A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees

•A new hybrid algorithm (logit leaf model) is proposed for customer churn prediction.•It is designed to perform well in terms of both accuracy and interpretability.•Its competitive performance is apparent from an extensive benchmarking experiment.•Its ability to deliver actionable insights is demons...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European journal of operational research Ročník 269; číslo 2; s. 760 - 772
Hlavní autori: De Caigny, Arno, Coussement, Kristof, De Bock, Koen W.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.09.2018
Elsevier
Predmet:
ISSN:0377-2217, 1872-6860
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A new hybrid algorithm (logit leaf model) is proposed for customer churn prediction.•It is designed to perform well in terms of both accuracy and interpretability.•Its competitive performance is apparent from an extensive benchmarking experiment.•Its ability to deliver actionable insights is demonstrated in a case study. Decision trees and logistic regression are two very popular algorithms in customer churn prediction with strong predictive performance and good comprehensibility. Despite these strengths, decision trees tend to have problems to handle linear relations between variables and logistic regression has difficulties with interaction effects between variables. Therefore a new hybrid algorithm, the logit leaf model (LLM), is proposed to better classify data. The idea behind the LLM is that different models constructed on segments of the data rather than on the entire dataset lead to better predictive performance while maintaining the comprehensibility from the models constructed in the leaves. The LLM consists of two stages: a segmentation phase and a prediction phase. In the first stage customer segments are identified using decision rules and in the second stage a model is created for every leaf of this tree. This new hybrid approach is benchmarked against decision trees, logistic regression, random forests and logistic model trees with regards to the predictive performance and comprehensibility. The area under the receiver operating characteristics curve (AUC) and top decile lift (TDL) are used to measure the predictive performance for which LLM scores significantly better than its building blocks logistic regression and decision trees and performs at least as well as more advanced ensemble methods random forests and logistic model trees. Comprehensibility is addressed by a case study for which we observe some key benefits using the LLM compared to using decision trees or logistic regression.
AbstractList •A new hybrid algorithm (logit leaf model) is proposed for customer churn prediction.•It is designed to perform well in terms of both accuracy and interpretability.•Its competitive performance is apparent from an extensive benchmarking experiment.•Its ability to deliver actionable insights is demonstrated in a case study. Decision trees and logistic regression are two very popular algorithms in customer churn prediction with strong predictive performance and good comprehensibility. Despite these strengths, decision trees tend to have problems to handle linear relations between variables and logistic regression has difficulties with interaction effects between variables. Therefore a new hybrid algorithm, the logit leaf model (LLM), is proposed to better classify data. The idea behind the LLM is that different models constructed on segments of the data rather than on the entire dataset lead to better predictive performance while maintaining the comprehensibility from the models constructed in the leaves. The LLM consists of two stages: a segmentation phase and a prediction phase. In the first stage customer segments are identified using decision rules and in the second stage a model is created for every leaf of this tree. This new hybrid approach is benchmarked against decision trees, logistic regression, random forests and logistic model trees with regards to the predictive performance and comprehensibility. The area under the receiver operating characteristics curve (AUC) and top decile lift (TDL) are used to measure the predictive performance for which LLM scores significantly better than its building blocks logistic regression and decision trees and performs at least as well as more advanced ensemble methods random forests and logistic model trees. Comprehensibility is addressed by a case study for which we observe some key benefits using the LLM compared to using decision trees or logistic regression.
Author De Bock, Koen W.
Coussement, Kristof
De Caigny, Arno
Author_xml – sequence: 1
  givenname: Arno
  surname: De Caigny
  fullname: De Caigny, Arno
  email: a.decaigny@ieseg.fr
  organization: Department of Marketing, IESEG School of Management, (LEM, UMR CNRS 9221), Université Catholique de Lille, 3 Rue de la Digue, F-59000 Lille, France
– sequence: 2
  givenname: Kristof
  orcidid: 0000-0003-1346-9425
  surname: Coussement
  fullname: Coussement, Kristof
  email: k.coussement@ieseg.fr
  organization: Department of Marketing, IESEG School of Management, (LEM, UMR CNRS 9221), Université Catholique de Lille, 3 Rue de la Digue, F-59000 Lille, France
– sequence: 3
  givenname: Koen W.
  orcidid: 0000-0002-4872-9007
  surname: De Bock
  fullname: De Bock, Koen W.
  email: kdebock@audencia.com
  organization: Audencia Business School, 8 Route de la Jonelière, F-44312 Nantes, France
BackLink https://audencia.hal.science/hal-01741661$$DView record in HAL
BookMark eNp9kD1PwzAQhi0EEuXjDzB5ZUg4O43tSiwVAopUiQVmy3Yuras0rmwD4t-TtLAwdLo7631eS88FOe1Dj4TcMCgZMHG3KXETYsmBqRJ4CTA7IROmJC-EEnBKJlBJWXDO5Dm5SGkDAKxm9YSkOe3xi66_bfQNdZ1JybfemexDT023CtHn9Za2IVL3kXLY4rCsP2JPdxEb7_Y5axI2dFi6sPIpe0cjriIOVWNJ39AGnd8fOSKmK3LWmi7h9e-8JO9Pj28Pi2L5-vzyMF8WbirqXBirYFbLRlgOlisjRF2jqqra1sw2BqyVaobWWZhJ5xQoOW2hNcyiAeN4VV2S20Pv2nR6F_3WxG8djNeL-VKPb8DklAnBPtmQVYesiyGliK12Pu8t5Gh8pxnoUbTe6FG0HkVr4HoQPaD8H_r311Ho_gDhIODTY9TJeezd4DSiy7oJ_hj-AzXKnBM
CitedBy_id crossref_primary_10_3233_JIFS_190677
crossref_primary_10_1155_2021_6667275
crossref_primary_10_3390_technologies13030088
crossref_primary_10_1007_s11276_021_02746_4
crossref_primary_10_3390_electronics14020325
crossref_primary_10_1016_j_ejor_2019_08_015
crossref_primary_10_1016_j_asoc_2024_112343
crossref_primary_10_1109_ACCESS_2019_2914999
crossref_primary_10_1016_j_eswa_2022_116889
crossref_primary_10_3390_biom12121815
crossref_primary_10_1002_for_3194
crossref_primary_10_1016_j_knosys_2022_108566
crossref_primary_10_3390_app122111195
crossref_primary_10_1016_j_segan_2022_100855
crossref_primary_10_1016_j_ejor_2023_06_014
crossref_primary_10_1016_j_advwatres_2021_103894
crossref_primary_10_1007_s11135_022_01500_y
crossref_primary_10_1016_j_ejor_2019_05_035
crossref_primary_10_1016_j_eswa_2023_120079
crossref_primary_10_1016_j_jbusres_2022_07_015
crossref_primary_10_1007_s10479_023_05390_7
crossref_primary_10_1109_ACCESS_2024_3349950
crossref_primary_10_1016_j_jretconser_2019_101918
crossref_primary_10_3390_su15054543
crossref_primary_10_1057_s41270_025_00433_3
crossref_primary_10_1108_JFRA_11_2022_0425
crossref_primary_10_1016_j_ejor_2023_09_010
crossref_primary_10_1155_2021_9991859
crossref_primary_10_1016_j_fuel_2020_118848
crossref_primary_10_1016_j_ijinfomgt_2021_102357
crossref_primary_10_3233_JIFS_169937
crossref_primary_10_1038_s41598_024_71168_x
crossref_primary_10_1111_ijcs_13030
crossref_primary_10_1177_1351010X20917856
crossref_primary_10_1007_s11042_022_13532_5
crossref_primary_10_1016_j_cie_2018_12_017
crossref_primary_10_1016_j_engappai_2024_109810
crossref_primary_10_1016_j_jretconser_2025_104288
crossref_primary_10_1007_s10479_024_06129_8
crossref_primary_10_1016_j_ribaf_2021_101536
crossref_primary_10_1016_j_ejor_2023_09_009
crossref_primary_10_1016_j_elerap_2024_101371
crossref_primary_10_1002_int_22421
crossref_primary_10_3390_bdcc5040066
crossref_primary_10_1007_s11518_025_5641_4
crossref_primary_10_1080_10580530_2020_1814459
crossref_primary_10_1007_s10614_022_10275_1
crossref_primary_10_1142_S0219649222500897
crossref_primary_10_1002_cb_2121
crossref_primary_10_1109_ACCESS_2021_3104113
crossref_primary_10_1007_s12626_024_00165_3
crossref_primary_10_1016_j_elerap_2022_101202
crossref_primary_10_1016_j_procs_2019_12_006
crossref_primary_10_1016_j_eswa_2022_117829
crossref_primary_10_1007_s11042_023_17267_9
crossref_primary_10_1109_ACCESS_2021_3083490
crossref_primary_10_1057_s41270_021_00135_6
crossref_primary_10_3390_sci7020068
crossref_primary_10_1080_10528008_2021_1871849
crossref_primary_10_1007_s42452_021_04576_7
crossref_primary_10_1016_j_ejor_2023_09_016
crossref_primary_10_1016_j_omega_2024_103034
crossref_primary_10_1016_j_cie_2024_109920
crossref_primary_10_1016_j_plaphe_2025_100018
crossref_primary_10_1111_1467_8551_12441
crossref_primary_10_1007_s11042_023_17715_6
crossref_primary_10_1111_exsy_13299
crossref_primary_10_1016_j_jbusres_2021_01_017
crossref_primary_10_1016_j_tsep_2022_101630
crossref_primary_10_1016_j_jbusres_2021_06_006
crossref_primary_10_1007_s41060_022_00312_5
crossref_primary_10_1088_1757_899X_768_5_052070
crossref_primary_10_1016_j_comcom_2022_05_007
crossref_primary_10_1016_j_ejor_2023_09_028
crossref_primary_10_1016_j_ejor_2023_09_026
crossref_primary_10_1109_TBDATA_2021_3053879
crossref_primary_10_1016_j_ejor_2020_10_034
crossref_primary_10_1002_for_2860
crossref_primary_10_1016_j_techfore_2023_122945
crossref_primary_10_1080_09720529_2022_2133238
crossref_primary_10_3233_JIFS_190242
crossref_primary_10_1007_s11222_025_10712_9
crossref_primary_10_1016_j_ejor_2021_06_053
crossref_primary_10_1007_s11042_022_12877_1
crossref_primary_10_1016_j_eswa_2022_118177
crossref_primary_10_1007_s42979_020_0074_0
crossref_primary_10_3390_a17060231
crossref_primary_10_3233_JIFS_235213
crossref_primary_10_1108_SR_06_2019_0154
crossref_primary_10_1007_s10479_022_04631_5
crossref_primary_10_1108_BPMJ_05_2023_0401
crossref_primary_10_3389_frai_2022_900775
crossref_primary_10_1007_s12599_025_00964_0
crossref_primary_10_3390_electronics14101916
crossref_primary_10_3390_computation9030034
crossref_primary_10_1007_s10660_025_10025_z
crossref_primary_10_1007_s42979_024_02884_4
crossref_primary_10_1108_BIJ_03_2021_0127
crossref_primary_10_1371_journal_pone_0303881
crossref_primary_10_3390_healthcare11111583
crossref_primary_10_1371_journal_pone_0319998
crossref_primary_10_3233_JIFS_233141
crossref_primary_10_3390_informatics10030063
crossref_primary_10_1109_ACCESS_2023_3304669
crossref_primary_10_1016_j_ejor_2021_05_045
crossref_primary_10_3390_app12168371
crossref_primary_10_2516_stet_2024014
crossref_primary_10_1016_j_tbs_2025_101084
crossref_primary_10_2478_amns_2025_0973
crossref_primary_10_3390_math12182907
crossref_primary_10_1007_s00521_025_11027_6
crossref_primary_10_1016_j_asoc_2025_113222
crossref_primary_10_1007_s12626_022_00127_7
crossref_primary_10_1109_TCE_2024_3376672
crossref_primary_10_1007_s10479_020_03905_0
crossref_primary_10_1016_j_eswa_2021_116236
crossref_primary_10_1007_s10668_024_04997_5
crossref_primary_10_1016_j_ins_2020_02_021
crossref_primary_10_1016_j_ejor_2021_05_035
crossref_primary_10_1109_JIOT_2023_3247726
crossref_primary_10_1109_ACCESS_2024_3402092
crossref_primary_10_1016_j_jretconser_2024_103854
crossref_primary_10_1177_23197145211062687
crossref_primary_10_1016_j_jbusres_2024_115159
crossref_primary_10_1016_j_eswa_2023_120223
crossref_primary_10_1007_s10639_024_13113_z
crossref_primary_10_1007_s11277_021_09427_7
crossref_primary_10_1016_j_indmarman_2024_12_005
crossref_primary_10_1109_ACCESS_2024_3437648
crossref_primary_10_1080_16522354_2024_2343638
crossref_primary_10_1007_s10479_025_06516_9
crossref_primary_10_1016_j_eswa_2018_04_003
crossref_primary_10_1016_j_knosys_2021_106845
crossref_primary_10_1016_j_ejor_2021_04_021
crossref_primary_10_1016_j_techfore_2024_123499
crossref_primary_10_1080_0144929X_2024_2370432
crossref_primary_10_1080_19361610_2022_2067459
crossref_primary_10_32628_IJSRST52411140
crossref_primary_10_1007_s00291_024_00755_1
crossref_primary_10_1016_j_ejor_2024_09_011
crossref_primary_10_1016_j_eswa_2023_120354
crossref_primary_10_3390_fi14030094
crossref_primary_10_1007_s11831_024_10088_5
crossref_primary_10_3390_math11051137
crossref_primary_10_3390_life13030691
crossref_primary_10_1002_nml_21652
crossref_primary_10_1016_j_seps_2021_101146
crossref_primary_10_1155_2023_7690322
crossref_primary_10_1016_j_ijhydene_2019_02_108
crossref_primary_10_1016_j_ijinfomgt_2018_10_005
crossref_primary_10_1371_journal_pone_0258627
crossref_primary_10_1080_09540091_2022_2083584
crossref_primary_10_1108_JCM_12_2019_3540
crossref_primary_10_1007_s10462_024_10759_6
crossref_primary_10_3390_agronomy13041079
crossref_primary_10_1002_for_2827
crossref_primary_10_1080_15567036_2023_2202622
crossref_primary_10_3390_smartcities7030048
crossref_primary_10_1007_s10479_023_05259_9
crossref_primary_10_1007_s42947_024_00489_x
crossref_primary_10_32604_cmc_2022_025442
crossref_primary_10_1016_j_eswa_2020_113553
crossref_primary_10_2337_dc22_2290
crossref_primary_10_1002_for_2960
crossref_primary_10_1016_j_dajour_2023_100171
crossref_primary_10_1007_s10479_025_06577_w
crossref_primary_10_1016_j_iheduc_2022_100867
crossref_primary_10_1016_j_indmarman_2021_10_001
crossref_primary_10_1016_j_jbusres_2024_114872
crossref_primary_10_1007_s42947_022_00237_z
crossref_primary_10_1016_j_techfore_2021_121275
crossref_primary_10_1016_j_engappai_2024_109531
crossref_primary_10_1016_j_jbusres_2025_115349
crossref_primary_10_1145_3450287
crossref_primary_10_5812_semj_120140
crossref_primary_10_1016_j_sciaf_2023_e02054
crossref_primary_10_3390_app8060915
crossref_primary_10_3390_jtaer17020024
crossref_primary_10_1016_j_ejor_2022_06_060
crossref_primary_10_1007_s11235_020_00727_0
crossref_primary_10_1016_j_indmarman_2022_09_023
crossref_primary_10_1016_j_renene_2024_120440
crossref_primary_10_1016_j_ijinfomgt_2018_08_015
crossref_primary_10_1002_widm_1571
crossref_primary_10_1108_RJTA_10_2021_0125
crossref_primary_10_1007_s10479_022_04526_5
crossref_primary_10_3390_systems11070325
crossref_primary_10_1016_j_desal_2023_116992
crossref_primary_10_1007_s10489_021_02942_x
crossref_primary_10_1007_s12652_021_03413_4
crossref_primary_10_1108_JIMA_04_2021_0125
crossref_primary_10_1016_j_ijforecast_2019_03_029
crossref_primary_10_1109_ACCESS_2022_3215682
crossref_primary_10_1016_j_techfore_2024_123217
crossref_primary_10_1016_j_datak_2022_102100
crossref_primary_10_1016_j_cie_2020_106476
crossref_primary_10_1109_ACCESS_2019_2904236
crossref_primary_10_1016_j_ejor_2018_07_009
crossref_primary_10_2478_amns_2023_2_01390
crossref_primary_10_1515_eng_2020_0029
crossref_primary_10_1371_journal_pone_0278095
crossref_primary_10_1007_s40622_020_00261_7
crossref_primary_10_1016_j_jocs_2022_101940
crossref_primary_10_1007_s10570_020_02991_4
crossref_primary_10_1111_exsy_12384
crossref_primary_10_1016_j_procs_2020_03_187
crossref_primary_10_3390_su13095279
crossref_primary_10_1016_j_pdpdt_2021_102199
crossref_primary_10_1007_s43684_024_00078_6
crossref_primary_10_56093_ijas_v90i6_104786
crossref_primary_10_3390_technologies11060167
crossref_primary_10_1007_s41109_022_00524_5
crossref_primary_10_1016_j_procs_2022_01_169
crossref_primary_10_1016_j_ejor_2023_06_032
crossref_primary_10_1108_OIR_02_2020_0048
crossref_primary_10_7717_peerj_cs_854
crossref_primary_10_38124_ijisrt_25jun1816
crossref_primary_10_1002_cpe_6627
crossref_primary_10_1016_j_eswa_2023_120494
crossref_primary_10_1016_j_ijpe_2019_04_018
Cites_doi 10.1023/A:1009700419189
10.1007/s10994-005-0466-3
10.1509/jmkg.64.3.65.18028
10.1108/02652329910254037
10.1108/03090561311324264
10.1214/aoms/1177731944
10.1016/j.dss.2011.01.013
10.1016/j.ejor.2006.04.051
10.1016/j.eswa.2007.05.043
10.1016/j.dss.2016.11.007
10.1509/jm.10.0209
10.1109/72.846740
10.1016/j.ins.2009.12.010
10.1509/jmkg.67.4.30.18685
10.1016/j.dss.2015.02.007
10.1509/jmkg.67.1.77.18589
10.1016/j.ejor.2012.06.040
10.1016/j.eswa.2006.09.038
10.32614/CRAN.package.LLM
10.1016/j.patcog.2005.02.010
10.1109/3477.990871
10.1016/j.asoc.2015.05.058
10.1016/j.eswa.2010.07.091
10.1214/aos/1016218223
10.1109/TNNLS.2012.2200299
10.1108/02652329610113144
10.1016/S0148-2963(98)00060-5
10.1016/j.ejor.2011.09.031
10.1162/neco.1991.3.1.79
10.1016/j.ejor.2017.02.037
10.1177/002224379202900205
10.1016/j.ejor.2015.05.030
10.1016/S0957-4174(02)00030-1
10.1016/j.ejor.2014.01.004
10.1016/j.eswa.2012.01.014
10.1016/j.eswa.2010.08.023
10.1016/j.ejor.2008.06.027
10.1055/s-0038-1634196
10.1509/jmkg.2005.69.4.210
10.1023/A:1010933404324
10.1016/0167-4870(96)00002-5
10.1016/S0957-4174(03)00133-7
10.1016/j.eswa.2012.07.006
10.1016/j.eswa.2005.09.080
10.1016/j.ejor.2008.12.017
10.1287/mnsc.48.9.1143.172
10.1287/mnsc.49.3.312.12739
10.1177/002224299505900206
10.1162/089976698300017197
10.1016/j.ejor.2012.01.044
10.1016/j.proeng.2016.01.310
10.1016/j.eswa.2015.06.054
10.1016/j.jbusres.2012.12.008
10.1109/TNN.2010.2080319
10.1504/IJDATS.2008.020020
10.1509/jmkr.43.2.276
10.1145/1656274.1656278
10.1509/jmkr.43.2.204
10.1016/j.dss.2005.10.003
10.1148/radiology.143.1.7063747
10.1016/j.eswa.2008.05.027
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
BXJBU
DOI 10.1016/j.ejor.2018.02.009
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Statistics
EISSN 1872-6860
EndPage 772
ExternalDocumentID oai:HAL:hal-01741661v1
10_1016_j_ejor_2018_02_009
S0377221718301243
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
1XC
BXJBU
ID FETCH-LOGICAL-c465t-ab80957d6b20b28a6655e8335b51bda0bb789ebcb097cc80874f0fa1bea0ac233
ISICitedReferencesCount 298
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432502600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Tue Oct 14 20:12:56 EDT 2025
Tue Nov 18 22:03:46 EST 2025
Sat Nov 29 07:21:48 EST 2025
Fri Feb 23 02:45:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords OR in marketing
Customer churn prediction
Logit leaf model
Predictive analytics
Hybrid algorithm
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c465t-ab80957d6b20b28a6655e8335b51bda0bb789ebcb097cc80874f0fa1bea0ac233
ORCID 0000-0003-1346-9425
0000-0002-4872-9007
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_01741661v1
crossref_citationtrail_10_1016_j_ejor_2018_02_009
crossref_primary_10_1016_j_ejor_2018_02_009
elsevier_sciencedirect_doi_10_1016_j_ejor_2018_02_009
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationTitle European journal of operational research
PublicationYear 2018
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Giacinto, Roli (bib0030) 2000; vol 1857
Jacobs, Jordan, Nowlan, Hinton (bib0039) 1991; 3
Anderson, Sweeney, Williams, Freeman, Shoesmith (bib0001) 2010
Bucklin, Gupta (bib0008) 1992; 29
Coussement, Van den Poel (bib0017) 2008; 34
Kuncheva (bib0046) 2014
Lessman, Voß (bib0050) 2009; 199
Hanley, McNeil (bib0035) 1982; 143
Kuncheva (bib0044) 2000; 1
Gustafsson, Johnson, Roos (bib0032) 2005; 69
Shaffer, Zhang (bib0067) 2002; 48
Colgate, Stewart, Kinsella (bib0013) 1996; 14
De Bock, Van den Poel (bib0019) 2012; 39
Lessman, Baesens, Seow, Thomas (bib0049) 2015; 247
Athanassopoulos (bib0002) 2000; 47
Ling, Li (bib0053) 1998
Cohen (bib0012) 1995
Chen, Fan, Sun (bib0011) 2012; 223
Coussement, De Bock (bib0014) 2013; 66
Seret, Verbraken, Versailles, Baesens (bib0068) 2012; 220
Verhoef (bib0074) 2003; 67
Lemmens, Croux (bib0048) 2006; 43
Fu, Robles-Kelly, Zhou (bib0027) 2010; 21
Dietterich (bib0022) 1998; 10
Friedman (bib0025) 1940; 11
Zhu, Chen, Xing (bib0078) 2011
Martens, Baesens, Van Gestel, Vanthienen (bib0056) 2007; 183
Blattberg, Kim, Neslin (bib0006) 2010
Neslin, Gupta, Kamakura, Lu, Mason (bib0060) 2006; 43
James, Witten, Hastie, Tibshirani (bib0040) 2014
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib0033) 2009; 11
Baesens, Setiono, Mues, Vanthienen (bib0003) 2003; 49
Fawcett, Provost (bib0023) 1997; 1–3
Demšar (bib0020) 2006; 7
Maldonado, Flores, Verbraken, Baesens, Weber (bib0054) 2015; 35
Pyle (bib0063) 1999
Reinartz, Kumar (bib0065) 2003; 67
Glady, Baesens, Croux (bib0031) 2009; 197
Thomas, Edelman, Crook (bib0070) 2002
Yuksel, Wilson, Gader (bib0076) 2012; 23
Kuncheva (bib0045) 2002; 32
Li, Weng, Shao, Guo (bib0051) 2016; 137
Lima, Mues, Baesens (bib0052) 2011; 38
Martens, Vanthienen, Verbeke, Baesens (bib0057) 2011; 51
Ballings, Van den Poel (bib0005) 2012; 39
Hwang, Jung, Suh (bib0038) 2004; 26
Wei, Chiu (bib0075) 2002; 23
Rasmussen, Ghahramani (bib0064) 2002; 14
Tang, Thomas, Fletcher, Pan, Marshall (bib0069) 2014; 296
Verbeke, Dejaeger, Martens, Hur, Baesens (bib0072) 2012; 218
De Caigny, A., Coussement, K., & De Bock, K.W., 2018. LLM: Logit Leaf Model Classifier for Binary Classification, R Package version 1.0.0.
Keaveney (bib0042) 1995; 59
García, Fernández, Luengo, Herrera (bib0029) 2010; 180
Frank, Witten (bib0024) 1998
Hansen, Samuelson, Sallis (bib0034) 2013; 47
Torkzadeh, Chang, Hansen (bib0071) 2006; 42
Maldonado, Pérez, Bravo (bib0055) 2017; 261
Nitzan, Libai (bib0061) 2011; 75
Moeyersoms, Martens (bib0058) 2015; 72
Burez, Van den Poel (bib0009) 2009; 36
Landwehr, Hall, Eibe (bib0047) 2005; 59
Johnson, Nader, Fornell (bib0041) 1996; 17
Kumar, Ravi (bib0043) 2008; 1
Mozer, Wolniewicz, Grimes, Johnson, Kaushansky (bib0059) 2000; 11
Coussement, Harrigan, Benoit (bib0015) 2015; 42
Dawes, Swailes (bib0018) 1999; 17
Ganesh, Arnold, Reynolds (bib0028) 2000; 64
Breiman (bib0007) 2001; 45
Didaci, Giacinto, Roli, Marcialis (bib0021) 2005; 38
Hung, Yen, Wang (bib0037) 2006; 31
Zhu, Chen, Xing (bib0077) 2011
Chan (bib0010) 2008; 34
Coussement, Lessman, Verstraeten (bib0016) 2017; 95
Verbeke, Martens, Mues, Baesens (bib0073) 2011; 38
Pazzani, Mani, Shankle (bib0062) 2001; 40
Friedman, Hastie, Tibshirani (bib0026) 2000; 38
Ballings (10.1016/j.ejor.2018.02.009_bib0005) 2012; 39
Cohen (10.1016/j.ejor.2018.02.009_bib0012) 1995
Hung (10.1016/j.ejor.2018.02.009_bib0037) 2006; 31
Lessman (10.1016/j.ejor.2018.02.009_bib0049) 2015; 247
Tang (10.1016/j.ejor.2018.02.009_bib0069) 2014; 296
Nitzan (10.1016/j.ejor.2018.02.009_bib0061) 2011; 75
Yuksel (10.1016/j.ejor.2018.02.009_bib0076) 2012; 23
James (10.1016/j.ejor.2018.02.009_bib0040) 2014
Keaveney (10.1016/j.ejor.2018.02.009_bib0042) 1995; 59
Kuncheva (10.1016/j.ejor.2018.02.009_bib0046) 2014
Rasmussen (10.1016/j.ejor.2018.02.009_bib0064) 2002; 14
Hall (10.1016/j.ejor.2018.02.009_bib0033) 2009; 11
Lessman (10.1016/j.ejor.2018.02.009_bib0050) 2009; 199
Verbeke (10.1016/j.ejor.2018.02.009_bib0072) 2012; 218
Hansen (10.1016/j.ejor.2018.02.009_bib0034) 2013; 47
Wei (10.1016/j.ejor.2018.02.009_bib0075) 2002; 23
Kuncheva (10.1016/j.ejor.2018.02.009_bib0045) 2002; 32
Pyle (10.1016/j.ejor.2018.02.009_bib0063) 1999
Frank (10.1016/j.ejor.2018.02.009_bib0024) 1998
Neslin (10.1016/j.ejor.2018.02.009_bib0060) 2006; 43
Dawes (10.1016/j.ejor.2018.02.009_bib0018) 1999; 17
Breiman (10.1016/j.ejor.2018.02.009_bib0007) 2001; 45
García (10.1016/j.ejor.2018.02.009_bib0029) 2010; 180
10.1016/j.ejor.2018.02.009_bib0158
Zhu (10.1016/j.ejor.2018.02.009_bib0078) 2011
Bucklin (10.1016/j.ejor.2018.02.009_bib0008) 1992; 29
Li (10.1016/j.ejor.2018.02.009_bib0051) 2016; 137
Kuncheva (10.1016/j.ejor.2018.02.009_bib0044) 2000; 1
Ling (10.1016/j.ejor.2018.02.009_bib0053) 1998
Fu (10.1016/j.ejor.2018.02.009_bib0027) 2010; 21
Johnson (10.1016/j.ejor.2018.02.009_bib0041) 1996; 17
Seret (10.1016/j.ejor.2018.02.009_bib0068) 2012; 220
Reinartz (10.1016/j.ejor.2018.02.009_bib0065) 2003; 67
Didaci (10.1016/j.ejor.2018.02.009_bib0021) 2005; 38
Chen (10.1016/j.ejor.2018.02.009_bib0011) 2012; 223
De Bock (10.1016/j.ejor.2018.02.009_bib0019) 2012; 39
Dietterich (10.1016/j.ejor.2018.02.009_bib0022) 1998; 10
Zhu (10.1016/j.ejor.2018.02.009_bib0077) 2011
Lima (10.1016/j.ejor.2018.02.009_bib0052) 2011; 38
Verbeke (10.1016/j.ejor.2018.02.009_bib0073) 2011; 38
Hanley (10.1016/j.ejor.2018.02.009_bib0035) 1982; 143
Maldonado (10.1016/j.ejor.2018.02.009_bib0055) 2017; 261
Thomas (10.1016/j.ejor.2018.02.009_bib0070) 2002
Jacobs (10.1016/j.ejor.2018.02.009_bib0039) 1991; 3
Fawcett (10.1016/j.ejor.2018.02.009_bib0023) 1997; 1–3
Shaffer (10.1016/j.ejor.2018.02.009_bib0067) 2002; 48
Coussement (10.1016/j.ejor.2018.02.009_bib0017) 2008; 34
Hwang (10.1016/j.ejor.2018.02.009_bib0038) 2004; 26
Coussement (10.1016/j.ejor.2018.02.009_bib0014) 2013; 66
Moeyersoms (10.1016/j.ejor.2018.02.009_bib0058) 2015; 72
Pazzani (10.1016/j.ejor.2018.02.009_bib0062) 2001; 40
Coussement (10.1016/j.ejor.2018.02.009_bib0015) 2015; 42
Glady (10.1016/j.ejor.2018.02.009_bib0031) 2009; 197
Anderson (10.1016/j.ejor.2018.02.009_bib0001) 2010
Gustafsson (10.1016/j.ejor.2018.02.009_bib0032) 2005; 69
Demšar (10.1016/j.ejor.2018.02.009_bib0020) 2006; 7
Maldonado (10.1016/j.ejor.2018.02.009_bib0054) 2015; 35
Landwehr (10.1016/j.ejor.2018.02.009_bib0047) 2005; 59
Mozer (10.1016/j.ejor.2018.02.009_bib0059) 2000; 11
Athanassopoulos (10.1016/j.ejor.2018.02.009_bib0002) 2000; 47
Martens (10.1016/j.ejor.2018.02.009_bib0057) 2011; 51
Torkzadeh (10.1016/j.ejor.2018.02.009_bib0071) 2006; 42
Blattberg (10.1016/j.ejor.2018.02.009_bib0006) 2010
Colgate (10.1016/j.ejor.2018.02.009_bib0013) 1996; 14
Kumar (10.1016/j.ejor.2018.02.009_bib0043) 2008; 1
Coussement (10.1016/j.ejor.2018.02.009_bib0016) 2017; 95
Ganesh (10.1016/j.ejor.2018.02.009_bib0028) 2000; 64
Friedman (10.1016/j.ejor.2018.02.009_bib0025) 1940; 11
Verhoef (10.1016/j.ejor.2018.02.009_bib0074) 2003; 67
Baesens (10.1016/j.ejor.2018.02.009_bib0003) 2003; 49
Burez (10.1016/j.ejor.2018.02.009_bib0009) 2009; 36
Friedman (10.1016/j.ejor.2018.02.009_bib0026) 2000; 38
Martens (10.1016/j.ejor.2018.02.009_bib0056) 2007; 183
Giacinto (10.1016/j.ejor.2018.02.009_bib0030) 2000; vol 1857
Chan (10.1016/j.ejor.2018.02.009_bib0010) 2008; 34
Lemmens (10.1016/j.ejor.2018.02.009_bib0048) 2006; 43
References_xml – volume: 47
  start-page: 191
  year: 2000
  end-page: 207
  ident: bib0002
  article-title: Customer satisfaction cues to support market segmentation and explain switching behavior
  publication-title: Journal of Business Research
– volume: 223
  start-page: 461
  year: 2012
  end-page: 472
  ident: bib0011
  article-title: A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data
  publication-title: European Journal of Operational Research
– volume: 11
  start-page: 690
  year: 2000
  end-page: 696
  ident: bib0059
  article-title: Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry
  publication-title: IEEE Transactions on Neural Networks
– volume: 14
  start-page: 577
  year: 2002
  end-page: 584
  ident: bib0064
  article-title: Infinite mixtures of Gaussian process experts
  publication-title: Advances of Neural Information Processing Systems
– volume: 220
  start-page: 199
  year: 2012
  end-page: 209
  ident: bib0068
  article-title: A new SOM-based method for profile generation: Theory and application in direct marketing
  publication-title: European Journal of Operational Research
– year: 2014
  ident: bib0040
  article-title: An introduction to statistical learning: With applications in R
– volume: vol 1857
  year: 2000
  ident: bib0030
  article-title: Dynamic classifier selection
  publication-title: Multiple Classifier Systems. MCS 2000. Lecture Notes in Computer Science
– year: 2002
  ident: bib0070
  article-title: Credit scoring and its applications
– volume: 23
  start-page: 103
  year: 2002
  end-page: 112
  ident: bib0075
  article-title: Turning telecommunications call details to churn prediction:A data mining approach
  publication-title: Expert Systems with Applications
– year: 2010
  ident: bib0006
  article-title: Database marketing: Analyzing and managing customers
– volume: 43
  start-page: 276
  year: 2006
  end-page: 286
  ident: bib0048
  article-title: Bagging and boosting classification trees to predict churn
  publication-title: Journal of Marketing Research
– volume: 1–3
  start-page: 291
  year: 1997
  end-page: 316
  ident: bib0023
  article-title: Adaptive fraud detection
  publication-title: Data Mining and Knowledge Discovery
– year: 1999
  ident: bib0063
  publication-title: Data Preparation for Data Mining
– volume: 39
  start-page: 6816
  year: 2012
  end-page: 6826
  ident: bib0019
  article-title: Reconciling performance and interpretability in customer churn prediction using ensemble learning based on generalized additive models
  publication-title: Expert Systems with Applications
– start-page: 230
  year: 2014
  end-page: 246
  ident: bib0046
  article-title: Classifier selection
  publication-title: Combining pattern classifiers
– start-page: 617
  year: 2011
  end-page: 624
  ident: bib0078
  article-title: Infinite SVM: A Dirichlet process mixture of large-margin kernel machines
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– volume: 199
  start-page: 520
  year: 2009
  end-page: 530
  ident: bib0050
  article-title: A reference model for customer-centric data mining with support vector machines
  publication-title: European Journal of Operational Research
– volume: 32
  start-page: 146
  year: 2002
  end-page: 156
  ident: bib0045
  article-title: Switching between selection and fusion in combining classifiers: An experiment
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
– volume: 67
  start-page: 1
  year: 2003
  ident: bib0065
  article-title: The impact of customer relationship characteristics on profitable lifetime duration
  publication-title: Journal of Marketing
– volume: 95
  start-page: 27
  year: 2017
  end-page: 36
  ident: bib0016
  article-title: A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication
  publication-title: Decision Support Systems
– volume: 49
  start-page: 312
  year: 2003
  end-page: 329
  ident: bib0003
  article-title: Using neural network rule extraction and decision tables for credit-risk evaluation
  publication-title: Management Science
– volume: 1
  start-page: 4
  year: 2008
  end-page: 28
  ident: bib0043
  article-title: Predicting credit card customer churn in banks using data mining
  publication-title: International Journal of Data Analysis Techniques and Strategies
– volume: 34
  start-page: 2754
  year: 2008
  end-page: 2762
  ident: bib0010
  article-title: Intelligent value-based customer segmentation method for campaign management: A case study of automobile retailer
  publication-title: Expert Systems with Applications
– start-page: 115
  year: 1995
  end-page: 123
  ident: bib0012
  article-title: Fast effective rule induction
  publication-title: Proceedings of the twelfth international conference on machine learning
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0020
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 180
  start-page: 2044
  year: 2010
  end-page: 2064
  ident: bib0029
  article-title: Advanced non parametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
  publication-title: Information Sciences
– volume: 43
  start-page: 204
  year: 2006
  end-page: 211
  ident: bib0060
  article-title: Detection defection: Measuring and understanding the predictive accuracy of customer churn models
  publication-title: Journal of Marketing Research
– start-page: 144
  year: 1998
  end-page: 151
  ident: bib0024
  article-title: Generating accurate rule sets without global optimization
  publication-title: Proceedings of the fifteenth international conference on machine learning
– volume: 42
  start-page: 8403
  year: 2015
  end-page: 8412
  ident: bib0015
  article-title: Improving direct mail targeting through customer response modeling
  publication-title: Expert Systems with Applications
– volume: 21
  start-page: 1963
  year: 2010
  end-page: 1975
  ident: bib0027
  article-title: Mixing linear SVMs for nonlinear classification
  publication-title: IEEE Transactions on Neural Networks
– volume: 11
  start-page: 86
  year: 1940
  end-page: 92
  ident: bib0025
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Annals of Mathematical Statistics
– volume: 59
  start-page: 71
  year: 1995
  end-page: 82
  ident: bib0042
  article-title: Customer switching behavior in service industries: An exploratory study
  publication-title: Journal of Marketing
– volume: 3
  start-page: 79
  year: 1991
  end-page: 87
  ident: bib0039
  article-title: Adaptive mixtures of local experts
  publication-title: Neural Computation
– volume: 137
  start-page: 729
  year: 2016
  end-page: 737
  ident: bib0051
  article-title: Cluster-based logistic regression model for holiday travel mode choice
  publication-title: Procedia Engineering
– volume: 47
  start-page: 1157
  year: 2013
  end-page: 1176
  ident: bib0034
  article-title: The moderating effects of need for cognition on drivers of customer loyalty
  publication-title: European Journal of Marketing
– volume: 38
  start-page: 337
  year: 2000
  end-page: 374
  ident: bib0026
  article-title: Additive logistic regression: A statistical view of boosting
  publication-title: The Annals of Statistic
– volume: 40
  start-page: 380
  year: 2001
  end-page: 385
  ident: bib0062
  article-title: Acceptance by medical experts of rules generated by machine learning
  publication-title: Methods of Information in Medicine
– volume: 17
  start-page: 163
  year: 1996
  end-page: 182
  ident: bib0041
  article-title: Expectations, perceived performance and customer satisfaction for a complex service: The case of bank loans
  publication-title: Journal of Economic Psychology
– volume: 197
  start-page: 402
  year: 2009
  end-page: 411
  ident: bib0031
  article-title: Modeling churn using customer lifetime value
  publication-title: European Journal of Operational Research
– volume: 59
  start-page: 161
  year: 2005
  end-page: 205
  ident: bib0047
  article-title: Logistic model trees
  publication-title: Machine Learning
– volume: 29
  start-page: 201
  year: 1992
  end-page: 215
  ident: bib0008
  article-title: Brand choice, purchase incidence, and segmentation: An integrated modeling approach
  publication-title: Journal of Marketing Research
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: bib0033
  article-title: The WEKA data mining software: An update
  publication-title: SIGKDD Explorations Newsletter
– volume: 34
  start-page: 313
  year: 2008
  end-page: 327
  ident: bib0017
  article-title: Churn prediction in subscription services: An application of support vector machines while comparing two parameter selection techniques
  publication-title: Expert Systems with Applications
– volume: 261
  start-page: 656
  year: 2017
  end-page: 665
  ident: bib0055
  article-title: Cost-based feature selection for support vector machines: An application in credit scoring
  publication-title: European Journal of Operational Research
– volume: 38
  start-page: 2188
  year: 2005
  end-page: 2191
  ident: bib0021
  article-title: A study on the performances of dynamic classifier selection based on local accuracy estimation
  publication-title: Pattern Recognition
– volume: 38
  start-page: 2354
  year: 2011
  end-page: 2364
  ident: bib0073
  article-title: Building comprehensible customer churn prediction models with advanced rule induction techniques
  publication-title: Expert Systems with Application
– volume: 35
  start-page: 740
  year: 2015
  end-page: 748
  ident: bib0054
  article-title: Profit-based feature selection using support vector machines – General framework and an application for customer retention
  publication-title: Applied Soft Computing
– volume: 10
  start-page: 1895
  year: 1998
  end-page: 1923
  ident: bib0022
  article-title: Approximate statistical tests for comparing supervised classification learning algorithms
  publication-title: Neural Computation
– volume: 75
  start-page: 24
  year: 2011
  end-page: 38
  ident: bib0061
  article-title: Social effects on customer retention
  publication-title: Journal of Marketing
– volume: 67
  start-page: 30
  year: 2003
  end-page: 45
  ident: bib0074
  article-title: Understanding the Effects of customer relationship management efforts on customer retention and customer share development
  publication-title: Journal of Marketing
– year: 2010
  ident: bib0001
  article-title: Statistics for business and economics
– volume: 14
  start-page: 23
  year: 1996
  end-page: 29
  ident: bib0013
  article-title: Customer defection: A study of the student market in Ireland
  publication-title: International Journal of Bank Marketing
– volume: 39
  start-page: 13517
  year: 2012
  end-page: 13522
  ident: bib0005
  article-title: Customer event history for churn prediction: How long is long enough
  publication-title: Expert Systems with Applications
– volume: 17
  start-page: 36
  year: 1999
  end-page: 43
  ident: bib0018
  article-title: Retention sans frontieres: Issues for financial service retailers
  publication-title: International Journal of Bank Marketing
– volume: 48
  start-page: 1143
  year: 2002
  end-page: 1160
  ident: bib0067
  article-title: Competitive one-to-one promotions
– volume: 1
  start-page: 185
  year: 2000
  end-page: 188
  ident: bib0044
  article-title: Clustering-and-selection model for classifier combination.
  publication-title: Proceedings of the fourth international conference on knowledge-based intelligent engineering systems and allied technologies
– volume: 247
  start-page: 124
  year: 2015
  end-page: 136
  ident: bib0049
  article-title: Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research
  publication-title: European Journal of Operational Research
– volume: 69
  start-page: 210
  year: 2005
  end-page: 218
  ident: bib0032
  article-title: The effects of customer satisfaction, relationship commitment dimension, and triggers on customer retention
  publication-title: Journal of Marketing
– volume: 36
  start-page: 4626
  year: 2009
  end-page: 4636
  ident: bib0009
  article-title: Handling class imbalance in customer churn prediction
  publication-title: Expert Systems with Applications
– volume: 64
  start-page: 65
  year: 2000
  end-page: 87
  ident: bib0028
  article-title: Understanding the customer base of service providers: An examination of the differences between switchers and stayers
  publication-title: Journal of Marketing
– volume: 183
  start-page: 1466
  year: 2007
  end-page: 1476
  ident: bib0056
  article-title: Comprehensible credit scoring models using rule extraction from support vector machines
  publication-title: European Journal of Operational Research
– start-page: 1620
  year: 2011
  end-page: 1628
  ident: bib0077
  article-title: Infinite latent SVM for classification and multi-task learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0007
  article-title: Random forests
  publication-title: Machine Learning
– volume: 51
  start-page: 782
  year: 2011
  end-page: 793
  ident: bib0057
  article-title: Performance of classification models from a user perspective
  publication-title: Decision Support Systems
– volume: 31
  start-page: 515
  year: 2006
  end-page: 524
  ident: bib0037
  article-title: Applying data mining to telecom churn management
  publication-title: Expert Systems with Applications
– volume: 296
  start-page: 624
  year: 2014
  end-page: 633
  ident: bib0069
  article-title: Assessing the impact of derived behavior information on customer attrition in the financial service industry
  publication-title: European Journal of Operational Research
– year: 1998
  ident: bib0053
  article-title: Data mining for direct marketing problems and solutions
  publication-title: Proceedings of the fourth international conference on knowledge discovery and data mining (KDD-98)
– volume: 23
  start-page: 1177
  year: 2012
  end-page: 1193
  ident: bib0076
  article-title: Twenty years of mixture of experts
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: De Caigny, A., Coussement, K., & De Bock, K.W., 2018. LLM: Logit Leaf Model Classifier for Binary Classification, R Package version 1.0.0.
– volume: 143
  start-page: 29
  year: 1982
  end-page: 36
  ident: bib0035
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
– volume: 42
  start-page: 2
  year: 2006
  ident: bib0071
  article-title: Identifying issues in customer relationship management at Merck-Medco
  publication-title: Decision Support Systems
– volume: 72
  start-page: 72
  year: 2015
  end-page: 81
  ident: bib0058
  article-title: Including high-cardinality attributes in predictive models: A case study in churn prediction in the energy sector
  publication-title: Decision Support Systems
– volume: 66
  start-page: 1629
  year: 2013
  end-page: 1636
  ident: bib0014
  article-title: Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning
  publication-title: Journal of Business Research
– volume: 218
  start-page: 211
  year: 2012
  end-page: 229
  ident: bib0072
  article-title: New insights into churn prediction in the telecommunication sector: A profit driven data mining approach
  publication-title: European Journal of Operational Research
– volume: 26
  start-page: 181
  year: 2004
  end-page: 188
  ident: bib0038
  article-title: An LTV model and customer segmentation based on customer value: A case study on the wireless telecommunication industry
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 975
  year: 2011
  end-page: 982
  ident: bib0052
  article-title: Monitoring and back testing churn models
  publication-title: Expert Systems with Application
– volume: 1–3
  start-page: 291
  year: 1997
  ident: 10.1016/j.ejor.2018.02.009_bib0023
  article-title: Adaptive fraud detection
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1009700419189
– volume: 59
  start-page: 161
  issue: 1
  year: 2005
  ident: 10.1016/j.ejor.2018.02.009_bib0047
  article-title: Logistic model trees
  publication-title: Machine Learning
  doi: 10.1007/s10994-005-0466-3
– volume: 64
  start-page: 65
  issue: 3
  year: 2000
  ident: 10.1016/j.ejor.2018.02.009_bib0028
  article-title: Understanding the customer base of service providers: An examination of the differences between switchers and stayers
  publication-title: Journal of Marketing
  doi: 10.1509/jmkg.64.3.65.18028
– volume: 17
  start-page: 36
  issue: 1
  year: 1999
  ident: 10.1016/j.ejor.2018.02.009_bib0018
  article-title: Retention sans frontieres: Issues for financial service retailers
  publication-title: International Journal of Bank Marketing
  doi: 10.1108/02652329910254037
– start-page: 1620
  year: 2011
  ident: 10.1016/j.ejor.2018.02.009_bib0077
  article-title: Infinite latent SVM for classification and multi-task learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 47
  start-page: 1157
  issue: 8
  year: 2013
  ident: 10.1016/j.ejor.2018.02.009_bib0034
  article-title: The moderating effects of need for cognition on drivers of customer loyalty
  publication-title: European Journal of Marketing
  doi: 10.1108/03090561311324264
– volume: 11
  start-page: 86
  year: 1940
  ident: 10.1016/j.ejor.2018.02.009_bib0025
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177731944
– volume: 51
  start-page: 782
  issue: 4
  year: 2011
  ident: 10.1016/j.ejor.2018.02.009_bib0057
  article-title: Performance of classification models from a user perspective
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2011.01.013
– volume: 183
  start-page: 1466
  year: 2007
  ident: 10.1016/j.ejor.2018.02.009_bib0056
  article-title: Comprehensible credit scoring models using rule extraction from support vector machines
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.04.051
– volume: 34
  start-page: 2754
  year: 2008
  ident: 10.1016/j.ejor.2018.02.009_bib0010
  article-title: Intelligent value-based customer segmentation method for campaign management: A case study of automobile retailer
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.05.043
– volume: 95
  start-page: 27
  year: 2017
  ident: 10.1016/j.ejor.2018.02.009_bib0016
  article-title: A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2016.11.007
– volume: 75
  start-page: 24
  year: 2011
  ident: 10.1016/j.ejor.2018.02.009_bib0061
  article-title: Social effects on customer retention
  publication-title: Journal of Marketing
  doi: 10.1509/jm.10.0209
– start-page: 230
  year: 2014
  ident: 10.1016/j.ejor.2018.02.009_bib0046
  article-title: Classifier selection
– volume: 11
  start-page: 690
  issue: 3
  year: 2000
  ident: 10.1016/j.ejor.2018.02.009_bib0059
  article-title: Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.846740
– volume: 180
  start-page: 2044
  year: 2010
  ident: 10.1016/j.ejor.2018.02.009_bib0029
  article-title: Advanced non parametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.12.010
– volume: 67
  start-page: 30
  issue: 4
  year: 2003
  ident: 10.1016/j.ejor.2018.02.009_bib0074
  article-title: Understanding the Effects of customer relationship management efforts on customer retention and customer share development
  publication-title: Journal of Marketing
  doi: 10.1509/jmkg.67.4.30.18685
– volume: 72
  start-page: 72
  year: 2015
  ident: 10.1016/j.ejor.2018.02.009_bib0058
  article-title: Including high-cardinality attributes in predictive models: A case study in churn prediction in the energy sector
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2015.02.007
– year: 2014
  ident: 10.1016/j.ejor.2018.02.009_bib0040
– volume: 67
  start-page: 1
  year: 2003
  ident: 10.1016/j.ejor.2018.02.009_bib0065
  article-title: The impact of customer relationship characteristics on profitable lifetime duration
  publication-title: Journal of Marketing
  doi: 10.1509/jmkg.67.1.77.18589
– volume: 223
  start-page: 461
  issue: 2
  year: 2012
  ident: 10.1016/j.ejor.2018.02.009_bib0011
  article-title: A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.06.040
– volume: 34
  start-page: 313
  year: 2008
  ident: 10.1016/j.ejor.2018.02.009_bib0017
  article-title: Churn prediction in subscription services: An application of support vector machines while comparing two parameter selection techniques
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2006.09.038
– ident: 10.1016/j.ejor.2018.02.009_bib0158
  doi: 10.32614/CRAN.package.LLM
– year: 1999
  ident: 10.1016/j.ejor.2018.02.009_bib0063
– volume: 38
  start-page: 2188
  issue: 11
  year: 2005
  ident: 10.1016/j.ejor.2018.02.009_bib0021
  article-title: A study on the performances of dynamic classifier selection based on local accuracy estimation
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2005.02.010
– volume: 32
  start-page: 146
  issue: 2
  year: 2002
  ident: 10.1016/j.ejor.2018.02.009_bib0045
  article-title: Switching between selection and fusion in combining classifiers: An experiment
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/3477.990871
– volume: 35
  start-page: 740
  year: 2015
  ident: 10.1016/j.ejor.2018.02.009_bib0054
  article-title: Profit-based feature selection using support vector machines – General framework and an application for customer retention
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.05.058
– volume: 38
  start-page: 975
  year: 2011
  ident: 10.1016/j.ejor.2018.02.009_bib0052
  article-title: Monitoring and back testing churn models
  publication-title: Expert Systems with Application
  doi: 10.1016/j.eswa.2010.07.091
– year: 1998
  ident: 10.1016/j.ejor.2018.02.009_bib0053
  article-title: Data mining for direct marketing problems and solutions
– year: 2010
  ident: 10.1016/j.ejor.2018.02.009_bib0006
– volume: 38
  start-page: 337
  issue: 2
  year: 2000
  ident: 10.1016/j.ejor.2018.02.009_bib0026
  article-title: Additive logistic regression: A statistical view of boosting
  publication-title: The Annals of Statistic
  doi: 10.1214/aos/1016218223
– volume: 23
  start-page: 1177
  issue: 8
  year: 2012
  ident: 10.1016/j.ejor.2018.02.009_bib0076
  article-title: Twenty years of mixture of experts
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2012.2200299
– volume: vol 1857
  year: 2000
  ident: 10.1016/j.ejor.2018.02.009_bib0030
  article-title: Dynamic classifier selection
– start-page: 617
  year: 2011
  ident: 10.1016/j.ejor.2018.02.009_bib0078
  article-title: Infinite SVM: A Dirichlet process mixture of large-margin kernel machines
– volume: 14
  start-page: 23
  issue: 3
  year: 1996
  ident: 10.1016/j.ejor.2018.02.009_bib0013
  article-title: Customer defection: A study of the student market in Ireland
  publication-title: International Journal of Bank Marketing
  doi: 10.1108/02652329610113144
– volume: 47
  start-page: 191
  issue: 3
  year: 2000
  ident: 10.1016/j.ejor.2018.02.009_bib0002
  article-title: Customer satisfaction cues to support market segmentation and explain switching behavior
  publication-title: Journal of Business Research
  doi: 10.1016/S0148-2963(98)00060-5
– volume: 218
  start-page: 211
  issue: 1
  year: 2012
  ident: 10.1016/j.ejor.2018.02.009_bib0072
  article-title: New insights into churn prediction in the telecommunication sector: A profit driven data mining approach
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2011.09.031
– volume: 3
  start-page: 79
  issue: 1
  year: 1991
  ident: 10.1016/j.ejor.2018.02.009_bib0039
  article-title: Adaptive mixtures of local experts
  publication-title: Neural Computation
  doi: 10.1162/neco.1991.3.1.79
– volume: 261
  start-page: 656
  issue: 2
  year: 2017
  ident: 10.1016/j.ejor.2018.02.009_bib0055
  article-title: Cost-based feature selection for support vector machines: An application in credit scoring
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.02.037
– volume: 29
  start-page: 201
  issue: 2
  year: 1992
  ident: 10.1016/j.ejor.2018.02.009_bib0008
  article-title: Brand choice, purchase incidence, and segmentation: An integrated modeling approach
  publication-title: Journal of Marketing Research
  doi: 10.1177/002224379202900205
– volume: 247
  start-page: 124
  year: 2015
  ident: 10.1016/j.ejor.2018.02.009_bib0049
  article-title: Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.05.030
– volume: 14
  start-page: 577
  year: 2002
  ident: 10.1016/j.ejor.2018.02.009_bib0064
  article-title: Infinite mixtures of Gaussian process experts
  publication-title: Advances of Neural Information Processing Systems
– year: 2010
  ident: 10.1016/j.ejor.2018.02.009_bib0001
– volume: 23
  start-page: 103
  year: 2002
  ident: 10.1016/j.ejor.2018.02.009_bib0075
  article-title: Turning telecommunications call details to churn prediction:A data mining approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(02)00030-1
– volume: 296
  start-page: 624
  year: 2014
  ident: 10.1016/j.ejor.2018.02.009_bib0069
  article-title: Assessing the impact of derived behavior information on customer attrition in the financial service industry
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.01.004
– volume: 39
  start-page: 6816
  year: 2012
  ident: 10.1016/j.ejor.2018.02.009_bib0019
  article-title: Reconciling performance and interpretability in customer churn prediction using ensemble learning based on generalized additive models
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.01.014
– start-page: 115
  year: 1995
  ident: 10.1016/j.ejor.2018.02.009_bib0012
  article-title: Fast effective rule induction
– volume: 38
  start-page: 2354
  year: 2011
  ident: 10.1016/j.ejor.2018.02.009_bib0073
  article-title: Building comprehensible customer churn prediction models with advanced rule induction techniques
  publication-title: Expert Systems with Application
  doi: 10.1016/j.eswa.2010.08.023
– start-page: 144
  year: 1998
  ident: 10.1016/j.ejor.2018.02.009_bib0024
  article-title: Generating accurate rule sets without global optimization
– volume: 197
  start-page: 402
  year: 2009
  ident: 10.1016/j.ejor.2018.02.009_bib0031
  article-title: Modeling churn using customer lifetime value
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2008.06.027
– volume: 40
  start-page: 380
  year: 2001
  ident: 10.1016/j.ejor.2018.02.009_bib0062
  article-title: Acceptance by medical experts of rules generated by machine learning
  publication-title: Methods of Information in Medicine
  doi: 10.1055/s-0038-1634196
– volume: 69
  start-page: 210
  issue: 4
  year: 2005
  ident: 10.1016/j.ejor.2018.02.009_bib0032
  article-title: The effects of customer satisfaction, relationship commitment dimension, and triggers on customer retention
  publication-title: Journal of Marketing
  doi: 10.1509/jmkg.2005.69.4.210
– volume: 1
  start-page: 185
  year: 2000
  ident: 10.1016/j.ejor.2018.02.009_bib0044
  article-title: Clustering-and-selection model for classifier combination.
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.ejor.2018.02.009_bib0007
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 17
  start-page: 163
  issue: 2
  year: 1996
  ident: 10.1016/j.ejor.2018.02.009_bib0041
  article-title: Expectations, perceived performance and customer satisfaction for a complex service: The case of bank loans
  publication-title: Journal of Economic Psychology
  doi: 10.1016/0167-4870(96)00002-5
– volume: 26
  start-page: 181
  year: 2004
  ident: 10.1016/j.ejor.2018.02.009_bib0038
  article-title: An LTV model and customer segmentation based on customer value: A case study on the wireless telecommunication industry
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(03)00133-7
– volume: 39
  start-page: 13517
  year: 2012
  ident: 10.1016/j.ejor.2018.02.009_bib0005
  article-title: Customer event history for churn prediction: How long is long enough
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.07.006
– volume: 31
  start-page: 515
  year: 2006
  ident: 10.1016/j.ejor.2018.02.009_bib0037
  article-title: Applying data mining to telecom churn management
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.09.080
– volume: 199
  start-page: 520
  year: 2009
  ident: 10.1016/j.ejor.2018.02.009_bib0050
  article-title: A reference model for customer-centric data mining with support vector machines
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2008.12.017
– volume: 48
  start-page: 1143
  issue: 9
  year: 2002
  ident: 10.1016/j.ejor.2018.02.009_bib0067
  article-title: Competitive one-to-one promotions
  publication-title: Management Science,
  doi: 10.1287/mnsc.48.9.1143.172
– year: 2002
  ident: 10.1016/j.ejor.2018.02.009_bib0070
– volume: 49
  start-page: 312
  year: 2003
  ident: 10.1016/j.ejor.2018.02.009_bib0003
  article-title: Using neural network rule extraction and decision tables for credit-risk evaluation
  publication-title: Management Science
  doi: 10.1287/mnsc.49.3.312.12739
– volume: 59
  start-page: 71
  year: 1995
  ident: 10.1016/j.ejor.2018.02.009_bib0042
  article-title: Customer switching behavior in service industries: An exploratory study
  publication-title: Journal of Marketing
  doi: 10.1177/002224299505900206
– volume: 10
  start-page: 1895
  issue: 7
  year: 1998
  ident: 10.1016/j.ejor.2018.02.009_bib0022
  article-title: Approximate statistical tests for comparing supervised classification learning algorithms
  publication-title: Neural Computation
  doi: 10.1162/089976698300017197
– volume: 220
  start-page: 199
  year: 2012
  ident: 10.1016/j.ejor.2018.02.009_bib0068
  article-title: A new SOM-based method for profile generation: Theory and application in direct marketing
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.01.044
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.ejor.2018.02.009_bib0020
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 137
  start-page: 729
  year: 2016
  ident: 10.1016/j.ejor.2018.02.009_bib0051
  article-title: Cluster-based logistic regression model for holiday travel mode choice
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2016.01.310
– volume: 42
  start-page: 8403
  issue: 22
  year: 2015
  ident: 10.1016/j.ejor.2018.02.009_bib0015
  article-title: Improving direct mail targeting through customer response modeling
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.06.054
– volume: 66
  start-page: 1629
  issue: 9
  year: 2013
  ident: 10.1016/j.ejor.2018.02.009_bib0014
  article-title: Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2012.12.008
– volume: 21
  start-page: 1963
  issue: 12
  year: 2010
  ident: 10.1016/j.ejor.2018.02.009_bib0027
  article-title: Mixing linear SVMs for nonlinear classification
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2010.2080319
– volume: 1
  start-page: 4
  issue: 1
  year: 2008
  ident: 10.1016/j.ejor.2018.02.009_bib0043
  article-title: Predicting credit card customer churn in banks using data mining
  publication-title: International Journal of Data Analysis Techniques and Strategies
  doi: 10.1504/IJDATS.2008.020020
– volume: 43
  start-page: 276
  issue: 2
  year: 2006
  ident: 10.1016/j.ejor.2018.02.009_bib0048
  article-title: Bagging and boosting classification trees to predict churn
  publication-title: Journal of Marketing Research
  doi: 10.1509/jmkr.43.2.276
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.ejor.2018.02.009_bib0033
  article-title: The WEKA data mining software: An update
  publication-title: SIGKDD Explorations Newsletter
  doi: 10.1145/1656274.1656278
– volume: 43
  start-page: 204
  issue: 2
  year: 2006
  ident: 10.1016/j.ejor.2018.02.009_bib0060
  article-title: Detection defection: Measuring and understanding the predictive accuracy of customer churn models
  publication-title: Journal of Marketing Research
  doi: 10.1509/jmkr.43.2.204
– volume: 42
  start-page: 2
  year: 2006
  ident: 10.1016/j.ejor.2018.02.009_bib0071
  article-title: Identifying issues in customer relationship management at Merck-Medco
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2005.10.003
– volume: 143
  start-page: 29
  issue: 1
  year: 1982
  ident: 10.1016/j.ejor.2018.02.009_bib0035
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 36
  start-page: 4626
  issue: 3
  year: 2009
  ident: 10.1016/j.ejor.2018.02.009_bib0009
  article-title: Handling class imbalance in customer churn prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.05.027
SSID ssj0001515
Score 2.6610308
Snippet •A new hybrid algorithm (logit leaf model) is proposed for customer churn prediction.•It is designed to perform well in terms of both accuracy and...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 760
SubjectTerms Business administration
Customer churn prediction
Humanities and Social Sciences
Hybrid algorithm
Logit leaf model
Machine Learning
Methods and statistics
OR in marketing
Predictive analytics
Statistics
Title A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees
URI https://dx.doi.org/10.1016/j.ejor.2018.02.009
https://audencia.hal.science/hal-01741661
Volume 269
WOSCitedRecordID wos000432502600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGFiE4sAxFlE0W4halSpzFzjGUogJVxaGIuUWx48yiaVJlFpW_xK_kOV5mKLSiBy6RZY2dZL4vfs_Pb0HoHa0qQJpzn9Qp9-NIHRJyEfkxiAMJOzmSln2e2RN6espGo-zrYPDTxsKs57Rp2OVldvFfoYY-AFuFzt4CbjcpdEAbQIcrwA7XfwI-V1XCvckPFYrlCaUcK28gjXM5H7fddDk5770LxQo0v3MJjQnMq9IFVFNdOVzJtkqdI-gAoT7N81h7zGrn5cqU5lGO6sYL8W_mfaPqQkdnjY4mu5CzQn-Q3mE5HTc92HnXtO5UpF0tFtp4aRejtt4a9d6s5F9a2XjfD7bNFyFz_lkubAvoQYgO4LRLMtHlWwz3yNYCS3X1ASOrqS7784cY0BaJ2YGctSrna8h0XtZsI_TsQf8VWeg8FK3z26xQcxRqjiIgRR8ruktokoEQ2M0_HY0-O7mvVMP-zMq8kAnR0t6EV5_kOjXozsQa9HsF5-wxemh2JjjXjHqCBrIZons2MGKIHtkCINjIgyF6sJXN8ila5BiYhzXz8O_Mw455GJiHLfNwzzy8YR7umYehYZmHN8zDwDxsmYd75u2hbx-Pzg6PfVPTwxdxmiz9kjNQ6mmVchJwwso0TRKpAv94EvKqhFWDskxywYOMCsECRuM6qMuQyzIoBYmiZ2inaRv5HOG0jqgA7Z1FlYjjKspgLwCTxwnldQliaR-F9i8uhEl4r-quzIvrwd1HnhtzodO93PjrxCJXGIVVK6IFEPHGcW8BZncDleH9OD8pVB8ISNgipeE6fHGrR3mJ7m--rldoZ9mt5Gt0V6yX00X3xlD1F-MzyC8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+hybrid+classification+algorithm+for+customer+churn+prediction+based+on+logistic+regression+and+decision+trees&rft.jtitle=European+journal+of+operational+research&rft.au=De+Caigny%2C+Arno&rft.au=Coussement%2C+Kristof&rft.au=De+Bock%2C+Koen+W.&rft.date=2018-09-01&rft.issn=0377-2217&rft.volume=269&rft.issue=2&rft.spage=760&rft.epage=772&rft_id=info:doi/10.1016%2Fj.ejor.2018.02.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2018_02_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon