Predicting Sagittal Plane Lifting Postures From Image Bounding Box Dimensions

Objective: A method for automatically classifying lifting postures from simple features in video recordings was developed and tested. We explored if an “elastic” rectangular bounding box, drawn tightly around the subject, can be used for classifying standing, stooping, and squatting at the lift orig...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Human factors Ročník 61; číslo 1; s. 64 - 77
Hlavní autoři: Greene, Runyu L., Hu, Yu Hen, Difranco, Nicholas, Wang, Xuan, Lu, Ming-Lun, Bao, Stephen, Lin, Jia-Hua, Radwin, Robert G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Angeles, CA SAGE Publications 01.02.2019
Human Factors and Ergonomics Society
Témata:
ISSN:0018-7208, 1547-8181, 1547-8181
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Objective: A method for automatically classifying lifting postures from simple features in video recordings was developed and tested. We explored if an “elastic” rectangular bounding box, drawn tightly around the subject, can be used for classifying standing, stooping, and squatting at the lift origin and destination. Background: Current marker-less video tracking methods depend on a priori skeletal human models, which are prone to error from poor illumination, obstructions, and difficulty placing cameras in the field. Robust computer vision algorithms based on spatiotemporal features were previously applied for evaluating repetitive motion tasks, exertion frequency, and duty cycle. Methods: Mannequin poses were systematically generated using the Michigan 3DSSPP software for a wide range of hand locations and lifting postures. The stature-normalized height and width of a bounding box were measured in the sagittal plane and when rotated horizontally by 30°. After randomly ordering the data, a classification and regression tree algorithm was trained to classify the lifting postures. Results: The resulting tree had four levels and four splits, misclassifying 0.36% training-set cases. The algorithm was tested using 30 video clips of industrial lifting tasks, misclassifying 3.33% test-set cases. The sensitivity and specificity, respectively, were 100.0% and 100.0% for squatting, 90.0% and 100.0% for stooping, and 100.0% and 95.0% for standing. Conclusions: The tree classification algorithm is capable of classifying lifting postures based only on dimensions of bounding boxes. Applications: It is anticipated that this practical algorithm can be implemented on handheld devices such as a smartphone, making it readily accessible to practitioners.
AbstractList A method for automatically classifying lifting postures from simple features in video recordings was developed and tested. We explored if an "elastic" rectangular bounding box, drawn tightly around the subject, can be used for classifying standing, stooping, and squatting at the lift origin and destination.OBJECTIVEA method for automatically classifying lifting postures from simple features in video recordings was developed and tested. We explored if an "elastic" rectangular bounding box, drawn tightly around the subject, can be used for classifying standing, stooping, and squatting at the lift origin and destination.Current marker-less video tracking methods depend on a priori skeletal human models, which are prone to error from poor illumination, obstructions, and difficulty placing cameras in the field. Robust computer vision algorithms based on spatiotemporal features were previously applied for evaluating repetitive motion tasks, exertion frequency, and duty cycle.BACKGROUNDCurrent marker-less video tracking methods depend on a priori skeletal human models, which are prone to error from poor illumination, obstructions, and difficulty placing cameras in the field. Robust computer vision algorithms based on spatiotemporal features were previously applied for evaluating repetitive motion tasks, exertion frequency, and duty cycle.Mannequin poses were systematically generated using the Michigan 3DSSPP software for a wide range of hand locations and lifting postures. The stature-normalized height and width of a bounding box were measured in the sagittal plane and when rotated horizontally by 30°. After randomly ordering the data, a classification and regression tree algorithm was trained to classify the lifting postures.METHODSMannequin poses were systematically generated using the Michigan 3DSSPP software for a wide range of hand locations and lifting postures. The stature-normalized height and width of a bounding box were measured in the sagittal plane and when rotated horizontally by 30°. After randomly ordering the data, a classification and regression tree algorithm was trained to classify the lifting postures.The resulting tree had four levels and four splits, misclassifying 0.36% training-set cases. The algorithm was tested using 30 video clips of industrial lifting tasks, misclassifying 3.33% test-set cases. The sensitivity and specificity, respectively, were 100.0% and 100.0% for squatting, 90.0% and 100.0% for stooping, and 100.0% and 95.0% for standing.RESULTSThe resulting tree had four levels and four splits, misclassifying 0.36% training-set cases. The algorithm was tested using 30 video clips of industrial lifting tasks, misclassifying 3.33% test-set cases. The sensitivity and specificity, respectively, were 100.0% and 100.0% for squatting, 90.0% and 100.0% for stooping, and 100.0% and 95.0% for standing.The tree classification algorithm is capable of classifying lifting postures based only on dimensions of bounding boxes.CONCLUSIONSThe tree classification algorithm is capable of classifying lifting postures based only on dimensions of bounding boxes.It is anticipated that this practical algorithm can be implemented on handheld devices such as a smartphone, making it readily accessible to practitioners.APPLICATIONSIt is anticipated that this practical algorithm can be implemented on handheld devices such as a smartphone, making it readily accessible to practitioners.
Objective:A method for automatically classifying lifting postures from simple features in video recordings was developed and tested. We explored if an “elastic” rectangular bounding box, drawn tightly around the subject, can be used for classifying standing, stooping, and squatting at the lift origin and destination.Background:Current marker-less video tracking methods depend on a priori skeletal human models, which are prone to error from poor illumination, obstructions, and difficulty placing cameras in the field. Robust computer vision algorithms based on spatiotemporal features were previously applied for evaluating repetitive motion tasks, exertion frequency, and duty cycle.Methods:Mannequin poses were systematically generated using the Michigan 3DSSPP software for a wide range of hand locations and lifting postures. The stature-normalized height and width of a bounding box were measured in the sagittal plane and when rotated horizontally by 30°. After randomly ordering the data, a classification and regression tree algorithm was trained to classify the lifting postures.Results:The resulting tree had four levels and four splits, misclassifying 0.36% training-set cases. The algorithm was tested using 30 video clips of industrial lifting tasks, misclassifying 3.33% test-set cases. The sensitivity and specificity, respectively, were 100.0% and 100.0% for squatting, 90.0% and 100.0% for stooping, and 100.0% and 95.0% for standing.Conclusions:The tree classification algorithm is capable of classifying lifting postures based only on dimensions of bounding boxes.Applications:It is anticipated that this practical algorithm can be implemented on handheld devices such as a smartphone, making it readily accessible to practitioners.
A method for automatically classifying lifting postures from simple features in video recordings was developed and tested. We explored if an "elastic" rectangular bounding box, drawn tightly around the subject, can be used for classifying standing, stooping, and squatting at the lift origin and destination. Current marker-less video tracking methods depend on a priori skeletal human models, which are prone to error from poor illumination, obstructions, and difficulty placing cameras in the field. Robust computer vision algorithms based on spatiotemporal features were previously applied for evaluating repetitive motion tasks, exertion frequency, and duty cycle. Mannequin poses were systematically generated using the Michigan 3DSSPP software for a wide range of hand locations and lifting postures. The stature-normalized height and width of a bounding box were measured in the sagittal plane and when rotated horizontally by 30°. After randomly ordering the data, a classification and regression tree algorithm was trained to classify the lifting postures. The resulting tree had four levels and four splits, misclassifying 0.36% training-set cases. The algorithm was tested using 30 video clips of industrial lifting tasks, misclassifying 3.33% test-set cases. The sensitivity and specificity, respectively, were 100.0% and 100.0% for squatting, 90.0% and 100.0% for stooping, and 100.0% and 95.0% for standing. The tree classification algorithm is capable of classifying lifting postures based only on dimensions of bounding boxes. It is anticipated that this practical algorithm can be implemented on handheld devices such as a smartphone, making it readily accessible to practitioners.
Objective: A method for automatically classifying lifting postures from simple features in video recordings was developed and tested. We explored if an “elastic” rectangular bounding box, drawn tightly around the subject, can be used for classifying standing, stooping, and squatting at the lift origin and destination. Background: Current marker-less video tracking methods depend on a priori skeletal human models, which are prone to error from poor illumination, obstructions, and difficulty placing cameras in the field. Robust computer vision algorithms based on spatiotemporal features were previously applied for evaluating repetitive motion tasks, exertion frequency, and duty cycle. Methods: Mannequin poses were systematically generated using the Michigan 3DSSPP software for a wide range of hand locations and lifting postures. The stature-normalized height and width of a bounding box were measured in the sagittal plane and when rotated horizontally by 30°. After randomly ordering the data, a classification and regression tree algorithm was trained to classify the lifting postures. Results: The resulting tree had four levels and four splits, misclassifying 0.36% training-set cases. The algorithm was tested using 30 video clips of industrial lifting tasks, misclassifying 3.33% test-set cases. The sensitivity and specificity, respectively, were 100.0% and 100.0% for squatting, 90.0% and 100.0% for stooping, and 100.0% and 95.0% for standing. Conclusions: The tree classification algorithm is capable of classifying lifting postures based only on dimensions of bounding boxes. Applications: It is anticipated that this practical algorithm can be implemented on handheld devices such as a smartphone, making it readily accessible to practitioners.
Author Bao, Stephen
Lu, Ming-Lun
Greene, Runyu L.
Hu, Yu Hen
Wang, Xuan
Difranco, Nicholas
Radwin, Robert G.
Lin, Jia-Hua
Author_xml – sequence: 1
  givenname: Runyu L.
  surname: Greene
  fullname: Greene, Runyu L.
– sequence: 2
  givenname: Yu Hen
  surname: Hu
  fullname: Hu, Yu Hen
– sequence: 3
  givenname: Nicholas
  surname: Difranco
  fullname: Difranco, Nicholas
– sequence: 4
  givenname: Xuan
  surname: Wang
  fullname: Wang, Xuan
  organization: University of Wisconsin-Madison, USA
– sequence: 5
  givenname: Ming-Lun
  surname: Lu
  fullname: Lu, Ming-Lun
  organization: National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
– sequence: 6
  givenname: Stephen
  surname: Bao
  fullname: Bao, Stephen
– sequence: 7
  givenname: Jia-Hua
  surname: Lin
  fullname: Lin, Jia-Hua
  organization: Washington Department of Labor and Industries, Olympia, USA
– sequence: 8
  givenname: Robert G.
  orcidid: 0000-0002-7973-0641
  surname: Radwin
  fullname: Radwin, Robert G.
  email: rradwin@wisc.edu
  organization: University of Wisconsin-Madison, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30091947$$D View this record in MEDLINE/PubMed
BookMark eNp9kctr3DAQxkXZ0Gwe956KoZdenEi2HvaxSZsHbMhCkrMYy-NFwba2kgzpf1-5m1BYSC4SzPf7hm9mjshidCMS8oXRM8aUOqeUVaqgVXprVkr1iSyZ4CpPBbYgy1nOZ_2QHIXwTCmVdSk-k8OS0prVXC3J3dpja0204yZ7gI2NEfps3cOI2cp2_8prF-LkMWRX3g3Z7QAbzC7cNLazeOFesp92wDFYN4YTctBBH_D09T8mT1e_Hi9v8tX99e3lj1VuuBQxbxqFIBg3ErgwZVMB1EKAqKFAUzBgClpFUVWm43XbSgllh1zQCitKBcXymHzf9d1693vCEPVgg8F-zu2moNPISlQVr4uEfttDn93kx5ROF0yyouRSiUR9faWmZsBWb70dwP_Rb4tKgNwBxrsQPHba2AgxDR092F4zqueL6P2LJCPdM771_sCS7ywhrfp_3Hf5v2FDl1Q
CitedBy_id crossref_primary_10_1177_1071181319631115
crossref_primary_10_3390_diagnostics14060576
crossref_primary_10_1016_j_apergo_2025_104513
crossref_primary_10_1177_1071181321651211
crossref_primary_10_1177_1071181320641205
crossref_primary_10_1109_LRA_2021_3084881
crossref_primary_10_1016_j_apergo_2021_103574
crossref_primary_10_1177_0018720820958840
crossref_primary_10_1177_1071181320641230
crossref_primary_10_1016_j_matpr_2021_02_283
crossref_primary_10_1109_THMS_2022_3148339
Cites_doi 10.1097/00007632-199206000-00006
10.1518/155723408X342844
10.2105/AJPH.91.7.1069
10.1177/0018720812458121
10.1061/41182(416)47
10.1186/2052-4374-26-15
10.1016/S0169-8141(02)00174-9
10.1016/0021-9290(96)00028-0
10.1016/j.apergo.2017.02.020
10.2105/AJPH.89.7.1036
10.1080/00140139.2016.1146347
10.1007/s11042-016-3469-0
10.1186/1471-2474-10-15
10.1016/j.apergo.2005.01.007
10.1177/0018720813513608
10.1016/0021-9290(85)90012-0
10.4271/2007-01-2480
10.1016/j.apergo.2016.10.015
10.1518/001872097778940632
10.1061/9780784479827.082
10.1109/10.412663
10.1109/CVPR.2007.383298
10.1080/00140130600555938
10.1002/ajim.20750
10.1016/j.apergo.2017.01.007
10.1097/00007632-199304000-00015
10.1080/00140139508925111
10.1093/occmed/49.3.155
10.1109/FG.2018.00078
10.1016/j.jbiomech.2018.01.012
ContentType Journal Article
Copyright 2018, Human Factors and Ergonomics Society
Copyright_xml – notice: 2018, Human Factors and Ergonomics Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7TK
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
DOI 10.1177/0018720818791367
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Health and Safety Science Abstracts (Full archive)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Health & Safety Science Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Psychology
EISSN 1547-8181
EndPage 77
ExternalDocumentID 30091947
10_1177_0018720818791367
10.1177_0018720818791367
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute for Occupational Safety and Health
  grantid: R01OH011024
  funderid: https://doi.org/10.13039/100000125
GroupedDBID ---
-TM
-TN
-~X
.2G
.2L
.2N
.55
.DC
.GJ
01A
09Z
0R~
1~K
29I
2FS
31W
31X
31Z
36B
3EH
4.4
53G
54M
5GY
5VS
7X2
7X7
7XC
85S
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
AABOD
AACKU
AACTG
AADIR
AADUE
AAGGD
AAGLT
AAJOX
AAJPV
AAKTJ
AAMFR
AANSI
AAPEO
AAQDB
AAQXI
AARIX
AATAA
AATBZ
AAWLO
AAWTL
AAYJJ
AAYTG
ABAWP
ABCCA
ABCJG
ABDMP
ABDPE
ABDWY
ABEIX
ABFWQ
ABFXH
ABGFU
ABHKI
ABIDT
ABIVO
ABJCF
ABKRH
ABLUO
ABPNF
ABQKF
ABQPY
ABQXT
ABRHV
ABUJY
ABUWG
ABYTW
ACABN
ACAEP
ACDXX
ACFUR
ACFZE
ACGBL
ACGFS
ACGOD
ACHQT
ACIWK
ACJER
ACLZU
ACOFE
ACOXC
ACPRK
ACROE
ACRPL
ACSIQ
ACUAV
ACUFS
ACUIR
ACXKE
ADBBV
ADDLC
ADEBD
ADEIA
ADMHG
ADNMO
ADNON
ADNWM
ADPEE
ADRRZ
ADSTG
ADTBJ
ADTOS
ADUKL
ADVBO
ADXHL
ADYCS
AEDFJ
AEDXQ
AEILP
AENEX
AEOBU
AEONT
AEPTA
AEQLS
AESMA
AESZF
AEUHG
AEUYN
AEVPJ
AEWDL
AEWHI
AEXNY
AFEET
AFFNX
AFKBI
AFKRA
AFKRG
AFMOU
AFQAA
AFRAH
AFUIA
AFWMB
AGDVU
AGKLV
AGNHF
AGNWV
AGQPQ
AGWFA
AHDMH
AHHFK
AHMBA
AHOJL
AHWHD
AI.
AIZZC
AJEFB
AJUXI
AJUZI
ALEEW
ALFTD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ANDLU
AQUVI
ARTOV
ASPBG
ATCPS
AUTPY
AUVAJ
AVQMV
AVWKF
AYAKG
AYPQM
AZFZN
AZQEC
B8T
B8Z
B94
BBNVY
BBRGL
BCR
BCU
BDDNI
BDZRT
BEC
BENPR
BES
BGLVJ
BHPHI
BKOMP
BKSAR
BLC
BMVBW
BPACV
BPHCQ
BVXVI
BYIEH
CAG
CBRKF
CCGJY
CCPQU
CEADM
CFDXU
COF
CORYS
D1J
D1K
DD0
DD~
DE-
DG~
DH.
DO-
DOPDO
DU5
DV7
DV8
DWQXO
D~Y
EBS
EJD
F5P
FAC
FAS
FEDTE
FHBDP
FJW
FYUFA
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
GUQSH
H13
HCIFZ
HF~
HMCUK
HVGLF
HZ~
IAO
ICD
ICJ
IEA
IGS
IHR
IOF
IPO
IPY
ITC
J8X
K.F
K50
K6-
KQ4
L6V
LK5
LK8
LPU
M0K
M0T
M1D
M1P
M2M
M2O
M2P
M2Q
M7P
M7R
M7S
N9A
O9-
OHT
P.B
P2P
PADUT
PATMY
PCBAR
PEA
PHGZM
PHGZT
PMKZF
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q1R
Q2X
Q7O
Q7P
Q7V
Q7X
Q82
Q83
ROL
S01
S0X
SAUOL
SCNPE
SFC
SGU
SGV
SGZ
SJFOW
SPV
SSDHQ
TN5
U5U
UAP
UBX
UHB
UKHRP
UPT
VH1
WH7
X7M
XH6
XOL
XZL
YNY
ZGI
ZPLXX
ZPPRI
ZRKOI
ZXP
~02
~32
0SE
AAEJI
AAPII
AAYXX
ABUAX
ACCVC
AFFHD
AJGYC
AJHME
AJVBE
AMNSR
CITATION
PEJEM
PJZUB
PPXIY
PQGLB
.4S
3V.
AAMGE
ABDEX
ACTQU
AEUIJ
AIOMO
CGR
CUY
CVF
ECM
EDH
EIF
EMOBN
M4V
NPM
PKN
QN7
VQA
YIN
Z5M
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7TK
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c465t-bb7ea514c6a45c3b8aa955a59a2ec21a17ad70e78cf49dd66a3fe4508e80050e3
IEDL.DBID AEVPJ
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454502100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-7208
1547-8181
IngestDate Sat Sep 27 23:15:37 EDT 2025
Tue Oct 07 05:51:06 EDT 2025
Wed Feb 19 02:31:01 EST 2025
Tue Nov 18 22:28:00 EST 2025
Sat Nov 29 08:16:54 EST 2025
Tue Jun 17 22:48:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords work physiology
job risk assessment
gait
anthropometry
posture
low back
biomechanical models
spine
manual materials handling
biomechanics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-bb7ea514c6a45c3b8aa955a59a2ec21a17ad70e78cf49dd66a3fe4508e80050e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7973-0641
OpenAccessLink https://journals.sagepub.com/doi/pdf/10.1177/0018720818791367
PMID 30091947
PQID 2161234675
PQPubID 48481
PageCount 14
ParticipantIDs proquest_miscellaneous_2087588492
proquest_journals_2161234675
pubmed_primary_30091947
crossref_citationtrail_10_1177_0018720818791367
crossref_primary_10_1177_0018720818791367
sage_journals_10_1177_0018720818791367
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: United States
– name: Santa Monica
PublicationTitle Human factors
PublicationTitleAlternate Hum Factors
PublicationYear 2019
Publisher SAGE Publications
Human Factors and Ergonomics Society
Publisher_xml – name: SAGE Publications
– name: Human Factors and Ergonomics Society
References Hwang, Kim, Kim 2009; 10
Mehrizi, Peng, Xu, Zhan, Metaxas, Li 2018; 69
Mehrizi, Xu, Zhang, Pavlovic, Metaxas, Li 2017; 65
Akkas, Lee, Hu, Yen, Radwin 2016; 59
Myers, Baker, Li, Smith, Wiker, Liang, Johnson 1999; 89
Holmström, Lindell, Moritz 1992; 17
Chaffin 2008; 4
Marras, Lavender, Leurgans, Rajulu, Allread, Fathallah, Ferguson 1993; 18
Eriksen, Natvig, Bruusgaard 1999; 49
Kerr, Frank, Shannon, Norman, Wells, Neumann 2001; 91
Chen, Hu, Yen, Radwin 2013; 55
Marfia, Roccetti 2016; 76
Plantard, Shum, Le Pierres, Multon 2016; 65
Lu, Waters, Krieg, Werren 2014; 56
Lavender, Andersson, Schipplein, Fuentes 2003; 31
Greene, Azari, Hu, Radwin 2017; 65
Burgess-Limerick, Abernathy 1997; 39
Anderson, Chaffin, Herrin, Matthew 1985; 18
Spector, Lieblich, Bao, McQuade, Hughes 2014; 26
Dempsey, McGorry, Maynard 2005; 36
Marras, Lavender, Leurgans, Fathallah, Ferguson, Gary Allread, Rajulu 1995; 38
Yen, Radwin 1995; 42
Bao, Howard, Spielholz, Silverstein 2006; 49
da Costa, Vieira 2010; 53
Dysart, Woldstad 1996; 29
Barondess J. A. (bibr5-0018720818791367) 2001
bibr33-0018720818791367
bibr3-0018720818791367
bibr20-0018720818791367
bibr38-0018720818791367
Breiman L. (bibr8-0018720818791367) 1984
bibr29-0018720818791367
bibr42-0018720818791367
bibr25-0018720818791367
bibr7-0018720818791367
bibr12-0018720818791367
bibr15-0018720818791367
bibr32-0018720818791367
bibr6-0018720818791367
bibr24-0018720818791367
bibr37-0018720818791367
bibr2-0018720818791367
bibr28-0018720818791367
bibr41-0018720818791367
bibr11-0018720818791367
bibr14-0018720818791367
bibr22-0018720818791367
bibr44-0018720818791367
bibr35-0018720818791367
bibr19-0018720818791367
bibr31-0018720818791367
bibr36-0018720818791367
bibr23-0018720818791367
bibr1-0018720818791367
bibr10-0018720818791367
Gordon C. C. (bibr16-0018720818791367) 2014
bibr27-0018720818791367
bibr9-0018720818791367
bibr21-0018720818791367
bibr40-0018720818791367
bibr39-0018720818791367
bibr18-0018720818791367
bibr34-0018720818791367
bibr17-0018720818791367
bibr30-0018720818791367
bibr43-0018720818791367
bibr13-0018720818791367
bibr4-0018720818791367
bibr26-0018720818791367
References_xml – volume: 55
  start-page: 298
  year: 2013
  end-page: 308
  article-title: Automated video exposure assessment of repetitive hand activity level for a load transfer task
  publication-title: Human Factors
– volume: 17
  start-page: 672
  issue: 6
  year: 1992
  end-page: 677
  article-title: Low back and neck/shoulder pain in construction workers: Occupational workload and psychosocial risk factors. Part 2: Relationship to neck and shoulder pain
  publication-title: Spine
– volume: 31
  start-page: 51
  issue: 1
  year: 2003
  end-page: 59
  article-title: The effects of initial lifting height, load magnitude, and lifting speed on the peak dynamic L5/S1 moments
  publication-title: International Journal of Industrial Ergonomics
– volume: 76
  start-page: 8109
  issue: 6
  year: 2016
  end-page: 8129
  article-title: A practical computer based vision system for posture and movement sensing in occupational medicine
  publication-title: Multimedia Tools and Applications
– volume: 69
  start-page: 40
  year: 2018
  end-page: 46
  article-title: A computer vision based method for 3D posture estimation of symmetrical lifting
  publication-title: Journal of Biomechanics
– volume: 65
  start-page: 461
  year: 2017
  end-page: 472
  article-title: Visualizing stressful aspects of repetitive motion tasks and opportunities for ergonomic improvements using computer vision
  publication-title: Applied Ergonomics
– volume: 38
  start-page: 377
  issue: 2
  year: 1995
  end-page: 410
  article-title: Biomechanical risk factors for occupationally related low back disorders
  publication-title: Ergonomics
– volume: 65
  start-page: 562
  year: 2016
  end-page: 569
  article-title: Validation of an ergonomic assessment method using Kinect data in real workplace conditions
  publication-title: Applied Ergonomics
– volume: 18
  start-page: 617
  issue: 5
  year: 1993
  end-page: 628
  article-title: The role of dynamic three-dimensional trunk motion in occupationally-related low back disorders
  publication-title: Spine
– volume: 91
  start-page: 1069
  issue: 7
  year: 2001
  article-title: Biomechanical and psychosocial risk factors for low back pain at work
  publication-title: American Journal of Public Health
– volume: 39
  start-page: 141
  year: 1997
  end-page: 148
  article-title: Toward a quantitative definition of manual lifting postures
  publication-title: Human Factors
– volume: 10
  start-page: 15
  year: 2009
  article-title: Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting
  publication-title: BMC Musculoskeletal Disorders
– volume: 89
  start-page: 1036
  issue: 7
  year: 1999
  end-page: 1041
  article-title: Back injury in municipal workers: A case-control study
  publication-title: American Journal of Public Health
– volume: 56
  start-page: 73
  year: 2014
  end-page: 85
  article-title: Efficacy of the revised NIOSH lifting equation for predicting risk of low back pain associated with manual lifting: A one-year prospective study
  publication-title: Human Factors
– volume: 26
  start-page: 15
  year: 2014
  article-title: Automation of workplace lifting hazard assessment for musculoskeletal injury prevention
  publication-title: Annals of Occupational and Environmental Medicine
– volume: 59
  start-page: 1514
  year: 2016
  end-page: 1525
  article-title: Measuring elemental time and duty cycle using automated video processing
  publication-title: Ergonomics
– volume: 65
  start-page: 541
  year: 2017
  end-page: 550
  article-title: Using a marker-less method for estimating L5/S1 moments during symmetrical lifting
  publication-title: Applied Ergonomics
– volume: 36
  start-page: 489
  issue: 4
  year: 2005
  end-page: 503
  article-title: A survey of tools and methods used by certified professional ergonomists
  publication-title: Applied Ergonomics
– volume: 29
  start-page: 1393
  issue: 10
  year: 1996
  end-page: 1397
  article-title: Posture prediction for static sagittal-plane lifting
  publication-title: Journal of Biomechanics
– volume: 49
  start-page: 381
  issue: 4
  year: 2006
  end-page: 392
  article-title: Quantifying repetitive hand activity for epidemiological research on musculoskeletal disorders–Part II: Comparison of different methods of measuring force level and repetitiveness
  publication-title: Ergonomics
– volume: 42
  start-page: 944
  issue: 9
  year: 1995
  end-page: 948
  article-title: A video-based system for acquiring biomechanical data synchronized with arbitrary events and activities
