A predictive and prescriptive analytical framework for scheduling language medical interpreters

Although most hospitals in the United States provide medical services in English, a significant percentage of the U.S. population uses languages other than English. Mostly, the interpreting department in a hospital finds interpreters for limited English proficiency (LEP) patients, including inpatien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Health care management science Jg. 24; H. 3; S. 531 - 550
Hauptverfasser: Ahmed, Abdulaziz, Frohn, Elizabeth
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2021
Springer Nature B.V
Schlagworte:
ISSN:1386-9620, 1572-9389, 1572-9389
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Although most hospitals in the United States provide medical services in English, a significant percentage of the U.S. population uses languages other than English. Mostly, the interpreting department in a hospital finds interpreters for limited English proficiency (LEP) patients, including inpatients, outpatients, and emergency patients. The department employs full-time and part-time interpreters to cover the demand of LEP patients. Two main challenges are facing an interpreting department: 1) there are many interpreting agencies in the market in which part-time interpreters can be chosen from. Selecting a part-time interpreter with the best service quality and lowest hourly rate makes the scheduling process difficult. 2) the arrival of LEP emergency patients must be predicted to make sure that LEP emergency patients are covered and to avoid any service delay. This paper proposes a framework for scheduling full-time and part-time interpreters for medical centers. Firstly, we develop a prediction model to forecast LEP patient demand in the emergency department (ED). Secondly, we develop a multi-objective integer programming (MOIP) model to assign interpreters to inpatient, outpatient, and emergency LEP patients. The goal is to minimize the total interpreting cost, maximize the quality of the interpreting service, and maximize the utilization of full-time interpreters. Various experiments are conducted to show the robustness and practicality of the proposed framework. The schedules generated by our model are compared with the schedules generated by the interpreting department of a partner hospital. The results show that our model produces better schedules with respect to all three objectives.
AbstractList Although most hospitals in the United States provide medical services in English, a significant percentage of the U.S. population uses languages other than English. Mostly, the interpreting department in a hospital finds interpreters for limited English proficiency (LEP) patients, including inpatients, outpatients, and emergency patients. The department employs full-time and part-time interpreters to cover the demand of LEP patients. Two main challenges are facing an interpreting department: 1) there are many interpreting agencies in the market in which part-time interpreters can be chosen from. Selecting a part-time interpreter with the best service quality and lowest hourly rate makes the scheduling process difficult. 2) the arrival of LEP emergency patients must be predicted to make sure that LEP emergency patients are covered and to avoid any service delay. This paper proposes a framework for scheduling full-time and part-time interpreters for medical centers. Firstly, we develop a prediction model to forecast LEP patient demand in the emergency department (ED). Secondly, we develop a multi-objective integer programming (MOIP) model to assign interpreters to inpatient, outpatient, and emergency LEP patients. The goal is to minimize the total interpreting cost, maximize the quality of the interpreting service, and maximize the utilization of full-time interpreters. Various experiments are conducted to show the robustness and practicality of the proposed framework. The schedules generated by our model are compared with the schedules generated by the interpreting department of a partner hospital. The results show that our model produces better schedules with respect to all three objectives.
Although most hospitals in the United States provide medical services in English, a significant percentage of the U.S. population uses languages other than English. Mostly, the interpreting department in a hospital finds interpreters for limited English proficiency (LEP) patients, including inpatients, outpatients, and emergency patients. The department employs full-time and part-time interpreters to cover the demand of LEP patients. Two main challenges are facing an interpreting department: 1) there are many interpreting agencies in the market in which part-time interpreters can be chosen from. Selecting a part-time interpreter with the best service quality and lowest hourly rate makes the scheduling process difficult. 2) the arrival of LEP emergency patients must be predicted to make sure that LEP emergency patients are covered and to avoid any service delay. This paper proposes a framework for scheduling full-time and part-time interpreters for medical centers. Firstly, we develop a prediction model to forecast LEP patient demand in the emergency department (ED). Secondly, we develop a multi-objective integer programming (MOIP) model to assign interpreters to inpatient, outpatient, and emergency LEP patients. The goal is to minimize the total interpreting cost, maximize the quality of the interpreting service, and maximize the utilization of full-time interpreters. Various experiments are conducted to show the robustness and practicality of the proposed framework. The schedules generated by our model are compared with the schedules generated by the interpreting department of a partner hospital. The results show that our model produces better schedules with respect to all three objectives.Although most hospitals in the United States provide medical services in English, a significant percentage of the U.S. population uses languages other than English. Mostly, the interpreting department in a hospital finds interpreters for limited English proficiency (LEP) patients, including inpatients, outpatients, and emergency patients. The department employs full-time and part-time interpreters to cover the demand of LEP patients. Two main challenges are facing an interpreting department: 1) there are many interpreting agencies in the market in which part-time interpreters can be chosen from. Selecting a part-time interpreter with the best service quality and lowest hourly rate makes the scheduling process difficult. 2) the arrival of LEP emergency patients must be predicted to make sure that LEP emergency patients are covered and to avoid any service delay. This paper proposes a framework for scheduling full-time and part-time interpreters for medical centers. Firstly, we develop a prediction model to forecast LEP patient demand in the emergency department (ED). Secondly, we develop a multi-objective integer programming (MOIP) model to assign interpreters to inpatient, outpatient, and emergency LEP patients. The goal is to minimize the total interpreting cost, maximize the quality of the interpreting service, and maximize the utilization of full-time interpreters. Various experiments are conducted to show the robustness and practicality of the proposed framework. The schedules generated by our model are compared with the schedules generated by the interpreting department of a partner hospital. The results show that our model produces better schedules with respect to all three objectives.
Author Ahmed, Abdulaziz
Frohn, Elizabeth
Author_xml – sequence: 1
  givenname: Abdulaziz
  surname: Ahmed
  fullname: Ahmed, Abdulaziz
  email: aaahmed@umn.edu
  organization: Business Department, University of Minnesota
– sequence: 2
  givenname: Elizabeth
  surname: Frohn
  fullname: Frohn, Elizabeth
  organization: Cloudbreak Healthath
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33629192$$D View this record in MEDLINE/PubMed
BookMark eNp9kctOwzAQRS1URMvjB1igSGzYBPyInXhZIV5SJTawtqaOU1zSpNgJKH_PlBYhsejG9ljnXs3MPSajpm0cIeeMXjNK85vIaM51SjlNqZZCpcMBmTCZ81SLQo_wLQqVasXpmBzHuKSUSqrYERkLobhmmk-ImSbr4EpvO__pEmjKTRlt8OvdB9RD5y3USRVg5b7a8J5UbUiifXNlX_tmkdTQLHpYuGS18UHSN50LaINnPCWHFdTRne3uE_J6f_dy-5jOnh-ebqez1GZKdinkBcsVFIKxfA7CKV1CaS2IShVZ7pRQFktZCV3kgtOKIejmGRRaSAkKxAm52vquQ_vRu9iZlY_W1dica_toeKZFlmncF6KX_9Bl2wccFCkpNW5SUIrUxY7q5ziYWQe_gjCY39UhUGwBG9oYg6uM9R10vm26AL42jJpNSmabksGUzE9KZkAp_yf9dd8rEltRRLhZuPDX9h7VNwyJpb8
CitedBy_id crossref_primary_10_1186_s12939_024_02246_9
crossref_primary_10_1007_s10729_025_09711_z
crossref_primary_10_1080_01605682_2025_2519996
Cites_doi 10.1016/j.eswa.2008.11.049
10.1186/1471-2105-15-276
10.15171/ijhpm.2013.53
10.1016/j.compag.2015.05.001
10.1016/j.cie.2010.05.005
10.1097/00006565-200208000-00010
10.1613/jair.953
10.1016/j.ejor.2005.12.015
10.1155/2017/6563498
10.1080/07408170701244687
10.1007/978-1-4419-9326-7
10.1007/978-3-642-27242-4_4
10.1080/02286203.2007.11442393
10.1016/j.cie.2016.02.023
10.1136/bmjopen-2017-018628
10.3390/a7010166
10.12968/bjhc.2019.0067
10.1016/j.ijpe.2018.11.024
10.1377/hlthaff.24.2.435
10.1016/j.ejor.2011.10.046
10.3390/a10040114
10.1108/K-10-2018-0520
10.1016/j.ejor.2012.11.029
10.1007/s00170-012-4119-y
10.1155/2019/4359719
10.5582/bst.2017.01035
10.1093/intqhc/mzl069
10.2105/AJPH.94.5.866
10.1542/peds.2005-0521
10.1007/s10729-008-9087-2
10.1007/978-981-13-1280-9
10.1353/book6604
10.1109/SSCI.2017.8280850
10.5430/jha.v6n2p21
10.1016/j.ejor.2005.10.008
10.1016/j.ejor.2009.01.042
10.1007/s10951-010-0188-7
10.1177/1043659617747523
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
– notice: 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.
DBID AAYXX
CITATION
NPM
3V.
7WY
7WZ
7X7
7XB
87Z
88C
88E
8AO
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
BENPR
BEZIV
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
K60
K6~
K9.
L.-
M0C
M0S
M0T
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
Q9U
7X8
DOI 10.1007/s10729-020-09536-y
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
Business Premium Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Collection (ProQuest)
ProQuest Health & Medical Collection
Healthcare Administration Database (ProQuest)
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: M0T
  name: Healthcare Administration Database (ProQuest)
  url: https://search.proquest.com/healthmanagement
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Business
EISSN 1572-9389
EndPage 550
ExternalDocumentID 33629192
10_1007_s10729_020_09536_y
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
-57
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
07C
0R~
0VY
199
1N0
1SB
203
29I
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
44B
53G
5GY
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FI
8FJ
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBO
EBS
EBU
EHE
EIOEI
EJD
EMB
EMOBN
EOH
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6~
KDC
KOV
LAK
LLZTM
M0C
M0T
M1P
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OAM
OVD
P2P
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOS
QWB
R89
R9I
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S27
S3B
SAP
SBE
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
ZL0
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
NPM
7XB
8FK
K9.
L.-
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c465t-a78176a83117ba3e69dadcca3f6847e636cdcc5f3987320f1311eb4a89355a6a3
IEDL.DBID 7X7
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621244500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1386-9620
1572-9389
IngestDate Thu Oct 02 05:02:32 EDT 2025
Wed Nov 05 01:14:00 EST 2025
Wed Feb 19 02:28:55 EST 2025
Sat Nov 29 04:41:22 EST 2025
Tue Nov 18 22:16:40 EST 2025
Fri Feb 21 02:47:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Operations research
Multi-objective integer programming
Healthcare service
Interpreting service
Predictive modeling
Scheduling
Prescriptive modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-a78176a83117ba3e69dadcca3f6847e636cdcc5f3987320f1311eb4a89355a6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 33629192
PQID 2559953300
PQPubID 25887
PageCount 20
ParticipantIDs proquest_miscellaneous_2493449729
proquest_journals_2559953300
pubmed_primary_33629192
crossref_citationtrail_10_1007_s10729_020_09536_y
crossref_primary_10_1007_s10729_020_09536_y
springer_journals_10_1007_s10729_020_09536_y
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Netherlands
– name: New york
PublicationTitle Health care management science
PublicationTitleAbbrev Health Care Manag Sci
PublicationTitleAlternate Health Care Manag Sci
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Shahnazari-ShahrezaeiPTavakkoli-MoghaddamRKazemipoorHSolving a new fuzzy multi-objective model for a multi-skilled manpower scheduling problem by particle swarm optimization and elite tabu searchInt J Adv Manuf Technol2013649–121517154010.1007/s00170-012-4119-y
“Immigrants in Minnesota | American Immigration Council.” [Online]. Available: https://www.americanimmigrationcouncil.org/research/immigrants-in-minnesota. Accessed 03 Feb 2020
KoelemanPMBhulaiSvan MeersbergenMOptimal patient and personnel scheduling policies for care-at-home service facilitiesEur J Oper Res2012219355756310.1016/j.ejor.2011.10.046
AlfaresHKA simulation approach for stochastic employee days-off schedulingInt J Model Simul200727191510.1080/02286203.2007.11442393
ChawlaNVBowyerKWHallLOKegelmeyerWPSMOTE: synthetic minority over-sampling techniqueJ Artif Intell Res20021632135710.1613/jair.953
JacobsEAShepardDSSuayaJAStoneE-LOvercoming language barriers in health care: costs and benefits of interpreter servicesAm J Public Health200494586686910.2105/AJPH.94.5.866
ChuSCGenerating, scheduling and rostering of shift crew-duties: applications at the Hong Kong international airportEur J Oper Res200717731764177810.1016/j.ejor.2005.10.008
Rajeswari M, Amudhavel J, Pothula S, Dhavachelvan P (2017) Directed bee colony optimization algorithm to solve the nurse rostering problem. Comput Intell Neurosci, https://www.hindawi.com/journals/cin/2017/6563498/abs/. Accessed 26 Nov. 2018
QuanGGreenwoodGWLiuDHuSSearching for multiobjective preventive maintenance schedules: combining preferences with evolutionary algorithmsEur J Oper Res200717731969198410.1016/j.ejor.2005.12.015
JakobWBlumeCPareto optimization or cascaded weighted sum: a comparison of conceptsAlgorithms20147116618510.3390/a7010166
WilsonCPatient safety and healthcare quality: the case for language accessInt J Health Policy Manag20131425125310.15171/ijhpm.2013.53
Kalita S, Biswas M (2018) Recent developments in machine learning and data analytics. Springer, New York
BagheriMDevinAGIzanlooAAn application of stochastic programming method for nurse scheduling problem in real word hospitalComput Ind Eng20169619220010.1016/j.cie.2016.02.023
AvramidisANChanWGendreauML’ecuyerPPisacaneOOptimizing daily agent scheduling in a multiskill call centerEur J Oper Res2010200382283210.1016/j.ejor.2009.01.042
De GranoMLMedeirosDJEitelDAccommodating individual preferences in nurse scheduling via auctions and optimizationHealth Care Manag Sci200812322824210.1007/s10729-008-9087-2
TatsumiKYamashikiYCanales TorresMATaipeCLRCrop classification of upland fields using random forest of time-series Landsat 7 ETM+ dataComput Electron Agric201511517117910.1016/j.compag.2015.05.001
HelberSHenkenKProfit-oriented shift scheduling of inbound contact centers with skills-based routing, impatient customers, and retrialsSpectr2010321109134
Ahmed A, Hamasha MM (2018) Scheduling language interpreters at a medical center: An integer programming approach. IISE Annual Conference and Expo, Orlando, FL, pp 312–317
KuLFloresGPay now or pay later: providing interpreter services in health careHealth Aff200524243544410.1377/hlthaff.24.2.435
ArazOMOlsonDRamirez-NafarrateAPredictive analytics for hospital admissions from the emergency department using triage informationInt J Prod Econ201920819920710.1016/j.ijpe.2018.11.024
CohenALRivaraFMarcuseEKMcPhillipsHDavisRAre language barriers associated with serious medical events in hospitalized pediatric patients?Pediatrics2005116357557910.1542/peds.2005-0521
Van den BerghJBeliënJDe BrueckerPDemeulemeesterEDe BoeckLPersonnel scheduling: a literature reviewEur J Oper Res2013226336738510.1016/j.ejor.2012.11.029
Kadri F, Harrou F, Sun Y (2017) A multivariate time series approach to forecasting daily attendances at hospital emergency department. IEEE symposium series on computational intelligence (SSCI), Honolulu, HI, p 1–6. https://doi.org/10.1109/SSCI.2017.8280850
“Title VI of the Civil Rights Act of 1964,” 25-May-2016. [Online]. Available: https://www.justice.gov/crt/fcs/titlevi. Accessed 20 Feb 2020
Nas S, Koyuncu M (2019) Emergency department capacity planning: a recurrent neural network and simulation approach. Comput Math Method M. https://doi.org/10.1155/2019/4359719
ChiamTCHooverSMosbyDCaplanRDolmanSGbadeboAJacksonEMeeting demand: a multi-method approach to optimizing hospital language interpreter staffingJ Hosp Admin2017622110.5430/jha.v6n2p21
TyralisHPapacharalampousGVariable selection in time series forecasting using random forestsAlgorithms201710411410.3390/a10040114
Awadallah MA, Khader AT, Al-Betar MA, Bolaji AL (2011) Nurse rostering using modified harmony search algorithm. International Conference on Swarm, Evolutionary, and Memetic Computing. Springer, Berlin, Heidelberg, pp 27–37
U. S. C. Bureau “American FactFinder.” [Online]. Available: https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml. Accessed 12 Feb 2020
DiviCKossRGSchmaltzSPLoebJMLanguage proficiency and adverse events in US hospitals: a pilot studyInt J Qual Health Care2007192606710.1093/intqhc/mzl069
Yousefi M, Yousefi M, Fathi M, Fogliatto FS (2019) Patient visit forecasting in an emergency department using a deep neural network approach. Kybernetes 49(9):2335–2348
Wu H, Cai Y, Wu Y, Zhong R, Li Q, Zheng J, Lin D, Li Y (2017) Time series analysis of weekly influenza-like illness rate using a one-year period of factors in random forest regression. Biosci Trends 11(3) 292–296
Khaidem L, Saha S, Dey SR (2016) Predicting the direction of stock market prices using random forest. ArXiv Prepr. ArXiv160500003
MitchellSOSullivanMDunningIPuLP: a linear programming toolkit for python2011AucklandThe University of Auckland
FloresGRabke-VeraniJPineWSabharwalAThe importance of cultural and linguistic issues in the emergency care of childrenPediatr Emerg Care200218427128410.1097/00006565-200208000-00010
ZhangCMaYEnsemble machine learning: methods and applications2012New YorkSpringer10.1007/978-1-4419-9326-7
PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJScikit-learn: machine mearning in PythonJ Mach Learn Res20111228252830
RongAMonthly tour scheduling models with mixed skills considering weekend off requirementsComput Ind Eng201059233434310.1016/j.cie.2010.05.005
YangK-KWebsterSRubenRAAn evaluation of worker cross training and flexible workdays in job shopsIIE Trans200739773574610.1080/07408170701244687
TsaiC-CLiSHA two-stage modeling with genetic algorithms for the nurse scheduling problemExpert Syst Appl20093659506951210.1016/j.eswa.2008.11.049
Gaiba F (1998) The origins of simultaneous interpretation: the Nuremberg trial. University of Ottawa Press, Ottawa, Canada
KaneMJPriceNScotchMRabinowitzPComparison of ARIMA and random Forest time series models for prediction of avian influenza H5N1 outbreaksBMC Bioinforma201415127610.1186/1471-2105-15-276
ChoudhuryAUrenaEForecasting hourly emergency department arrival using time series analysisBr J Healthc Manag2020261344310.12968/bjhc.2019.0067
EstradaRDMessiasDKHLanguage co-construction and collaboration in interpreter-mediated primary care encounters with hispanic adultsJ Transcult Nurs201729649850510.1177/1043659617747523
BreimanLBagging predictorsMach Learn1996242123140
Wilson-StronksAGalvezEExploring cultural and linguistic services in the nation’s hospitals: a report of findings2007Oakbrook TerraceThe Joint Commission
McInroy B (2016) Smote and merformance measures for machine learning applied to real-time bidding. Doctoral dissertation, Trent university
JuangW-CHuangS-JHuangF-DChengP-WWannS-RApplication of time series analysis in modelling and forecasting emergency department visits in a medical Centre in southern TaiwanBMJ Open201771110.1136/bmjopen-2017-018628
CordeauJ-FLaporteGPasinFRopkeSScheduling technicians and tasks in a telecommunications companyJ Sched201013439340910.1007/s10951-010-0188-7
L Breiman (9536_CR42) 1996; 24
S Mitchell (9536_CR49) 2011
9536_CR25
TC Chiam (9536_CR38) 2017; 6
9536_CR28
9536_CR29
9536_CR7
A Wilson-Stronks (9536_CR8) 2007
SC Chu (9536_CR13) 2007; 177
L Ku (9536_CR6) 2005; 24
ML De Grano (9536_CR12) 2008; 12
RD Estrada (9536_CR36) 2017; 29
NV Chawla (9536_CR45) 2002; 16
9536_CR2
9536_CR1
AL Cohen (9536_CR3) 2005; 116
F Pedregosa (9536_CR48) 2011; 12
J Van den Bergh (9536_CR11) 2013; 226
C Wilson (9536_CR9) 2013; 1
K-K Yang (9536_CR19) 2007; 39
9536_CR15
G Flores (9536_CR5) 2002; 18
PM Koeleman (9536_CR14) 2012; 219
9536_CR10
MJ Kane (9536_CR33) 2014; 15
H Tyralis (9536_CR40) 2017; 10
K Tatsumi (9536_CR35) 2015; 115
P Shahnazari-Shahrezaei (9536_CR16) 2013; 64
S Helber (9536_CR18) 2010; 32
C Zhang (9536_CR43) 2012
9536_CR46
A Choudhury (9536_CR30) 2020; 26
W Jakob (9536_CR47) 2014; 7
A Rong (9536_CR20) 2010; 59
OM Araz (9536_CR27) 2019; 208
C Divi (9536_CR4) 2007; 19
9536_CR41
9536_CR44
9536_CR34
W-C Juang (9536_CR32) 2017; 7
9536_CR39
AN Avramidis (9536_CR17) 2010; 200
9536_CR31
C-C Tsai (9536_CR21) 2009; 36
G Quan (9536_CR22) 2007; 177
EA Jacobs (9536_CR37) 2004; 94
HK Alfares (9536_CR24) 2007; 27
J-F Cordeau (9536_CR26) 2010; 13
M Bagheri (9536_CR23) 2016; 96
References_xml – reference: Van den BerghJBeliënJDe BrueckerPDemeulemeesterEDe BoeckLPersonnel scheduling: a literature reviewEur J Oper Res2013226336738510.1016/j.ejor.2012.11.029
– reference: KaneMJPriceNScotchMRabinowitzPComparison of ARIMA and random Forest time series models for prediction of avian influenza H5N1 outbreaksBMC Bioinforma201415127610.1186/1471-2105-15-276
– reference: U. S. C. Bureau “American FactFinder.” [Online]. Available: https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml. Accessed 12 Feb 2020
– reference: KoelemanPMBhulaiSvan MeersbergenMOptimal patient and personnel scheduling policies for care-at-home service facilitiesEur J Oper Res2012219355756310.1016/j.ejor.2011.10.046
– reference: RongAMonthly tour scheduling models with mixed skills considering weekend off requirementsComput Ind Eng201059233434310.1016/j.cie.2010.05.005
– reference: MitchellSOSullivanMDunningIPuLP: a linear programming toolkit for python2011AucklandThe University of Auckland
– reference: AvramidisANChanWGendreauML’ecuyerPPisacaneOOptimizing daily agent scheduling in a multiskill call centerEur J Oper Res2010200382283210.1016/j.ejor.2009.01.042
– reference: Kadri F, Harrou F, Sun Y (2017) A multivariate time series approach to forecasting daily attendances at hospital emergency department. IEEE symposium series on computational intelligence (SSCI), Honolulu, HI, p 1–6. https://doi.org/10.1109/SSCI.2017.8280850
– reference: Wu H, Cai Y, Wu Y, Zhong R, Li Q, Zheng J, Lin D, Li Y (2017) Time series analysis of weekly influenza-like illness rate using a one-year period of factors in random forest regression. Biosci Trends 11(3) 292–296
– reference: TatsumiKYamashikiYCanales TorresMATaipeCLRCrop classification of upland fields using random forest of time-series Landsat 7 ETM+ dataComput Electron Agric201511517117910.1016/j.compag.2015.05.001
– reference: FloresGRabke-VeraniJPineWSabharwalAThe importance of cultural and linguistic issues in the emergency care of childrenPediatr Emerg Care200218427128410.1097/00006565-200208000-00010
– reference: Wilson-StronksAGalvezEExploring cultural and linguistic services in the nation’s hospitals: a report of findings2007Oakbrook TerraceThe Joint Commission
– reference: ChiamTCHooverSMosbyDCaplanRDolmanSGbadeboAJacksonEMeeting demand: a multi-method approach to optimizing hospital language interpreter staffingJ Hosp Admin2017622110.5430/jha.v6n2p21
– reference: BreimanLBagging predictorsMach Learn1996242123140
– reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJScikit-learn: machine mearning in PythonJ Mach Learn Res20111228252830
– reference: Shahnazari-ShahrezaeiPTavakkoli-MoghaddamRKazemipoorHSolving a new fuzzy multi-objective model for a multi-skilled manpower scheduling problem by particle swarm optimization and elite tabu searchInt J Adv Manuf Technol2013649–121517154010.1007/s00170-012-4119-y
– reference: Gaiba F (1998) The origins of simultaneous interpretation: the Nuremberg trial. University of Ottawa Press, Ottawa, Canada
– reference: TsaiC-CLiSHA two-stage modeling with genetic algorithms for the nurse scheduling problemExpert Syst Appl20093659506951210.1016/j.eswa.2008.11.049
– reference: TyralisHPapacharalampousGVariable selection in time series forecasting using random forestsAlgorithms201710411410.3390/a10040114
– reference: Kalita S, Biswas M (2018) Recent developments in machine learning and data analytics. Springer, New York
– reference: ChoudhuryAUrenaEForecasting hourly emergency department arrival using time series analysisBr J Healthc Manag2020261344310.12968/bjhc.2019.0067
– reference: Ahmed A, Hamasha MM (2018) Scheduling language interpreters at a medical center: An integer programming approach. IISE Annual Conference and Expo, Orlando, FL, pp 312–317
– reference: YangK-KWebsterSRubenRAAn evaluation of worker cross training and flexible workdays in job shopsIIE Trans200739773574610.1080/07408170701244687
– reference: Khaidem L, Saha S, Dey SR (2016) Predicting the direction of stock market prices using random forest. ArXiv Prepr. ArXiv160500003
– reference: “Title VI of the Civil Rights Act of 1964,” 25-May-2016. [Online]. Available: https://www.justice.gov/crt/fcs/titlevi. Accessed 20 Feb 2020
– reference: “Immigrants in Minnesota | American Immigration Council.” [Online]. Available: https://www.americanimmigrationcouncil.org/research/immigrants-in-minnesota. Accessed 03 Feb 2020
– reference: ChuSCGenerating, scheduling and rostering of shift crew-duties: applications at the Hong Kong international airportEur J Oper Res200717731764177810.1016/j.ejor.2005.10.008
– reference: Yousefi M, Yousefi M, Fathi M, Fogliatto FS (2019) Patient visit forecasting in an emergency department using a deep neural network approach. Kybernetes 49(9):2335–2348
– reference: JakobWBlumeCPareto optimization or cascaded weighted sum: a comparison of conceptsAlgorithms20147116618510.3390/a7010166
– reference: QuanGGreenwoodGWLiuDHuSSearching for multiobjective preventive maintenance schedules: combining preferences with evolutionary algorithmsEur J Oper Res200717731969198410.1016/j.ejor.2005.12.015
– reference: CohenALRivaraFMarcuseEKMcPhillipsHDavisRAre language barriers associated with serious medical events in hospitalized pediatric patients?Pediatrics2005116357557910.1542/peds.2005-0521
– reference: De GranoMLMedeirosDJEitelDAccommodating individual preferences in nurse scheduling via auctions and optimizationHealth Care Manag Sci200812322824210.1007/s10729-008-9087-2
– reference: ZhangCMaYEnsemble machine learning: methods and applications2012New YorkSpringer10.1007/978-1-4419-9326-7
– reference: KuLFloresGPay now or pay later: providing interpreter services in health careHealth Aff200524243544410.1377/hlthaff.24.2.435
– reference: HelberSHenkenKProfit-oriented shift scheduling of inbound contact centers with skills-based routing, impatient customers, and retrialsSpectr2010321109134
– reference: CordeauJ-FLaporteGPasinFRopkeSScheduling technicians and tasks in a telecommunications companyJ Sched201013439340910.1007/s10951-010-0188-7
– reference: ArazOMOlsonDRamirez-NafarrateAPredictive analytics for hospital admissions from the emergency department using triage informationInt J Prod Econ201920819920710.1016/j.ijpe.2018.11.024
– reference: EstradaRDMessiasDKHLanguage co-construction and collaboration in interpreter-mediated primary care encounters with hispanic adultsJ Transcult Nurs201729649850510.1177/1043659617747523
– reference: AlfaresHKA simulation approach for stochastic employee days-off schedulingInt J Model Simul200727191510.1080/02286203.2007.11442393
– reference: ChawlaNVBowyerKWHallLOKegelmeyerWPSMOTE: synthetic minority over-sampling techniqueJ Artif Intell Res20021632135710.1613/jair.953
– reference: Nas S, Koyuncu M (2019) Emergency department capacity planning: a recurrent neural network and simulation approach. Comput Math Method M. https://doi.org/10.1155/2019/4359719
– reference: DiviCKossRGSchmaltzSPLoebJMLanguage proficiency and adverse events in US hospitals: a pilot studyInt J Qual Health Care2007192606710.1093/intqhc/mzl069
– reference: JuangW-CHuangS-JHuangF-DChengP-WWannS-RApplication of time series analysis in modelling and forecasting emergency department visits in a medical Centre in southern TaiwanBMJ Open201771110.1136/bmjopen-2017-018628
– reference: BagheriMDevinAGIzanlooAAn application of stochastic programming method for nurse scheduling problem in real word hospitalComput Ind Eng20169619220010.1016/j.cie.2016.02.023
– reference: JacobsEAShepardDSSuayaJAStoneE-LOvercoming language barriers in health care: costs and benefits of interpreter servicesAm J Public Health200494586686910.2105/AJPH.94.5.866
– reference: McInroy B (2016) Smote and merformance measures for machine learning applied to real-time bidding. Doctoral dissertation, Trent university
– reference: Rajeswari M, Amudhavel J, Pothula S, Dhavachelvan P (2017) Directed bee colony optimization algorithm to solve the nurse rostering problem. Comput Intell Neurosci, https://www.hindawi.com/journals/cin/2017/6563498/abs/. Accessed 26 Nov. 2018
– reference: Awadallah MA, Khader AT, Al-Betar MA, Bolaji AL (2011) Nurse rostering using modified harmony search algorithm. International Conference on Swarm, Evolutionary, and Memetic Computing. Springer, Berlin, Heidelberg, pp 27–37
– reference: WilsonCPatient safety and healthcare quality: the case for language accessInt J Health Policy Manag20131425125310.15171/ijhpm.2013.53
– ident: 9536_CR2
– volume: 36
  start-page: 9506
  issue: 5
  year: 2009
  ident: 9536_CR21
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.11.049
– volume: 12
  start-page: 2825
  year: 2011
  ident: 9536_CR48
  publication-title: J Mach Learn Res
– volume: 15
  start-page: 276
  issue: 1
  year: 2014
  ident: 9536_CR33
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-15-276
– volume: 1
  start-page: 251
  issue: 4
  year: 2013
  ident: 9536_CR9
  publication-title: Int J Health Policy Manag
  doi: 10.15171/ijhpm.2013.53
– volume: 115
  start-page: 171
  year: 2015
  ident: 9536_CR35
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2015.05.001
– volume: 59
  start-page: 334
  issue: 2
  year: 2010
  ident: 9536_CR20
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2010.05.005
– volume: 18
  start-page: 271
  issue: 4
  year: 2002
  ident: 9536_CR5
  publication-title: Pediatr Emerg Care
  doi: 10.1097/00006565-200208000-00010
– volume: 16
  start-page: 321
  year: 2002
  ident: 9536_CR45
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– volume: 177
  start-page: 1969
  issue: 3
  year: 2007
  ident: 9536_CR22
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2005.12.015
– ident: 9536_CR25
  doi: 10.1155/2017/6563498
– volume: 39
  start-page: 735
  issue: 7
  year: 2007
  ident: 9536_CR19
  publication-title: IIE Trans
  doi: 10.1080/07408170701244687
– ident: 9536_CR44
– volume-title: Ensemble machine learning: methods and applications
  year: 2012
  ident: 9536_CR43
  doi: 10.1007/978-1-4419-9326-7
– ident: 9536_CR10
– ident: 9536_CR15
  doi: 10.1007/978-3-642-27242-4_4
– ident: 9536_CR39
– volume: 27
  start-page: 9
  issue: 1
  year: 2007
  ident: 9536_CR24
  publication-title: Int J Model Simul
  doi: 10.1080/02286203.2007.11442393
– ident: 9536_CR41
– volume: 96
  start-page: 192
  year: 2016
  ident: 9536_CR23
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2016.02.023
– volume: 7
  issue: 11
  year: 2017
  ident: 9536_CR32
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-018628
– ident: 9536_CR7
– volume: 7
  start-page: 166
  issue: 1
  year: 2014
  ident: 9536_CR47
  publication-title: Algorithms
  doi: 10.3390/a7010166
– volume: 26
  start-page: 34
  issue: 1
  year: 2020
  ident: 9536_CR30
  publication-title: Br J Healthc Manag
  doi: 10.12968/bjhc.2019.0067
– volume: 208
  start-page: 199
  year: 2019
  ident: 9536_CR27
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2018.11.024
– volume: 24
  start-page: 435
  issue: 2
  year: 2005
  ident: 9536_CR6
  publication-title: Health Aff
  doi: 10.1377/hlthaff.24.2.435
– volume: 219
  start-page: 557
  issue: 3
  year: 2012
  ident: 9536_CR14
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2011.10.046
– volume: 10
  start-page: 114
  issue: 4
  year: 2017
  ident: 9536_CR40
  publication-title: Algorithms
  doi: 10.3390/a10040114
– ident: 9536_CR28
  doi: 10.1108/K-10-2018-0520
– volume: 226
  start-page: 367
  issue: 3
  year: 2013
  ident: 9536_CR11
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2012.11.029
– volume: 64
  start-page: 1517
  issue: 9–12
  year: 2013
  ident: 9536_CR16
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-012-4119-y
– ident: 9536_CR29
  doi: 10.1155/2019/4359719
– ident: 9536_CR34
  doi: 10.5582/bst.2017.01035
– volume: 19
  start-page: 60
  issue: 2
  year: 2007
  ident: 9536_CR4
  publication-title: Int J Qual Health Care
  doi: 10.1093/intqhc/mzl069
– volume: 32
  start-page: 109
  issue: 1
  year: 2010
  ident: 9536_CR18
  publication-title: Spectr
– volume-title: Exploring cultural and linguistic services in the nation’s hospitals: a report of findings
  year: 2007
  ident: 9536_CR8
– volume: 94
  start-page: 866
  issue: 5
  year: 2004
  ident: 9536_CR37
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.94.5.866
– volume: 116
  start-page: 575
  issue: 3
  year: 2005
  ident: 9536_CR3
  publication-title: Pediatrics
  doi: 10.1542/peds.2005-0521
– volume: 12
  start-page: 228
  issue: 3
  year: 2008
  ident: 9536_CR12
  publication-title: Health Care Manag Sci
  doi: 10.1007/s10729-008-9087-2
– ident: 9536_CR46
  doi: 10.1007/978-981-13-1280-9
– volume-title: PuLP: a linear programming toolkit for python
  year: 2011
  ident: 9536_CR49
– ident: 9536_CR1
  doi: 10.1353/book6604
– ident: 9536_CR31
  doi: 10.1109/SSCI.2017.8280850
– volume: 6
  start-page: 21
  issue: 2
  year: 2017
  ident: 9536_CR38
  publication-title: J Hosp Admin
  doi: 10.5430/jha.v6n2p21
– volume: 177
  start-page: 1764
  issue: 3
  year: 2007
  ident: 9536_CR13
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2005.10.008
– volume: 200
  start-page: 822
  issue: 3
  year: 2010
  ident: 9536_CR17
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2009.01.042
– volume: 13
  start-page: 393
  issue: 4
  year: 2010
  ident: 9536_CR26
  publication-title: J Sched
  doi: 10.1007/s10951-010-0188-7
– volume: 29
  start-page: 498
  issue: 6
  year: 2017
  ident: 9536_CR36
  publication-title: J Transcult Nurs
  doi: 10.1177/1043659617747523
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 9536_CR42
  publication-title: Mach Learn
SSID ssj0005061
Score 2.278604
Snippet Although most hospitals in the United States provide medical services in English, a significant percentage of the U.S. population uses languages other than...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 531
SubjectTerms Business and Management
Econometrics
Emergency medical care
Health Administration
Health care management
Health Informatics
Hospitals
Indigent care
Integer programming
Interpreters
Management
Operations Research/Decision Theory
Optimization
Scheduling
Workforce planning
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68EEG8j3oRwTcNdJs0x6OI4oOI4IFvJaYpCNqV3VXYf-8kbXYVD9DHtOk0ZCaZmczMF4ADKy3LnDG05FJTzrWiqjQ5TWUl0NzIrbUBxPVCXl6q-3t91RaF9WO2ewxJhp36Q7EbGoLUuzseI03Q4SRM5x5txvvo13fjxI60QUllSlAtsrQtlfmexmd19MXG_BIfDWrnbPF_A16ChdbMJMeNXCzDhKtXYDZmua_AfHNcR5oqpFUojslLz8ds_O5HTF36ZrujhAfmaRhOvUkVs7kImrsEfWPUVb6kncSTT_LcxH7IY8xnRAtzDW7PTm9Ozml79wK1XOQDaqTqSGEU63Tkg2FO6NKUyG1WCdRnTjBhsZlXTCvJsrTyqD3ugRvl8dqNMGwdpupu7TaBaF4hBZVJE9wjo_NMptyWJuXoi7k8gU5kQWFbYHJ_P8ZTMYZU9jNZ4EwWYSaLYQKHo29eGliOX3vvRM4W7RLtFw3WGmNpmsD-6DUuLh8xMbXrvmIfrhnKL5JLYKORiNHvGKp-jfZxAkeR_WPiP49l62_dt2Eu81k0IattB6YGvVe3CzP2bfDY7-0FwX8HAMz84A
  priority: 102
  providerName: Springer Nature
Title A predictive and prescriptive analytical framework for scheduling language medical interpreters
URI https://link.springer.com/article/10.1007/s10729-020-09536-y
https://www.ncbi.nlm.nih.gov/pubmed/33629192
https://www.proquest.com/docview/2559953300
https://www.proquest.com/docview/2493449729
Volume 24
WOSCitedRecordID wos000621244500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9389
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005061
  issn: 1386-9620
  databaseCode: RSV
  dateStart: 19980901
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB-0FSkUP6rV1XpE8E2De5tsPp6klhYf9Ci16vm0pNksFNq96921cP-9M9nsHVLsiy-B7GazgZkk8_kbgHdee1EE53gtteVSWsNN7Uqe60ahuFF67yOI61c9Gpnx2B4ng9s8hVX2Z2I8qOuJJxv5xw4aC7Xv_NP0ilPVKPKuphIa92GTymYTn-uxXod45B1eqjCKW1XkKWkmpc6hWMlJeSLENcWXf19Mt6TNW57SeAEdPf7fpT-BR0n0ZPsdrzyFe6HdgYd95PsObHcmPNZlJj2Dap9NZ-THoRORubambjpl4gN3sYyWcNb0EV4MRWCG-jLeX5TmznprKLvs_EHsvI9xRKnzOfw4Ojw9-MJTPQbupSoX3Gkz1MoZMRzqMyeCsrWrkQNEo_COC0ooj92yERZJUeQNIfmEM-kMYbg75cQubLSTNrwEZmWDM5hCu6gyOVsWOpe-drlE_SyUGQx7YlQ-gZVTzYyLag2zTASskIBVJGC1zOD96ptpB9Vx5-i9nlhV2rbzak2pDN6uXuOGIy-Ka8PkGsdIK5CncboMXnS8sfqdQHHAosycwYeeWdaT_3str-5ey2vYKiiSJka27cHGYnYd3sADf7M4n88GyPK_fg8i48fWDGDz8-Ho-AR73_KD2J5ie_L95x9fQAx6
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxQxGH6DYNTEAOLXCEJN9KSNs9NOOz0YQ1ACYdl4wIRbLZ2OIcHZdXfR7J_yN_q2ne6GELlx8DgznU47ffr2_epTgNdWWlY4Y2jNpaKcq4pWtSlpLhuB6kZprQ0krn05GFSnp-rLEvxJe2F8WmWSiUFQ10PrfeTvIzUWWt_5x9FP6k-N8tHVdIRGhMWRm_1Gk23y4fATju-botj_fLJ3QLtTBajlopxSI6ueFKZivZ48M8wJVZsa-8EagZLaCSYsXpYNQ2ucFXnj-WjcGTeVZyI3wjCs9w6scDS8_Lw6zvcWKSV55GdllaBKFHm3SafbqodqLPXGmmd4E3R2dSG8pt1ei8yGBW9_7X_7Veuw2qnWZDfOhUew5NoNuJcy-zfgYXRRkrjz6jHoXTIa-ziVl_jEtLW_7KRouGEuZsHTT5qUwUZQxScTxHntE_i_k-TtJT9ivIucpxxO1KqfwNdb6e5TWG6HrXsORPEGa6gKaYJJaFRZyJzb2uQc7U9XZtBLg69tR8buzwS50AsaaQ8YjYDRATB6lsHb-TujSEVyY-mtBA7diaWJXiAjg1fzxyhQfJTItG54iWW4YjhnsboMnkUszj_HUN1RaBNk8C6Bc1H5v9vy4ua27MD9g5Pjvu4fDo424UHhs4ZCFt8WLE_Hl-4l3LW_pueT8XaYbgS-3TZo_wJCV2Kc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHZqQEB8DRmCAkeAJrKWxY8cPCA22imlTVSGQ9mY8x0GTtrS0Hah_jV_HdWy3QhN72wOPThzn6_j6Xt_jY4BXVlpWOGNozaWinKuKVrUpaS4bge5Gaa3tRFyP5HBYHR-r0Rr8TmthPK0y2cTOUNdj6-fId4I0Fkbf-U4TaRGjvcH7yQ_qd5Dymda0nUaAyKFb_MLwbfbuYA__9euiGOx_-fiJxh0GqOWinFMjq74UpmL9vjwxzAlVmxrfiTUCrbYTTFgslg3DyJwVeeO1adwJN5VXJTfCMGz3BqxLhkFPD9Y_7A9Hn1cEkzyotbJKUCWKPC7ZiQv30KmlPnTzem-CLv4eFi_5upfytN3wN7j7P3-4e3AnOt1kN_SS-7Dm2k3YSJz_TbgdJi9JWJP1APQumUx9BsuPBcS0tS9G-9odMGeLLgdAmsRtI-j8kxn2gNpT-7-TNA9MzkMmjJwmdif62w_h67W87iPotePWPQaieIMtVIU0XbBoVFnInNva5BwjU1dm0E9A0DbKtPvdQs70SmDag0cjeHQHHr3I4M3ymkkQKbmy9nYCio4Ga6ZXKMng5fI0mhqfPzKtG19gHa4Y9mZsLoOtgMvl7Rg6QgqjhQzeJqCuGv_3szy5-llewAZiVR8dDA-fwq3C04k6et829ObTC_cMbtqf89PZ9HnsewS-XTdq_wDGAmza
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+predictive+and+prescriptive+analytical+framework+for+scheduling+language+medical+interpreters&rft.jtitle=Health+care+management+science&rft.au=Ahmed%2C+Abdulaziz&rft.au=Frohn%2C+Elizabeth&rft.date=2021-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1386-9620&rft.eissn=1572-9389&rft.volume=24&rft.issue=3&rft.spage=531&rft.epage=550&rft_id=info:doi/10.1007%2Fs10729-020-09536-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-9620&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-9620&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-9620&client=summon