MR Fingerprinting for Rapid Quantitative Abdominal Imaging

To develop a magnetic resonance (MR) "fingerprinting" technique for quantitative abdominal imaging. This HIPAA-compliant study had institutional review board approval, and informed consent was obtained from all subjects. To achieve accurate quantification in the presence of marked B0 and B...

Full description

Saved in:
Bibliographic Details
Published in:Radiology Vol. 279; no. 1; p. 278
Main Authors: Chen, Yong, Jiang, Yun, Pahwa, Shivani, Ma, Dan, Lu, Lan, Twieg, Michael D, Wright, Katherine L, Seiberlich, Nicole, Griswold, Mark A, Gulani, Vikas
Format: Journal Article
Language:English
Published: United States 01.04.2016
Subjects:
ISSN:1527-1315, 1527-1315
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To develop a magnetic resonance (MR) "fingerprinting" technique for quantitative abdominal imaging. This HIPAA-compliant study had institutional review board approval, and informed consent was obtained from all subjects. To achieve accurate quantification in the presence of marked B0 and B1 field inhomogeneities, the MR fingerprinting framework was extended by using a two-dimensional fast imaging with steady-state free precession, or FISP, acquisition and a Bloch-Siegert B1 mapping method. The accuracy of the proposed technique was validated by using agarose phantoms. Quantitative measurements were performed in eight asymptomatic subjects and in six patients with 20 focal liver lesions. A two-tailed Student t test was used to compare the T1 and T2 results in metastatic adenocarcinoma with those in surrounding liver parenchyma and healthy subjects. Phantom experiments showed good agreement with standard methods in T1 and T2 after B1 correction. In vivo studies demonstrated that quantitative T1, T2, and B1 maps can be acquired within a breath hold of approximately 19 seconds. T1 and T2 measurements were compatible with those in the literature. Representative values included the following: liver, 745 msec ± 65 (standard deviation) and 31 msec ± 6; renal medulla, 1702 msec ± 205 and 60 msec ± 21; renal cortex, 1314 msec ± 77 and 47 msec ± 10; spleen, 1232 msec ± 92 and 60 msec ± 19; skeletal muscle, 1100 msec ± 59 and 44 msec ± 9; and fat, 253 msec ± 42 and 77 msec ± 16, respectively. T1 and T2 in metastatic adenocarcinoma were 1673 msec ± 331 and 43 msec ± 13, respectively, significantly different from surrounding liver parenchyma relaxation times of 840 msec ± 113 and 28 msec ± 3 (P < .0001 and P < .01) and those in hepatic parenchyma in healthy volunteers (745 msec ± 65 and 31 msec ± 6, P < .0001 and P = .021, respectively). A rapid technique for quantitative abdominal imaging was developed that allows simultaneous quantification of multiple tissue properties within one 19-second breath hold, with measurements comparable to those in published literature.
AbstractList To develop a magnetic resonance (MR) "fingerprinting" technique for quantitative abdominal imaging.PURPOSETo develop a magnetic resonance (MR) "fingerprinting" technique for quantitative abdominal imaging.This HIPAA-compliant study had institutional review board approval, and informed consent was obtained from all subjects. To achieve accurate quantification in the presence of marked B0 and B1 field inhomogeneities, the MR fingerprinting framework was extended by using a two-dimensional fast imaging with steady-state free precession, or FISP, acquisition and a Bloch-Siegert B1 mapping method. The accuracy of the proposed technique was validated by using agarose phantoms. Quantitative measurements were performed in eight asymptomatic subjects and in six patients with 20 focal liver lesions. A two-tailed Student t test was used to compare the T1 and T2 results in metastatic adenocarcinoma with those in surrounding liver parenchyma and healthy subjects.MATERIALS AND METHODSThis HIPAA-compliant study had institutional review board approval, and informed consent was obtained from all subjects. To achieve accurate quantification in the presence of marked B0 and B1 field inhomogeneities, the MR fingerprinting framework was extended by using a two-dimensional fast imaging with steady-state free precession, or FISP, acquisition and a Bloch-Siegert B1 mapping method. The accuracy of the proposed technique was validated by using agarose phantoms. Quantitative measurements were performed in eight asymptomatic subjects and in six patients with 20 focal liver lesions. A two-tailed Student t test was used to compare the T1 and T2 results in metastatic adenocarcinoma with those in surrounding liver parenchyma and healthy subjects.Phantom experiments showed good agreement with standard methods in T1 and T2 after B1 correction. In vivo studies demonstrated that quantitative T1, T2, and B1 maps can be acquired within a breath hold of approximately 19 seconds. T1 and T2 measurements were compatible with those in the literature. Representative values included the following: liver, 745 msec ± 65 (standard deviation) and 31 msec ± 6; renal medulla, 1702 msec ± 205 and 60 msec ± 21; renal cortex, 1314 msec ± 77 and 47 msec ± 10; spleen, 1232 msec ± 92 and 60 msec ± 19; skeletal muscle, 1100 msec ± 59 and 44 msec ± 9; and fat, 253 msec ± 42 and 77 msec ± 16, respectively. T1 and T2 in metastatic adenocarcinoma were 1673 msec ± 331 and 43 msec ± 13, respectively, significantly different from surrounding liver parenchyma relaxation times of 840 msec ± 113 and 28 msec ± 3 (P < .0001 and P < .01) and those in hepatic parenchyma in healthy volunteers (745 msec ± 65 and 31 msec ± 6, P < .0001 and P = .021, respectively).RESULTSPhantom experiments showed good agreement with standard methods in T1 and T2 after B1 correction. In vivo studies demonstrated that quantitative T1, T2, and B1 maps can be acquired within a breath hold of approximately 19 seconds. T1 and T2 measurements were compatible with those in the literature. Representative values included the following: liver, 745 msec ± 65 (standard deviation) and 31 msec ± 6; renal medulla, 1702 msec ± 205 and 60 msec ± 21; renal cortex, 1314 msec ± 77 and 47 msec ± 10; spleen, 1232 msec ± 92 and 60 msec ± 19; skeletal muscle, 1100 msec ± 59 and 44 msec ± 9; and fat, 253 msec ± 42 and 77 msec ± 16, respectively. T1 and T2 in metastatic adenocarcinoma were 1673 msec ± 331 and 43 msec ± 13, respectively, significantly different from surrounding liver parenchyma relaxation times of 840 msec ± 113 and 28 msec ± 3 (P < .0001 and P < .01) and those in hepatic parenchyma in healthy volunteers (745 msec ± 65 and 31 msec ± 6, P < .0001 and P = .021, respectively).A rapid technique for quantitative abdominal imaging was developed that allows simultaneous quantification of multiple tissue properties within one 19-second breath hold, with measurements comparable to those in published literature.CONCLUSIONA rapid technique for quantitative abdominal imaging was developed that allows simultaneous quantification of multiple tissue properties within one 19-second breath hold, with measurements comparable to those in published literature.
To develop a magnetic resonance (MR) "fingerprinting" technique for quantitative abdominal imaging. This HIPAA-compliant study had institutional review board approval, and informed consent was obtained from all subjects. To achieve accurate quantification in the presence of marked B0 and B1 field inhomogeneities, the MR fingerprinting framework was extended by using a two-dimensional fast imaging with steady-state free precession, or FISP, acquisition and a Bloch-Siegert B1 mapping method. The accuracy of the proposed technique was validated by using agarose phantoms. Quantitative measurements were performed in eight asymptomatic subjects and in six patients with 20 focal liver lesions. A two-tailed Student t test was used to compare the T1 and T2 results in metastatic adenocarcinoma with those in surrounding liver parenchyma and healthy subjects. Phantom experiments showed good agreement with standard methods in T1 and T2 after B1 correction. In vivo studies demonstrated that quantitative T1, T2, and B1 maps can be acquired within a breath hold of approximately 19 seconds. T1 and T2 measurements were compatible with those in the literature. Representative values included the following: liver, 745 msec ± 65 (standard deviation) and 31 msec ± 6; renal medulla, 1702 msec ± 205 and 60 msec ± 21; renal cortex, 1314 msec ± 77 and 47 msec ± 10; spleen, 1232 msec ± 92 and 60 msec ± 19; skeletal muscle, 1100 msec ± 59 and 44 msec ± 9; and fat, 253 msec ± 42 and 77 msec ± 16, respectively. T1 and T2 in metastatic adenocarcinoma were 1673 msec ± 331 and 43 msec ± 13, respectively, significantly different from surrounding liver parenchyma relaxation times of 840 msec ± 113 and 28 msec ± 3 (P < .0001 and P < .01) and those in hepatic parenchyma in healthy volunteers (745 msec ± 65 and 31 msec ± 6, P < .0001 and P = .021, respectively). A rapid technique for quantitative abdominal imaging was developed that allows simultaneous quantification of multiple tissue properties within one 19-second breath hold, with measurements comparable to those in published literature.
