Freezing, Bounded-Change and Convergent Cellular Automata
This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only decrease according to some order on states, cellular automata where each cell only makes a bounded number of state changes in any orbit, and finally...
Uložené v:
| Vydané v: | Discrete Mathematics and Theoretical Computer Science Ročník 24, no. 1; číslo Automata, Logic and Semantics; s. 1 - 37 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Nancy
DMTCS
01.01.2022
Discrete Mathematics & Theoretical Computer Science |
| Predmet: | |
| ISSN: | 1365-8050, 1462-7264, 1365-8050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only decrease according to some order on states, cellular automata where each cell only makes a bounded number of state changes in any orbit, and finally cellular automata where each orbit converges to some fixed point. Many examples studied in the literature fit into these definitions, in particular the works on cristal growth started by S. Ulam in the 60s. The central question addressed here is how the computational power and computational hardness of basic properties is affected by the constraints of convergence, bounded number of change, or local decreasing of states in each cell. By studying various benchmark problems (short-term prediction, long term reachability, limits) and considering various complexity measures and scales (LOGSPACE vs. PTIME, communication complexity, Turing computability and arithmetical hierarchy) we give a rich and nuanced answer: the overall computational complexity of such cellular automata depends on the class considered (among the three above), the dimension, and the precise problem studied. In particular, we show that all settings can achieve universality in the sense of Blondel-Delvenne-K\r{u}rka, although short term predictability varies from NLOGSPACE to P-complete. Besides, the computability of limit configurations starting from computable initial configurations separates bounded-change from convergent cellular automata in dimension~1, but also dimension~1 versus higher dimensions for freezing cellular automata. Another surprising dimension-sensitive result obtained is that nilpotency becomes decidable in dimension~ 1 for all the three classes, while it stays undecidable even for freezing cellular automata in higher dimension. |
|---|---|
| AbstractList | This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only decrease according to some order on states, cellular automata where each cell only makes a bounded number of state changes in any orbit, and finally cellular automata where each orbit converges to some fixed point. Many examples studied in the literature fit into these definitions, in particular the works on cristal growth started by S. Ulam in the 60s. The central question addressed here is how the computational power and computational hardness of basic properties is affected by the constraints of convergence, bounded number of change, or local decreasing of states in each cell. By studying various benchmark problems (short-term prediction, long term reachability, limits) and considering various complexity measures and scales (LOGSPACE vs. PTIME, communication complexity, Turing computability and arithmetical hierarchy) we give a rich and nuanced answer: the overall computational complexity of such cellular automata depends on the class considered (among the three above), the dimension, and the precise problem studied. In particular, we show that all settings can achieve universality in the sense of Blondel-Delvenne-Kurka, although short term predictability varies from NLOGSPACE to P-complete. Besides, the computability of limit configurations starting from computable initial configurations separates bounded-change from convergent cellular automata in dimension 1, but also dimension 1 versus higher dimensions for freezing cellular automata. Another surprising dimension-sensitive result obtained is that nilpotency becomes decidable in dimension 1 for all the three classes, while it stays undecidable even for freezing cellular automata in higher dimension. Keywords: freezing cellular automata, convergent cellular automata, complexity, computability This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only decrease according to some order on states, cellular automata where each cell only makes a bounded number of state changes in any orbit, and finally cellular automata where each orbit converges to some fixed point. Many examples studied in the literature fit into these definitions, in particular the works on cristal growth started by S. Ulam in the 60s. The central question addressed here is how the computational power and computational hardness of basic properties is affected by the constraints of convergence, bounded number of change, or local decreasing of states in each cell. By studying various benchmark problems (short-term prediction, long term reachability, limits) and considering various complexity measures and scales (LOGSPACE vs. PTIME, communication complexity, Turing computability and arithmetical hierarchy) we give a rich and nuanced answer: the overall computational complexity of such cellular automata depends on the class considered (among the three above), the dimension, and the precise problem studied. In particular, we show that all settings can achieve universality in the sense of Blondel-Delvenne-K\r{u}rka, although short term predictability varies from NLOGSPACE to P-complete. Besides, the computability of limit configurations starting from computable initial configurations separates bounded-change from convergent cellular automata in dimension~1, but also dimension~1 versus higher dimensions for freezing cellular automata. Another surprising dimension-sensitive result obtained is that nilpotency becomes decidable in dimension~ 1 for all the three classes, while it stays undecidable even for freezing cellular automata in higher dimension. This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only decrease according to some order on states, cellular automata where each cell only makes a bounded number of state changes in any orbit, and finally cellular automata where each orbit converges to some fixed point. Many examples studied in the literature fit into these definitions, in particular the works on cristal growth started by S. Ulam in the 60s. The central question addressed here is how the computational power and computational hardness of basic properties is affected by the constraints of convergence, bounded number of change, or local decreasing of states in each cell. By studying various benchmark problems (short-term prediction, long term reachability, limits) and considering various complexity measures and scales (LOGSPACE vs. PTIME, communication complexity, Turing computability and arithmetical hierarchy) we give a rich and nuanced answer: the overall computational complexity of such cellular automata depends on the class considered (among the three above), the dimension, and the precise problem studied. In particular, we show that all settings can achieve universality in the sense of Blondel-Delvenne-Kurka, although short term predictability varies from NLOGSPACE to P-complete. Besides, the computability of limit configurations starting from computable initial configurations separates bounded-change from convergent cellular automata in dimension 1, but also dimension 1 versus higher dimensions for freezing cellular automata. Another surprising dimension-sensitive result obtained is that nilpotency becomes decidable in dimension 1 for all the three classes, while it stays undecidable even for freezing cellular automata in higher dimension. |
| Audience | Academic |
| Author | Theyssier, Guillaume Ollinger, Nicolas |
| Author_xml | – sequence: 1 givenname: Nicolas surname: Ollinger fullname: Ollinger, Nicolas organization: Laboratoire d'Informatique Fondamentale d'Orléans – sequence: 2 givenname: Guillaume surname: Theyssier fullname: Theyssier, Guillaume organization: Institut de Mathématiques de Marseille |
| BackLink | https://hal.science/hal-02266916$$DView record in HAL |
| BookMark | eNptkUuLFDEUhQsZwZnRlX-gwJVotXk_lm3hPKDBja5DKo-aNFXJmEoN6K833a2MI0MWCYfvnJvLuWjOYoquad5CsCEMSfHJzsUsG8oxedGcQ8xoJwAFZ_-8XzUXy7IHACJJ-Hkjr7Jzv0IcP7af0xqts11_p-PoWh1t26f44PLoYml7N03rpHO7XUuaddGvm5deT4t78-e-bL5fffnW33S7r9e3_XbXGcJo6SSHAwWUAA4MdZ4Khw0DznDoKOQUCUSQhQP3DnsgqBdUEs8AtgNnDFmCL5vbU65Neq_uc5h1_qmSDuoopDwqnUswk1OSM0kJc1zKgTAvhaVVGixhhCMiZM16f8q609OTqJvtTh00gBBjErKHw9x3J_Y-px-rW4rapzXHuqrCgAhIKUb4kRp1_UCIPpWszRwWo7ZMCgmxwKxSm2eoeqybg6kd-lD1JwZ4MpicliU7r0wouoQUqzFMCgJ1LFwdC1eHwqvnw3-evxs-R_8GDoOpbw |
| CitedBy_id | crossref_primary_10_1007_s11047_022_09886_2 crossref_primary_10_3390_math10183408 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 DMTCS Copyright DMTCS 2022 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: COPYRIGHT 2022 DMTCS – notice: Copyright DMTCS 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BFMQW BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 1XC VOOES DOA |
| DOI | 10.46298/dmtcs.5734 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Continental Europe Database (ProQuest) Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1365-8050 |
| EndPage | 37 |
| ExternalDocumentID | oai_doaj_org_article_9769546e799b46f98d5976bd46472489 oai:HAL:hal-02266916v4 A698913836 10_46298_dmtcs_5734 |
| Genre | Feature |
| GeographicLocations | France |
| GeographicLocations_xml | – name: France |
| GroupedDBID | -~9 .4S .DC 29G 2WC 5GY 5VS 8FE 8FG AAFWJ AAYXX ABDBF ABJCF ABUWG ACGFO ACIWK ACUHS ADBBV ADQAK AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS B0M BAIFH BBTPI BCNDV BENPR BFMQW BGLVJ BPHCQ CCPQU CITATION EAP EBS ECS EDO EJD EMK EPL EST ESX GROUPED_DOAJ HCIFZ I-F IAO IBB ICD ITC J9A KQ8 KWQ L6V M7S MK~ ML~ OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PV9 REM RNS RSU RZL TR2 TUS XSB ~8M M~E ADOJU AZQEC DWQXO PKEHL PQEST PQUKI PRINS PUEGO 1XC VOOES |
| ID | FETCH-LOGICAL-c465t-971b5054070c5ef58e3c60ec71e517528242d1b7fe3f085f8594f603db7662d43 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000751385300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1365-8050 1462-7264 |
| IngestDate | Fri Oct 03 12:39:57 EDT 2025 Tue Oct 14 20:43:13 EDT 2025 Sat Sep 06 14:30:57 EDT 2025 Wed Mar 19 00:02:10 EDT 2025 Sat Mar 08 18:39:50 EST 2025 Sat Nov 29 02:48:26 EST 2025 Tue Nov 18 22:44:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Automata, Logic and Semantics |
| Keywords | computability complexity convergent cellular automata freezing cellular automata |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c465t-971b5054070c5ef58e3c60ec71e517528242d1b7fe3f085f8594f603db7662d43 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ORCID | 0000-0002-6826-1034 0000-0003-1944-4915 |
| OpenAccessLink | https://doaj.org/article/9769546e799b46f98d5976bd46472489 |
| PQID | 3048155323 |
| PQPubID | 946337 |
| PageCount | 37 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9769546e799b46f98d5976bd46472489 hal_primary_oai_HAL_hal_02266916v4 proquest_journals_3048155323 gale_infotracmisc_A698913836 gale_infotracacademiconefile_A698913836 crossref_citationtrail_10_46298_dmtcs_5734 crossref_primary_10_46298_dmtcs_5734 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Nancy |
| PublicationPlace_xml | – name: Nancy |
| PublicationTitle | Discrete Mathematics and Theoretical Computer Science |
| PublicationYear | 2022 |
| Publisher | DMTCS Discrete Mathematics & Theoretical Computer Science |
| Publisher_xml | – name: DMTCS – name: Discrete Mathematics & Theoretical Computer Science |
| SSID | ssj0012947 ssib044734695 |
| Score | 2.251288 |
| Snippet | This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only... |
| SourceID | doaj hal proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1 |
| SubjectTerms | [info.info-cc]computer science [cs]/computational complexity [cs.cc] [info.info-dm]computer science [cs]/discrete mathematics [cs.dm] [math.math-ds]mathematics [math]/dynamical systems [math.ds] Cellular automata complexity computability Computational Complexity Computer Science Convergence (Mathematics) convergent cellular automata Discrete Mathematics Dynamical Systems Freezing freezing cellular automata Mathematical research Mathematics |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxNBEF9s6oN9sFqVRqMcUhDEtdnb7ydJQkMfaiii0Lcltx9ViEnNXfvgX-_MZXMSEV983ZuDuZuPndmd-Q0hJzHJZIOvKCjQnIqYIrWJa2qVsaaMHBZaSV_o2cxcXdnLfOBW57LKrU9sHXVYeTwjP-UtsInkJf9w84Pi1Ci8Xc0jNPbIPiKViR7ZH5_NLj919wilFXrTlSdUac1p-N74-r3UXOzsQy1cf-eU975iTeQfrrndb6aH_8vpI_IwR5rFaKMaj8m9uDwih9spDkU26iNy8LFDbq2fEDtdx_gT9rN3xRgnLsVANw0IxXwZignWqGO7ZlNM4mKBJazF6LZZwdvzp-TL9Ozz5Jzm8QrUCyUbajWrJEZseuglyMxE7tUwes2ihKACcjFRBlbpFHmCwCwZaUVSQwRkVqoMgj8jveVqGY9JwXSqLGdJBeYFY8mYSmGPaoLwSXrG-uTt9mc7n7HHcQTGwkEO0krGtZJxKJk-OemIbzaQG38nG6PUOhLEyW4XVutrl83OQbBlpVBRW1sJlawJkECpKghEzRfG9skblLlDawaG_Dw3JcBnIS6WG-F8TQZZvOqTwQ4lWKHfefwatGaHmfPRhcM1iJKUgij8DlgebDXGZVdRu9_q8vzfj1-QByX2XrTnPwPSa9a38SW57--ab_X6Vdb8XxCQCr4 priority: 102 providerName: ProQuest |
| Title | Freezing, Bounded-Change and Convergent Cellular Automata |
| URI | https://www.proquest.com/docview/3048155323 https://hal.science/hal-02266916 https://doaj.org/article/9769546e799b46f98d5976bd46472489 |
| Volume | 24, no. 1 |
| WOSCitedRecordID | wos000751385300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044734695 issn: 1365-8050 databaseCode: M~E dateStart: 19980101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Continental Europe Database (ProQuest) customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BFMQW dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: PIMPY dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB7atIfm0EfaEreOWUqgULqNtXofbWOTQmJMH5CehFcr0YLrFHuTQw_97Z3Rrk0cCrn0sgdJC6MZSfNpd-YbgOMQZbSVL3NcQPNchBhyG7nOrTLWFIFjQ7L0mZ5OzcWFnd0o9UUxYQ09cKO4E3SXVgoVtLWlUNGaCiGwKitBvOfCpNQ9RD2by1T7_6CwQjfZeEIV1pxUP2u__iA1Fzv-J9H0bw_j-98pFvLWkZz8zOQpPG4BYjZoBHsG98LyAJ5sii9k7V48gP3zLeHq-jnYySqE3-iG3mdDKpQUqrzJG8jmyyobUWg5ZVnW2SgsFhR5mg2u6kt8e_4Cvk7GX0aneVsVIfdCyTq3mpWSgJbue4mqNoF71Q9esyARC-AVShQVK3UMPCKeikZaEVWfeJSVKirBX8Le8nIZDiFjOpaWs6gq5gVj0ZhSUWppRNQjPWMdeLfRlfMtZThVrlg4vDokxbqkWEeK7cDxdvCvhinj38OGpPTtEKK3Tg1odNca3d1l9A68JZM52oQokJ-3uQQ4LaKzcgMqi8nw8q060N0ZiZvH73S_QaPvCHM6OHPUhuBGKQTP1yhyd7MmXLvD144noh3JC_7qf8zoNTwqKLEifdzpwl69ugpH8NBf1z_Wqx48GI6ns0-9tMh7FJ_6mZ5_xtgz-3g--_YXlY__KA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61KRLlQKGACARYoSIkxNJ47fXaB4TSQJSoSZRDkcrJZL12QQpJSbZF8KP4jczsIygIceuBq-1d2etv52HPzAdw4HzsdWbTEAE0DYXzLtSeJ6GWSqvIcWwodnqYjMfq9FRPtuBnnQtDYZW1TCwEdbawdEZ-yIvCJjGP-JvzryGxRtHtak2hUcLi2H3_hi7b6vXgLe7vsyjqvTvp9sOKVSC0QsZ5qBOWxmSoJG0b41SV41a2nU2Yi1GXogsiooyliXfcoz3iVayFl22qQyxllAmO792GHYFgVw3YmQxGkw_re4tIi6TMAhQy0uow-5Lb1as44WJD7xX0AGslsP2JYjD_UAWFfuvt_W9f5hbcrCzpoFNC_zZsufk-7NUsFUEltPbhxmhdmXZ1B3Rv6dwP1NcvgyNilHJZWCZYBNN5FnQpBp_SUfOg62YzCtENOhf5Ap-e3oX3V7Kce9CYL-buPgQs8anmzMuMWcGYVyqVlIPr0TyMLWNNeFFvrrFVbXWi-JgZ9LEKJJgCCYaQ0ISD9eDzsqTI34cdEUrWQ6gOeNGwWJ6ZSqwYNCZ1LKRLtE6F9Fpl6CDKNBPECiCUbsJzwpghaYUTstMq6QKXRXW_TIf4QxlXXDahtTESpYzd6H6KKN2YTL8zNNSGVqCU6GVc4pRbNUJNJQpX5jc8H_y7-wlc75-MhmY4GB8_hN2I8kyKs64WNPLlhXsE1-xl_nm1fFz9dQF8vGo4_wLxbGTw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Freezing%2C+Bounded-Change+and+Convergent+Cellular+Automata&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=Ollinger%2C+Nicolas&rft.au=Theyssier%2C+Guillaume&rft.date=2022-01-01&rft.pub=DMTCS&rft.issn=1462-7264&rft.eissn=1365-8050&rft.volume=24%2C+no.+1&rft_id=info:doi/10.46298%2Fdmtcs.5734&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02266916v4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon |