1000research_20829_1 crossref_primary_10_1016_j_freeradbiomed_2018_02_022 crossref_primary_10_1038_s41574_019_0210_x crossref_primary_10_1093_jxb_err040 crossref_primary_10_1016_j_molcel_2020_08_002 crossref_primary_10_1111_cpr_13796 crossref_primary_10_1101_gad_183509_111 crossref_primary_10_1016_j_cotox_2018_03_003 crossref_primary_10_1158_1541_7786_MCR_13_0672 crossref_primary_10_1038_s41580_024_00802_3 crossref_primary_10_3389_fendo_2021_662017 crossref_primary_10_1007_s13668_014_0082_6 crossref_primary_10_1002_pmic_201400187 crossref_primary_10_1002_advs_202202737 crossref_primary_10_1016_j_molcel_2021_10_026 crossref_primary_10_1371_journal_pgen_1007369 crossref_primary_10_1186_s40169_016_0104_7 crossref_primary_10_1016_j_molcel_2015_01_034 crossref_primary_10_3389_fphys_2018_00193 crossref_primary_10_1016_j_biocel_2014_05_014 crossref_primary_10_1155_2020_8819627 crossref_primary_10_3390_cells10092447 crossref_primary_10_1016_j_cmet_2012_12_017 crossref_primary_10_1038_nrm2995 crossref_primary_10_1016_j_molmet_2014_03_002 crossref_primary_10_1016_j_cmet_2015_09_011 crossref_primary_10_1038_nrm2998 crossref_primary_10_1016_j_bbadis_2012_08_010 crossref_primary_10_1016_j_molcel_2015_07_019 crossref_primary_10_1016_j_tig_2020_09_018 crossref_primary_10_1016_j_neuron_2012_04_006 crossref_primary_10_15252_embj_201797135 crossref_primary_10_1124_mol_110_070110 crossref_primary_10_1016_j_bbrc_2013_01_043 crossref_primary_10_1371_journal_pcbi_1002309 crossref_primary_10_1096_fj_14_265686 crossref_primary_10_3109_07420528_2015_1050726 crossref_primary_10_1016_j_mce_2011_05_007 crossref_primary_10_1053_j_gastro_2015_11_043 crossref_primary_10_1111_apha_13281 crossref_primary_10_1089_ars_2021_0272 crossref_primary_10_1038_nrneurol_2014_148 crossref_primary_10_1016_j_cmet_2013_12_016 crossref_primary_10_1016_j_tem_2012_02_003 crossref_primary_10_1007_s00018_012_1207_y crossref_primary_10_3389_fnins_2021_647589 crossref_primary_10_3389_fgene_2018_00417 crossref_primary_10_1016_j_cmet_2024_01_009 crossref_primary_10_1038_s41522_019_0096_3 crossref_primary_10_1074_jbc_M116_728774 crossref_primary_10_1016_j_tcb_2013_07_002 crossref_primary_10_1016_j_cmet_2011_03_004 crossref_primary_10_1002_wsbm_1450 crossref_primary_10_1038_s41467_022_30785_8 crossref_primary_10_1111_nph_17127 crossref_primary_10_1126_science_aah4967 crossref_primary_10_1038_s42255_021_00395_7 crossref_primary_10_1016_j_molcel_2012_06_026 crossref_primary_10_1016_j_neuroscience_2013_08_049 crossref_primary_10_1042_BST20160183 crossref_primary_10_1074_jbc_M111_254680 crossref_primary_10_1016_j_ceb_2013_01_003 crossref_primary_10_3390_nu14235080 crossref_primary_10_1111_bph_14712 crossref_primary_10_1021_jacs_1c11053 crossref_primary_10_1016_j_molcel_2017_11_019 crossref_primary_10_1371_journal_pone_0112811 crossref_primary_10_1080_07391102_2025_2544217 crossref_primary_10_1158_0008_5472_CAN_16_3079 crossref_primary_10_1101_gad_334284_119 crossref_primary_10_1161_CIRCULATIONAHA_118_036550 crossref_primary_10_1016_j_tem_2014_11_003 crossref_primary_10_1111_cpr_12268 crossref_primary_10_1016_j_cmet_2011_03_011 crossref_primary_10_1016_j_semcdb_2016_12_009 crossref_primary_10_1371_journal_pone_0182306 crossref_primary_10_1017_S0007114516002117 crossref_primary_10_1093_abbs_gms110 crossref_primary_10_1007_s11357_020_00295_w crossref_primary_10_1134_S2079059717050161 crossref_primary_10_1016_j_molcel_2015_06_006 crossref_primary_10_1111_jne_12508 crossref_primary_10_3390_biom2040524 crossref_primary_10_7717_peerj_4327 crossref_primary_10_1016_j_cell_2015_03_015 crossref_primary_10_1124_pr_110_003905 crossref_primary_10_1002_j_2040_4603_2013_tb00505_x crossref_primary_10_1186_s12967_024_05069_y crossref_primary_10_1016_j_molcel_2016_04_002 crossref_primary_10_1146_annurev_biochem_060713_035644 crossref_primary_10_1371_journal_pgen_1009974 crossref_primary_10_3390_antiox11091637 crossref_primary_10_1038_s42255_019_0161_5 crossref_primary_10_1074_jbc_M111_278903 crossref_primary_10_1016_j_cell_2014_09_048 crossref_primary_10_1073_pnas_1914112117 crossref_primary_10_1177_0748730418789043 crossref_primary_10_1083_jcb_201603076 crossref_primary_10_1016_j_cmet_2015_05_023 crossref_primary_10_3389_fnins_2020_00844 crossref_primary_10_1111_pce_13996 crossref_primary_10_3109_10409238_2013_786672 crossref_primary_10_1016_j_cmet_2012_06_001 crossref_primary_10_1371_journal_pbio_3001492 crossref_primary_10_1016_j_isci_2021_102335 crossref_primary_10_1371_journal_pcbi_1006674 crossref_primary_10_1016_j_cmet_2019_01_007 crossref_primary_10_1038_nrendo_2015_181 crossref_primary_10_1074_jbc_M112_340786 crossref_primary_10_1016_j_cmet_2011_01_006 crossref_primary_10_1016_j_cmet_2024_07_003 crossref_primary_10_1096_fj_201801950R crossref_primary_10_3390_biology4010104 crossref_primary_10_3390_antiox12030674 crossref_primary_10_1111_dom_12512 crossref_primary_10_3389_fphys_2019_00682 crossref_primary_10_1038_s41556_019_0420_4 crossref_primary_10_1111_dom_12519 crossref_primary_10_1146_annurev_biochem_060713_035623 crossref_primary_10_1146_annurev_neuro_060909_153128 crossref_primary_10_3390_biom13071068 crossref_primary_10_1016_j_cmet_2012_06_016 crossref_primary_10_1016_j_fct_2023_113878 crossref_primary_10_1016_j_ebiom_2025_105764 crossref_primary_10_1038_nature10700 crossref_primary_10_3390_ijms25116189 crossref_primary_10_1126_science_1195027 crossref_primary_10_1073_pnas_1411264111 crossref_primary_10_1016_j_febslet_2011_03_049 crossref_primary_10_1038_s41575_023_00792_1 crossref_primary_10_1073_pnas_2220102120 crossref_primary_10_1016_j_cell_2013_06_016 crossref_primary_10_1152_physrev_00016_2012 crossref_primary_10_1016_j_exer_2012_12_007 crossref_primary_10_1177_0748730416633552 crossref_primary_10_3389_fcell_2016_00062 crossref_primary_10_3390_biom15081193 crossref_primary_10_1038_s42255_019_0136_6 crossref_primary_10_1038_s41580_018_0096_9 crossref_primary_10_1515_tnsci_2020_0130 crossref_primary_10_3109_07420528_2012_658127 crossref_primary_10_1038_469476a crossref_primary_10_1038_s41392_020_00311_7 crossref_primary_10_1002_hlca_201700226 crossref_primary_10_1016_j_cmet_2016_09_014 crossref_primary_10_1146_annurev_biochem_060614_034506 crossref_primary_10_1016_j_cell_2010_08_037 crossref_primary_10_1073_pnas_1014204108 crossref_primary_10_1128_MMBR_00038_18 crossref_primary_10_1016_j_chembiol_2023_08_014 crossref_primary_10_1016_S0001_4079_19_30845_3 crossref_primary_10_1016_j_dnarep_2015_02_018 crossref_primary_10_3390_diagnostics9020055 crossref_primary_10_3390_ijms20071597 crossref_primary_10_1101_gad_221374_113 crossref_primary_10_1101_gad_183251_111 crossref_primary_10_1093_nar_gkac119 crossref_primary_10_3389_fnins_2021_638122 crossref_primary_10_1080_09291016_2019_1669941 crossref_primary_10_1038_srep03725 crossref_primary_10_1111_joim_12347 crossref_primary_10_1155_2012_845429 crossref_primary_10_1073_pnas_1519735112 crossref_primary_10_3389_fendo_2015_00035 crossref_primary_10_1007_s11901_018_0390_1 crossref_primary_10_1016_j_bbalip_2014_11_013 crossref_primary_10_1096_fj_201903226RR crossref_primary_10_1007_s11033_021_06751_w crossref_primary_10_1016_j_biochi_2015_04_014 crossref_primary_10_1007_s00424_011_1030_6 crossref_primary_10_1016_j_semcdb_2021_07_008 crossref_primary_10_1074_jbc_M113_534651 crossref_primary_10_1074_jbc_M113_458067 crossref_primary_10_1134_S207905702460006X crossref_primary_10_1016_j_freeradbiomed_2021_01_009 crossref_primary_10_1002_mnfr_202400234 crossref_primary_10_1016_j_jbc_2023_104576 crossref_primary_10_1016_j_jmb_2020_02_002 crossref_primary_10_1111_j_1749_6632_2012_06649_x crossref_primary_10_1002_jsfa_8467 crossref_primary_10_1038_nature11704 crossref_primary_10_1530_JOE_14_0200 crossref_primary_10_1016_j_molcel_2021_11_028 crossref_primary_10_1101_gad_188524_112 crossref_primary_10_1155_2018_9065690 crossref_primary_10_1002_bies_201500056 crossref_primary_10_1073_pnas_1412047111 crossref_primary_10_1016_j_mad_2014_03_004 crossref_primary_10_1016_j_freeradbiomed_2017_10_383 crossref_primary_10_1016_j_semcdb_2013_03_007 crossref_primary_10_1093_nar_gku873 crossref_primary_10_1177_0748730414557634 crossref_primary_10_1007_s00018_014_1574_7 crossref_primary_10_1016_j_tig_2012_08_002 crossref_primary_10_3390_biom5042504 crossref_primary_10_1038_ncomms12696 crossref_primary_10_1016_j_neurobiolaging_2012_11_021 |
| ContentType | Journal Article |
| Copyright | Copyright © 2010 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2010 Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.cell.2010.08.016 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1097-4172 |
| ExternalDocumentID | 20832105 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K -DZ -ET -~X .-4 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6J9 6TJ 7-5 85S 9M8 AAEDT AAEDW AAFWJ AAHBH AAIKJ AAKRW AAKUH AALRI AAMRU AAVLU AAXUO AAYJJ AAYWO ABCQX ABDGV ABJNI ABMAC ABOCM ACGFO ACGFS ACNCT ACVFH ADBBV ADCNI ADEZE ADVLN ADXHL AEFWE AENEX AEUPX AEXQZ AFPUW AFTJW AGCQF AGHFR AGHSJ AGKMS AHHHB AIDAL AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN BAWUL CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EFKBS EIF EJD F5P FCP FDB FIRID HH5 HZ~ IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NPM O-L O9- OK1 P2P RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT WH7 YYQ YZZ ZCA ZY4 7X8 |
| ID | FETCH-LOGICAL-c465t-c99ec6784ea4eb725f7042fd092d35f2abd17ff05c1abe5e350bbb339e5e31672 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 285 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000281855000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1097-4172 |
| IngestDate | Sat Sep 27 20:10:16 EDT 2025 Mon Jul 21 06:05:46 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Copyright © 2010 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c465t-c99ec6784ea4eb725f7042fd092d35f2abd17ff05c1abe5e350bbb339e5e31672 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.cell.2010.08.016 |
| PMID | 20832105 |
| PQID | 755192946 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_755192946 pubmed_primary_20832105 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-09-17 |
| PublicationDateYYYYMMDD | 2010-09-17 |
| PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell |
| PublicationTitleAlternate | Cell |
| PublicationYear | 2010 |
| References | 20944668 - Nat Rev Mol Cell Biol. 2010 Nov;11(11):754-5 20850006 - Cell. 2010 Sep 17;142(6):841-3 |
| References_xml | – reference: 20944668 - Nat Rev Mol Cell Biol. 2010 Nov;11(11):754-5 – reference: 20850006 - Cell. 2010 Sep 17;142(6):841-3 |
| SSID | ssj0008555 |
| Score | 2.4989674 |
| Snippet | Circadian clocks in peripheral organs are tightly coupled to cellular metabolism and are readily entrained by feeding-fasting cycles. However, the molecular... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 943 |
| SubjectTerms | Animals Biological Clocks Circadian Rhythm Circadian Rhythm Signaling Peptides and Proteins - metabolism Feeding Behavior Liver - metabolism Mice Mice, Knockout Poly (ADP-Ribose) Polymerase-1 Poly(ADP-ribose) Polymerases - genetics Poly(ADP-ribose) Polymerases - metabolism |
| Title | Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/20832105 https://www.proquest.com/docview/755192946 |
| Volume | 142 |
| WOSCitedRecordID | wos000281855000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjx_Vhf5OBBD9EkfaQ5yaIuHnTpQWVvpUknWJS2bldh_71J29WTePBSSkuhTGbyTWe-zofQacpshInIfqnqLCM-p4JIYIqkXCpJQRjejGt6vhejUTQey7jj5tQdrXK-JzYbdVZqVyO_FBbaLZT74VX1TpxolGuudgoai6jn2UzGObUY_wwLj4JG9NT1WIlvgbr7Z6ald7m6eMfsii4oC3_PMBukGa7_8x030FqXYuJB6xObaAGKLbTSik7OtpGKy7fZ2eAmJpNclTWc48pecLWpGjDDVTonWkON8wLbBBFXL-5eUwdu2QO4NFjnE90MNsDaAuJrjaclNi0W7qCn4e3j9R3plBaI9sNgSrSUoC1s-ZD6oAQPjLDBbDIqeeYFhqcqY8IYGmiWKgjAC6hSyvOkO2eh4LtoqSgL2EfYdxPIVAh2qbmvRBpRMCC9MKOuhatUH-G57RLryW4Z0gLKjzr5tl4f7bX2T6p24kbCqRNUosHB3w8fotW2wS8JE0eoZ2wUwzFa1p_TvJ6cNB5ij6P44Qu8N8XH |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poly%28ADP-ribose%29+polymerase+1+participates+in+the+phase+entrainment+of+circadian+clocks+to+feeding&rft.jtitle=Cell&rft.au=Asher%2C+Gad&rft.au=Reinke%2C+Hans&rft.au=Altmeyer%2C+Matthias&rft.au=Gutierrez-Arcelus%2C+Maria&rft.date=2010-09-17&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=142&rft.issue=6&rft.spage=943&rft_id=info:doi/10.1016%2Fj.cell.2010.08.016&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4172&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4172&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4172&client=summon |