Author Lu, Lan
Pahwa, Shivani
Seiberlich, Nicole
Ma, Dan
Jiang, Yun
Griswold, Mark A
Wright, Katherine L
Gulani, Vikas
Chen, Yong
Twieg, Michael D
Author_xml – sequence: 1
  givenname: Yong
  surname: Chen
  fullname: Chen, Yong
  organization: From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
– sequence: 2
  givenname: Yun
  surname: Jiang
  fullname: Jiang, Yun
  organization: From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
– sequence: 3
  givenname: Shivani
  surname: Pahwa
  fullname: Pahwa, Shivani
  organization: From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
– sequence: 4
  givenname: Dan
  surname: Ma
  fullname: Ma, Dan
  organization: From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
– sequence: 5
  givenname: Lan
  surname: Lu
  fullname: Lu, Lan
  organization: From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
– sequence: 6
  givenname: Michael D
  surname: Twieg
  fullname: Twieg, Michael D
  organization: From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
– sequence: 7
  givenname: Katherine L
  surname: Wright
  fullname: Wright, Katherine L
  organization: From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
– sequence: 8
  givenname: Nicole
  surname: Seiberlich
  fullname: Seiberlich, Nicole
  organization: From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
– sequence: 9
  givenname: Mark A
  surname: Griswold
  fullname: Griswold, Mark A
  organization: From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
– sequence: 10
  givenname: Vikas
  surname: Gulani
  fullname: Gulani, Vikas
  organization: From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26794935$$D View this record in MEDLINE/PubMed
BookMark eNpNj01Lw0AQhhep2A_9AV4kRy-pOzu72cRbKVYLFbH0HqbZTVnJl9lE8N-7YAUvMw8vD8O8czZp2sYydgt8CSDTh56Ma6ul4JCAEhz1BZsF0DEgqMk_nrK59x-cg1SpvmJTkehMZqhm7PF1H21cc7J917tmCBSVbR_tqXMmeh8pRAMN7stGq6Npa9dQFW1rOgXxml2WVHl7c94Ldtg8HdYv8e7tebte7eJCJmqICaUskWNCHArkMtXSGJ0pxBLAkgijzGyGiOG5RJMEw7WwXEijwIJYsPvfs13ffo7WD3ntfGGrihrbjj4HraVCITkP6t1ZHY-1NXmoVFP_nf_VFT9vOle5
CitedBy_id crossref_primary_10_1007_s10334_020_00842_8
crossref_primary_10_1148_radiol_2018172131
crossref_primary_10_1155_2022_1147111
crossref_primary_10_1002_mp_17001
crossref_primary_10_1016_j_mri_2019_03_017
crossref_primary_10_1016_j_mri_2025_110459
crossref_primary_10_1002_nbm_5028
crossref_primary_10_1002_mrm_26561
crossref_primary_10_1002_nbm_5302
crossref_primary_10_1007_s10334_021_00931_2
crossref_primary_10_1002_mp_15465
crossref_primary_10_1007_s00330_025_11931_4
crossref_primary_10_1002_nbm_5266
crossref_primary_10_3390_diagnostics13132147
crossref_primary_10_1007_s10334_022_01057_9
crossref_primary_10_1002_mrm_27812
crossref_primary_10_1007_s11888_019_00447_x
crossref_primary_10_1109_JPROC_2019_2936998
crossref_primary_10_1016_j_cobme_2017_11_001
crossref_primary_10_1109_TMI_2019_2899328
crossref_primary_10_1007_s00261_020_02619_y
crossref_primary_10_1002_jmrs_413
crossref_primary_10_1002_nbm_4284
crossref_primary_10_1002_nbm_5097
crossref_primary_10_1016_j_ejmp_2021_07_013
crossref_primary_10_1002_nbm_4323
crossref_primary_10_1002_mrm_29264
crossref_primary_10_1016_j_neuroimage_2022_119638
crossref_primary_10_6028_jres_125_028
crossref_primary_10_1002_mrm_27403
crossref_primary_10_1007_s00261_019_02071_7
crossref_primary_10_1007_s00261_024_04369_7
crossref_primary_10_1038_s41598_019_44377_y
crossref_primary_10_1002_mrm_29027
crossref_primary_10_1002_mrm_27126
crossref_primary_10_1007_s11547_022_01533_1
crossref_primary_10_1007_s00261_020_02839_2
crossref_primary_10_1007_s00330_024_11162_z
crossref_primary_10_1016_j_cpet_2018_08_014
crossref_primary_10_1002_mrm_29212
crossref_primary_10_1007_s11888_021_00468_5
crossref_primary_10_1016_j_mri_2022_05_015
crossref_primary_10_1002_nbm_4435
crossref_primary_10_1002_nbm_4035
crossref_primary_10_1007_s00256_023_04521_2
crossref_primary_10_3367_UFNe_2018_12_038505
crossref_primary_10_1002_nbm_4670
crossref_primary_10_1002_mrm_26580
crossref_primary_10_1002_mrm_27558
crossref_primary_10_1109_TRPMS_2019_2905366
crossref_primary_10_1148_radiol_220736
crossref_primary_10_1111_epi_17191
crossref_primary_10_1097_RMR_0000000000000264
crossref_primary_10_1038_s41390_020_0883_9
crossref_primary_10_1002_mrm_26509
crossref_primary_10_1007_s10334_021_00928_x
crossref_primary_10_1007_s10334_024_01209_z
crossref_primary_10_1109_TMI_2025_3559467
crossref_primary_10_1097_RLI_0000000000000738
crossref_primary_10_1097_RLI_0000000000000975
crossref_primary_10_1038_s41598_020_74462_6
crossref_primary_10_1088_1361_6560_abbb9d
crossref_primary_10_3390_cancers13194742
crossref_primary_10_1016_j_mric_2021_06_010
crossref_primary_10_1002_mp_14027
crossref_primary_10_1016_j_mric_2020_04_001
crossref_primary_10_1002_jmri_26836
crossref_primary_10_1002_mp_17932
crossref_primary_10_1002_nbm_5077
crossref_primary_10_1016_j_placenta_2021_08_058
crossref_primary_10_1002_mrm_27543
crossref_primary_10_1016_j_media_2025_103699
crossref_primary_10_1002_mrm_70017
crossref_primary_10_1002_jmri_26274
crossref_primary_10_1148_radiol_2018180836
crossref_primary_10_1002_hbm_25232
crossref_primary_10_1002_mrm_29194
crossref_primary_10_1002_jmri_27558
crossref_primary_10_1002_nbm_4370
crossref_primary_10_1016_j_jcmg_2018_08_028
crossref_primary_10_1002_nbm_4531
crossref_primary_10_1002_mrm_29352
crossref_primary_10_1002_nbm_4651
crossref_primary_10_1109_TRPMS_2019_2897425
crossref_primary_10_1002_mrm_26886
crossref_primary_10_1002_nbm_70000
crossref_primary_10_1002_mrm_28308
crossref_primary_10_1002_mrm_28704
crossref_primary_10_1016_j_pnmrs_2020_10_001
crossref_primary_10_1007_s00330_022_09067_w
crossref_primary_10_1002_jmri_27673
crossref_primary_10_1016_j_mri_2016_08_021
crossref_primary_10_1007_s10334_024_01196_1
crossref_primary_10_1148_radiol_2021202302
crossref_primary_10_1002_mrm_29181
crossref_primary_10_1016_j_mri_2017_04_004
crossref_primary_10_1016_j_mri_2018_06_018
crossref_primary_10_1002_nbm_4082
crossref_primary_10_1016_j_neuroimage_2019_116329
crossref_primary_10_1002_jmri_26058
crossref_primary_10_1007_s11548_024_03188_x
crossref_primary_10_1053_j_sult_2016_08_005
crossref_primary_10_1002_mp_15254
crossref_primary_10_1002_nbm_3951
crossref_primary_10_1002_mrm_29065
crossref_primary_10_1080_17474124_2017_1271710
crossref_primary_10_1016_j_neuroimage_2018_11_038
crossref_primary_10_1111_epi_17951
crossref_primary_10_1002_jmri_27825
crossref_primary_10_1002_mp_14833
crossref_primary_10_1002_mrm_27448
crossref_primary_10_1007_s10334_022_01012_8
crossref_primary_10_1088_1361_6560_abf51f
crossref_primary_10_1007_s00429_021_02402_9
crossref_primary_10_1016_j_neurad_2018_05_006
crossref_primary_10_1088_1361_6560_ab86d4
crossref_primary_10_1016_j_mri_2019_04_014
crossref_primary_10_1002_mrm_29629
crossref_primary_10_1002_jmri_26170
crossref_primary_10_1007_s00330_022_08555_3
crossref_primary_10_1148_radiol_2018181348
crossref_primary_10_1002_mrm_28160
crossref_primary_10_1007_s00259_021_05384_2
crossref_primary_10_1093_cercor_bhac155
crossref_primary_10_1016_j_mri_2020_02_005
crossref_primary_10_1002_mrm_30242
crossref_primary_10_1016_j_neuroimage_2019_03_047
crossref_primary_10_1212_WNL_0000000000213691
crossref_primary_10_1002_mp_16255
crossref_primary_10_1002_nbm_3786
crossref_primary_10_1002_mp_15202
crossref_primary_10_1002_mrm_30127
crossref_primary_10_1016_j_mri_2017_07_007
crossref_primary_10_1259_bjr_20210479
crossref_primary_10_1016_j_mri_2017_07_004
crossref_primary_10_1002_mp_14513
crossref_primary_10_1002_nbm_70143
crossref_primary_10_1148_radiol_2016152800
crossref_primary_10_1109_TMI_2019_2900585
crossref_primary_10_1002_mrm_26701
crossref_primary_10_1016_j_mri_2025_110357
crossref_primary_10_1097_WNO_0000000000000539
crossref_primary_10_3390_polym14193925
crossref_primary_10_1016_j_mri_2017_04_003
crossref_primary_10_1016_j_mri_2017_04_002
crossref_primary_10_1002_mrm_70063
crossref_primary_10_1016_j_mri_2017_04_001
crossref_primary_10_1038_ncomms12445
crossref_primary_10_1002_jmri_26877
crossref_primary_10_3389_fcvm_2022_991383
crossref_primary_10_1002_mrm_28311
crossref_primary_10_1002_mrm_29089
crossref_primary_10_1007_s00330_020_06902_w
crossref_primary_10_1016_j_mri_2019_01_011
crossref_primary_10_1002_jmri_26518
crossref_primary_10_1002_mrm_27227
crossref_primary_10_1002_mrm_27345
crossref_primary_10_1097_RLI_0000000000000666
crossref_primary_10_1002_mrm_27628
crossref_primary_10_1186_s41747_020_00185_y
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1148/radiol.2016152037
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1527-1315
ExternalDocumentID 26794935
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: 1R01DK098503
– fundername: NIDDK NIH HHS
  grantid: P30 DK097948
– fundername: NCATS NIH HHS
  grantid: 2KL2TR000440
– fundername: NIBIB NIH HHS
  grantid: 5R01EB016728
– fundername: NHLBI NIH HHS
  grantid: R01 HL094557
– fundername: NIBIB NIH HHS
  grantid: R00EB011527
– fundername: NIBIB NIH HHS
  grantid: R00 EB011527
– fundername: NIBIB NIH HHS
  grantid: R01 EB016728
– fundername: NIBIB NIH HHS
  grantid: R01 EB017219
– fundername: NIBIB NIH HHS
  grantid: 1R01EB017219
GroupedDBID ---
.55
.GJ
123
18M
1CY
1KJ
29P
2WC
34G
39C
4.4
53G
5RE
6NX
6PF
7FM
AAEJM
AAQQT
AAWTL
ABDPE
ABHFT
ABOCM
ACFQH
ACGFO
ACJAN
ACRZS
ADBBV
AENEX
AENYM
AFFNX
AFOSN
AJJEV
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
F9R
GX1
H13
J5H
KO8
L7B
LMP
LSO
MJL
MV1
N4W
NPM
OK1
P2P
R.V
RKKAF
RXW
SJN
TAE
TR2
TRS
TWZ
W8F
WH7
WOQ
X7M
YQI
YQJ
ZGI
ZKG
ZVN
ZXP
7X8
ID FETCH-LOGICAL-c465t-a344f3036a01c304874dd79533f11ea211ef9e933345867a41d072e024d51e12
IEDL.DBID 7X8
ISICitedReferencesCount 174
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378709700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1527-1315
IngestDate Wed Oct 01 14:21:17 EDT 2025
Thu Apr 03 07:08:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-a344f3036a01c304874dd79533f11ea211ef9e933345867a41d072e024d51e12
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1148/radiol.2016152037
PMID 26794935
PQID 1774532400
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1774532400
pubmed_primary_26794935
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Radiology
PublicationTitleAlternate Radiology
PublicationYear 2016
SSID ssj0014587
Score 2.581512
Snippet To develop a magnetic resonance (MR) "fingerprinting" technique for quantitative abdominal imaging. This HIPAA-compliant study had institutional review board...
To develop a magnetic resonance (MR) "fingerprinting" technique for quantitative abdominal imaging.PURPOSETo develop a magnetic resonance (MR) "fingerprinting"...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 278
SubjectTerms Abdomen - pathology
Adenocarcinoma - pathology
Adult
Aged
Algorithms
Female
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Middle Aged
Phantoms, Imaging
Title MR Fingerprinting for Rapid Quantitative Abdominal Imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/26794935
https://www.proquest.com/docview/1774532400
Volume 279
WOSCitedRecordID wos000378709700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwED7appQufT_SFyp0FbEsybK7lFAa2iEhDRmyGdmSIUPtPPv7e5IdMhUKXbwJzJ109919J30ATwKzWijygCqWZVTwOKdJYTkVRuZKBcahZi82oQaDeDJJhk3DbdmMVW5iog_Upspdj7zDEKdI93pc8DKbU6ca5djVRkJjF1ocoYzb1WqyZRGE9AJ5TrmVMs5kw2piBdBZaDOtHPXgEE8YcPU7wvSZpnf83388gaMGY5JuvSlOYceWZ3DQb1j0c3juj0jPt_NcV8_NPROErmSkZ1NDPte69BfPMAySbmYqr_pFPr68nNEFjHtv49d32mgo0BzdsKKaC1G4NKUDlnM8rkoYo9xMacGY1Vj-2SKxCeccjRUpLZgJVGgxcxvJLAsvYa-sSnsNJIgLWYRMZ1ixCJaFSWZtxGJcYrEqiWQbHjdGSXGLOt5Bl7ZaL9OtWdpwVVs2ndVvaaRhhAEh4fLmD6tv4dD5q56buYNWgQfU3sN-_r2aLhcP3vf4HQz7P9tgtc4
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MR+Fingerprinting+for+Rapid+Quantitative+Abdominal+Imaging&rft.jtitle=Radiology&rft.au=Chen%2C+Yong&rft.au=Jiang%2C+Yun&rft.au=Pahwa%2C+Shivani&rft.au=Ma%2C+Dan&rft.date=2016-04-01&rft.eissn=1527-1315&rft.volume=279&rft.issue=1&rft.spage=278&rft_id=info:doi/10.1148%2Fradiol.2016152037&rft_id=info%3Apmid%2F26794935&rft_id=info%3Apmid%2F26794935&rft.externalDocID=26794935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-1315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-1315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-1315&client=summon