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 49
  start-page: 155
  issue: 3
  year: 1999
  end-page: 160
  article-title: Smoking, heavy physical work and low back pain: A four-year prospective study
  publication-title: Occupational Medicine
– volume: 53
  start-page: 285
  issue: 3
  year: 2010
  end-page: 323
  article-title: Risk factors for work-related musculoskeletal disorders: A systematic review of recent longitudinal studies
  publication-title: American Journal of Industrial Medicine
– volume: 4
  start-page: 41
  issue: 1
  year: 2008
  end-page: 74
  article-title: Digital human modeling for workspace design
  publication-title: Reviews of Human Factors and Ergonomics
– volume: 18
  start-page: 571
  issue: 8
  year: 1985
  end-page: 584
  article-title: A biomechanical model of the lumbosacral joint during lifting activities
  publication-title: Journal of Biomechanics
– ident: bibr2-0018720818791367
– ident: bibr40-0018720818791367
– ident: bibr19-0018720818791367
  doi: 10.1097/00007632-199206000-00006
– ident: bibr10-0018720818791367
  doi: 10.1518/155723408X342844
– ident: bibr21-0018720818791367
  doi: 10.2105/AJPH.91.7.1069
– ident: bibr11-0018720818791367
  doi: 10.1177/0018720812458121
– ident: bibr7-0018720818791367
– ident: bibr23-0018720818791367
  doi: 10.1061/41182(416)47
– ident: bibr37-0018720818791367
  doi: 10.1186/2052-4374-26-15
– ident: bibr22-0018720818791367
  doi: 10.1016/S0169-8141(02)00174-9
– ident: bibr14-0018720818791367
  doi: 10.1016/0021-9290(96)00028-0
– volume-title: Classification and regression trees
  year: 1984
  ident: bibr8-0018720818791367
– volume-title: Musculoskeletal disorders and the workplace: Low back and upper extremities
  year: 2001
  ident: bibr5-0018720818791367
– ident: bibr17-0018720818791367
  doi: 10.1016/j.apergo.2017.02.020
– ident: bibr32-0018720818791367
  doi: 10.2105/AJPH.89.7.1036
– ident: bibr1-0018720818791367
  doi: 10.1080/00140139.2016.1146347
– ident: bibr35-0018720818791367
– ident: bibr25-0018720818791367
  doi: 10.1007/s11042-016-3469-0
– ident: bibr20-0018720818791367
  doi: 10.1186/1471-2474-10-15
– ident: bibr41-0018720818791367
– ident: bibr13-0018720818791367
  doi: 10.1016/j.apergo.2005.01.007
– ident: bibr6-0018720818791367
– ident: bibr24-0018720818791367
  doi: 10.1177/0018720813513608
– ident: bibr3-0018720818791367
  doi: 10.1016/0021-9290(85)90012-0
– ident: bibr18-0018720818791367
  doi: 10.4271/2007-01-2480
– ident: bibr34-0018720818791367
  doi: 10.1016/j.apergo.2016.10.015
– ident: bibr9-0018720818791367
  doi: 10.1518/001872097778940632
– ident: bibr33-0018720818791367
– ident: bibr38-0018720818791367
– ident: bibr36-0018720818791367
  doi: 10.1061/9780784479827.082
– ident: bibr44-0018720818791367
  doi: 10.1109/10.412663
– ident: bibr43-0018720818791367
  doi: 10.1109/CVPR.2007.383298
– ident: bibr4-0018720818791367
  doi: 10.1080/00140130600555938
– ident: bibr12-0018720818791367
  doi: 10.1002/ajim.20750
– ident: bibr31-0018720818791367
  doi: 10.1016/j.apergo.2017.01.007
– ident: bibr28-0018720818791367
– ident: bibr27-0018720818791367
  doi: 10.1097/00007632-199304000-00015
– ident: bibr39-0018720818791367
– ident: bibr42-0018720818791367
– ident: bibr26-0018720818791367
  doi: 10.1080/00140139508925111
– ident: bibr15-0018720818791367
  doi: 10.1093/occmed/49.3.155
– volume-title: 2012 anthropometric survey of U.S. Army personnel: Methods and summary statistics
  year: 2014
  ident: bibr16-0018720818791367
– ident: bibr29-0018720818791367
  doi: 10.1109/FG.2018.00078
– ident: bibr30-0018720818791367
  doi: 10.1016/j.jbiomech.2018.01.012
SSID ssj0006935
Score 2.2865193
Snippet Objective: A method for automatically classifying lifting postures from simple features in video recordings was developed and tested. We explored if an...
A method for automatically classifying lifting postures from simple features in video recordings was developed and tested. We explored if an "elastic"...
Objective:A method for automatically classifying lifting postures from simple features in video recordings was developed and tested. We explored if an...
SourceID proquest
pubmed
crossref
sage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 64
SubjectTerms Algorithms
Anthropometry
Biomechanical Phenomena
Body measurements
Cameras
Classification
Computer vision
Decision Trees
Hoisting
Humans
Image classification
Lifting
Manikins
Obstructions
Posture - physiology
Regression analysis
Reproducibility of Results
Smartphones
Task Performance and Analysis
Video data
Title Predicting Sagittal Plane Lifting Postures From Image Bounding Box Dimensions
URI https://journals.sagepub.com/doi/full/10.1177/0018720818791367
https://www.ncbi.nlm.nih.gov/pubmed/30091947
https://www.proquest.com/docview/2161234675
https://www.proquest.com/docview/2087588492
Volume 61
WOSCitedRecordID wos000454502100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVSPB
  databaseName: SAGE HSS 2015
  customDbUrl:
  eissn: 1547-8181
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006935
  issn: 0018-7208
  databaseCode: AEVPJ
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://journals.sagepub.com/
  providerName: SAGE Publications
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1LT9wwEB7B0gMcoKUFtlDkSlWlHtLdOHYcnyqgrNqqRSv1ob1FE8epVuruomyC4N_jyYsCasWJq-3Y8fuzZ_x9AG-y1JqA3AaFCdATIWoPeRZ4oUMjdCBJhpmpxCbU2Vk0mejxCszbtzBNCy7fk1uV-6NqsabZTbfRg8bIOKik5DixsSlNnGMfymIW17fdragGhZB5upyRZduQP-SV175uW4U1B8V92YO1o9Nf4y_d2h3qoNE8iDwq4Mawea_M2xvZPXR6yzOs2qxGW49dzaew2cBadlSPw2ewYufbsPEX2eE2rHdr7dVz-DbOyUJEPtfsO_6eFu4MwEhAybKv06wKJhnhMrdLNsoXM_Z55qrAjkkEiiKPF5fsIwkT0GXf8gX8HJ3-OPnkNcoOnhGhLLwkURYdVDMhCmmCJELUUqLUyK3hPvoKUzW0KjKZ0GkahhhkVjgsaSMirLHBDvTmi7ndA4ah5r4VPkpFNl6SMMU0SRWXyFGptA-Dtpti09Cek_rGn9hvmc7vtHIf3nVfnNeUH_9Je9D2fNz2acx94rRxO5Dsw-su2k1bssW4hlyULg0pCUSR0LwPu_WI6QoLHO71tXCZv6XhcZPxv_7i5UMT7sO6A3y69jo_gF6Rl_YVPDEXxXSZH8KqmkSHzZS4Bs9iGs4
linkProvider SAGE Publications
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60CtYH76OeK4jgQ7TZbLLZR6_iUUvBA9_CZLORgrbSQ_Tfu9Om8UIRfM0eGWb2-JIZvg9gO02M9qhsUGgPHRGgcpCnnhNYNEIfJHE51X2xCVmrhXd3qv5B6ivzYGePyqqsRf3DOt_dxJREKnKciNikIrqxURgTFrWXCzB2cHJbP8-P4UB5mXxB6NCA9xzltzk-30nfgOanIq_-vVOZ_ofFMzCVgU12MFgdszBimnMw-YGCcA6K-Qn4Og-X9TblbagSml3hfaNrkTkjWSPDqo20_5jEfXv2E51V2q1HdvZorWGHJM1EjYetF3ZMcgH0C66zADeVk-ujUyfTW3C0CPyuE8fSoAVQOkDhay8OEZXvo6-QG81ddCUmsmxkqFOhkiQI0EuNsAjPhEQjY7xFKDRbTbMMDAPFXSNc9CVlXklYFJM4kdxHjlImJdgfejzSGRk5aWI8RO6Qf_yL10qwm494GhBx_NJ3bRjEaBieiLvENGPvBb8EW3mz3UyUIbGObPVsH-L3D0OheAmWBsHPX-ZZNOoqYSffoUi_T_yTFSt_7bgJE6fXl9Woela7WIWihWRqUBe-BoVuu2fWYVw_dxud9ka2xt8ASZ3xyQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9tAEB5Su5TkIWndNHHiJlsohT4otlYrrfYxiW3ixjWGHuRNjFarYKgPfIT232dHluW4pqXQV-2hYfb6VjP6PoD3aWK0R2mDQnvoiACVgzz1nMCiEbqQxI1UZ2ITstcL7-5UP8_NoX9hcg_OLiitylqUbda0uidJWs9jjPVMSY4TGZtURDn2DMr2VtPgJShftr73PxVbcaC8XMIgdKjBOk651cfmubQFNjcSvbKzp33wn1a_hP0cdLLL5Sx5BTtmVIG9J1SEFdgtdsJfr-Fzf0rxG8qIZl_wfjC3CJ2RvJFh3UGaPSaR34W9qrP2dDxknaG1iF2RRBMVXo1_sibJBtCnuNkhfGu3vl7fOLnugqNF4M-dOJYGLZDSAQpfe3GIqHwffYXcaO6iKzGRDSNDnQqVJEGAXmqERXomJDoZ472B0mg8MsfAMFDcNcJFX1IElgRGMYkTyX3kKGVShfrK65HOSclJG-NH5K54yH_zWhU-Fi0mS0KOv9StrQYyWg1RxF1inLHng1-Fd0WxXVQUKbGOHC9sHeL5D0OheBWOlhOgeJlnUamrhO38A432uuM_WXHyrxXP4UW_2Y66nd7tKexaZKaW6eE1KM2nC_MWnuuH-WA2Pcun-SNjLvQ9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Sagittal+Plane+Lifting+Postures+From+Image+Bounding+Box+Dimensions&rft.jtitle=Human+factors&rft.au=Greene%2C+Runyu+L.&rft.au=Hu%2C+Yu+Hen&rft.au=Difranco%2C+Nicholas&rft.au=Wang%2C+Xuan&rft.date=2019-02-01&rft.issn=0018-7208&rft.eissn=1547-8181&rft.volume=61&rft.issue=1&rft.spage=64&rft.epage=77&rft_id=info:doi/10.1177%2F0018720818791367&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_0018720818791367
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-7208&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-7208&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-7208&client=summon