Deep Multicameral Decoding for Localizing Unoccluded Object Instances from a Single RGB Image

Occlusion-aware instance-sensitive segmentation is a complex task generally split into region-based segmentations, by approximating instances as their bounding box. We address the showcase scenario of dense homogeneous layouts in which this approximation does not hold. In this scenario, outlining un...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer vision Ročník 128; číslo 5; s. 1331 - 1359
Hlavní autoři: Grard, Matthieu, Dellandréa, Emmanuel, Chen, Liming
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.05.2020
Springer
Springer Nature B.V
Springer Verlag
Edice:Special Issue on Deep Learning for Robotic Vision
Témata:
ISSN:0920-5691, 1573-1405
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Occlusion-aware instance-sensitive segmentation is a complex task generally split into region-based segmentations, by approximating instances as their bounding box. We address the showcase scenario of dense homogeneous layouts in which this approximation does not hold. In this scenario, outlining unoccluded instances by decoding a deep encoder becomes difficult, due to the translation invariance of convolutional layers and the lack of complexity in the decoder. We therefore propose a multicameral design composed of subtask-specific lightweight decoder and encoder–decoder units, coupled in cascade to encourage subtask-specific feature reuse and enforce a learning path within the decoding process. Furthermore, the state-of-the-art datasets for occlusion-aware instance segmentation contain real images with few instances and occlusions mostly due to objects occluding the background, unlike dense object layouts. We thus also introduce a synthetic dataset of dense homogeneous object layouts, namely Mikado, which extensibly contains more instances and inter-instance occlusions per image than these public datasets. Our extensive experiments on Mikado and public datasets show that ordinal multiscale units within the decoding process prove more effective than state-of-the-art design patterns for capturing position-sensitive representations. We also show that Mikado is plausible with respect to real-world problems, in the sense that it enables the learning of performance-enhancing representations transferable to real images, while drastically reducing the need of hand-made annotations for finetuning. The proposed dataset will be made publicly available.
AbstractList Occlusion-aware instance-sensitive segmentation is a complex task generally split into region-based segmentations, by approximating instances as their bounding box. We address the showcase scenario of dense homogeneous layouts in which this approximation does not hold. In this scenario, outlining unoccluded instances by decoding a deep encoder becomes difficult, due to the translation invariance of convolutional layers and the lack of complexity in the decoder. We therefore propose a multicameral design composed of subtask-specific lightweight decoder and encoder–decoder units, coupled in cascade to encourage subtask-specific feature reuse and enforce a learning path within the decoding process. Furthermore, the state-of-the-art datasets for occlusion-aware instance segmentation contain real images with few instances and occlusions mostly due to objects occluding the background, unlike dense object layouts. We thus also introduce a synthetic dataset of dense homogeneous object layouts, namely Mikado, which extensibly contains more instances and inter-instance occlusions per image than these public datasets. Our extensive experiments on Mikado and public datasets show that ordinal multiscale units within the decoding process prove more effective than state-of-the-art design patterns for capturing position-sensitive representations. We also show that Mikado is plausible with respect to real-world problems, in the sense that it enables the learning of performance-enhancing representations transferable to real images, while drastically reducing the need of hand-made annotations for finetuning. The proposed dataset will be made publicly available.
Audience Academic
Author Dellandréa, Emmanuel
Chen, Liming
Grard, Matthieu
Author_xml – sequence: 1
  givenname: Matthieu
  surname: Grard
  fullname: Grard, Matthieu
  email: m.grard@sileane.com
  organization: Siléane, Université de Lyon, CNRS, École Centrale de Lyon LIRIS UMR5205
– sequence: 2
  givenname: Emmanuel
  surname: Dellandréa
  fullname: Dellandréa, Emmanuel
  organization: Université de Lyon, CNRS, École Centrale de Lyon LIRIS UMR5205
– sequence: 3
  givenname: Liming
  surname: Chen
  fullname: Chen, Liming
  organization: Université de Lyon, CNRS, École Centrale de Lyon LIRIS UMR5205
BackLink https://hal.science/hal-02151828$$DView record in HAL
BookMark eNp9kUFvFCEUgImpidvqH_BE4snDVGAGZjiurbabrGnS2qMhLDxGNjPDCoxRf72sU9PooeHw4PF95D3eKTqZwgQIvabknBLSvkuUMlFXhJGK0JqV3TO0orytK9oQfoJWRJYrLiR9gU5T2hNCWMfqFfpyCXDAn-Yhe6NHiHrAl2CC9VOPXYh4G4we_K_j8X4KxgyzBYtvdnswGW-mlPVkIGEXw4g1vivcAPj26j3ejLqHl-i500OCVw_xDN1__PD54rra3lxtLtbbyjSC50pacNw2krtdC9YIAMttLYijwtqWG9rWzu6sswak22lRguFSEy0EaVzp8gy9Xd79qgd1iH7U8acK2qvr9VYdc4RRTjvWfa8L-2ZhDzF8myFltQ9znEp5itVSEi6EbAp1vlC9HkD5yYUctSnLwuhN-XznS34tGJN1x0T3WMKDUJgMP3Kv55TU5u72X7ZbWBNDShGcMj7r7IsStR8UJeo4VbVMtRRP1J-pKlJU9p_6t90npXqRUoGnHuJjy09YvwEvc7UO
CitedBy_id crossref_primary_10_1016_j_neucom_2022_04_023
crossref_primary_10_1155_2022_8367387
Cites_doi 10.1109/CVPR.2016.28
10.1007/s11263-015-0816-y
10.1109/ICRA.2018.8460902
10.1109/76.678630
10.1109/CVPR.2017.187
10.1109/TPAMI.2016.2537320
10.1007/978-3-030-01424-7_58
10.1109/34.865184
10.1109/CVPR.2018.00214
10.1109/ICCV.2017.324
10.1109/CVPR.2016.352
10.1109/ICCV.2017.322
10.1007/978-3-319-46466-4_19
10.1109/CVPR.2011.5995517
10.1007/11744047_47
10.1007/978-3-030-01219-9_21
10.1109/CVPR.2016.207
10.1109/CVPR.2019.01063
10.1007/978-3-030-01249-6_35
10.1007/978-3-030-01234-2_49
10.1007/978-3-030-01219-9_24
10.1109/CVPR.2016.33
10.1109/ICCV.2001.937655
10.1109/CVPR.2016.433
10.1007/BF01679683
10.1109/CVPR.2017.34
10.1007/978-3-030-01246-5_6
10.1109/CVPR.2017.39
10.1109/TPAMI.2016.2644615
10.1109/CVPR.2017.243
10.1109/CVPR.2019.00512
10.1007/s11263-014-0733-5
10.1109/CVPR.2019.00313
10.1007/978-3-030-01219-9_14
10.1109/CVPR.2018.00047
10.1007/978-3-319-24574-4_28
10.1145/2647868.2654889
10.1109/CVPR.2018.00913
10.1007/s10994-009-5152-4
10.1109/TPAMI.2015.2505283
10.1007/s11263-011-0490-7
10.1109/CVPR.2017.622
10.1109/CVPR.2014.144
10.1109/CVPR.2017.70
10.1109/CVPR.2018.00940
10.1109/CVPR.2018.00132
10.1007/978-3-030-01231-1_35
10.5244/C.20.42
10.1007/978-3-319-46448-0_35
10.1007/978-3-319-46448-0_33
10.1109/CVPR.2019.00020
10.1109/WACV.2018.00163
10.1109/ICCV.2015.164
10.1109/CVPR.2019.00197
10.1109/CVPR.2017.774
10.1007/978-3-030-20876-9_43
10.1109/CVPR.2017.305
10.1109/CVPR.2016.343
10.1177/0278364913491297
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2017.320
10.1109/ICCVW.2017.258
10.1109/WACV.2019.00146
10.1007/978-3-642-15561-1_39
10.1109/ICACI.2018.8377492
10.1109/ICCV.2017.296
10.1109/CVPR.2019.00626
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
COPYRIGHT 2020 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: COPYRIGHT 2020 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
1XC
VOOES
DOI 10.1007/s11263-020-01323-0
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)



Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 1359
ExternalDocumentID oai:HAL:hal-02151828v3
A622938268
10_1007_s11263_020_01323_0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c465t-9def5d495fb7edc6eed5d360f16dd75c173fdbdfdce9fba6ce9c59a0a6604f573
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000521913600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5691
IngestDate Sat Nov 29 15:08:27 EST 2025
Wed Nov 05 01:07:35 EST 2025
Sat Nov 29 10:04:42 EST 2025
Wed Nov 26 10:38:43 EST 2025
Tue Nov 18 21:44:22 EST 2025
Sat Nov 29 06:42:28 EST 2025
Fri Feb 21 02:35:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Instance boundary and occlusion detection
Domain adaptation
Fully convolutional encoder–decoder networks
Synthetic data
Fully convolutional encoder-decoder networks
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-9def5d495fb7edc6eed5d360f16dd75c173fdbdfdce9fba6ce9c59a0a6604f573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7346-228X
OpenAccessLink https://hal.science/hal-02151828
PQID 2399056694
PQPubID 1456341
PageCount 29
ParticipantIDs hal_primary_oai_HAL_hal_02151828v3
proquest_journals_2399056694
gale_infotracacademiconefile_A622938268
gale_incontextgauss_ISR_A622938268
crossref_citationtrail_10_1007_s11263_020_01323_0
crossref_primary_10_1007_s11263_020_01323_0
springer_journals_10_1007_s11263_020_01323_0
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSeriesTitle Special Issue on Deep Learning for Robotic Vision
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
– name: Springer Verlag
References Wang, G., Wang, X., Li, F. W. B., & Liang, X. (2018a). DOOBNet: Deep object occlusion boundary detection from an image. In Asian conference on computer vision (ACCV) part VI (Vol. 11366, pp. 686–702). Lecture notes in computer science, Springer.
Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Conference on computer vision and pattern recognition (CVPR) (pp. 2261–2269). IEEE Computer Society.
Lin, T. Y., Goyal, P., Girshick, R. B., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In International conference on computer vision (ICCV) (pp. 2999–3007). IEEE Computer Society.
Ren, X., Fowlkes, C. C., Malik, J. (2006). Figure/ground assignment in natural images. In European conference on computer vision (ECCV) part II (Vol. 3952, pp. 614–627). Lecture notes in computer science, Springer.
Antoniou, A., Storkey, A. J., & Edwards, H. (2018). Augmenting image classifiers using data augmentation generative adversarial networks. In International conference on artificial neural networks and machine learning (ICANN) (Vol. 11141, pp. 594–603). Lecture notes in computer science, Springer.
GeigerDLadendorfBYuilleALOcclusions and binocular stereoInternational Journal of Computer Vision (IJCV)199514321122610.1007/BF01679683
Luo, P., Wang, G., Lin, L., & Wang, X. (2017). Deep dual learning for semantic image segmentation. In International conference on computer vision (ICCV) (pp. 2737–2745). IEEE Computer Society.
Ren, M., & Zemel, R. S. (2017). End-to-end instance segmentation with recurrent attention. In Conference on computer vision and pattern recognition (CVPR) (pp. 293–301). IEEE Computer Society.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. Lecture notes in computer science (pp. 234–241). Springer.
Liu, Y., Cheng, M. M., Hu, X., Wang, K., & Bai, X. (2017). Richer convolutional features for edge detection. In Conference on computer vision and pattern recognition (CVPR) (pp. 5872—5881). IEEE Computer Society.
Cai, H., Zhu, L., & Han, S. (2019). ProxylessNAS: Direct neural architecture search on target task and hardware. In International conference on learning representations (ICLR).
Hayder, Z., He, X., & Salzmann, M. (2017). Boundary-aware instance segmentation. In Conference on computer vision and pattern recognition (CVPR) (pp. 587–595). IEEE Computer Society.
Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q. V. (2019). AutoAugment: learning augmentation strategies from data. In Conference on computer vision and pattern recognition (CVPR) (pp. 113–123). Computer Vision Foundation/IEEE.
Gan, Y., Xu, X., Sun, W., & Lin, L. (2018). Monocular depth estimation with affinity, vertical pooling, and label enhancement. In European conference on computer vision (ECCV) part III (Vol. 11207, pp. 232–247). Lecture notes in computer science, Springer.
Yu, J., Yang, L., Xu, N., Yang, J., & Huang, T. (2019). Slimmable neural networks. In International conference on learning representations (ICLR).
Maninis, K. K., Pont-Tuset, J., Arbeláez, P. A., & Gool, L. J. V. (2016). Convolutional oriented boundaries. In European conference on computer vision (ECCV) part I (Vol. 9905, pp. 580–596). Lecture notes in computer science, Springer.
Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder–decoder with atrous separable convolution for semantic image segmentation. In European conference on computer vision (ECCV) part VII (Vol. 11211, pp. 833–851). Lecture notes in computer science, Springer.
Xie, S., & Tu, Z. (2015). Holistically-nested edge detection. In International conference on computer vision (ICCV) (pp. 1395–1403). IEEE Computer Society.
Kong, S., & Fowlkes, C. C. (2018). Recurrent pixel embedding for instance grouping. In Conference on computer vision and pattern recognition (CVPR) (pp. 9018–9028). IEEE Computer Society.
Wang, P., Chen, P., Yuan, Y., Liu, D., Huang, Z., Hou, X., & Cottrell, G. W. (2018b). Understanding convolution for semantic segmentation. In Winter conference on applications of computer vision (WACV) (pp. 1451–1460).
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., & Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In International conference on multimedia (pp. 675–678). ACM, MM’14.
Kirillov, A., Levinkov, E., Andres, B., Savchynskyy, B., & Rother, C. (2017). InstanceCut: From edges to instances with multicut. In Conference on computer vision and pattern recognition (CVPR) (pp. 7322–7331). IEEE Computer Society.
Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? In Advances in neural information processing systems (NIPS) (pp. 3320–3328).
Ben-David, S., Lu, T., Luu, T., Pál, D. (2010b). Impossibility theorems for domain adaptation. In International conference on artificial intelligence and statistics (AISTATS), JMLR.org, JMLR proceedings (Vol. 9, pp. 129–136).
Zhu, Y., Tian, Y., Metaxas, D. N., Dollár, P. (2017). Semantic amodal segmentation. In Conference on computer vision and pattern recognition (CVPR) (pp. 3001–3009). IEEE Computer Society.
Yu, F., & Koltun, V. (2016). Multi-scale context aggregation by dilated convolutions. In International conference on learning representations (ICLR).
Lee, W., Na, J., & Kim, G. (2019). Multi-task self-supervised object detection via recycling of bounding box annotations. In Conference on computer vision and pattern recognition (CVPR) (pp. 4984–4993). Computer Vision Foundation/IEEE.
Novotný, D., Albanie, S., Larlus, D., & Vedaldi, A. (2018). Semi-convolutional operators for instance segmentation. In European conference on computer vision (ECCV) part I (Vol. 11205, pp. 89–105). Lecture notes in computer science, Springer.
Yu, Z., Liu, W., Zou, Y., Feng, C., Ramalingam, S., Kumar, B. V. K. V., & Kautz, J. (2018). Simultaneous edge alignment and learning. In European conference on computer vision (ECCV) part III (Vol. 11207, pp. 400–417). Lecture notes in computer science, Springer.
Eigen, D., Puhrsch, C., & Fergus, R. (2014). Depth map prediction from a single image using a multi-scale deep network. In Advances in neural information processing systems (NIPS) (pp. 2366–2374).
Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In International conference on artificial intelligence and statistics (AISTATS), JMLR.org, JMLR proceedings (Vol. 9, pp. 249–256)
Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In International conference on learning representations (ICLR), IEEE Computer Society.
Romera-Paredes, B., & Torr, P. H. S. (2016). Recurrent instance segmentation. In European conference on computer vision (ECCV) part VI (Vol. 9910, pp. 312–329). Lecture notes in computer science, Springer.
Wang, P., & Yuille, A. L. (2016). DOC: Deep occlusion estimation from a single image. In European conference on computer vision (ECCV) part I (Vol. 9905, pp. 545–561). Lecture notes in computer science, Springer.
Dai, J., He, K., & Sun, J. (2016). Instance-aware semantic segmentation via multi-task network cascades. In Conference on computer vision and pattern recognition (CVPR) (pp. 3150–3158). IEEE Computer Society.
ZitnickCLKanadeTA cooperative algorithm for stereo matching and occlusion detectionIEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI)200022767568410.1109/34.865184
Batra, A., Singh, S., Pang, G., Basu, S., Jawahar, C., & Paluri, M. (2019). Improved road connectivity by joint learning of orientation and segmentation. In Conference on computer vision and pattern recognition (CVPR) (pp. 10385–10393). Computer Vision Foundation/IEEE.
GeigerALenzPStillerCUrtasunRVision meets robotics: The KITTI datasetInternational Journal of Robotics Research (IJRR)201332111231123710.1177/0278364913491297
Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In International conference on computer vision (ICCV) (pp. 416–423). IEEE Computer Society.
Ayvaci, A., Raptis, M., & Soatto, S. (2010). Occlusion detection and motion estimation with convex optimization. In Advances in neural information processing systems (NIPS) (pp. 100–108).
Do, T. T., Nguyen, A., & Reid, I. D. (2018). AffordanceNet: An end-to-end deep learning approach for object affordance detection. In International conference on robotics and automation (ICRA) (pp. 1–5). IEEE.
Yang, J., Price, B. L., Cohen, S., Lee, H., & Yang, M. H. (2016). Object contour detection with a fully convolutional encoder–decoder network. In Conference on computer vision and pattern recognition (CVPR)
BadrinarayananVKendallACipollaRSegNet: A deep convolutional encoder–decoder architecture for image segmentationIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)201739122481249510.1109/TPAMI.2016.2644615
Blender Online Community. (2016). Blender—a 3D modelling and rendering package. Blender Foundation, Blender Institute, Amsterdam, http://www.blender.org.
Follmann, P., König, R., Härtinger, P., Klostermann, M., & Böttger, T. (2019). Learning to see the invisible: End-to-end trainable amodal instance segmentation. In Winter conference on applications of computer vision, (WACV) (pp. 1328–1336). IEEE.
Misra, I., Shrivastava, A., Gupta, A., & Hebert, M. (2016). Cross-stitch networks for multi-task learning. In Conference on computer vision and pattern recognition (CVPR) (pp. 3994–4003). IEEE Computer Society.
Follmann, P., Böttger, T., Härtinger, P., König, R., & Ulrich, M. (2018). MVTec D2S: Densely segmented supermarket dataset. In European conference on computer vision (ECCV) part X (Vol. 11214, pp. 581–597). Lecture notes in computer science, Springer.
Pont-TusetJArbelaezPBarronJTMarquésFMalikJMultiscale combinatoria
1323_CR25
1323_CR26
1323_CR1
1323_CR23
N Grammalidis (1323_CR31) 1998; 8
1323_CR67
1323_CR2
1323_CR24
1323_CR68
1323_CR21
1323_CR65
1323_CR22
1323_CR66
1323_CR63
1323_CR64
1323_CR61
1323_CR8
1323_CR9
1323_CR60
1323_CR5
1323_CR6
1323_CR27
J Pont-Tuset (1323_CR62) 2017; 39
1323_CR36
1323_CR37
1323_CR34
1323_CR78
1323_CR35
1323_CR79
1323_CR32
1323_CR76
1323_CR33
1323_CR77
1323_CR30
1323_CR74
1323_CR75
1323_CR72
1323_CR73
1323_CR70
1323_CR71
A Ayvaci (1323_CR3) 2012; 97
D Geiger (1323_CR29) 1995; 14
1323_CR38
1323_CR39
1323_CR47
1323_CR48
1323_CR45
1323_CR46
S Ben-David (1323_CR7) 2010; 79
1323_CR43
1323_CR87
1323_CR44
1323_CR41
1323_CR85
1323_CR42
1323_CR86
O Russakovsky (1323_CR69) 2015; 115
1323_CR83
1323_CR40
1323_CR84
1323_CR81
1323_CR82
1323_CR80
F Liu (1323_CR50) 2016; 38
CL Zitnick (1323_CR88) 2000; 22
1323_CR49
1323_CR14
1323_CR58
1323_CR15
1323_CR59
1323_CR12
1323_CR56
1323_CR13
1323_CR57
1323_CR10
1323_CR54
1323_CR11
M Everingham (1323_CR20) 2015; 111
1323_CR55
1323_CR52
1323_CR53
1323_CR51
A Geiger (1323_CR28) 2013; 32
V Badrinarayanan (1323_CR4) 2017; 39
1323_CR18
1323_CR19
1323_CR16
1323_CR17
References_xml – reference: EveringhamMEslamiSMGoolLWilliamsCKWinnJZissermanAThe pascal visual object classes challenge: A retrospectiveInternational Journal of Computer Vision (IJCV)201511119813610.1007/s11263-014-0733-5
– reference: Qi, L., Jiang, L., Liu, S., Shen, X., & Jia, J. (2019). Amodal instance segmentation with KINS dataset. In Conference on computer vision and pattern recognition (CVPR) (pp. 3014–3023). Computer Vision Foundation/IEEE.
– reference: Stein, A., & Hebert, M. (2006). Local detection of occlusion boundaries in video. In British machine vision conference (BMVC).
– reference: He, X., & Yuille, A. (2010). Occlusion boundary detection using pseudo-depth. In European conference on computer vision (ECCV) part IV (Vol. 6314, pp. 539–552). Lecture notes in computer science, Springer.
– reference: Antoniou, A., Storkey, A. J., & Edwards, H. (2018). Augmenting image classifiers using data augmentation generative adversarial networks. In International conference on artificial neural networks and machine learning (ICANN) (Vol. 11141, pp. 594–603). Lecture notes in computer science, Springer.
– reference: Blender Online Community. (2016). Blender—a 3D modelling and rendering package. Blender Foundation, Blender Institute, Amsterdam, http://www.blender.org.
– reference: Dai, J., He, K., & Sun, J. (2016). Instance-aware semantic segmentation via multi-task network cascades. In Conference on computer vision and pattern recognition (CVPR) (pp. 3150–3158). IEEE Computer Society.
– reference: Caesar, H., Uijlings, J. R. R., Ferrari, V. (2018). COCO-Stuff: Thing and stuff classes in context. In Conference on computer vision and pattern recognition (CVPR) (pp. 1209–1218). IEEE Computer Society.
– reference: Pont-TusetJArbelaezPBarronJTMarquésFMalikJMultiscale combinatorial grouping for image segmentation and object proposal generationIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)201739112814010.1109/TPAMI.2016.2537320
– reference: Lee, W., Na, J., & Kim, G. (2019). Multi-task self-supervised object detection via recycling of bounding box annotations. In Conference on computer vision and pattern recognition (CVPR) (pp. 4984–4993). Computer Vision Foundation/IEEE.
– reference: LiuFShenCLinGReidIDLearning depth from single monocular images using deep convolutional neural fieldsIEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI)201638102024203910.1109/TPAMI.2015.2505283
– reference: Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. Lecture notes in computer science (pp. 234–241). Springer.
– reference: Bai, M., Urtasun, R. (2017). Deep watershed transform for instance segmentation. In Conference on computer vision and pattern recognition (CVPR) (pp. 2858–2866). IEEE Computer Society.
– reference: Zhu, Y., Tian, Y., Metaxas, D. N., Dollár, P. (2017). Semantic amodal segmentation. In Conference on computer vision and pattern recognition (CVPR) (pp. 3001–3009). IEEE Computer Society.
– reference: Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In International conference on artificial intelligence and statistics (AISTATS), JMLR.org, JMLR proceedings (Vol. 9, pp. 249–256)
– reference: Wang, P., Chen, P., Yuan, Y., Liu, D., Huang, Z., Hou, X., & Cottrell, G. W. (2018b). Understanding convolution for semantic segmentation. In Winter conference on applications of computer vision (WACV) (pp. 1451–1460).
– reference: Ren, X., Fowlkes, C. C., Malik, J. (2006). Figure/ground assignment in natural images. In European conference on computer vision (ECCV) part II (Vol. 3952, pp. 614–627). Lecture notes in computer science, Springer.
– reference: Brégier, R., Devernay, F., Leyrit, L., & Crowley, J. L. (2017). Symmetry aware evaluation of 3d object detection and pose estimation in scenes of many parts in bulk. In International conference on computer vision workshops (ICCVW) (pp. 2209–2218). IEEE Computer Society.
– reference: Misra, I., Shrivastava, A., Gupta, A., & Hebert, M. (2016). Cross-stitch networks for multi-task learning. In Conference on computer vision and pattern recognition (CVPR) (pp. 3994–4003). IEEE Computer Society.
– reference: Batra, A., Singh, S., Pang, G., Basu, S., Jawahar, C., & Paluri, M. (2019). Improved road connectivity by joint learning of orientation and segmentation. In Conference on computer vision and pattern recognition (CVPR) (pp. 10385–10393). Computer Vision Foundation/IEEE.
– reference: Yu, Z., Liu, W., Zou, Y., Feng, C., Ramalingam, S., Kumar, B. V. K. V., & Kautz, J. (2018). Simultaneous edge alignment and learning. In European conference on computer vision (ECCV) part III (Vol. 11207, pp. 400–417). Lecture notes in computer science, Springer.
– reference: Follmann, P., Böttger, T., Härtinger, P., König, R., & Ulrich, M. (2018). MVTec D2S: Densely segmented supermarket dataset. In European conference on computer vision (ECCV) part X (Vol. 11214, pp. 581–597). Lecture notes in computer science, Springer.
– reference: GeigerALenzPStillerCUrtasunRVision meets robotics: The KITTI datasetInternational Journal of Robotics Research (IJRR)201332111231123710.1177/0278364913491297
– reference: Sun, D., Liu, C., & Pfister, H. (2014). Local layering for joint motion estimation and occlusion detection. In Conference on computer vision and pattern recognition (CVPR) (pp. 1098–1105). IEEE Computer Society.
– reference: Ros, G., Sellart, L., Materzynska, J., Vázquez, D., & López, A. M. (2016). The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In Conference on computer vision and pattern recognition (CVPR) (pp. 3234–3243). IEEE Computer Society.
– reference: Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder–decoder with atrous separable convolution for semantic image segmentation. In European conference on computer vision (ECCV) part VII (Vol. 11211, pp. 833–851). Lecture notes in computer science, Springer.
– reference: Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Conference on computer vision and pattern recognition (CVPR) (pp. 2261–2269). IEEE Computer Society.
– reference: Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In European conference on computer vision (ECCV) Part V (Vol. 8693, pp. 740–755). Lecture notes in computer science, Springer.
– reference: Guan, S., Khan, A. A., Sikdar, S., Chitnis, P. V. (2018). Fully dense UNet for 2D sparse photoacoustic tomography artifact removal. Journal of Biomedical and Health Informatics.
– reference: Yang, J., Price, B. L., Cohen, S., Lee, H., & Yang, M. H. (2016). Object contour detection with a fully convolutional encoder–decoder network. In Conference on computer vision and pattern recognition (CVPR)
– reference: AyvaciARaptisMSoattoSSparse occlusion detection with optical flowInternational Journal of Computer Vision (IJCV)2012973322338290420410.1007/s11263-011-0490-7
– reference: Liu, G., Si, J., Hu, Y., & Li, S. (2018a). Photographic image synthesis with improved U-net. In International conference on advanced computational intelligence (ICACI) (pp. 402–407). IEEE.
– reference: Xie, S., & Tu, Z. (2015). Holistically-nested edge detection. In International conference on computer vision (ICCV) (pp. 1395–1403). IEEE Computer Society.
– reference: Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. (2018c). Path aggregation network for instance segmentation. In Conference on computer vision and pattern recognition (CVPR) (pp. 8759–8768). IEEE Computer Society.
– reference: Eigen, D., Puhrsch, C., & Fergus, R. (2014). Depth map prediction from a single image using a multi-scale deep network. In Advances in neural information processing systems (NIPS) (pp. 2366–2374).
– reference: Kendall, A., Gal, Y., & Cipolla, R. (2018). Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In Conference on computer vision and pattern recognition (CVPR) (pp. 7482–7491). IEEE Computer Society.
– reference: Wang, P., & Yuille, A. L. (2016). DOC: Deep occlusion estimation from a single image. In European conference on computer vision (ECCV) part I (Vol. 9905, pp. 545–561). Lecture notes in computer science, Springer.
– reference: McCormac, J., Handa, A., Leutenegger, S., & Davison, A. J. (2017). SceneNet RGB-D: Can 5M synthetic images beat generic imagenet pre-training on indoor segmentation? In International conference on computer vision (ICCV) (pp. 2697–2706). IEEE Computer Society.
– reference: Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In International conference on learning representations (ICLR), IEEE Computer Society.
– reference: Ayvaci, A., Raptis, M., & Soatto, S. (2010). Occlusion detection and motion estimation with convex optimization. In Advances in neural information processing systems (NIPS) (pp. 100–108).
– reference: GeigerDLadendorfBYuilleALOcclusions and binocular stereoInternational Journal of Computer Vision (IJCV)199514321122610.1007/BF01679683
– reference: Kirillov, A., Wu, Y., He, K., & Girshick, R. B. (2019). PointRend: Image segmentation as rendering. CoRR, arXiv:1912.08193, http://arxiv.org/abs/1912.08193
– reference: Kirillov, A., Levinkov, E., Andres, B., Savchynskyy, B., & Rother, C. (2017). InstanceCut: From edges to instances with multicut. In Conference on computer vision and pattern recognition (CVPR) (pp. 7322–7331). IEEE Computer Society.
– reference: BadrinarayananVKendallACipollaRSegNet: A deep convolutional encoder–decoder architecture for image segmentationIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)201739122481249510.1109/TPAMI.2016.2644615
– reference: Ben-DavidSBlitzerJCrammerKKuleszaAPereiraFVaughanJWA theory of learning from different domainsMachine Learning2010791–2151175310815010.1007/s10994-009-5152-4
– reference: Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In International conference on learning representations (ICLR).
– reference: Luo, P., Wang, G., Lin, L., & Wang, X. (2017). Deep dual learning for semantic image segmentation. In International conference on computer vision (ICCV) (pp. 2737–2745). IEEE Computer Society.
– reference: Fu, H., Gong, M., Wang, C., Batmanghelich, K., & Tao, D. (2018). Deep ordinal regression network for monocular depth estimation. In Conference on computer vision and pattern recognition (CVPR) (pp. 2002–2011). IEEE Computer Society.
– reference: Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? In Advances in neural information processing systems (NIPS) (pp. 3320–3328).
– reference: Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken, A. P., Bishop, R., Rueckert, D., & Wang, Z. (2016). Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Conference on computer vision and pattern recognition (CVPR) (pp. 1874–1883). IEEE Computer Society.
– reference: Kong, S., & Fowlkes, C. C. (2018). Recurrent pixel embedding for instance grouping. In Conference on computer vision and pattern recognition (CVPR) (pp. 9018–9028). IEEE Computer Society.
– reference: Yu, J., Yang, L., Xu, N., Yang, J., & Huang, T. (2019). Slimmable neural networks. In International conference on learning representations (ICLR).
– reference: Do, T. T., Nguyen, A., & Reid, I. D. (2018). AffordanceNet: An end-to-end deep learning approach for object affordance detection. In International conference on robotics and automation (ICRA) (pp. 1–5). IEEE.
– reference: Hayder, Z., He, X., & Salzmann, M. (2017). Boundary-aware instance segmentation. In Conference on computer vision and pattern recognition (CVPR) (pp. 587–595). IEEE Computer Society.
– reference: Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., & Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In International conference on multimedia (pp. 675–678). ACM, MM’14.
– reference: Li, G., Xie, Y., Lin, L., & Yu, Y. (2017). Instance-level salient object segmentation. In Conference on computer vision and pattern recognition (CVPR) (pp. 247–256). IEEE Computer Society.
– reference: Yu, F., & Koltun, V. (2016). Multi-scale context aggregation by dilated convolutions. In International conference on learning representations (ICLR).
– reference: Liu, S., Johns, E., & Davison, A. J. (2019). End-to-end multi-task learning with attention. In Conference on computer vision and pattern recognition (CVPR) (pp. 1871–1880). Computer Vision Foundation/IEEE.
– reference: Romera-Paredes, B., & Torr, P. H. S. (2016). Recurrent instance segmentation. In European conference on computer vision (ECCV) part VI (Vol. 9910, pp. 312–329). Lecture notes in computer science, Springer.
– reference: Liu, Y., Cheng, M. M., Hu, X., Wang, K., & Bai, X. (2017). Richer convolutional features for edge detection. In Conference on computer vision and pattern recognition (CVPR) (pp. 5872—5881). IEEE Computer Society.
– reference: Deng, R., Shen, C., Liu, S., Wang, H., & Liu, X. (2018). Learning to predict crisp boundaries. In European conference on computer vision (ECCV) part VI (Vol. 11210, pp. 570–586). Lecture notes in computer science, Springer.
– reference: Liu, R., Lehman, J., Molino, P., Such, F. P., Frank, E., Sergeev, A., & Yosinski, J. (2018b). An intriguing failing of convolutional neural networks and the coordconv solution. In Advances in neural information processing systems (NeurIPS) (pp. 9628–9639).
– reference: ZitnickCLKanadeTA cooperative algorithm for stereo matching and occlusion detectionIEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI)200022767568410.1109/34.865184
– reference: Follmann, P., König, R., Härtinger, P., Klostermann, M., & Böttger, T. (2019). Learning to see the invisible: End-to-end trainable amodal instance segmentation. In Winter conference on applications of computer vision, (WACV) (pp. 1328–1336). IEEE.
– reference: Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q. V. (2019). AutoAugment: learning augmentation strategies from data. In Conference on computer vision and pattern recognition (CVPR) (pp. 113–123). Computer Vision Foundation/IEEE.
– reference: Wang, G., Wang, X., Li, F. W. B., & Liang, X. (2018a). DOOBNet: Deep object occlusion boundary detection from an image. In Asian conference on computer vision (ACCV) part VI (Vol. 11366, pp. 686–702). Lecture notes in computer science, Springer.
– reference: Humayun, A., Mac Aodha, O., Brostow, G. J. (2011). Learning to find occlusion regions. In Conference on computer vision and pattern recognition (CVPR) (pp. 2161–2168). IEEE Computer Society.
– reference: Williams, O., Isard, M., & MacCormick., J. (2011). Estimating disparity and occlusions in stereo video sequences. In Conference on computer vision and pattern recognition (CVPR) (pp. 250–257). IEEE Computer Society.
– reference: Gaidon, A., Wang, Q., Cabon, Y., & Vig, E. (2016). Virtual worlds as proxy for multi-object tracking analysis. In Conference on computer vision and pattern recognition (CVPR), IEEE Computer Society.
– reference: Wang, Y., Zhao, X., & Huang, K. (2017). Deep crisp boundaries. In Conference on computer vision and pattern recognition (CVPR) (pp. 1724–1732). IEEE Computer Society.
– reference: RussakovskyODengJSuHKrauseJSatheeshSMaSHuangZKarpathyAKhoslaABernsteinMBergACFei-FeiLImageNet large scale visual recognition challengeInternational Journal of Computer Vision (IJCV)20151153211252342248210.1007/s11263-015-0816-y
– reference: Cai, H., Zhu, L., & Han, S. (2019). ProxylessNAS: Direct neural architecture search on target task and hardware. In International conference on learning representations (ICLR).
– reference: Dong, X., Yan, Y., Ouyang, W., Yang, Y. (2018). Style aggregated network for facial landmark detection. In Conference on computer vision and pattern recognition (CVPR) (pp. 379–388). IEEE Computer Society.
– reference: Fan, R., Cheng, M. M., Hou, Q., Mu, T. J., Wang, J., & Hu, S. M. (2019). S4Net: Single stage salient-instance segmentation. In Conference on computer vision and pattern recognition (CVPR) (pp. 6103–6112). Computer Vision Foundation/IEEE.
– reference: He, K., Gkioxari, G., Dollár, P., & Girshick, R. B. (2017). Mask R-CNN. In International conference on computer vision (ICCV) (pp. 2980–2988). IEEE Computer Society.
– reference: Maninis, K. K., Pont-Tuset, J., Arbeláez, P. A., & Gool, L. J. V. (2016). Convolutional oriented boundaries. In European conference on computer vision (ECCV) part I (Vol. 9905, pp. 580–596). Lecture notes in computer science, Springer.
– reference: Lin, T. Y., Goyal, P., Girshick, R. B., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In International conference on computer vision (ICCV) (pp. 2999–3007). IEEE Computer Society.
– reference: Novotný, D., Albanie, S., Larlus, D., & Vedaldi, A. (2018). Semi-convolutional operators for instance segmentation. In European conference on computer vision (ECCV) part I (Vol. 11205, pp. 89–105). Lecture notes in computer science, Springer.
– reference: Zhang, L., Li, X., Arnab, A., Yang, K., Tong, Y., & Torr, P. H. (2019). Dual graph convolutional network for semantic segmentation. In British machine vision conference (BMVC).
– reference: Gan, Y., Xu, X., Sun, W., & Lin, L. (2018). Monocular depth estimation with affinity, vertical pooling, and label enhancement. In European conference on computer vision (ECCV) part III (Vol. 11207, pp. 232–247). Lecture notes in computer science, Springer.
– reference: GrammalidisNStrintzisMGDisparity and occlusion estimation in multiocular systems and their coding for the communication of multiview image sequencesTransactions on Circuits and Systems for Video Technology (TCSVT)19988332834410.1109/76.678630
– reference: Tang, Z., Peng, X., Geng, S., Wu, L., Zhang, S., & Metaxas, D. N. (2018). Quantized densely connected U-Nets for efficient landmark localization. In European conference on computer vision (ECCV) part III (Vol. 11207, pp. 348–364). Lecture notes in computer science, Springer.
– reference: Ren, M., & Zemel, R. S. (2017). End-to-end instance segmentation with recurrent attention. In Conference on computer vision and pattern recognition (CVPR) (pp. 293–301). IEEE Computer Society.
– reference: Fu, H., Wang, C., Tao, D., & Black, M. J. (2016). Occlusion boundary detection via deep exploration of context. In Conference on computer vision and pattern recognition (CVPR) (pp. 241–250). IEEE Computer Society.
– reference: Ben-David, S., Lu, T., Luu, T., Pál, D. (2010b). Impossibility theorems for domain adaptation. In International conference on artificial intelligence and statistics (AISTATS), JMLR.org, JMLR proceedings (Vol. 9, pp. 129–136).
– reference: Grard, M., Brégier, R., Sella, F., Dellandréa, E., & Chen, L. (2018). Object segmentation in depth maps with one user click and a synthetically trained fully convolutional network. In 2017 international workshop on human-friendly robotics (Vol. 7, pp. 207–221). Springer proceedings in advanced robotics, Springer.
– reference: Li, B., Shen, C., Dai, Y., van den Hengel, A., & He, M. (2015). Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs. In Conference on computer vision and pattern recognition (CVPR) (pp. 1119–1127). IEEE Computer Society.
– reference: Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In International conference on computer vision (ICCV) (pp. 416–423). IEEE Computer Society.
– ident: 1323_CR81
  doi: 10.1109/CVPR.2016.28
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 1323_CR69
  publication-title: International Journal of Computer Vision (IJCV)
  doi: 10.1007/s11263-015-0816-y
– ident: 1323_CR17
  doi: 10.1109/ICRA.2018.8460902
– volume: 8
  start-page: 328
  issue: 3
  year: 1998
  ident: 1323_CR31
  publication-title: Transactions on Circuits and Systems for Video Technology (TCSVT)
  doi: 10.1109/76.678630
– ident: 1323_CR78
  doi: 10.1109/CVPR.2017.187
– volume: 39
  start-page: 128
  issue: 1
  year: 2017
  ident: 1323_CR62
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
  doi: 10.1109/TPAMI.2016.2537320
– ident: 1323_CR1
  doi: 10.1007/978-3-030-01424-7_58
– ident: 1323_CR79
– volume: 22
  start-page: 675
  issue: 7
  year: 2000
  ident: 1323_CR88
  publication-title: IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI)
  doi: 10.1109/34.865184
– ident: 1323_CR24
  doi: 10.1109/CVPR.2018.00214
– ident: 1323_CR46
– ident: 1323_CR48
  doi: 10.1109/ICCV.2017.324
– ident: 1323_CR68
  doi: 10.1109/CVPR.2016.352
– ident: 1323_CR8
– ident: 1323_CR35
  doi: 10.1109/ICCV.2017.322
– ident: 1323_CR66
  doi: 10.1007/978-3-319-46466-4_19
– ident: 1323_CR38
  doi: 10.1109/CVPR.2011.5995517
– ident: 1323_CR65
  doi: 10.1007/11744047_47
– ident: 1323_CR74
  doi: 10.1007/978-3-030-01219-9_21
– ident: 1323_CR71
– ident: 1323_CR52
– ident: 1323_CR33
– ident: 1323_CR70
  doi: 10.1109/CVPR.2016.207
– ident: 1323_CR6
  doi: 10.1109/CVPR.2019.01063
– ident: 1323_CR22
  doi: 10.1007/978-3-030-01249-6_35
– ident: 1323_CR13
  doi: 10.1007/978-3-030-01234-2_49
– ident: 1323_CR85
  doi: 10.1007/978-3-030-01219-9_24
– ident: 1323_CR25
  doi: 10.1109/CVPR.2016.33
– ident: 1323_CR58
  doi: 10.1109/ICCV.2001.937655
– ident: 1323_CR82
– ident: 1323_CR60
  doi: 10.1109/CVPR.2016.433
– ident: 1323_CR41
– volume: 14
  start-page: 211
  issue: 3
  year: 1995
  ident: 1323_CR29
  publication-title: International Journal of Computer Vision (IJCV)
  doi: 10.1007/BF01679683
– ident: 1323_CR47
  doi: 10.1109/CVPR.2017.34
– ident: 1323_CR61
  doi: 10.1007/978-3-030-01246-5_6
– ident: 1323_CR64
  doi: 10.1109/CVPR.2017.39
– ident: 1323_CR86
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 1323_CR4
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
  doi: 10.1109/TPAMI.2016.2644615
– ident: 1323_CR37
  doi: 10.1109/CVPR.2017.243
– ident: 1323_CR45
  doi: 10.1109/CVPR.2019.00512
– ident: 1323_CR59
– volume: 111
  start-page: 98
  issue: 1
  year: 2015
  ident: 1323_CR20
  publication-title: International Journal of Computer Vision (IJCV)
  doi: 10.1007/s11263-014-0733-5
– ident: 1323_CR63
  doi: 10.1109/CVPR.2019.00313
– ident: 1323_CR27
  doi: 10.1007/978-3-030-01219-9_14
– ident: 1323_CR30
– ident: 1323_CR18
  doi: 10.1109/CVPR.2018.00047
– ident: 1323_CR67
  doi: 10.1007/978-3-319-24574-4_28
– ident: 1323_CR39
  doi: 10.1145/2647868.2654889
– ident: 1323_CR54
  doi: 10.1109/CVPR.2018.00913
– ident: 1323_CR2
– volume: 79
  start-page: 151
  issue: 1–2
  year: 2010
  ident: 1323_CR7
  publication-title: Machine Learning
  doi: 10.1007/s10994-009-5152-4
– ident: 1323_CR40
– volume: 38
  start-page: 2024
  issue: 10
  year: 2016
  ident: 1323_CR50
  publication-title: IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI)
  doi: 10.1109/TPAMI.2015.2505283
– ident: 1323_CR9
– volume: 97
  start-page: 322
  issue: 3
  year: 2012
  ident: 1323_CR3
  publication-title: International Journal of Computer Vision (IJCV)
  doi: 10.1007/s11263-011-0490-7
– ident: 1323_CR83
– ident: 1323_CR55
  doi: 10.1109/CVPR.2017.622
– ident: 1323_CR73
  doi: 10.1109/CVPR.2014.144
– ident: 1323_CR34
  doi: 10.1109/CVPR.2017.70
– ident: 1323_CR12
– ident: 1323_CR26
– ident: 1323_CR44
  doi: 10.1109/CVPR.2018.00940
– ident: 1323_CR11
  doi: 10.1109/CVPR.2018.00132
– ident: 1323_CR16
  doi: 10.1007/978-3-030-01231-1_35
– ident: 1323_CR72
  doi: 10.5244/C.20.42
– ident: 1323_CR43
– ident: 1323_CR57
  doi: 10.1007/978-3-319-46448-0_35
– ident: 1323_CR76
  doi: 10.1007/978-3-319-46448-0_33
– ident: 1323_CR14
  doi: 10.1109/CVPR.2019.00020
– ident: 1323_CR77
  doi: 10.1109/WACV.2018.00163
– ident: 1323_CR80
  doi: 10.1109/ICCV.2015.164
– ident: 1323_CR53
  doi: 10.1109/CVPR.2019.00197
– ident: 1323_CR42
  doi: 10.1109/CVPR.2017.774
– ident: 1323_CR75
  doi: 10.1007/978-3-030-20876-9_43
– ident: 1323_CR84
– ident: 1323_CR5
  doi: 10.1109/CVPR.2017.305
– ident: 1323_CR15
  doi: 10.1109/CVPR.2016.343
– volume: 32
  start-page: 1231
  issue: 11
  year: 2013
  ident: 1323_CR28
  publication-title: International Journal of Robotics Research (IJRR)
  doi: 10.1177/0278364913491297
– ident: 1323_CR49
  doi: 10.1007/978-3-319-10602-1_48
– ident: 1323_CR87
  doi: 10.1109/CVPR.2017.320
– ident: 1323_CR10
  doi: 10.1109/ICCVW.2017.258
– ident: 1323_CR19
– ident: 1323_CR23
  doi: 10.1109/WACV.2019.00146
– ident: 1323_CR36
  doi: 10.1007/978-3-642-15561-1_39
– ident: 1323_CR51
  doi: 10.1109/ICACI.2018.8377492
– ident: 1323_CR56
  doi: 10.1109/ICCV.2017.296
– ident: 1323_CR21
  doi: 10.1109/CVPR.2019.00626
– ident: 1323_CR32
SSID ssj0002823
Score 2.339324
Snippet Occlusion-aware instance-sensitive segmentation is a complex task generally split into region-based segmentations, by approximating instances as their bounding...
SourceID hal
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1331
SubjectTerms Artificial Intelligence
Coders
Complexity
Computer Imaging
Computer Science
Computer Vision and Pattern Recognition
Datasets
Decoding
Image annotation
Image enhancement
Image Processing and Computer Vision
Image segmentation
Layouts
Learning
Machine Learning
Occlusion
Pattern Recognition
Pattern Recognition and Graphics
Position sensing
Representations
Special Issue on Deep Learning for Robotic Vision
Vision
SummonAdditionalLinks – databaseName: ABI/INFORM Global (OCUL)
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LTtwwcFQoh154FCrSQmWhSj3QqMkmcTYntIVSVqK0giJxqSw_AWmb3ZJdDnx9Z7zOLiDBpackjmPHmvG8PA-AD6XmHOGaoVpCITnG4p6TMourxHHnFDJ863yxifLkpHtxUf0MBrcmuFW2NNETajPUZCP_TDGYyKx5le-N_sZUNYpOV0MJjQV4SZINufR9T_ZnlBjViWkpeVSRCl6lIWhmGjqXdvwJJrllZR28e8CYAnleuCLvyHui56PTUs-EDlf-9_dXYTmIn6w3xZc1eGHr17ASRFEWNnqDTW21h7ZtHX4fWDtiPmBXS2_KYgeouxLvYyj5smPiitd39HheD7UeTAwO-UORoYf1vRSKQzOKZ2GSnWG_gWWn376w_h-kaRtwfvj11_5RHIozxDrnxTiujHWFQfXKqdIazZHXFibjiUu5MWWh0zJzRhlntK2ckhwvuqhkIjlPcleU2RtYrIe13QRmUmedUqrkpcydS6quSVLVza0suEL9NoK0hYzQIXM5FdAYiHnOZYKmQGgKD02RRLA7-2Y0zdvxbO8dArighBg1edxcyknTiP7ZqejxDkpEqIR1I_gYOrkhTq9lCGDARVAOrQc9dxBxZvNSBu-j3rGgNi9ioZZ7m0Ww1WKKCHSjEXM0ieBTi2vz10-v4O3zo72DVx2P6-SpuQWL45uJ3YYlfTu-bm7e-13zD0fYGrs
  priority: 102
  providerName: ProQuest
Title Deep Multicameral Decoding for Localizing Unoccluded Object Instances from a Single RGB Image
URI https://link.springer.com/article/10.1007/s11263-020-01323-0
https://www.proquest.com/docview/2399056694
https://hal.science/hal-02151828
Volume 128
WOSCitedRecordID wos000521913600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3bbtMw9IhuPPCycRXZRmVNSDxApKRJ7Oaxu7GKUaqWwUBClq_bpC6dlnYPfD3HrtMyBEjwkotzYsf28bnE5wLwkilKcV4zVEucS442uOaEyOIysdRaiQzfWJ9sgg0G3bOzchicwurG2r3ZkvSUeuXslnb8nqMzpMo6eNWCdWR3XZewYTT-tKS_qEQsEsgjZEHLNLjK_L6OO-woEOXWhbOJ_Eng_GWP1LOeo83_--iHsBFETdJb4MYjuGeqx7AZxE4SFnWNRU1mh6bsCXw7MOaaeOdcJfxvK3KAeqrjcwSlXHLiOODld3d7Wk2Vmsw1VvlBup86pO8lTqyaON8VIsgY4SaGjN7ukf4V0q-ncHp0-HH_OA6JGGKV02IWl9rYQqMqZSUzWlHkq4XOaGJTqjUrVMoyq6W2WpnSSkHxpIpSJILSJLcFy57BWjWtzHMgOrXGSikZZSK3FqdPJ6ns5kYUVKIuG0HazAdXIUq5S5Yx4av4ym5IOQ4p90PKkwheL9-5XsTo-Cv0rptm7oJfVM665lzM65r3xyPeox2UflDh6kbwKgDZKTavRHBWwE64eFl3IHcRXZbtumjdx70T7sq8OIUa7W0WwU6DTTzQiJo7r2IUP2mZR_CmwZ7V4z_3YOvfwLfhQccjoLPS3IG12c3cvID76nZ2Wd-0ocU-f2nD-t7hYDjCu3csxuP7ZB-Pw-Jr26-tHyU6FdM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH5qCxJcKKswFBhVIA5g4XVsHxAKhBIrIaAuUi_VMJ4FKoUk1EkR_Ch-I-9N7IQi0VsPnGyPx2ON_b1t5i0AjzPFOf7XGM0SCsnRBmlOytgvAsutrVDgG-uKTWTDYX54WHxcg19tLAy5VbY80TFqPVG0Rv6CYjBRWPMieTX95lPVKNpdbUtoLGDRNz--o8lWvyy7-H-fRNHO2_03Pb-pKuCrhKczv9DGphrtAltlRiuOQiLVMQ9syLXOUhVmsdWVtlqZwlaS40GlhQwk50Fi0yzGcdfhUhLnGdFVP_OXnB_Nl0XpejTJUl6ETZDOIlQvjNyOKbmBxRGenRGEjThY_0LemH-oun_tzjqht7P5v32u63CtUa9ZZ0EPN2DNjG_CZqNqs4aR1djUVrNo227BUdeYKXMByUq6pTrWRducZDtDzZ4NSOof_6TLg_FEqdFc45AfKlrIYqXTsnFoRvE6TLI97DcybPfda1Z-RZ59Gw4uZN53YGM8GZu7wHRoja2qKuOZTKwNilwHYZUnRqa8Qvvdg7BFglBNZnYqEDISq5zShB6B6BEOPSLw4NnymekiL8m5vbcJYIISfozJo-iznNe1KPd2RYdHqPGhkZl78LTpZCf4eiWbAA2cBOUIO9NzG4G6fC9lKO91BoLanAqJVvxp7MFWi0zR8MVarGDpwfMW26vb_57BvfNHewRXevvvB2JQDvv34Wrk6Iy8UrdgY3YyNw_gsjqdHdcnDx3FMvh00Zj_DaxSfUI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD7aBkK8MK6iMMCaQDxAtFwap3lAqFDKolWl2pg0ISHj-AKTSluWdgh-Gr-OcxynZUjsbQ88NXUdR24-n3M--1wAHmeKc3yvCdISCsnRBteclEmQh5ZbW6LCN9YVm8iGw87RUT5ag19NLAy5VTYy0QlqPVW0R75DMZiorHne3rHeLWLU67-cfQuoghSdtDblNGqI7Jkf35G-VS-KHr7rJ3Hcf_P-9W7gKwwEqs3TeZBrY1ONHMGWmdGKo8JIdcJDG3Gts1RFWWJ1qa1WJrel5Pih0lyGkvOwbdMswXHX4VKGHJPcCUfph6UWQCpTl7FHepbyPPIBO3XYXhS701NyCUtivDqjFL1qWP9Cnpl_mL1_ndQ6Bdjf_J__uutwzZvdrFuvkxuwZiY3YdOb4MwLuAqbmioXTdst-NgzZsZcoLKSbguP9ZCzk85naPGzAVkDxz_p6-FkqtR4oXHIdyVtcLHCWd84NKM4HibZAfYbG7b_9hUrvqIsvw2HFzLvO7AxmU7MXWA6ssaWZZnxTLatDfOODqOy0zYy5SXy-hZEDSqE8hnbqXDIWKxyTROSBCJJOCSJsAXPlvfM6nwl5_beJrAJSgQyIVx8louqEsXBvujyGC1BJJ-dFjz1newUH6-kD9zASVDusDM9txG0y-dS5vLd7kBQmzMtkd2fJi3YalAqvLysxAqiLXje4Hz1879ncO_80R7BFYS6GBTDvftwNXZLjpxVt2BjfrIwD-CyOp0fVycP3eJl8OmiIf8b6eOGZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Multicameral+Decoding+for+Localizing+Unoccluded+Object+Instances+from+a+Single+RGB+Image&rft.jtitle=International+journal+of+computer+vision&rft.au=Grard%2C+Matthieu&rft.au=Dellandr%C3%A9a%2C+Emmanuel&rft.au=Chen%2C+Liming&rft.series=Special+Issue+on+Deep+Learning+for+Robotic+Vision&rft.date=2020-05-01&rft.pub=Springer+Verlag&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007%2Fs11263-020-01323-0&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02151828v3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon