Freezing, Bounded-Change and Convergent Cellular Automata

This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only decrease according to some order on states, cellular automata where each cell only makes a bounded number of state changes in any orbit, and finally...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete Mathematics and Theoretical Computer Science Ročník 24, no. 1; číslo Automata, Logic and Semantics; s. 1 - 37
Hlavní autori: Ollinger, Nicolas, Theyssier, Guillaume
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Nancy DMTCS 01.01.2022
Discrete Mathematics & Theoretical Computer Science
Predmet:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only decrease according to some order on states, cellular automata where each cell only makes a bounded number of state changes in any orbit, and finally cellular automata where each orbit converges to some fixed point. Many examples studied in the literature fit into these definitions, in particular the works on cristal growth started by S. Ulam in the 60s. The central question addressed here is how the computational power and computational hardness of basic properties is affected by the constraints of convergence, bounded number of change, or local decreasing of states in each cell. By studying various benchmark problems (short-term prediction, long term reachability, limits) and considering various complexity measures and scales (LOGSPACE vs. PTIME, communication complexity, Turing computability and arithmetical hierarchy) we give a rich and nuanced answer: the overall computational complexity of such cellular automata depends on the class considered (among the three above), the dimension, and the precise problem studied. In particular, we show that all settings can achieve universality in the sense of Blondel-Delvenne-K\r{u}rka, although short term predictability varies from NLOGSPACE to P-complete. Besides, the computability of limit configurations starting from computable initial configurations separates bounded-change from convergent cellular automata in dimension~1, but also dimension~1 versus higher dimensions for freezing cellular automata. Another surprising dimension-sensitive result obtained is that nilpotency becomes decidable in dimension~ 1 for all the three classes, while it stays undecidable even for freezing cellular automata in higher dimension.
AbstractList This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only decrease according to some order on states, cellular automata where each cell only makes a bounded number of state changes in any orbit, and finally cellular automata where each orbit converges to some fixed point. Many examples studied in the literature fit into these definitions, in particular the works on cristal growth started by S. Ulam in the 60s. The central question addressed here is how the computational power and computational hardness of basic properties is affected by the constraints of convergence, bounded number of change, or local decreasing of states in each cell. By studying various benchmark problems (short-term prediction, long term reachability, limits) and considering various complexity measures and scales (LOGSPACE vs. PTIME, communication complexity, Turing computability and arithmetical hierarchy) we give a rich and nuanced answer: the overall computational complexity of such cellular automata depends on the class considered (among the three above), the dimension, and the precise problem studied. In particular, we show that all settings can achieve universality in the sense of Blondel-Delvenne-Kurka, although short term predictability varies from NLOGSPACE to P-complete. Besides, the computability of limit configurations starting from computable initial configurations separates bounded-change from convergent cellular automata in dimension 1, but also dimension 1 versus higher dimensions for freezing cellular automata. Another surprising dimension-sensitive result obtained is that nilpotency becomes decidable in dimension 1 for all the three classes, while it stays undecidable even for freezing cellular automata in higher dimension. Keywords: freezing cellular automata, convergent cellular automata, complexity, computability
This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only decrease according to some order on states, cellular automata where each cell only makes a bounded number of state changes in any orbit, and finally cellular automata where each orbit converges to some fixed point. Many examples studied in the literature fit into these definitions, in particular the works on cristal growth started by S. Ulam in the 60s. The central question addressed here is how the computational power and computational hardness of basic properties is affected by the constraints of convergence, bounded number of change, or local decreasing of states in each cell. By studying various benchmark problems (short-term prediction, long term reachability, limits) and considering various complexity measures and scales (LOGSPACE vs. PTIME, communication complexity, Turing computability and arithmetical hierarchy) we give a rich and nuanced answer: the overall computational complexity of such cellular automata depends on the class considered (among the three above), the dimension, and the precise problem studied. In particular, we show that all settings can achieve universality in the sense of Blondel-Delvenne-K\r{u}rka, although short term predictability varies from NLOGSPACE to P-complete. Besides, the computability of limit configurations starting from computable initial configurations separates bounded-change from convergent cellular automata in dimension~1, but also dimension~1 versus higher dimensions for freezing cellular automata. Another surprising dimension-sensitive result obtained is that nilpotency becomes decidable in dimension~ 1 for all the three classes, while it stays undecidable even for freezing cellular automata in higher dimension.
This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only decrease according to some order on states, cellular automata where each cell only makes a bounded number of state changes in any orbit, and finally cellular automata where each orbit converges to some fixed point. Many examples studied in the literature fit into these definitions, in particular the works on cristal growth started by S. Ulam in the 60s. The central question addressed here is how the computational power and computational hardness of basic properties is affected by the constraints of convergence, bounded number of change, or local decreasing of states in each cell. By studying various benchmark problems (short-term prediction, long term reachability, limits) and considering various complexity measures and scales (LOGSPACE vs. PTIME, communication complexity, Turing computability and arithmetical hierarchy) we give a rich and nuanced answer: the overall computational complexity of such cellular automata depends on the class considered (among the three above), the dimension, and the precise problem studied. In particular, we show that all settings can achieve universality in the sense of Blondel-Delvenne-Kurka, although short term predictability varies from NLOGSPACE to P-complete. Besides, the computability of limit configurations starting from computable initial configurations separates bounded-change from convergent cellular automata in dimension 1, but also dimension 1 versus higher dimensions for freezing cellular automata. Another surprising dimension-sensitive result obtained is that nilpotency becomes decidable in dimension 1 for all the three classes, while it stays undecidable even for freezing cellular automata in higher dimension.
Audience Academic
Author Theyssier, Guillaume
Ollinger, Nicolas
Author_xml – sequence: 1
  givenname: Nicolas
  surname: Ollinger
  fullname: Ollinger, Nicolas
  organization: Laboratoire d'Informatique Fondamentale d'Orléans
– sequence: 2
  givenname: Guillaume
  surname: Theyssier
  fullname: Theyssier, Guillaume
  organization: Institut de Mathématiques de Marseille
BackLink https://hal.science/hal-02266916$$DView record in HAL
BookMark eNptkUuLFDEUhQsZwZnRlX-gwJVotXk_lm3hPKDBja5DKo-aNFXJmEoN6K833a2MI0MWCYfvnJvLuWjOYoquad5CsCEMSfHJzsUsG8oxedGcQ8xoJwAFZ_-8XzUXy7IHACJJ-Hkjr7Jzv0IcP7af0xqts11_p-PoWh1t26f44PLoYml7N03rpHO7XUuaddGvm5deT4t78-e-bL5fffnW33S7r9e3_XbXGcJo6SSHAwWUAA4MdZ4Khw0DznDoKOQUCUSQhQP3DnsgqBdUEs8AtgNnDFmCL5vbU65Neq_uc5h1_qmSDuoopDwqnUswk1OSM0kJc1zKgTAvhaVVGixhhCMiZM16f8q609OTqJvtTh00gBBjErKHw9x3J_Y-px-rW4rapzXHuqrCgAhIKUb4kRp1_UCIPpWszRwWo7ZMCgmxwKxSm2eoeqybg6kd-lD1JwZ4MpicliU7r0wouoQUqzFMCgJ1LFwdC1eHwqvnw3-evxs-R_8GDoOpbw
CitedBy_id crossref_primary_10_1007_s11047_022_09886_2
crossref_primary_10_3390_math10183408
ContentType Journal Article
Copyright COPYRIGHT 2022 DMTCS
Copyright DMTCS 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: COPYRIGHT 2022 DMTCS
– notice: Copyright DMTCS 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
1XC
VOOES
DOA
DOI 10.46298/dmtcs.5734
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Continental Europe Database (ProQuest)
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList

CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
EndPage 37
ExternalDocumentID oai_doaj_org_article_9769546e799b46f98d5976bd46472489
oai:HAL:hal-02266916v4
A698913836
10_46298_dmtcs_5734
Genre Feature
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID -~9
.4S
.DC
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
ADQAK
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
B0M
BAIFH
BBTPI
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IBB
ICD
ITC
J9A
KQ8
KWQ
L6V
M7S
MK~
ML~
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PV9
REM
RNS
RSU
RZL
TR2
TUS
XSB
~8M
M~E
ADOJU
AZQEC
DWQXO
PKEHL
PQEST
PQUKI
PRINS
PUEGO
1XC
VOOES
ID FETCH-LOGICAL-c465t-971b5054070c5ef58e3c60ec71e517528242d1b7fe3f085f8594f603db7662d43
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000751385300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1365-8050
1462-7264
IngestDate Fri Oct 03 12:39:57 EDT 2025
Tue Oct 14 20:43:13 EDT 2025
Sat Sep 06 14:30:57 EDT 2025
Wed Mar 19 00:02:10 EDT 2025
Sat Mar 08 18:39:50 EST 2025
Sat Nov 29 02:48:26 EST 2025
Tue Nov 18 22:44:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Automata, Logic and Semantics
Keywords computability
complexity
convergent cellular automata
freezing cellular automata
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-971b5054070c5ef58e3c60ec71e517528242d1b7fe3f085f8594f603db7662d43
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ORCID 0000-0002-6826-1034
0000-0003-1944-4915
OpenAccessLink https://doaj.org/article/9769546e799b46f98d5976bd46472489
PQID 3048155323
PQPubID 946337
PageCount 37
ParticipantIDs doaj_primary_oai_doaj_org_article_9769546e799b46f98d5976bd46472489
hal_primary_oai_HAL_hal_02266916v4
proquest_journals_3048155323
gale_infotracmisc_A698913836
gale_infotracacademiconefile_A698913836
crossref_citationtrail_10_46298_dmtcs_5734
crossref_primary_10_46298_dmtcs_5734
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Nancy
PublicationPlace_xml – name: Nancy
PublicationTitle Discrete Mathematics and Theoretical Computer Science
PublicationYear 2022
Publisher DMTCS
Discrete Mathematics & Theoretical Computer Science
Publisher_xml – name: DMTCS
– name: Discrete Mathematics & Theoretical Computer Science
SSID ssj0012947
ssib044734695
Score 2.251288
Snippet This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only...
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms [info.info-cc]computer science [cs]/computational complexity [cs.cc]
[info.info-dm]computer science [cs]/discrete mathematics [cs.dm]
[math.math-ds]mathematics [math]/dynamical systems [math.ds]
Cellular automata
complexity
computability
Computational Complexity
Computer Science
Convergence (Mathematics)
convergent cellular automata
Discrete Mathematics
Dynamical Systems
Freezing
freezing cellular automata
Mathematical research
Mathematics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxNBEF9s6oN9sFqVRqMcUhDEtdnb7ydJQkMfaiii0Lcltx9ViEnNXfvgX-_MZXMSEV983ZuDuZuPndmd-Q0hJzHJZIOvKCjQnIqYIrWJa2qVsaaMHBZaSV_o2cxcXdnLfOBW57LKrU9sHXVYeTwjP-UtsInkJf9w84Pi1Ci8Xc0jNPbIPiKViR7ZH5_NLj919wilFXrTlSdUac1p-N74-r3UXOzsQy1cf-eU975iTeQfrrndb6aH_8vpI_IwR5rFaKMaj8m9uDwih9spDkU26iNy8LFDbq2fEDtdx_gT9rN3xRgnLsVANw0IxXwZignWqGO7ZlNM4mKBJazF6LZZwdvzp-TL9Ozz5Jzm8QrUCyUbajWrJEZseuglyMxE7tUwes2ihKACcjFRBlbpFHmCwCwZaUVSQwRkVqoMgj8jveVqGY9JwXSqLGdJBeYFY8mYSmGPaoLwSXrG-uTt9mc7n7HHcQTGwkEO0krGtZJxKJk-OemIbzaQG38nG6PUOhLEyW4XVutrl83OQbBlpVBRW1sJlawJkECpKghEzRfG9skblLlDawaG_Dw3JcBnIS6WG-F8TQZZvOqTwQ4lWKHfefwatGaHmfPRhcM1iJKUgij8DlgebDXGZVdRu9_q8vzfj1-QByX2XrTnPwPSa9a38SW57--ab_X6Vdb8XxCQCr4
  priority: 102
  providerName: ProQuest
Title Freezing, Bounded-Change and Convergent Cellular Automata
URI https://www.proquest.com/docview/3048155323
https://hal.science/hal-02266916
https://doaj.org/article/9769546e799b46f98d5976bd46472489
Volume 24, no. 1
WOSCitedRecordID wos000751385300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044734695
  issn: 1365-8050
  databaseCode: M~E
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Continental Europe Database (ProQuest)
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB7atIfm0EfaEreOWUqgULqNtXofbWOTQmJMH5CehFcr0YLrFHuTQw_97Z3Rrk0cCrn0sgdJC6MZSfNpd-YbgOMQZbSVL3NcQPNchBhyG7nOrTLWFIFjQ7L0mZ5OzcWFnd0o9UUxYQ09cKO4E3SXVgoVtLWlUNGaCiGwKitBvOfCpNQ9RD2by1T7_6CwQjfZeEIV1pxUP2u__iA1Fzv-J9H0bw_j-98pFvLWkZz8zOQpPG4BYjZoBHsG98LyAJ5sii9k7V48gP3zLeHq-jnYySqE3-iG3mdDKpQUqrzJG8jmyyobUWg5ZVnW2SgsFhR5mg2u6kt8e_4Cvk7GX0aneVsVIfdCyTq3mpWSgJbue4mqNoF71Q9esyARC-AVShQVK3UMPCKeikZaEVWfeJSVKirBX8Le8nIZDiFjOpaWs6gq5gVj0ZhSUWppRNQjPWMdeLfRlfMtZThVrlg4vDokxbqkWEeK7cDxdvCvhinj38OGpPTtEKK3Tg1odNca3d1l9A68JZM52oQokJ-3uQQ4LaKzcgMqi8nw8q060N0ZiZvH73S_QaPvCHM6OHPUhuBGKQTP1yhyd7MmXLvD144noh3JC_7qf8zoNTwqKLEifdzpwl69ugpH8NBf1z_Wqx48GI6ns0-9tMh7FJ_6mZ5_xtgz-3g--_YXlY__KA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61KRLlQKGACARYoSIkxNJ47fXaB4TSQJSoSZRDkcrJZL12QQpJSbZF8KP4jczsIygIceuBq-1d2etv52HPzAdw4HzsdWbTEAE0DYXzLtSeJ6GWSqvIcWwodnqYjMfq9FRPtuBnnQtDYZW1TCwEdbawdEZ-yIvCJjGP-JvzryGxRtHtak2hUcLi2H3_hi7b6vXgLe7vsyjqvTvp9sOKVSC0QsZ5qBOWxmSoJG0b41SV41a2nU2Yi1GXogsiooyliXfcoz3iVayFl22qQyxllAmO792GHYFgVw3YmQxGkw_re4tIi6TMAhQy0uow-5Lb1as44WJD7xX0AGslsP2JYjD_UAWFfuvt_W9f5hbcrCzpoFNC_zZsufk-7NUsFUEltPbhxmhdmXZ1B3Rv6dwP1NcvgyNilHJZWCZYBNN5FnQpBp_SUfOg62YzCtENOhf5Ap-e3oX3V7Kce9CYL-buPgQs8anmzMuMWcGYVyqVlIPr0TyMLWNNeFFvrrFVbXWi-JgZ9LEKJJgCCYaQ0ISD9eDzsqTI34cdEUrWQ6gOeNGwWJ6ZSqwYNCZ1LKRLtE6F9Fpl6CDKNBPECiCUbsJzwpghaYUTstMq6QKXRXW_TIf4QxlXXDahtTESpYzd6H6KKN2YTL8zNNSGVqCU6GVc4pRbNUJNJQpX5jc8H_y7-wlc75-MhmY4GB8_hN2I8kyKs64WNPLlhXsE1-xl_nm1fFz9dQF8vGo4_wLxbGTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Freezing%2C+Bounded-Change+and+Convergent+Cellular+Automata&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=Ollinger%2C+Nicolas&rft.au=Theyssier%2C+Guillaume&rft.date=2022-01-01&rft.pub=DMTCS&rft.issn=1462-7264&rft.eissn=1365-8050&rft.volume=24%2C+no.+1&rft_id=info:doi/10.46298%2Fdmtcs.5734&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02266916v4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon