A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees
•A new hybrid algorithm (logit leaf model) is proposed for customer churn prediction.•It is designed to perform well in terms of both accuracy and interpretability.•Its competitive performance is apparent from an extensive benchmarking experiment.•Its ability to deliver actionable insights is demons...
Uložené v:
| Vydané v: | European journal of operational research Ročník 269; číslo 2; s. 760 - 772 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.09.2018
Elsevier |
| Predmet: | |
| ISSN: | 0377-2217, 1872-6860 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A new hybrid algorithm (logit leaf model) is proposed for customer churn prediction.•It is designed to perform well in terms of both accuracy and interpretability.•Its competitive performance is apparent from an extensive benchmarking experiment.•Its ability to deliver actionable insights is demonstrated in a case study.
Decision trees and logistic regression are two very popular algorithms in customer churn prediction with strong predictive performance and good comprehensibility. Despite these strengths, decision trees tend to have problems to handle linear relations between variables and logistic regression has difficulties with interaction effects between variables. Therefore a new hybrid algorithm, the logit leaf model (LLM), is proposed to better classify data. The idea behind the LLM is that different models constructed on segments of the data rather than on the entire dataset lead to better predictive performance while maintaining the comprehensibility from the models constructed in the leaves. The LLM consists of two stages: a segmentation phase and a prediction phase. In the first stage customer segments are identified using decision rules and in the second stage a model is created for every leaf of this tree. This new hybrid approach is benchmarked against decision trees, logistic regression, random forests and logistic model trees with regards to the predictive performance and comprehensibility. The area under the receiver operating characteristics curve (AUC) and top decile lift (TDL) are used to measure the predictive performance for which LLM scores significantly better than its building blocks logistic regression and decision trees and performs at least as well as more advanced ensemble methods random forests and logistic model trees. Comprehensibility is addressed by a case study for which we observe some key benefits using the LLM compared to using decision trees or logistic regression. |
|---|---|
| AbstractList | •A new hybrid algorithm (logit leaf model) is proposed for customer churn prediction.•It is designed to perform well in terms of both accuracy and interpretability.•Its competitive performance is apparent from an extensive benchmarking experiment.•Its ability to deliver actionable insights is demonstrated in a case study.
Decision trees and logistic regression are two very popular algorithms in customer churn prediction with strong predictive performance and good comprehensibility. Despite these strengths, decision trees tend to have problems to handle linear relations between variables and logistic regression has difficulties with interaction effects between variables. Therefore a new hybrid algorithm, the logit leaf model (LLM), is proposed to better classify data. The idea behind the LLM is that different models constructed on segments of the data rather than on the entire dataset lead to better predictive performance while maintaining the comprehensibility from the models constructed in the leaves. The LLM consists of two stages: a segmentation phase and a prediction phase. In the first stage customer segments are identified using decision rules and in the second stage a model is created for every leaf of this tree. This new hybrid approach is benchmarked against decision trees, logistic regression, random forests and logistic model trees with regards to the predictive performance and comprehensibility. The area under the receiver operating characteristics curve (AUC) and top decile lift (TDL) are used to measure the predictive performance for which LLM scores significantly better than its building blocks logistic regression and decision trees and performs at least as well as more advanced ensemble methods random forests and logistic model trees. Comprehensibility is addressed by a case study for which we observe some key benefits using the LLM compared to using decision trees or logistic regression. |
| Author | De Bock, Koen W. Coussement, Kristof De Caigny, Arno |
| Author_xml | – sequence: 1 givenname: Arno surname: De Caigny fullname: De Caigny, Arno email: a.decaigny@ieseg.fr organization: Department of Marketing, IESEG School of Management, (LEM, UMR CNRS 9221), Université Catholique de Lille, 3 Rue de la Digue, F-59000 Lille, France – sequence: 2 givenname: Kristof orcidid: 0000-0003-1346-9425 surname: Coussement fullname: Coussement, Kristof email: k.coussement@ieseg.fr organization: Department of Marketing, IESEG School of Management, (LEM, UMR CNRS 9221), Université Catholique de Lille, 3 Rue de la Digue, F-59000 Lille, France – sequence: 3 givenname: Koen W. orcidid: 0000-0002-4872-9007 surname: De Bock fullname: De Bock, Koen W. email: kdebock@audencia.com organization: Audencia Business School, 8 Route de la Jonelière, F-44312 Nantes, France |
| BackLink | https://audencia.hal.science/hal-01741661$$DView record in HAL |
| BookMark | eNp9kD1PwzAQhi0EEuXjDzB5ZUg4O43tSiwVAopUiQVmy3Yuras0rmwD4t-TtLAwdLo7631eS88FOe1Dj4TcMCgZMHG3KXETYsmBqRJ4CTA7IROmJC-EEnBKJlBJWXDO5Dm5SGkDAKxm9YSkOe3xi66_bfQNdZ1JybfemexDT023CtHn9Za2IVL3kXLY4rCsP2JPdxEb7_Y5axI2dFi6sPIpe0cjriIOVWNJ39AGnd8fOSKmK3LWmi7h9e-8JO9Pj28Pi2L5-vzyMF8WbirqXBirYFbLRlgOlisjRF2jqqra1sw2BqyVaobWWZhJ5xQoOW2hNcyiAeN4VV2S20Pv2nR6F_3WxG8djNeL-VKPb8DklAnBPtmQVYesiyGliK12Pu8t5Gh8pxnoUbTe6FG0HkVr4HoQPaD8H_r311Ho_gDhIODTY9TJeezd4DSiy7oJ_hj-AzXKnBM |
| CitedBy_id | crossref_primary_10_3233_JIFS_190677 crossref_primary_10_1155_2021_6667275 crossref_primary_10_3390_technologies13030088 crossref_primary_10_1007_s11276_021_02746_4 crossref_primary_10_3390_electronics14020325 crossref_primary_10_1016_j_ejor_2019_08_015 crossref_primary_10_1016_j_asoc_2024_112343 crossref_primary_10_1109_ACCESS_2019_2914999 crossref_primary_10_1016_j_eswa_2022_116889 crossref_primary_10_3390_biom12121815 crossref_primary_10_1002_for_3194 crossref_primary_10_1016_j_knosys_2022_108566 crossref_primary_10_3390_app122111195 crossref_primary_10_1016_j_segan_2022_100855 crossref_primary_10_1016_j_ejor_2023_06_014 crossref_primary_10_1016_j_advwatres_2021_103894 crossref_primary_10_1007_s11135_022_01500_y crossref_primary_10_1016_j_ejor_2019_05_035 crossref_primary_10_1016_j_eswa_2023_120079 crossref_primary_10_1016_j_jbusres_2022_07_015 crossref_primary_10_1007_s10479_023_05390_7 crossref_primary_10_1109_ACCESS_2024_3349950 crossref_primary_10_1016_j_jretconser_2019_101918 crossref_primary_10_3390_su15054543 crossref_primary_10_1057_s41270_025_00433_3 crossref_primary_10_1108_JFRA_11_2022_0425 crossref_primary_10_1016_j_ejor_2023_09_010 crossref_primary_10_1155_2021_9991859 crossref_primary_10_1016_j_fuel_2020_118848 crossref_primary_10_1016_j_ijinfomgt_2021_102357 crossref_primary_10_3233_JIFS_169937 crossref_primary_10_1038_s41598_024_71168_x crossref_primary_10_1111_ijcs_13030 crossref_primary_10_1177_1351010X20917856 crossref_primary_10_1007_s11042_022_13532_5 crossref_primary_10_1016_j_cie_2018_12_017 crossref_primary_10_1016_j_engappai_2024_109810 crossref_primary_10_1016_j_jretconser_2025_104288 crossref_primary_10_1007_s10479_024_06129_8 crossref_primary_10_1016_j_ribaf_2021_101536 crossref_primary_10_1016_j_ejor_2023_09_009 crossref_primary_10_1016_j_elerap_2024_101371 crossref_primary_10_1002_int_22421 crossref_primary_10_3390_bdcc5040066 crossref_primary_10_1007_s11518_025_5641_4 crossref_primary_10_1080_10580530_2020_1814459 crossref_primary_10_1007_s10614_022_10275_1 crossref_primary_10_1142_S0219649222500897 crossref_primary_10_1002_cb_2121 crossref_primary_10_1109_ACCESS_2021_3104113 crossref_primary_10_1007_s12626_024_00165_3 crossref_primary_10_1016_j_elerap_2022_101202 crossref_primary_10_1016_j_procs_2019_12_006 crossref_primary_10_1016_j_eswa_2022_117829 crossref_primary_10_1007_s11042_023_17267_9 crossref_primary_10_1109_ACCESS_2021_3083490 crossref_primary_10_1057_s41270_021_00135_6 crossref_primary_10_3390_sci7020068 crossref_primary_10_1080_10528008_2021_1871849 crossref_primary_10_1007_s42452_021_04576_7 crossref_primary_10_1016_j_ejor_2023_09_016 crossref_primary_10_1016_j_omega_2024_103034 crossref_primary_10_1016_j_cie_2024_109920 crossref_primary_10_1016_j_plaphe_2025_100018 crossref_primary_10_1111_1467_8551_12441 crossref_primary_10_1007_s11042_023_17715_6 crossref_primary_10_1111_exsy_13299 crossref_primary_10_1016_j_jbusres_2021_01_017 crossref_primary_10_1016_j_tsep_2022_101630 crossref_primary_10_1016_j_jbusres_2021_06_006 crossref_primary_10_1007_s41060_022_00312_5 crossref_primary_10_1088_1757_899X_768_5_052070 crossref_primary_10_1016_j_comcom_2022_05_007 crossref_primary_10_1016_j_ejor_2023_09_028 crossref_primary_10_1016_j_ejor_2023_09_026 crossref_primary_10_1109_TBDATA_2021_3053879 crossref_primary_10_1016_j_ejor_2020_10_034 crossref_primary_10_1002_for_2860 crossref_primary_10_1016_j_techfore_2023_122945 crossref_primary_10_1080_09720529_2022_2133238 crossref_primary_10_3233_JIFS_190242 crossref_primary_10_1007_s11222_025_10712_9 crossref_primary_10_1016_j_ejor_2021_06_053 crossref_primary_10_1007_s11042_022_12877_1 crossref_primary_10_1016_j_eswa_2022_118177 crossref_primary_10_1007_s42979_020_0074_0 crossref_primary_10_3390_a17060231 crossref_primary_10_3233_JIFS_235213 crossref_primary_10_1108_SR_06_2019_0154 crossref_primary_10_1007_s10479_022_04631_5 crossref_primary_10_1108_BPMJ_05_2023_0401 crossref_primary_10_3389_frai_2022_900775 crossref_primary_10_1007_s12599_025_00964_0 crossref_primary_10_3390_electronics14101916 crossref_primary_10_3390_computation9030034 crossref_primary_10_1007_s10660_025_10025_z crossref_primary_10_1007_s42979_024_02884_4 crossref_primary_10_1108_BIJ_03_2021_0127 crossref_primary_10_1371_journal_pone_0303881 crossref_primary_10_3390_healthcare11111583 crossref_primary_10_1371_journal_pone_0319998 crossref_primary_10_3233_JIFS_233141 crossref_primary_10_3390_informatics10030063 crossref_primary_10_1109_ACCESS_2023_3304669 crossref_primary_10_1016_j_ejor_2021_05_045 crossref_primary_10_3390_app12168371 crossref_primary_10_2516_stet_2024014 crossref_primary_10_1016_j_tbs_2025_101084 crossref_primary_10_2478_amns_2025_0973 crossref_primary_10_3390_math12182907 crossref_primary_10_1007_s00521_025_11027_6 crossref_primary_10_1016_j_asoc_2025_113222 crossref_primary_10_1007_s12626_022_00127_7 crossref_primary_10_1109_TCE_2024_3376672 crossref_primary_10_1007_s10479_020_03905_0 crossref_primary_10_1016_j_eswa_2021_116236 crossref_primary_10_1007_s10668_024_04997_5 crossref_primary_10_1016_j_ins_2020_02_021 crossref_primary_10_1016_j_ejor_2021_05_035 crossref_primary_10_1109_JIOT_2023_3247726 crossref_primary_10_1109_ACCESS_2024_3402092 crossref_primary_10_1016_j_jretconser_2024_103854 crossref_primary_10_1177_23197145211062687 crossref_primary_10_1016_j_jbusres_2024_115159 crossref_primary_10_1016_j_eswa_2023_120223 crossref_primary_10_1007_s10639_024_13113_z crossref_primary_10_1007_s11277_021_09427_7 crossref_primary_10_1016_j_indmarman_2024_12_005 crossref_primary_10_1109_ACCESS_2024_3437648 crossref_primary_10_1080_16522354_2024_2343638 crossref_primary_10_1007_s10479_025_06516_9 crossref_primary_10_1016_j_eswa_2018_04_003 crossref_primary_10_1016_j_knosys_2021_106845 crossref_primary_10_1016_j_ejor_2021_04_021 crossref_primary_10_1016_j_techfore_2024_123499 crossref_primary_10_1080_0144929X_2024_2370432 crossref_primary_10_1080_19361610_2022_2067459 crossref_primary_10_32628_IJSRST52411140 crossref_primary_10_1007_s00291_024_00755_1 crossref_primary_10_1016_j_ejor_2024_09_011 crossref_primary_10_1016_j_eswa_2023_120354 crossref_primary_10_3390_fi14030094 crossref_primary_10_1007_s11831_024_10088_5 crossref_primary_10_3390_math11051137 crossref_primary_10_3390_life13030691 crossref_primary_10_1002_nml_21652 crossref_primary_10_1016_j_seps_2021_101146 crossref_primary_10_1155_2023_7690322 crossref_primary_10_1016_j_ijhydene_2019_02_108 crossref_primary_10_1016_j_ijinfomgt_2018_10_005 crossref_primary_10_1371_journal_pone_0258627 crossref_primary_10_1080_09540091_2022_2083584 crossref_primary_10_1108_JCM_12_2019_3540 crossref_primary_10_1007_s10462_024_10759_6 crossref_primary_10_3390_agronomy13041079 crossref_primary_10_1002_for_2827 crossref_primary_10_1080_15567036_2023_2202622 crossref_primary_10_3390_smartcities7030048 crossref_primary_10_1007_s10479_023_05259_9 crossref_primary_10_1007_s42947_024_00489_x crossref_primary_10_32604_cmc_2022_025442 crossref_primary_10_1016_j_eswa_2020_113553 crossref_primary_10_2337_dc22_2290 crossref_primary_10_1002_for_2960 crossref_primary_10_1016_j_dajour_2023_100171 crossref_primary_10_1007_s10479_025_06577_w crossref_primary_10_1016_j_iheduc_2022_100867 crossref_primary_10_1016_j_indmarman_2021_10_001 crossref_primary_10_1016_j_jbusres_2024_114872 crossref_primary_10_1007_s42947_022_00237_z crossref_primary_10_1016_j_techfore_2021_121275 crossref_primary_10_1016_j_engappai_2024_109531 crossref_primary_10_1016_j_jbusres_2025_115349 crossref_primary_10_1145_3450287 crossref_primary_10_5812_semj_120140 crossref_primary_10_1016_j_sciaf_2023_e02054 crossref_primary_10_3390_app8060915 crossref_primary_10_3390_jtaer17020024 crossref_primary_10_1016_j_ejor_2022_06_060 crossref_primary_10_1007_s11235_020_00727_0 crossref_primary_10_1016_j_indmarman_2022_09_023 crossref_primary_10_1016_j_renene_2024_120440 crossref_primary_10_1016_j_ijinfomgt_2018_08_015 crossref_primary_10_1002_widm_1571 crossref_primary_10_1108_RJTA_10_2021_0125 crossref_primary_10_1007_s10479_022_04526_5 crossref_primary_10_3390_systems11070325 crossref_primary_10_1016_j_desal_2023_116992 crossref_primary_10_1007_s10489_021_02942_x crossref_primary_10_1007_s12652_021_03413_4 crossref_primary_10_1108_JIMA_04_2021_0125 crossref_primary_10_1016_j_ijforecast_2019_03_029 crossref_primary_10_1109_ACCESS_2022_3215682 crossref_primary_10_1016_j_techfore_2024_123217 crossref_primary_10_1016_j_datak_2022_102100 crossref_primary_10_1016_j_cie_2020_106476 crossref_primary_10_1109_ACCESS_2019_2904236 crossref_primary_10_1016_j_ejor_2018_07_009 crossref_primary_10_2478_amns_2023_2_01390 crossref_primary_10_1515_eng_2020_0029 crossref_primary_10_1371_journal_pone_0278095 crossref_primary_10_1007_s40622_020_00261_7 crossref_primary_10_1016_j_jocs_2022_101940 crossref_primary_10_1007_s10570_020_02991_4 crossref_primary_10_1111_exsy_12384 crossref_primary_10_1016_j_procs_2020_03_187 crossref_primary_10_3390_su13095279 crossref_primary_10_1016_j_pdpdt_2021_102199 crossref_primary_10_1007_s43684_024_00078_6 crossref_primary_10_56093_ijas_v90i6_104786 crossref_primary_10_3390_technologies11060167 crossref_primary_10_1007_s41109_022_00524_5 crossref_primary_10_1016_j_procs_2022_01_169 crossref_primary_10_1016_j_ejor_2023_06_032 crossref_primary_10_1108_OIR_02_2020_0048 crossref_primary_10_7717_peerj_cs_854 crossref_primary_10_38124_ijisrt_25jun1816 crossref_primary_10_1002_cpe_6627 crossref_primary_10_1016_j_eswa_2023_120494 crossref_primary_10_1016_j_ijpe_2019_04_018 |
| Cites_doi | 10.1023/A:1009700419189 10.1007/s10994-005-0466-3 10.1509/jmkg.64.3.65.18028 10.1108/02652329910254037 10.1108/03090561311324264 10.1214/aoms/1177731944 10.1016/j.dss.2011.01.013 10.1016/j.ejor.2006.04.051 10.1016/j.eswa.2007.05.043 10.1016/j.dss.2016.11.007 10.1509/jm.10.0209 10.1109/72.846740 10.1016/j.ins.2009.12.010 10.1509/jmkg.67.4.30.18685 10.1016/j.dss.2015.02.007 10.1509/jmkg.67.1.77.18589 10.1016/j.ejor.2012.06.040 10.1016/j.eswa.2006.09.038 10.32614/CRAN.package.LLM 10.1016/j.patcog.2005.02.010 10.1109/3477.990871 10.1016/j.asoc.2015.05.058 10.1016/j.eswa.2010.07.091 10.1214/aos/1016218223 10.1109/TNNLS.2012.2200299 10.1108/02652329610113144 10.1016/S0148-2963(98)00060-5 10.1016/j.ejor.2011.09.031 10.1162/neco.1991.3.1.79 10.1016/j.ejor.2017.02.037 10.1177/002224379202900205 10.1016/j.ejor.2015.05.030 10.1016/S0957-4174(02)00030-1 10.1016/j.ejor.2014.01.004 10.1016/j.eswa.2012.01.014 10.1016/j.eswa.2010.08.023 10.1016/j.ejor.2008.06.027 10.1055/s-0038-1634196 10.1509/jmkg.2005.69.4.210 10.1023/A:1010933404324 10.1016/0167-4870(96)00002-5 10.1016/S0957-4174(03)00133-7 10.1016/j.eswa.2012.07.006 10.1016/j.eswa.2005.09.080 10.1016/j.ejor.2008.12.017 10.1287/mnsc.48.9.1143.172 10.1287/mnsc.49.3.312.12739 10.1177/002224299505900206 10.1162/089976698300017197 10.1016/j.ejor.2012.01.044 10.1016/j.proeng.2016.01.310 10.1016/j.eswa.2015.06.054 10.1016/j.jbusres.2012.12.008 10.1109/TNN.2010.2080319 10.1504/IJDATS.2008.020020 10.1509/jmkr.43.2.276 10.1145/1656274.1656278 10.1509/jmkr.43.2.204 10.1016/j.dss.2005.10.003 10.1148/radiology.143.1.7063747 10.1016/j.eswa.2008.05.027 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC BXJBU |
| DOI | 10.1016/j.ejor.2018.02.009 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business Statistics |
| EISSN | 1872-6860 |
| EndPage | 772 |
| ExternalDocumentID | oai:HAL:hal-01741661v1 10_1016_j_ejor_2018_02_009 S0377221718301243 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ RXW SCC SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HVGLF HZ~ R2- SEW VH1 WUQ ~HD 1XC BXJBU |
| ID | FETCH-LOGICAL-c465t-ab80957d6b20b28a6655e8335b51bda0bb789ebcb097cc80874f0fa1bea0ac233 |
| ISICitedReferencesCount | 298 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432502600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Tue Oct 14 20:12:56 EDT 2025 Tue Nov 18 22:03:46 EST 2025 Sat Nov 29 07:21:48 EST 2025 Fri Feb 23 02:45:19 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | OR in marketing Customer churn prediction Logit leaf model Predictive analytics Hybrid algorithm |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c465t-ab80957d6b20b28a6655e8335b51bda0bb789ebcb097cc80874f0fa1bea0ac233 |
| ORCID | 0000-0003-1346-9425 0000-0002-4872-9007 |
| PageCount | 13 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01741661v1 crossref_citationtrail_10_1016_j_ejor_2018_02_009 crossref_primary_10_1016_j_ejor_2018_02_009 elsevier_sciencedirect_doi_10_1016_j_ejor_2018_02_009 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-09-01 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Giacinto, Roli (bib0030) 2000; vol 1857 Jacobs, Jordan, Nowlan, Hinton (bib0039) 1991; 3 Anderson, Sweeney, Williams, Freeman, Shoesmith (bib0001) 2010 Bucklin, Gupta (bib0008) 1992; 29 Coussement, Van den Poel (bib0017) 2008; 34 Kuncheva (bib0046) 2014 Lessman, Voß (bib0050) 2009; 199 Hanley, McNeil (bib0035) 1982; 143 Kuncheva (bib0044) 2000; 1 Gustafsson, Johnson, Roos (bib0032) 2005; 69 Shaffer, Zhang (bib0067) 2002; 48 Colgate, Stewart, Kinsella (bib0013) 1996; 14 De Bock, Van den Poel (bib0019) 2012; 39 Lessman, Baesens, Seow, Thomas (bib0049) 2015; 247 Athanassopoulos (bib0002) 2000; 47 Ling, Li (bib0053) 1998 Cohen (bib0012) 1995 Chen, Fan, Sun (bib0011) 2012; 223 Coussement, De Bock (bib0014) 2013; 66 Seret, Verbraken, Versailles, Baesens (bib0068) 2012; 220 Verhoef (bib0074) 2003; 67 Lemmens, Croux (bib0048) 2006; 43 Fu, Robles-Kelly, Zhou (bib0027) 2010; 21 Dietterich (bib0022) 1998; 10 Friedman (bib0025) 1940; 11 Zhu, Chen, Xing (bib0078) 2011 Martens, Baesens, Van Gestel, Vanthienen (bib0056) 2007; 183 Blattberg, Kim, Neslin (bib0006) 2010 Neslin, Gupta, Kamakura, Lu, Mason (bib0060) 2006; 43 James, Witten, Hastie, Tibshirani (bib0040) 2014 Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib0033) 2009; 11 Baesens, Setiono, Mues, Vanthienen (bib0003) 2003; 49 Fawcett, Provost (bib0023) 1997; 1–3 Demšar (bib0020) 2006; 7 Maldonado, Flores, Verbraken, Baesens, Weber (bib0054) 2015; 35 Pyle (bib0063) 1999 Reinartz, Kumar (bib0065) 2003; 67 Glady, Baesens, Croux (bib0031) 2009; 197 Thomas, Edelman, Crook (bib0070) 2002 Yuksel, Wilson, Gader (bib0076) 2012; 23 Kuncheva (bib0045) 2002; 32 Li, Weng, Shao, Guo (bib0051) 2016; 137 Lima, Mues, Baesens (bib0052) 2011; 38 Martens, Vanthienen, Verbeke, Baesens (bib0057) 2011; 51 Ballings, Van den Poel (bib0005) 2012; 39 Hwang, Jung, Suh (bib0038) 2004; 26 Wei, Chiu (bib0075) 2002; 23 Rasmussen, Ghahramani (bib0064) 2002; 14 Tang, Thomas, Fletcher, Pan, Marshall (bib0069) 2014; 296 Verbeke, Dejaeger, Martens, Hur, Baesens (bib0072) 2012; 218 De Caigny, A., Coussement, K., & De Bock, K.W., 2018. LLM: Logit Leaf Model Classifier for Binary Classification, R Package version 1.0.0. Keaveney (bib0042) 1995; 59 García, Fernández, Luengo, Herrera (bib0029) 2010; 180 Frank, Witten (bib0024) 1998 Hansen, Samuelson, Sallis (bib0034) 2013; 47 Torkzadeh, Chang, Hansen (bib0071) 2006; 42 Maldonado, Pérez, Bravo (bib0055) 2017; 261 Nitzan, Libai (bib0061) 2011; 75 Moeyersoms, Martens (bib0058) 2015; 72 Burez, Van den Poel (bib0009) 2009; 36 Landwehr, Hall, Eibe (bib0047) 2005; 59 Johnson, Nader, Fornell (bib0041) 1996; 17 Kumar, Ravi (bib0043) 2008; 1 Mozer, Wolniewicz, Grimes, Johnson, Kaushansky (bib0059) 2000; 11 Coussement, Harrigan, Benoit (bib0015) 2015; 42 Dawes, Swailes (bib0018) 1999; 17 Ganesh, Arnold, Reynolds (bib0028) 2000; 64 Breiman (bib0007) 2001; 45 Didaci, Giacinto, Roli, Marcialis (bib0021) 2005; 38 Hung, Yen, Wang (bib0037) 2006; 31 Zhu, Chen, Xing (bib0077) 2011 Chan (bib0010) 2008; 34 Coussement, Lessman, Verstraeten (bib0016) 2017; 95 Verbeke, Martens, Mues, Baesens (bib0073) 2011; 38 Pazzani, Mani, Shankle (bib0062) 2001; 40 Friedman, Hastie, Tibshirani (bib0026) 2000; 38 Ballings (10.1016/j.ejor.2018.02.009_bib0005) 2012; 39 Cohen (10.1016/j.ejor.2018.02.009_bib0012) 1995 Hung (10.1016/j.ejor.2018.02.009_bib0037) 2006; 31 Lessman (10.1016/j.ejor.2018.02.009_bib0049) 2015; 247 Tang (10.1016/j.ejor.2018.02.009_bib0069) 2014; 296 Nitzan (10.1016/j.ejor.2018.02.009_bib0061) 2011; 75 Yuksel (10.1016/j.ejor.2018.02.009_bib0076) 2012; 23 James (10.1016/j.ejor.2018.02.009_bib0040) 2014 Keaveney (10.1016/j.ejor.2018.02.009_bib0042) 1995; 59 Kuncheva (10.1016/j.ejor.2018.02.009_bib0046) 2014 Rasmussen (10.1016/j.ejor.2018.02.009_bib0064) 2002; 14 Hall (10.1016/j.ejor.2018.02.009_bib0033) 2009; 11 Lessman (10.1016/j.ejor.2018.02.009_bib0050) 2009; 199 Verbeke (10.1016/j.ejor.2018.02.009_bib0072) 2012; 218 Hansen (10.1016/j.ejor.2018.02.009_bib0034) 2013; 47 Wei (10.1016/j.ejor.2018.02.009_bib0075) 2002; 23 Kuncheva (10.1016/j.ejor.2018.02.009_bib0045) 2002; 32 Pyle (10.1016/j.ejor.2018.02.009_bib0063) 1999 Frank (10.1016/j.ejor.2018.02.009_bib0024) 1998 Neslin (10.1016/j.ejor.2018.02.009_bib0060) 2006; 43 Dawes (10.1016/j.ejor.2018.02.009_bib0018) 1999; 17 Breiman (10.1016/j.ejor.2018.02.009_bib0007) 2001; 45 García (10.1016/j.ejor.2018.02.009_bib0029) 2010; 180 10.1016/j.ejor.2018.02.009_bib0158 Zhu (10.1016/j.ejor.2018.02.009_bib0078) 2011 Bucklin (10.1016/j.ejor.2018.02.009_bib0008) 1992; 29 Li (10.1016/j.ejor.2018.02.009_bib0051) 2016; 137 Kuncheva (10.1016/j.ejor.2018.02.009_bib0044) 2000; 1 Ling (10.1016/j.ejor.2018.02.009_bib0053) 1998 Fu (10.1016/j.ejor.2018.02.009_bib0027) 2010; 21 Johnson (10.1016/j.ejor.2018.02.009_bib0041) 1996; 17 Seret (10.1016/j.ejor.2018.02.009_bib0068) 2012; 220 Reinartz (10.1016/j.ejor.2018.02.009_bib0065) 2003; 67 Didaci (10.1016/j.ejor.2018.02.009_bib0021) 2005; 38 Chen (10.1016/j.ejor.2018.02.009_bib0011) 2012; 223 De Bock (10.1016/j.ejor.2018.02.009_bib0019) 2012; 39 Dietterich (10.1016/j.ejor.2018.02.009_bib0022) 1998; 10 Zhu (10.1016/j.ejor.2018.02.009_bib0077) 2011 Lima (10.1016/j.ejor.2018.02.009_bib0052) 2011; 38 Verbeke (10.1016/j.ejor.2018.02.009_bib0073) 2011; 38 Hanley (10.1016/j.ejor.2018.02.009_bib0035) 1982; 143 Maldonado (10.1016/j.ejor.2018.02.009_bib0055) 2017; 261 Thomas (10.1016/j.ejor.2018.02.009_bib0070) 2002 Jacobs (10.1016/j.ejor.2018.02.009_bib0039) 1991; 3 Fawcett (10.1016/j.ejor.2018.02.009_bib0023) 1997; 1–3 Shaffer (10.1016/j.ejor.2018.02.009_bib0067) 2002; 48 Coussement (10.1016/j.ejor.2018.02.009_bib0017) 2008; 34 Hwang (10.1016/j.ejor.2018.02.009_bib0038) 2004; 26 Coussement (10.1016/j.ejor.2018.02.009_bib0014) 2013; 66 Moeyersoms (10.1016/j.ejor.2018.02.009_bib0058) 2015; 72 Pazzani (10.1016/j.ejor.2018.02.009_bib0062) 2001; 40 Coussement (10.1016/j.ejor.2018.02.009_bib0015) 2015; 42 Glady (10.1016/j.ejor.2018.02.009_bib0031) 2009; 197 Anderson (10.1016/j.ejor.2018.02.009_bib0001) 2010 Gustafsson (10.1016/j.ejor.2018.02.009_bib0032) 2005; 69 Demšar (10.1016/j.ejor.2018.02.009_bib0020) 2006; 7 Maldonado (10.1016/j.ejor.2018.02.009_bib0054) 2015; 35 Landwehr (10.1016/j.ejor.2018.02.009_bib0047) 2005; 59 Mozer (10.1016/j.ejor.2018.02.009_bib0059) 2000; 11 Athanassopoulos (10.1016/j.ejor.2018.02.009_bib0002) 2000; 47 Martens (10.1016/j.ejor.2018.02.009_bib0057) 2011; 51 Torkzadeh (10.1016/j.ejor.2018.02.009_bib0071) 2006; 42 Blattberg (10.1016/j.ejor.2018.02.009_bib0006) 2010 Colgate (10.1016/j.ejor.2018.02.009_bib0013) 1996; 14 Kumar (10.1016/j.ejor.2018.02.009_bib0043) 2008; 1 Coussement (10.1016/j.ejor.2018.02.009_bib0016) 2017; 95 Ganesh (10.1016/j.ejor.2018.02.009_bib0028) 2000; 64 Friedman (10.1016/j.ejor.2018.02.009_bib0025) 1940; 11 Verhoef (10.1016/j.ejor.2018.02.009_bib0074) 2003; 67 Baesens (10.1016/j.ejor.2018.02.009_bib0003) 2003; 49 Burez (10.1016/j.ejor.2018.02.009_bib0009) 2009; 36 Friedman (10.1016/j.ejor.2018.02.009_bib0026) 2000; 38 Martens (10.1016/j.ejor.2018.02.009_bib0056) 2007; 183 Giacinto (10.1016/j.ejor.2018.02.009_bib0030) 2000; vol 1857 Chan (10.1016/j.ejor.2018.02.009_bib0010) 2008; 34 Lemmens (10.1016/j.ejor.2018.02.009_bib0048) 2006; 43 |
| References_xml | – volume: 47 start-page: 191 year: 2000 end-page: 207 ident: bib0002 article-title: Customer satisfaction cues to support market segmentation and explain switching behavior publication-title: Journal of Business Research – volume: 223 start-page: 461 year: 2012 end-page: 472 ident: bib0011 article-title: A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data publication-title: European Journal of Operational Research – volume: 11 start-page: 690 year: 2000 end-page: 696 ident: bib0059 article-title: Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry publication-title: IEEE Transactions on Neural Networks – volume: 14 start-page: 577 year: 2002 end-page: 584 ident: bib0064 article-title: Infinite mixtures of Gaussian process experts publication-title: Advances of Neural Information Processing Systems – volume: 220 start-page: 199 year: 2012 end-page: 209 ident: bib0068 article-title: A new SOM-based method for profile generation: Theory and application in direct marketing publication-title: European Journal of Operational Research – year: 2014 ident: bib0040 article-title: An introduction to statistical learning: With applications in R – volume: vol 1857 year: 2000 ident: bib0030 article-title: Dynamic classifier selection publication-title: Multiple Classifier Systems. MCS 2000. Lecture Notes in Computer Science – year: 2002 ident: bib0070 article-title: Credit scoring and its applications – volume: 23 start-page: 103 year: 2002 end-page: 112 ident: bib0075 article-title: Turning telecommunications call details to churn prediction:A data mining approach publication-title: Expert Systems with Applications – year: 2010 ident: bib0006 article-title: Database marketing: Analyzing and managing customers – volume: 43 start-page: 276 year: 2006 end-page: 286 ident: bib0048 article-title: Bagging and boosting classification trees to predict churn publication-title: Journal of Marketing Research – volume: 1–3 start-page: 291 year: 1997 end-page: 316 ident: bib0023 article-title: Adaptive fraud detection publication-title: Data Mining and Knowledge Discovery – year: 1999 ident: bib0063 publication-title: Data Preparation for Data Mining – volume: 39 start-page: 6816 year: 2012 end-page: 6826 ident: bib0019 article-title: Reconciling performance and interpretability in customer churn prediction using ensemble learning based on generalized additive models publication-title: Expert Systems with Applications – start-page: 230 year: 2014 end-page: 246 ident: bib0046 article-title: Classifier selection publication-title: Combining pattern classifiers – start-page: 617 year: 2011 end-page: 624 ident: bib0078 article-title: Infinite SVM: A Dirichlet process mixture of large-margin kernel machines publication-title: Proceedings of the International Conference on Machine Learning (ICML) – volume: 199 start-page: 520 year: 2009 end-page: 530 ident: bib0050 article-title: A reference model for customer-centric data mining with support vector machines publication-title: European Journal of Operational Research – volume: 32 start-page: 146 year: 2002 end-page: 156 ident: bib0045 article-title: Switching between selection and fusion in combining classifiers: An experiment publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) – volume: 67 start-page: 1 year: 2003 ident: bib0065 article-title: The impact of customer relationship characteristics on profitable lifetime duration publication-title: Journal of Marketing – volume: 95 start-page: 27 year: 2017 end-page: 36 ident: bib0016 article-title: A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication publication-title: Decision Support Systems – volume: 49 start-page: 312 year: 2003 end-page: 329 ident: bib0003 article-title: Using neural network rule extraction and decision tables for credit-risk evaluation publication-title: Management Science – volume: 1 start-page: 4 year: 2008 end-page: 28 ident: bib0043 article-title: Predicting credit card customer churn in banks using data mining publication-title: International Journal of Data Analysis Techniques and Strategies – volume: 34 start-page: 2754 year: 2008 end-page: 2762 ident: bib0010 article-title: Intelligent value-based customer segmentation method for campaign management: A case study of automobile retailer publication-title: Expert Systems with Applications – start-page: 115 year: 1995 end-page: 123 ident: bib0012 article-title: Fast effective rule induction publication-title: Proceedings of the twelfth international conference on machine learning – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib0020 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – volume: 180 start-page: 2044 year: 2010 end-page: 2064 ident: bib0029 article-title: Advanced non parametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power publication-title: Information Sciences – volume: 43 start-page: 204 year: 2006 end-page: 211 ident: bib0060 article-title: Detection defection: Measuring and understanding the predictive accuracy of customer churn models publication-title: Journal of Marketing Research – start-page: 144 year: 1998 end-page: 151 ident: bib0024 article-title: Generating accurate rule sets without global optimization publication-title: Proceedings of the fifteenth international conference on machine learning – volume: 42 start-page: 8403 year: 2015 end-page: 8412 ident: bib0015 article-title: Improving direct mail targeting through customer response modeling publication-title: Expert Systems with Applications – volume: 21 start-page: 1963 year: 2010 end-page: 1975 ident: bib0027 article-title: Mixing linear SVMs for nonlinear classification publication-title: IEEE Transactions on Neural Networks – volume: 11 start-page: 86 year: 1940 end-page: 92 ident: bib0025 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Annals of Mathematical Statistics – volume: 59 start-page: 71 year: 1995 end-page: 82 ident: bib0042 article-title: Customer switching behavior in service industries: An exploratory study publication-title: Journal of Marketing – volume: 3 start-page: 79 year: 1991 end-page: 87 ident: bib0039 article-title: Adaptive mixtures of local experts publication-title: Neural Computation – volume: 137 start-page: 729 year: 2016 end-page: 737 ident: bib0051 article-title: Cluster-based logistic regression model for holiday travel mode choice publication-title: Procedia Engineering – volume: 47 start-page: 1157 year: 2013 end-page: 1176 ident: bib0034 article-title: The moderating effects of need for cognition on drivers of customer loyalty publication-title: European Journal of Marketing – volume: 38 start-page: 337 year: 2000 end-page: 374 ident: bib0026 article-title: Additive logistic regression: A statistical view of boosting publication-title: The Annals of Statistic – volume: 40 start-page: 380 year: 2001 end-page: 385 ident: bib0062 article-title: Acceptance by medical experts of rules generated by machine learning publication-title: Methods of Information in Medicine – volume: 17 start-page: 163 year: 1996 end-page: 182 ident: bib0041 article-title: Expectations, perceived performance and customer satisfaction for a complex service: The case of bank loans publication-title: Journal of Economic Psychology – volume: 197 start-page: 402 year: 2009 end-page: 411 ident: bib0031 article-title: Modeling churn using customer lifetime value publication-title: European Journal of Operational Research – volume: 59 start-page: 161 year: 2005 end-page: 205 ident: bib0047 article-title: Logistic model trees publication-title: Machine Learning – volume: 29 start-page: 201 year: 1992 end-page: 215 ident: bib0008 article-title: Brand choice, purchase incidence, and segmentation: An integrated modeling approach publication-title: Journal of Marketing Research – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: bib0033 article-title: The WEKA data mining software: An update publication-title: SIGKDD Explorations Newsletter – volume: 34 start-page: 313 year: 2008 end-page: 327 ident: bib0017 article-title: Churn prediction in subscription services: An application of support vector machines while comparing two parameter selection techniques publication-title: Expert Systems with Applications – volume: 261 start-page: 656 year: 2017 end-page: 665 ident: bib0055 article-title: Cost-based feature selection for support vector machines: An application in credit scoring publication-title: European Journal of Operational Research – volume: 38 start-page: 2188 year: 2005 end-page: 2191 ident: bib0021 article-title: A study on the performances of dynamic classifier selection based on local accuracy estimation publication-title: Pattern Recognition – volume: 38 start-page: 2354 year: 2011 end-page: 2364 ident: bib0073 article-title: Building comprehensible customer churn prediction models with advanced rule induction techniques publication-title: Expert Systems with Application – volume: 35 start-page: 740 year: 2015 end-page: 748 ident: bib0054 article-title: Profit-based feature selection using support vector machines – General framework and an application for customer retention publication-title: Applied Soft Computing – volume: 10 start-page: 1895 year: 1998 end-page: 1923 ident: bib0022 article-title: Approximate statistical tests for comparing supervised classification learning algorithms publication-title: Neural Computation – volume: 75 start-page: 24 year: 2011 end-page: 38 ident: bib0061 article-title: Social effects on customer retention publication-title: Journal of Marketing – volume: 67 start-page: 30 year: 2003 end-page: 45 ident: bib0074 article-title: Understanding the Effects of customer relationship management efforts on customer retention and customer share development publication-title: Journal of Marketing – year: 2010 ident: bib0001 article-title: Statistics for business and economics – volume: 14 start-page: 23 year: 1996 end-page: 29 ident: bib0013 article-title: Customer defection: A study of the student market in Ireland publication-title: International Journal of Bank Marketing – volume: 39 start-page: 13517 year: 2012 end-page: 13522 ident: bib0005 article-title: Customer event history for churn prediction: How long is long enough publication-title: Expert Systems with Applications – volume: 17 start-page: 36 year: 1999 end-page: 43 ident: bib0018 article-title: Retention sans frontieres: Issues for financial service retailers publication-title: International Journal of Bank Marketing – volume: 48 start-page: 1143 year: 2002 end-page: 1160 ident: bib0067 article-title: Competitive one-to-one promotions – volume: 1 start-page: 185 year: 2000 end-page: 188 ident: bib0044 article-title: Clustering-and-selection model for classifier combination. publication-title: Proceedings of the fourth international conference on knowledge-based intelligent engineering systems and allied technologies – volume: 247 start-page: 124 year: 2015 end-page: 136 ident: bib0049 article-title: Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research publication-title: European Journal of Operational Research – volume: 69 start-page: 210 year: 2005 end-page: 218 ident: bib0032 article-title: The effects of customer satisfaction, relationship commitment dimension, and triggers on customer retention publication-title: Journal of Marketing – volume: 36 start-page: 4626 year: 2009 end-page: 4636 ident: bib0009 article-title: Handling class imbalance in customer churn prediction publication-title: Expert Systems with Applications – volume: 64 start-page: 65 year: 2000 end-page: 87 ident: bib0028 article-title: Understanding the customer base of service providers: An examination of the differences between switchers and stayers publication-title: Journal of Marketing – volume: 183 start-page: 1466 year: 2007 end-page: 1476 ident: bib0056 article-title: Comprehensible credit scoring models using rule extraction from support vector machines publication-title: European Journal of Operational Research – start-page: 1620 year: 2011 end-page: 1628 ident: bib0077 article-title: Infinite latent SVM for classification and multi-task learning publication-title: Advances in Neural Information Processing Systems – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0007 article-title: Random forests publication-title: Machine Learning – volume: 51 start-page: 782 year: 2011 end-page: 793 ident: bib0057 article-title: Performance of classification models from a user perspective publication-title: Decision Support Systems – volume: 31 start-page: 515 year: 2006 end-page: 524 ident: bib0037 article-title: Applying data mining to telecom churn management publication-title: Expert Systems with Applications – volume: 296 start-page: 624 year: 2014 end-page: 633 ident: bib0069 article-title: Assessing the impact of derived behavior information on customer attrition in the financial service industry publication-title: European Journal of Operational Research – year: 1998 ident: bib0053 article-title: Data mining for direct marketing problems and solutions publication-title: Proceedings of the fourth international conference on knowledge discovery and data mining (KDD-98) – volume: 23 start-page: 1177 year: 2012 end-page: 1193 ident: bib0076 article-title: Twenty years of mixture of experts publication-title: IEEE Transactions on Neural Networks and Learning Systems – reference: De Caigny, A., Coussement, K., & De Bock, K.W., 2018. LLM: Logit Leaf Model Classifier for Binary Classification, R Package version 1.0.0. – volume: 143 start-page: 29 year: 1982 end-page: 36 ident: bib0035 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology – volume: 42 start-page: 2 year: 2006 ident: bib0071 article-title: Identifying issues in customer relationship management at Merck-Medco publication-title: Decision Support Systems – volume: 72 start-page: 72 year: 2015 end-page: 81 ident: bib0058 article-title: Including high-cardinality attributes in predictive models: A case study in churn prediction in the energy sector publication-title: Decision Support Systems – volume: 66 start-page: 1629 year: 2013 end-page: 1636 ident: bib0014 article-title: Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning publication-title: Journal of Business Research – volume: 218 start-page: 211 year: 2012 end-page: 229 ident: bib0072 article-title: New insights into churn prediction in the telecommunication sector: A profit driven data mining approach publication-title: European Journal of Operational Research – volume: 26 start-page: 181 year: 2004 end-page: 188 ident: bib0038 article-title: An LTV model and customer segmentation based on customer value: A case study on the wireless telecommunication industry publication-title: Expert Systems with Applications – volume: 38 start-page: 975 year: 2011 end-page: 982 ident: bib0052 article-title: Monitoring and back testing churn models publication-title: Expert Systems with Application – volume: 1–3 start-page: 291 year: 1997 ident: 10.1016/j.ejor.2018.02.009_bib0023 article-title: Adaptive fraud detection publication-title: Data Mining and Knowledge Discovery doi: 10.1023/A:1009700419189 – volume: 59 start-page: 161 issue: 1 year: 2005 ident: 10.1016/j.ejor.2018.02.009_bib0047 article-title: Logistic model trees publication-title: Machine Learning doi: 10.1007/s10994-005-0466-3 – volume: 64 start-page: 65 issue: 3 year: 2000 ident: 10.1016/j.ejor.2018.02.009_bib0028 article-title: Understanding the customer base of service providers: An examination of the differences between switchers and stayers publication-title: Journal of Marketing doi: 10.1509/jmkg.64.3.65.18028 – volume: 17 start-page: 36 issue: 1 year: 1999 ident: 10.1016/j.ejor.2018.02.009_bib0018 article-title: Retention sans frontieres: Issues for financial service retailers publication-title: International Journal of Bank Marketing doi: 10.1108/02652329910254037 – start-page: 1620 year: 2011 ident: 10.1016/j.ejor.2018.02.009_bib0077 article-title: Infinite latent SVM for classification and multi-task learning publication-title: Advances in Neural Information Processing Systems – volume: 47 start-page: 1157 issue: 8 year: 2013 ident: 10.1016/j.ejor.2018.02.009_bib0034 article-title: The moderating effects of need for cognition on drivers of customer loyalty publication-title: European Journal of Marketing doi: 10.1108/03090561311324264 – volume: 11 start-page: 86 year: 1940 ident: 10.1016/j.ejor.2018.02.009_bib0025 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Annals of Mathematical Statistics doi: 10.1214/aoms/1177731944 – volume: 51 start-page: 782 issue: 4 year: 2011 ident: 10.1016/j.ejor.2018.02.009_bib0057 article-title: Performance of classification models from a user perspective publication-title: Decision Support Systems doi: 10.1016/j.dss.2011.01.013 – volume: 183 start-page: 1466 year: 2007 ident: 10.1016/j.ejor.2018.02.009_bib0056 article-title: Comprehensible credit scoring models using rule extraction from support vector machines publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.04.051 – volume: 34 start-page: 2754 year: 2008 ident: 10.1016/j.ejor.2018.02.009_bib0010 article-title: Intelligent value-based customer segmentation method for campaign management: A case study of automobile retailer publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.05.043 – volume: 95 start-page: 27 year: 2017 ident: 10.1016/j.ejor.2018.02.009_bib0016 article-title: A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication publication-title: Decision Support Systems doi: 10.1016/j.dss.2016.11.007 – volume: 75 start-page: 24 year: 2011 ident: 10.1016/j.ejor.2018.02.009_bib0061 article-title: Social effects on customer retention publication-title: Journal of Marketing doi: 10.1509/jm.10.0209 – start-page: 230 year: 2014 ident: 10.1016/j.ejor.2018.02.009_bib0046 article-title: Classifier selection – volume: 11 start-page: 690 issue: 3 year: 2000 ident: 10.1016/j.ejor.2018.02.009_bib0059 article-title: Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.846740 – volume: 180 start-page: 2044 year: 2010 ident: 10.1016/j.ejor.2018.02.009_bib0029 article-title: Advanced non parametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power publication-title: Information Sciences doi: 10.1016/j.ins.2009.12.010 – volume: 67 start-page: 30 issue: 4 year: 2003 ident: 10.1016/j.ejor.2018.02.009_bib0074 article-title: Understanding the Effects of customer relationship management efforts on customer retention and customer share development publication-title: Journal of Marketing doi: 10.1509/jmkg.67.4.30.18685 – volume: 72 start-page: 72 year: 2015 ident: 10.1016/j.ejor.2018.02.009_bib0058 article-title: Including high-cardinality attributes in predictive models: A case study in churn prediction in the energy sector publication-title: Decision Support Systems doi: 10.1016/j.dss.2015.02.007 – year: 2014 ident: 10.1016/j.ejor.2018.02.009_bib0040 – volume: 67 start-page: 1 year: 2003 ident: 10.1016/j.ejor.2018.02.009_bib0065 article-title: The impact of customer relationship characteristics on profitable lifetime duration publication-title: Journal of Marketing doi: 10.1509/jmkg.67.1.77.18589 – volume: 223 start-page: 461 issue: 2 year: 2012 ident: 10.1016/j.ejor.2018.02.009_bib0011 article-title: A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2012.06.040 – volume: 34 start-page: 313 year: 2008 ident: 10.1016/j.ejor.2018.02.009_bib0017 article-title: Churn prediction in subscription services: An application of support vector machines while comparing two parameter selection techniques publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2006.09.038 – ident: 10.1016/j.ejor.2018.02.009_bib0158 doi: 10.32614/CRAN.package.LLM – year: 1999 ident: 10.1016/j.ejor.2018.02.009_bib0063 – volume: 38 start-page: 2188 issue: 11 year: 2005 ident: 10.1016/j.ejor.2018.02.009_bib0021 article-title: A study on the performances of dynamic classifier selection based on local accuracy estimation publication-title: Pattern Recognition doi: 10.1016/j.patcog.2005.02.010 – volume: 32 start-page: 146 issue: 2 year: 2002 ident: 10.1016/j.ejor.2018.02.009_bib0045 article-title: Switching between selection and fusion in combining classifiers: An experiment publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) doi: 10.1109/3477.990871 – volume: 35 start-page: 740 year: 2015 ident: 10.1016/j.ejor.2018.02.009_bib0054 article-title: Profit-based feature selection using support vector machines – General framework and an application for customer retention publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.05.058 – volume: 38 start-page: 975 year: 2011 ident: 10.1016/j.ejor.2018.02.009_bib0052 article-title: Monitoring and back testing churn models publication-title: Expert Systems with Application doi: 10.1016/j.eswa.2010.07.091 – year: 1998 ident: 10.1016/j.ejor.2018.02.009_bib0053 article-title: Data mining for direct marketing problems and solutions – year: 2010 ident: 10.1016/j.ejor.2018.02.009_bib0006 – volume: 38 start-page: 337 issue: 2 year: 2000 ident: 10.1016/j.ejor.2018.02.009_bib0026 article-title: Additive logistic regression: A statistical view of boosting publication-title: The Annals of Statistic doi: 10.1214/aos/1016218223 – volume: 23 start-page: 1177 issue: 8 year: 2012 ident: 10.1016/j.ejor.2018.02.009_bib0076 article-title: Twenty years of mixture of experts publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2012.2200299 – volume: vol 1857 year: 2000 ident: 10.1016/j.ejor.2018.02.009_bib0030 article-title: Dynamic classifier selection – start-page: 617 year: 2011 ident: 10.1016/j.ejor.2018.02.009_bib0078 article-title: Infinite SVM: A Dirichlet process mixture of large-margin kernel machines – volume: 14 start-page: 23 issue: 3 year: 1996 ident: 10.1016/j.ejor.2018.02.009_bib0013 article-title: Customer defection: A study of the student market in Ireland publication-title: International Journal of Bank Marketing doi: 10.1108/02652329610113144 – volume: 47 start-page: 191 issue: 3 year: 2000 ident: 10.1016/j.ejor.2018.02.009_bib0002 article-title: Customer satisfaction cues to support market segmentation and explain switching behavior publication-title: Journal of Business Research doi: 10.1016/S0148-2963(98)00060-5 – volume: 218 start-page: 211 issue: 1 year: 2012 ident: 10.1016/j.ejor.2018.02.009_bib0072 article-title: New insights into churn prediction in the telecommunication sector: A profit driven data mining approach publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2011.09.031 – volume: 3 start-page: 79 issue: 1 year: 1991 ident: 10.1016/j.ejor.2018.02.009_bib0039 article-title: Adaptive mixtures of local experts publication-title: Neural Computation doi: 10.1162/neco.1991.3.1.79 – volume: 261 start-page: 656 issue: 2 year: 2017 ident: 10.1016/j.ejor.2018.02.009_bib0055 article-title: Cost-based feature selection for support vector machines: An application in credit scoring publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2017.02.037 – volume: 29 start-page: 201 issue: 2 year: 1992 ident: 10.1016/j.ejor.2018.02.009_bib0008 article-title: Brand choice, purchase incidence, and segmentation: An integrated modeling approach publication-title: Journal of Marketing Research doi: 10.1177/002224379202900205 – volume: 247 start-page: 124 year: 2015 ident: 10.1016/j.ejor.2018.02.009_bib0049 article-title: Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2015.05.030 – volume: 14 start-page: 577 year: 2002 ident: 10.1016/j.ejor.2018.02.009_bib0064 article-title: Infinite mixtures of Gaussian process experts publication-title: Advances of Neural Information Processing Systems – year: 2010 ident: 10.1016/j.ejor.2018.02.009_bib0001 – volume: 23 start-page: 103 year: 2002 ident: 10.1016/j.ejor.2018.02.009_bib0075 article-title: Turning telecommunications call details to churn prediction:A data mining approach publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(02)00030-1 – volume: 296 start-page: 624 year: 2014 ident: 10.1016/j.ejor.2018.02.009_bib0069 article-title: Assessing the impact of derived behavior information on customer attrition in the financial service industry publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2014.01.004 – volume: 39 start-page: 6816 year: 2012 ident: 10.1016/j.ejor.2018.02.009_bib0019 article-title: Reconciling performance and interpretability in customer churn prediction using ensemble learning based on generalized additive models publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.01.014 – start-page: 115 year: 1995 ident: 10.1016/j.ejor.2018.02.009_bib0012 article-title: Fast effective rule induction – volume: 38 start-page: 2354 year: 2011 ident: 10.1016/j.ejor.2018.02.009_bib0073 article-title: Building comprehensible customer churn prediction models with advanced rule induction techniques publication-title: Expert Systems with Application doi: 10.1016/j.eswa.2010.08.023 – start-page: 144 year: 1998 ident: 10.1016/j.ejor.2018.02.009_bib0024 article-title: Generating accurate rule sets without global optimization – volume: 197 start-page: 402 year: 2009 ident: 10.1016/j.ejor.2018.02.009_bib0031 article-title: Modeling churn using customer lifetime value publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2008.06.027 – volume: 40 start-page: 380 year: 2001 ident: 10.1016/j.ejor.2018.02.009_bib0062 article-title: Acceptance by medical experts of rules generated by machine learning publication-title: Methods of Information in Medicine doi: 10.1055/s-0038-1634196 – volume: 69 start-page: 210 issue: 4 year: 2005 ident: 10.1016/j.ejor.2018.02.009_bib0032 article-title: The effects of customer satisfaction, relationship commitment dimension, and triggers on customer retention publication-title: Journal of Marketing doi: 10.1509/jmkg.2005.69.4.210 – volume: 1 start-page: 185 year: 2000 ident: 10.1016/j.ejor.2018.02.009_bib0044 article-title: Clustering-and-selection model for classifier combination. – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.ejor.2018.02.009_bib0007 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 17 start-page: 163 issue: 2 year: 1996 ident: 10.1016/j.ejor.2018.02.009_bib0041 article-title: Expectations, perceived performance and customer satisfaction for a complex service: The case of bank loans publication-title: Journal of Economic Psychology doi: 10.1016/0167-4870(96)00002-5 – volume: 26 start-page: 181 year: 2004 ident: 10.1016/j.ejor.2018.02.009_bib0038 article-title: An LTV model and customer segmentation based on customer value: A case study on the wireless telecommunication industry publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(03)00133-7 – volume: 39 start-page: 13517 year: 2012 ident: 10.1016/j.ejor.2018.02.009_bib0005 article-title: Customer event history for churn prediction: How long is long enough publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.07.006 – volume: 31 start-page: 515 year: 2006 ident: 10.1016/j.ejor.2018.02.009_bib0037 article-title: Applying data mining to telecom churn management publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.09.080 – volume: 199 start-page: 520 year: 2009 ident: 10.1016/j.ejor.2018.02.009_bib0050 article-title: A reference model for customer-centric data mining with support vector machines publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2008.12.017 – volume: 48 start-page: 1143 issue: 9 year: 2002 ident: 10.1016/j.ejor.2018.02.009_bib0067 article-title: Competitive one-to-one promotions publication-title: Management Science, doi: 10.1287/mnsc.48.9.1143.172 – year: 2002 ident: 10.1016/j.ejor.2018.02.009_bib0070 – volume: 49 start-page: 312 year: 2003 ident: 10.1016/j.ejor.2018.02.009_bib0003 article-title: Using neural network rule extraction and decision tables for credit-risk evaluation publication-title: Management Science doi: 10.1287/mnsc.49.3.312.12739 – volume: 59 start-page: 71 year: 1995 ident: 10.1016/j.ejor.2018.02.009_bib0042 article-title: Customer switching behavior in service industries: An exploratory study publication-title: Journal of Marketing doi: 10.1177/002224299505900206 – volume: 10 start-page: 1895 issue: 7 year: 1998 ident: 10.1016/j.ejor.2018.02.009_bib0022 article-title: Approximate statistical tests for comparing supervised classification learning algorithms publication-title: Neural Computation doi: 10.1162/089976698300017197 – volume: 220 start-page: 199 year: 2012 ident: 10.1016/j.ejor.2018.02.009_bib0068 article-title: A new SOM-based method for profile generation: Theory and application in direct marketing publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2012.01.044 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.ejor.2018.02.009_bib0020 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – volume: 137 start-page: 729 year: 2016 ident: 10.1016/j.ejor.2018.02.009_bib0051 article-title: Cluster-based logistic regression model for holiday travel mode choice publication-title: Procedia Engineering doi: 10.1016/j.proeng.2016.01.310 – volume: 42 start-page: 8403 issue: 22 year: 2015 ident: 10.1016/j.ejor.2018.02.009_bib0015 article-title: Improving direct mail targeting through customer response modeling publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.06.054 – volume: 66 start-page: 1629 issue: 9 year: 2013 ident: 10.1016/j.ejor.2018.02.009_bib0014 article-title: Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2012.12.008 – volume: 21 start-page: 1963 issue: 12 year: 2010 ident: 10.1016/j.ejor.2018.02.009_bib0027 article-title: Mixing linear SVMs for nonlinear classification publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2010.2080319 – volume: 1 start-page: 4 issue: 1 year: 2008 ident: 10.1016/j.ejor.2018.02.009_bib0043 article-title: Predicting credit card customer churn in banks using data mining publication-title: International Journal of Data Analysis Techniques and Strategies doi: 10.1504/IJDATS.2008.020020 – volume: 43 start-page: 276 issue: 2 year: 2006 ident: 10.1016/j.ejor.2018.02.009_bib0048 article-title: Bagging and boosting classification trees to predict churn publication-title: Journal of Marketing Research doi: 10.1509/jmkr.43.2.276 – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.ejor.2018.02.009_bib0033 article-title: The WEKA data mining software: An update publication-title: SIGKDD Explorations Newsletter doi: 10.1145/1656274.1656278 – volume: 43 start-page: 204 issue: 2 year: 2006 ident: 10.1016/j.ejor.2018.02.009_bib0060 article-title: Detection defection: Measuring and understanding the predictive accuracy of customer churn models publication-title: Journal of Marketing Research doi: 10.1509/jmkr.43.2.204 – volume: 42 start-page: 2 year: 2006 ident: 10.1016/j.ejor.2018.02.009_bib0071 article-title: Identifying issues in customer relationship management at Merck-Medco publication-title: Decision Support Systems doi: 10.1016/j.dss.2005.10.003 – volume: 143 start-page: 29 issue: 1 year: 1982 ident: 10.1016/j.ejor.2018.02.009_bib0035 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 36 start-page: 4626 issue: 3 year: 2009 ident: 10.1016/j.ejor.2018.02.009_bib0009 article-title: Handling class imbalance in customer churn prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.05.027 |
| SSID | ssj0001515 |
| Score | 2.6610308 |
| Snippet | •A new hybrid algorithm (logit leaf model) is proposed for customer churn prediction.•It is designed to perform well in terms of both accuracy and... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 760 |
| SubjectTerms | Business administration Customer churn prediction Humanities and Social Sciences Hybrid algorithm Logit leaf model Machine Learning Methods and statistics OR in marketing Predictive analytics Statistics |
| Title | A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees |
| URI | https://dx.doi.org/10.1016/j.ejor.2018.02.009 https://audencia.hal.science/hal-01741661 |
| Volume | 269 |
| WOSCitedRecordID | wos000432502600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGFiE4sAxFlE0W4halSpzFzjGUogJVxaGIuUWx48yiaVJlFpW_xK_kOV5mKLSiBy6RZY2dZL4vfs_Pb0HoHa0qQJpzn9Qp9-NIHRJyEfkxiAMJOzmSln2e2RN6espGo-zrYPDTxsKs57Rp2OVldvFfoYY-AFuFzt4CbjcpdEAbQIcrwA7XfwI-V1XCvckPFYrlCaUcK28gjXM5H7fddDk5770LxQo0v3MJjQnMq9IFVFNdOVzJtkqdI-gAoT7N81h7zGrn5cqU5lGO6sYL8W_mfaPqQkdnjY4mu5CzQn-Q3mE5HTc92HnXtO5UpF0tFtp4aRejtt4a9d6s5F9a2XjfD7bNFyFz_lkubAvoQYgO4LRLMtHlWwz3yNYCS3X1ASOrqS7784cY0BaJ2YGctSrna8h0XtZsI_TsQf8VWeg8FK3z26xQcxRqjiIgRR8ruktokoEQ2M0_HY0-O7mvVMP-zMq8kAnR0t6EV5_kOjXozsQa9HsF5-wxemh2JjjXjHqCBrIZons2MGKIHtkCINjIgyF6sJXN8ila5BiYhzXz8O_Mw455GJiHLfNwzzy8YR7umYehYZmHN8zDwDxsmYd75u2hbx-Pzg6PfVPTwxdxmiz9kjNQ6mmVchJwwso0TRKpAv94EvKqhFWDskxywYOMCsECRuM6qMuQyzIoBYmiZ2inaRv5HOG0jqgA7Z1FlYjjKspgLwCTxwnldQliaR-F9i8uhEl4r-quzIvrwd1HnhtzodO93PjrxCJXGIVVK6IFEPHGcW8BZncDleH9OD8pVB8ISNgipeE6fHGrR3mJ7m--rldoZ9mt5Gt0V6yX00X3xlD1F-MzyC8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+hybrid+classification+algorithm+for+customer+churn+prediction+based+on+logistic+regression+and+decision+trees&rft.jtitle=European+journal+of+operational+research&rft.au=De+Caigny%2C+Arno&rft.au=Coussement%2C+Kristof&rft.au=De+Bock%2C+Koen+W.&rft.date=2018-09-01&rft.issn=0377-2217&rft.volume=269&rft.issue=2&rft.spage=760&rft.epage=772&rft_id=info:doi/10.1016%2Fj.ejor.2018.02.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2018_02_009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |