Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding

Circadian clocks in peripheral organs are tightly coupled to cellular metabolism and are readily entrained by feeding-fasting cycles. However, the molecular mechanisms involved are largely unknown. Here we show that in liver the activity of PARP-1, an NAD(+)-dependent ADP-ribosyltransferase, oscilla...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Cell Ročník 142; číslo 6; s. 943
Hlavní autori: Asher, Gad, Reinke, Hans, Altmeyer, Matthias, Gutierrez-Arcelus, Maria, Hottiger, Michael O, Schibler, Ueli
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 17.09.2010
Predmet:
ISSN:1097-4172, 1097-4172
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Circadian clocks in peripheral organs are tightly coupled to cellular metabolism and are readily entrained by feeding-fasting cycles. However, the molecular mechanisms involved are largely unknown. Here we show that in liver the activity of PARP-1, an NAD(+)-dependent ADP-ribosyltransferase, oscillates in a daily manner and is regulated by feeding. We provide biochemical evidence that PARP-1 binds and poly(ADP-ribosyl)ates CLOCK at the beginning of the light phase. The loss of PARP-1 enhances the binding of CLOCK-BMAL1 to DNA and leads to a phase-shift of the interaction of CLOCK-BMAL1 with PER and CRY repressor proteins. As a consequence, CLOCK-BMAL1-dependent gene expression is altered in PARP-1-deficient mice, in particular in response to changes in feeding times. Our results show that Parp-1 knockout mice exhibit impaired food entrainment of peripheral circadian clocks and support a role for PARP-1 in connecting feeding with the mammalian timing system.
AbstractList Circadian clocks in peripheral organs are tightly coupled to cellular metabolism and are readily entrained by feeding-fasting cycles. However, the molecular mechanisms involved are largely unknown. Here we show that in liver the activity of PARP-1, an NAD(+)-dependent ADP-ribosyltransferase, oscillates in a daily manner and is regulated by feeding. We provide biochemical evidence that PARP-1 binds and poly(ADP-ribosyl)ates CLOCK at the beginning of the light phase. The loss of PARP-1 enhances the binding of CLOCK-BMAL1 to DNA and leads to a phase-shift of the interaction of CLOCK-BMAL1 with PER and CRY repressor proteins. As a consequence, CLOCK-BMAL1-dependent gene expression is altered in PARP-1-deficient mice, in particular in response to changes in feeding times. Our results show that Parp-1 knockout mice exhibit impaired food entrainment of peripheral circadian clocks and support a role for PARP-1 in connecting feeding with the mammalian timing system.Circadian clocks in peripheral organs are tightly coupled to cellular metabolism and are readily entrained by feeding-fasting cycles. However, the molecular mechanisms involved are largely unknown. Here we show that in liver the activity of PARP-1, an NAD(+)-dependent ADP-ribosyltransferase, oscillates in a daily manner and is regulated by feeding. We provide biochemical evidence that PARP-1 binds and poly(ADP-ribosyl)ates CLOCK at the beginning of the light phase. The loss of PARP-1 enhances the binding of CLOCK-BMAL1 to DNA and leads to a phase-shift of the interaction of CLOCK-BMAL1 with PER and CRY repressor proteins. As a consequence, CLOCK-BMAL1-dependent gene expression is altered in PARP-1-deficient mice, in particular in response to changes in feeding times. Our results show that Parp-1 knockout mice exhibit impaired food entrainment of peripheral circadian clocks and support a role for PARP-1 in connecting feeding with the mammalian timing system.
Circadian clocks in peripheral organs are tightly coupled to cellular metabolism and are readily entrained by feeding-fasting cycles. However, the molecular mechanisms involved are largely unknown. Here we show that in liver the activity of PARP-1, an NAD(+)-dependent ADP-ribosyltransferase, oscillates in a daily manner and is regulated by feeding. We provide biochemical evidence that PARP-1 binds and poly(ADP-ribosyl)ates CLOCK at the beginning of the light phase. The loss of PARP-1 enhances the binding of CLOCK-BMAL1 to DNA and leads to a phase-shift of the interaction of CLOCK-BMAL1 with PER and CRY repressor proteins. As a consequence, CLOCK-BMAL1-dependent gene expression is altered in PARP-1-deficient mice, in particular in response to changes in feeding times. Our results show that Parp-1 knockout mice exhibit impaired food entrainment of peripheral circadian clocks and support a role for PARP-1 in connecting feeding with the mammalian timing system.
Author Gutierrez-Arcelus, Maria
Reinke, Hans
Hottiger, Michael O
Asher, Gad
Schibler, Ueli
Altmeyer, Matthias
Author_xml – sequence: 1
  givenname: Gad
  surname: Asher
  fullname: Asher, Gad
  email: gad.asher@unige.ch
  organization: Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland. gad.asher@unige.ch
– sequence: 2
  givenname: Hans
  surname: Reinke
  fullname: Reinke, Hans
– sequence: 3
  givenname: Matthias
  surname: Altmeyer
  fullname: Altmeyer, Matthias
– sequence: 4
  givenname: Maria
  surname: Gutierrez-Arcelus
  fullname: Gutierrez-Arcelus, Maria
– sequence: 5
  givenname: Michael O
  surname: Hottiger
  fullname: Hottiger, Michael O
– sequence: 6
  givenname: Ueli
  surname: Schibler
  fullname: Schibler, Ueli
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20832105$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1PwzAYhC1UREvhDzAgb8CQYDtxnIxV-ZQq0QHmyHZeU5fEDnY69N-TiiIx3em50w13jibOO0DoipKUElrcb1MNbZsyMgJSpiM6QTNKKpHkVLDJPz9F5zFuCSEl5_wMTRkpM0YJnyG19u3-dvGwToJVPsId7kfQQZARMMW9DIPVtpcDRGwdHjaA-80hAzcEaV03KvYGaxu0bKx0WLdef0U8eGwAGus-L9CpkW2Ey6PO0cfT4_vyJVm9Pb8uF6tE5wUfEl1VoAtR5iBzUIJxI0jOTEMq1mTcMKkaKowhXFOpgEPGiVIqy6qDp4Vgc3Tzu9sH_72DONSdjYeHpAO_i7XgnFasyouxeX1s7lQHTd0H28mwr_9uYT8sq2ft
CitedBy_id crossref_primary_10_1089_ars_2017_7145
crossref_primary_10_1038_s41594_022_00777_9
crossref_primary_10_3389_fnut_2019_00132
crossref_primary_10_3390_ijms19030781
crossref_primary_10_1080_07420528_2021_1928159
crossref_primary_10_3390_ijms23179826
crossref_primary_10_1371_journal_pone_0065404
crossref_primary_10_1210_er_2016_1083
crossref_primary_10_1016_j_it_2020_04_005
crossref_primary_10_1038_s41576_022_00477_6
crossref_primary_10_1080_09291016_2021_1928386
crossref_primary_10_1080_09291016_2015_1020203
crossref_primary_10_1016_j_freeradbiomed_2017_12_026
crossref_primary_10_1111_liv_12534
crossref_primary_10_1161_CIRCRESAHA_116_303936
crossref_primary_10_1210_me_2015_1295
crossref_primary_10_1016_j_tem_2012_03_004
crossref_primary_10_1038_nrm3376
crossref_primary_10_1093_jb_mvab115
crossref_primary_10_1038_s41580_019_0179_2
crossref_primary_10_1016_j_bbagrm_2023_194958
crossref_primary_10_1016_j_mam_2013_01_005
crossref_primary_10_1016_j_mam_2013_01_004
crossref_primary_10_1016_j_mce_2012_06_017
crossref_primary_10_1016_j_jmb_2020_01_018
crossref_primary_10_1017_S0954422414000055
crossref_primary_10_1038_s43018_022_00429_3
crossref_primary_10_1016_j_febslet_2012_04_044
crossref_primary_10_1002_1873_3468_13898
crossref_primary_10_1017_erm_2024_14
crossref_primary_10_1371_journal_pone_0117519
crossref_primary_10_3109_10409238_2013_831395
crossref_primary_10_1038_nrc3621
crossref_primary_10_1038_s41477_018_0224_8
crossref_primary_10_1038_ncomms12917
crossref_primary_10_1007_s12035_021_02595_4
crossref_primary_10_1089_ars_2011_4413
crossref_primary_10_1016_j_bbagrm_2012_03_001
crossref_primary_10_1101_cshperspect_a027698
crossref_primary_10_1371_journal_pone_0088872
crossref_primary_10_1111_febs_12433
crossref_primary_10_1126_science_1212842
crossref_primary_10_1016_j_bbcan_2025_189282
crossref_primary_10_1016_j_plipres_2021_101117
crossref_primary_10_1111_cobi_13900
crossref_primary_10_1016_j_molcel_2016_11_015
crossref_primary_10_12688_f1000research_20829_1
crossref_primary_10_1016_j_freeradbiomed_2018_02_022
crossref_primary_10_1038_s41574_019_0210_x
crossref_primary_10_1093_jxb_err040
crossref_primary_10_1016_j_molcel_2020_08_002
crossref_primary_10_1111_cpr_13796
crossref_primary_10_1101_gad_183509_111
crossref_primary_10_1016_j_cotox_2018_03_003
crossref_primary_10_1158_1541_7786_MCR_13_0672
crossref_primary_10_1038_s41580_024_00802_3
crossref_primary_10_3389_fendo_2021_662017
crossref_primary_10_1007_s13668_014_0082_6
crossref_primary_10_1002_pmic_201400187
crossref_primary_10_1002_advs_202202737
crossref_primary_10_1016_j_molcel_2021_10_026
crossref_primary_10_1371_journal_pgen_1007369
crossref_primary_10_1186_s40169_016_0104_7
crossref_primary_10_1016_j_molcel_2015_01_034
crossref_primary_10_3389_fphys_2018_00193
crossref_primary_10_1016_j_biocel_2014_05_014
crossref_primary_10_1155_2020_8819627
crossref_primary_10_3390_cells10092447
crossref_primary_10_1016_j_cmet_2012_12_017
crossref_primary_10_1038_nrm2995
crossref_primary_10_1016_j_molmet_2014_03_002
crossref_primary_10_1016_j_cmet_2015_09_011
crossref_primary_10_1038_nrm2998
crossref_primary_10_1016_j_bbadis_2012_08_010
crossref_primary_10_1016_j_molcel_2015_07_019
crossref_primary_10_1016_j_tig_2020_09_018
crossref_primary_10_1016_j_neuron_2012_04_006
crossref_primary_10_15252_embj_201797135
crossref_primary_10_1124_mol_110_070110
crossref_primary_10_1016_j_bbrc_2013_01_043
crossref_primary_10_1371_journal_pcbi_1002309
crossref_primary_10_1096_fj_14_265686
crossref_primary_10_3109_07420528_2015_1050726
crossref_primary_10_1016_j_mce_2011_05_007
crossref_primary_10_1053_j_gastro_2015_11_043
crossref_primary_10_1111_apha_13281
crossref_primary_10_1089_ars_2021_0272
crossref_primary_10_1038_nrneurol_2014_148
crossref_primary_10_1016_j_cmet_2013_12_016
crossref_primary_10_1016_j_tem_2012_02_003
crossref_primary_10_1007_s00018_012_1207_y
crossref_primary_10_3389_fnins_2021_647589
crossref_primary_10_3389_fgene_2018_00417
crossref_primary_10_1016_j_cmet_2024_01_009
crossref_primary_10_1038_s41522_019_0096_3
crossref_primary_10_1074_jbc_M116_728774
crossref_primary_10_1016_j_tcb_2013_07_002
crossref_primary_10_1016_j_cmet_2011_03_004
crossref_primary_10_1002_wsbm_1450
crossref_primary_10_1038_s41467_022_30785_8
crossref_primary_10_1111_nph_17127
crossref_primary_10_1126_science_aah4967
crossref_primary_10_1038_s42255_021_00395_7
crossref_primary_10_1016_j_molcel_2012_06_026
crossref_primary_10_1016_j_neuroscience_2013_08_049
crossref_primary_10_1042_BST20160183
crossref_primary_10_1074_jbc_M111_254680
crossref_primary_10_1016_j_ceb_2013_01_003
crossref_primary_10_3390_nu14235080
crossref_primary_10_1111_bph_14712
crossref_primary_10_1021_jacs_1c11053
crossref_primary_10_1016_j_molcel_2017_11_019
crossref_primary_10_1371_journal_pone_0112811
crossref_primary_10_1080_07391102_2025_2544217
crossref_primary_10_1158_0008_5472_CAN_16_3079
crossref_primary_10_1101_gad_334284_119
crossref_primary_10_1161_CIRCULATIONAHA_118_036550
crossref_primary_10_1016_j_tem_2014_11_003
crossref_primary_10_1111_cpr_12268
crossref_primary_10_1016_j_cmet_2011_03_011
crossref_primary_10_1016_j_semcdb_2016_12_009
crossref_primary_10_1371_journal_pone_0182306
crossref_primary_10_1017_S0007114516002117
crossref_primary_10_1093_abbs_gms110
crossref_primary_10_1007_s11357_020_00295_w
crossref_primary_10_1134_S2079059717050161
crossref_primary_10_1016_j_molcel_2015_06_006
crossref_primary_10_1111_jne_12508
crossref_primary_10_3390_biom2040524
crossref_primary_10_7717_peerj_4327
crossref_primary_10_1016_j_cell_2015_03_015
crossref_primary_10_1124_pr_110_003905
crossref_primary_10_1002_j_2040_4603_2013_tb00505_x
crossref_primary_10_1186_s12967_024_05069_y
crossref_primary_10_1016_j_molcel_2016_04_002
crossref_primary_10_1146_annurev_biochem_060713_035644
crossref_primary_10_1371_journal_pgen_1009974
crossref_primary_10_3390_antiox11091637
crossref_primary_10_1038_s42255_019_0161_5
crossref_primary_10_1074_jbc_M111_278903
crossref_primary_10_1016_j_cell_2014_09_048
crossref_primary_10_1073_pnas_1914112117
crossref_primary_10_1177_0748730418789043
crossref_primary_10_1083_jcb_201603076
crossref_primary_10_1016_j_cmet_2015_05_023
crossref_primary_10_3389_fnins_2020_00844
crossref_primary_10_1111_pce_13996
crossref_primary_10_3109_10409238_2013_786672
crossref_primary_10_1016_j_cmet_2012_06_001
crossref_primary_10_1371_journal_pbio_3001492
crossref_primary_10_1016_j_isci_2021_102335
crossref_primary_10_1371_journal_pcbi_1006674
crossref_primary_10_1016_j_cmet_2019_01_007
crossref_primary_10_1038_nrendo_2015_181
crossref_primary_10_1074_jbc_M112_340786
crossref_primary_10_1016_j_cmet_2011_01_006
crossref_primary_10_1016_j_cmet_2024_07_003
crossref_primary_10_1096_fj_201801950R
crossref_primary_10_3390_biology4010104
crossref_primary_10_3390_antiox12030674
crossref_primary_10_1111_dom_12512
crossref_primary_10_3389_fphys_2019_00682
crossref_primary_10_1038_s41556_019_0420_4
crossref_primary_10_1111_dom_12519
crossref_primary_10_1146_annurev_biochem_060713_035623
crossref_primary_10_1146_annurev_neuro_060909_153128
crossref_primary_10_3390_biom13071068
crossref_primary_10_1016_j_cmet_2012_06_016
crossref_primary_10_1016_j_fct_2023_113878
crossref_primary_10_1016_j_ebiom_2025_105764
crossref_primary_10_1038_nature10700
crossref_primary_10_3390_ijms25116189
crossref_primary_10_1126_science_1195027
crossref_primary_10_1073_pnas_1411264111
crossref_primary_10_1016_j_febslet_2011_03_049
crossref_primary_10_1038_s41575_023_00792_1
crossref_primary_10_1073_pnas_2220102120
crossref_primary_10_1016_j_cell_2013_06_016
crossref_primary_10_1152_physrev_00016_2012
crossref_primary_10_1016_j_exer_2012_12_007
crossref_primary_10_1177_0748730416633552
crossref_primary_10_3389_fcell_2016_00062
crossref_primary_10_3390_biom15081193
crossref_primary_10_1038_s42255_019_0136_6
crossref_primary_10_1038_s41580_018_0096_9
crossref_primary_10_1515_tnsci_2020_0130
crossref_primary_10_3109_07420528_2012_658127
crossref_primary_10_1038_469476a
crossref_primary_10_1038_s41392_020_00311_7
crossref_primary_10_1002_hlca_201700226
crossref_primary_10_1016_j_cmet_2016_09_014
crossref_primary_10_1146_annurev_biochem_060614_034506
crossref_primary_10_1016_j_cell_2010_08_037
crossref_primary_10_1073_pnas_1014204108
crossref_primary_10_1128_MMBR_00038_18
crossref_primary_10_1016_j_chembiol_2023_08_014
crossref_primary_10_1016_S0001_4079_19_30845_3
crossref_primary_10_1016_j_dnarep_2015_02_018
crossref_primary_10_3390_diagnostics9020055
crossref_primary_10_3390_ijms20071597
crossref_primary_10_1101_gad_221374_113
crossref_primary_10_1101_gad_183251_111
crossref_primary_10_1093_nar_gkac119
crossref_primary_10_3389_fnins_2021_638122
crossref_primary_10_1080_09291016_2019_1669941
crossref_primary_10_1038_srep03725
crossref_primary_10_1111_joim_12347
crossref_primary_10_1155_2012_845429
crossref_primary_10_1073_pnas_1519735112
crossref_primary_10_3389_fendo_2015_00035
crossref_primary_10_1007_s11901_018_0390_1
crossref_primary_10_1016_j_bbalip_2014_11_013
crossref_primary_10_1096_fj_201903226RR
crossref_primary_10_1007_s11033_021_06751_w
crossref_primary_10_1016_j_biochi_2015_04_014
crossref_primary_10_1007_s00424_011_1030_6
crossref_primary_10_1016_j_semcdb_2021_07_008
crossref_primary_10_1074_jbc_M113_534651
crossref_primary_10_1074_jbc_M113_458067
crossref_primary_10_1134_S207905702460006X
crossref_primary_10_1016_j_freeradbiomed_2021_01_009
crossref_primary_10_1002_mnfr_202400234
crossref_primary_10_1016_j_jbc_2023_104576
crossref_primary_10_1016_j_jmb_2020_02_002
crossref_primary_10_1111_j_1749_6632_2012_06649_x
crossref_primary_10_1002_jsfa_8467
crossref_primary_10_1038_nature11704
crossref_primary_10_1530_JOE_14_0200
crossref_primary_10_1016_j_molcel_2021_11_028
crossref_primary_10_1101_gad_188524_112
crossref_primary_10_1155_2018_9065690
crossref_primary_10_1002_bies_201500056
crossref_primary_10_1073_pnas_1412047111
crossref_primary_10_1016_j_mad_2014_03_004
crossref_primary_10_1016_j_freeradbiomed_2017_10_383
crossref_primary_10_1016_j_semcdb_2013_03_007
crossref_primary_10_1093_nar_gku873
crossref_primary_10_1177_0748730414557634
crossref_primary_10_1007_s00018_014_1574_7
crossref_primary_10_1016_j_tig_2012_08_002
crossref_primary_10_3390_biom5042504
crossref_primary_10_1038_ncomms12696
crossref_primary_10_1016_j_neurobiolaging_2012_11_021
ContentType Journal Article
Copyright Copyright © 2010 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2010 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cell.2010.08.016
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
ExternalDocumentID 20832105
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-ET
-~X
.-4
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6J9
6TJ
7-5
85S
9M8
AAEDT
AAEDW
AAFWJ
AAHBH
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
AAYJJ
AAYWO
ABCQX
ABDGV
ABJNI
ABMAC
ABOCM
ACGFO
ACGFS
ACNCT
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
ADXHL
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGHFR
AGHSJ
AGKMS
AHHHB
AIDAL
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FIRID
HH5
HZ~
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
WH7
YYQ
YZZ
ZCA
ZY4
7X8
ID FETCH-LOGICAL-c465t-c99ec6784ea4eb725f7042fd092d35f2abd17ff05c1abe5e350bbb339e5e31672
IEDL.DBID 7X8
ISICitedReferencesCount 285
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000281855000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4172
IngestDate Sat Sep 27 20:10:16 EDT 2025
Mon Jul 21 06:05:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2010 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-c99ec6784ea4eb725f7042fd092d35f2abd17ff05c1abe5e350bbb339e5e31672
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.cell.2010.08.016
PMID 20832105
PQID 755192946
PQPubID 23479
ParticipantIDs proquest_miscellaneous_755192946
pubmed_primary_20832105
PublicationCentury 2000
PublicationDate 2010-09-17
PublicationDateYYYYMMDD 2010-09-17
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2010
References 20944668 - Nat Rev Mol Cell Biol. 2010 Nov;11(11):754-5
20850006 - Cell. 2010 Sep 17;142(6):841-3
References_xml – reference: 20944668 - Nat Rev Mol Cell Biol. 2010 Nov;11(11):754-5
– reference: 20850006 - Cell. 2010 Sep 17;142(6):841-3
SSID ssj0008555
Score 2.4989674
Snippet Circadian clocks in peripheral organs are tightly coupled to cellular metabolism and are readily entrained by feeding-fasting cycles. However, the molecular...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 943
SubjectTerms Animals
Biological Clocks
Circadian Rhythm
Circadian Rhythm Signaling Peptides and Proteins - metabolism
Feeding Behavior
Liver - metabolism
Mice
Mice, Knockout
Poly (ADP-Ribose) Polymerase-1
Poly(ADP-ribose) Polymerases - genetics
Poly(ADP-ribose) Polymerases - metabolism
Title Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
URI https://www.ncbi.nlm.nih.gov/pubmed/20832105
https://www.proquest.com/docview/755192946
Volume 142
WOSCitedRecordID wos000281855000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjx_Vhf5OBBD9EkfaQ5yaIuHnTpQWVvpUknWJS2bldh_71J29WTePBSSkuhTGbyTWe-zofQacpshInIfqnqLCM-p4JIYIqkXCpJQRjejGt6vhejUTQey7jj5tQdrXK-JzYbdVZqVyO_FBbaLZT74VX1TpxolGuudgoai6jn2UzGObUY_wwLj4JG9NT1WIlvgbr7Z6ald7m6eMfsii4oC3_PMBukGa7_8x030FqXYuJB6xObaAGKLbTSik7OtpGKy7fZ2eAmJpNclTWc48pecLWpGjDDVTonWkON8wLbBBFXL-5eUwdu2QO4NFjnE90MNsDaAuJrjaclNi0W7qCn4e3j9R3plBaI9sNgSrSUoC1s-ZD6oAQPjLDBbDIqeeYFhqcqY8IYGmiWKgjAC6hSyvOkO2eh4LtoqSgL2EfYdxPIVAh2qbmvRBpRMCC9MKOuhatUH-G57RLryW4Z0gLKjzr5tl4f7bX2T6p24kbCqRNUosHB3w8fotW2wS8JE0eoZ2wUwzFa1p_TvJ6cNB5ij6P44Qu8N8XH
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poly%28ADP-ribose%29+polymerase+1+participates+in+the+phase+entrainment+of+circadian+clocks+to+feeding&rft.jtitle=Cell&rft.au=Asher%2C+Gad&rft.au=Reinke%2C+Hans&rft.au=Altmeyer%2C+Matthias&rft.au=Gutierrez-Arcelus%2C+Maria&rft.date=2010-09-17&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=142&rft.issue=6&rft.spage=943&rft_id=info:doi/10.1016%2Fj.cell.2010.08.016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4172&client=summon