Using Machine Learning to Predict Cognitive Impairment Among Middle-Aged and Older Chinese: A Longitudinal Study

Objective: To explore the predictive value of machine learning in cognitive impairment, and identify important factors for cognitive impairment. Methods: A total of 2,326 middle-aged and elderly people completed questionnaire, and physical examination evaluation at baseline, Year 2, and Year 4 follo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of public health Ročník 68; s. 1605322
Hlavní autoři: Liu, Haihong, Zhang, Xiaolei, Liu, Haining, Chong, Sheau Tsuey
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Media S.A 19.01.2023
Témata:
ISSN:1661-8564, 1661-8556, 1661-8564
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Objective: To explore the predictive value of machine learning in cognitive impairment, and identify important factors for cognitive impairment. Methods: A total of 2,326 middle-aged and elderly people completed questionnaire, and physical examination evaluation at baseline, Year 2, and Year 4 follow-ups. A random forest machine learning (ML) model was used to predict the cognitive impairment at Year 2 and Year 4 longitudinally. Based on Year 4 cross-sectional data, the same method was applied to establish a prediction model and verify its longitudinal prediction accuracy for cognitive impairment. Meanwhile, the ability of random forest and traditional logistic regression model to longitudinally predict 2-year and 4-year cognitive impairment was compared. Results: Random forest models showed high accuracy for all outcomes at Year 2, Year 4, and cross-sectional Year 4 [AUC = 0.81, 0.79, 0.80] compared with logistic regression [AUC = 0.61, 0.62, 0.70]. Baseline physical examination (e.g., BMI, Blood pressure), biomarkers (e.g., cholesterol), functioning (e.g., functional limitations), demography (e.g., age), and emotional status (e.g., depression) characteristics were identified as the top ten important predictors of cognitive impairment. Conclusion: ML algorithms could enhance the prediction of cognitive impairment among the middle-aged and older Chinese for 4 years and identify essential risk markers.
AbstractList Objective: To explore the predictive value of machine learning in cognitive impairment, and identify important factors for cognitive impairment.Methods: A total of 2,326 middle-aged and elderly people completed questionnaire, and physical examination evaluation at baseline, Year 2, and Year 4 follow-ups. A random forest machine learning (ML) model was used to predict the cognitive impairment at Year 2 and Year 4 longitudinally. Based on Year 4 cross-sectional data, the same method was applied to establish a prediction model and verify its longitudinal prediction accuracy for cognitive impairment. Meanwhile, the ability of random forest and traditional logistic regression model to longitudinally predict 2-year and 4-year cognitive impairment was compared.Results: Random forest models showed high accuracy for all outcomes at Year 2, Year 4, and cross-sectional Year 4 [AUC = 0.81, 0.79, 0.80] compared with logistic regression [AUC = 0.61, 0.62, 0.70]. Baseline physical examination (e.g., BMI, Blood pressure), biomarkers (e.g., cholesterol), functioning (e.g., functional limitations), demography (e.g., age), and emotional status (e.g., depression) characteristics were identified as the top ten important predictors of cognitive impairment.Conclusion: ML algorithms could enhance the prediction of cognitive impairment among the middle-aged and older Chinese for 4 years and identify essential risk markers.
Objective: To explore the predictive value of machine learning in cognitive impairment, and identify important factors for cognitive impairment. Methods: A total of 2,326 middle-aged and elderly people completed questionnaire, and physical examination evaluation at baseline, Year 2, and Year 4 follow-ups. A random forest machine learning (ML) model was used to predict the cognitive impairment at Year 2 and Year 4 longitudinally. Based on Year 4 cross-sectional data, the same method was applied to establish a prediction model and verify its longitudinal prediction accuracy for cognitive impairment. Meanwhile, the ability of random forest and traditional logistic regression model to longitudinally predict 2-year and 4-year cognitive impairment was compared. Results: Random forest models showed high accuracy for all outcomes at Year 2, Year 4, and cross-sectional Year 4 [AUC = 0.81, 0.79, 0.80] compared with logistic regression [AUC = 0.61, 0.62, 0.70]. Baseline physical examination (e.g., BMI, Blood pressure), biomarkers (e.g., cholesterol), functioning (e.g., functional limitations), demography (e.g., age), and emotional status (e.g., depression) characteristics were identified as the top ten important predictors of cognitive impairment. Conclusion: ML algorithms could enhance the prediction of cognitive impairment among the middle-aged and older Chinese for 4 years and identify essential risk markers.Objective: To explore the predictive value of machine learning in cognitive impairment, and identify important factors for cognitive impairment. Methods: A total of 2,326 middle-aged and elderly people completed questionnaire, and physical examination evaluation at baseline, Year 2, and Year 4 follow-ups. A random forest machine learning (ML) model was used to predict the cognitive impairment at Year 2 and Year 4 longitudinally. Based on Year 4 cross-sectional data, the same method was applied to establish a prediction model and verify its longitudinal prediction accuracy for cognitive impairment. Meanwhile, the ability of random forest and traditional logistic regression model to longitudinally predict 2-year and 4-year cognitive impairment was compared. Results: Random forest models showed high accuracy for all outcomes at Year 2, Year 4, and cross-sectional Year 4 [AUC = 0.81, 0.79, 0.80] compared with logistic regression [AUC = 0.61, 0.62, 0.70]. Baseline physical examination (e.g., BMI, Blood pressure), biomarkers (e.g., cholesterol), functioning (e.g., functional limitations), demography (e.g., age), and emotional status (e.g., depression) characteristics were identified as the top ten important predictors of cognitive impairment. Conclusion: ML algorithms could enhance the prediction of cognitive impairment among the middle-aged and older Chinese for 4 years and identify essential risk markers.
Objective: To explore the predictive value of machine learning in cognitive impairment, and identify important factors for cognitive impairment. Methods: A total of 2,326 middle-aged and elderly people completed questionnaire, and physical examination evaluation at baseline, Year 2, and Year 4 follow-ups. A random forest machine learning (ML) model was used to predict the cognitive impairment at Year 2 and Year 4 longitudinally. Based on Year 4 cross-sectional data, the same method was applied to establish a prediction model and verify its longitudinal prediction accuracy for cognitive impairment. Meanwhile, the ability of random forest and traditional logistic regression model to longitudinally predict 2-year and 4-year cognitive impairment was compared. Results: Random forest models showed high accuracy for all outcomes at Year 2, Year 4, and cross-sectional Year 4 [AUC = 0.81, 0.79, 0.80] compared with logistic regression [AUC = 0.61, 0.62, 0.70]. Baseline physical examination (e.g., BMI, Blood pressure), biomarkers (e.g., cholesterol), functioning (e.g., functional limitations), demography (e.g., age), and emotional status (e.g., depression) characteristics were identified as the top ten important predictors of cognitive impairment. Conclusion: ML algorithms could enhance the prediction of cognitive impairment among the middle-aged and older Chinese for 4 years and identify essential risk markers.
Objective: To explore the predictive value of machine learning in cognitive impairment, and identify important factors for cognitive impairment. Methods: A total of 2,326 middle-aged and elderly people completed questionnaire, and physical examination evaluation at baseline, Year 2, and Year 4 follow-ups. A random forest machine learning (ML) model was used to predict the cognitive impairment at Year 2 and Year 4 longitudinally. Based on Year 4 cross-sectional data, the same method was applied to establish a prediction model and verify its longitudinal prediction accuracy for cognitive impairment. Meanwhile, the ability of random forest and traditional logistic regression model to longitudinally predict 2-year and 4-year cognitive impairment was compared. Results: Random forest models showed high accuracy for all outcomes at Year 2, Year 4, and cross-sectional Year 4 [AUC = 0.81, 0.79, 0.80] compared with logistic regression [AUC = 0.61, 0.62, 0.70]. Baseline physical examination (e.g., BMI, Blood pressure), biomarkers (e.g., cholesterol), functioning (e.g., functional limitations), demography (e.g., age), and emotional status (e.g., depression) characteristics were identified as the top ten important predictors of cognitive impairment. Conclusion: ML algorithms could enhance the prediction of cognitive impairment among the middle-aged and older Chinese for 4 years and identify essential risk markers.
To explore the predictive value of machine learning in cognitive impairment, and identify important factors for cognitive impairment. A total of 2,326 middle-aged and elderly people completed questionnaire, and physical examination evaluation at baseline, Year 2, and Year 4 follow-ups. A random forest machine learning (ML) model was used to predict the cognitive impairment at Year 2 and Year 4 longitudinally. Based on Year 4 cross-sectional data, the same method was applied to establish a prediction model and verify its longitudinal prediction accuracy for cognitive impairment. Meanwhile, the ability of random forest and traditional logistic regression model to longitudinally predict 2-year and 4-year cognitive impairment was compared. Random forest models showed high accuracy for all outcomes at Year 2, Year 4, and cross-sectional Year 4 [AUC = 0.81, 0.79, 0.80] compared with logistic regression [AUC = 0.61, 0.62, 0.70]. Baseline physical examination (e.g., BMI, Blood pressure), biomarkers (e.g., cholesterol), functioning (e.g., functional limitations), demography (e.g., age), and emotional status (e.g., depression) characteristics were identified as the top ten important predictors of cognitive impairment. ML algorithms could enhance the prediction of cognitive impairment among the middle-aged and older Chinese for 4 years and identify essential risk markers.
Author Zhang, Xiaolei
Chong, Sheau Tsuey
Liu, Haining
Liu, Haihong
AuthorAffiliation 5 Hebei Key Laboratory of Nerve Injury and Repair , Chengde Medical University , Chengde , China
4 Faculty of Engineering , Universiti Putra Malaysia , Serdang , Malaysia
7 Counselling Psychology Programme , Secretariat of Postgraduate Studies , Faculty of Social Sciences and Humanities , Universiti Kebangsaan Malaysia , Bangi , Malaysia
1 Centre for Research in Psychology and Human Well-being, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia , Bangi , Malaysia
2 Department of Psychology , Chengde Medical University , Chengde , China
3 Department of Biomedical Engineering , Chengde Medical University , Chengde , China
6 Hebei International Research Center of Medical Engineering , Chengde Medical University , Chengde , China
AuthorAffiliation_xml – name: 6 Hebei International Research Center of Medical Engineering , Chengde Medical University , Chengde , China
– name: 3 Department of Biomedical Engineering , Chengde Medical University , Chengde , China
– name: 7 Counselling Psychology Programme , Secretariat of Postgraduate Studies , Faculty of Social Sciences and Humanities , Universiti Kebangsaan Malaysia , Bangi , Malaysia
– name: 4 Faculty of Engineering , Universiti Putra Malaysia , Serdang , Malaysia
– name: 2 Department of Psychology , Chengde Medical University , Chengde , China
– name: 1 Centre for Research in Psychology and Human Well-being, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia , Bangi , Malaysia
– name: 5 Hebei Key Laboratory of Nerve Injury and Repair , Chengde Medical University , Chengde , China
Author_xml – sequence: 1
  givenname: Haihong
  surname: Liu
  fullname: Liu, Haihong
– sequence: 2
  givenname: Xiaolei
  surname: Zhang
  fullname: Zhang, Xiaolei
– sequence: 3
  givenname: Haining
  surname: Liu
  fullname: Liu, Haining
– sequence: 4
  givenname: Sheau Tsuey
  surname: Chong
  fullname: Chong, Sheau Tsuey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36798738$$D View this record in MEDLINE/PubMed
BookMark eNp1kl-L1DAUxYusuH_0A_giefRlxiS3TVIfhGFYdWBkBd3nkCZ3OxnapKaZhf32ts6s7Ao-5XJzzu8Eci6LsxADFsVbRpcAqv7g98NuySmHJRO0As5fFBdMCLZQlSjPnsznxeU47ikVVFH2qjgHIWslQV0Uw-3oQ0u-GbvzAckWTQrzIkfyPaHzNpN1bIPP_h7Jph-MTz2GTFZ9nG3euQ4XqxYdMcGRm85hIusZNeJHsiLbSeXzwflgOvJjGh5eFy_vTDfim9N5Vdx-vv65_rrY3nzZrFfbhS1FlRcKSymUkzU4i4oqAY2TDUqDpeVlJaXlHJsSHOOUOaEYM1A5kEABrSwbuCo2R66LZq-H5HuTHnQ0Xv9ZxNRqk7K3HWoquEODNZQVlKWCplFYNxIEmBqxsRPr05E1HJoepweFnEz3DPr8JvidbuO9rmsuaoAJ8P4ESPHXAcesez9a7DoTMB5GzaVUgjLJ6kn67mnW35DHL5sE8iiwKY5jwjttfTbZxznad5pRPZdDz-XQczn0qRyTk_3jfIT_3_Mbjtu95w
CitedBy_id crossref_primary_10_1016_j_ypmed_2025_108307
crossref_primary_10_3389_fcvm_2025_1477185
crossref_primary_10_3389_fendo_2024_1290286
crossref_primary_10_1186_s12889_024_18692_7
crossref_primary_10_1002_hsr2_1635
crossref_primary_10_3390_healthcare12101028
crossref_primary_10_2196_54335
crossref_primary_10_1186_s12877_023_04477_x
crossref_primary_10_3390_brainsci15050446
crossref_primary_10_1186_s12889_025_23310_1
crossref_primary_10_3389_fnagi_2023_1283243
Cites_doi 10.1186/1471-2156-5-32
10.1016/j.maturitas.2021.03.011
10.1016/j.archger.2020.104034
10.1186/s13024-017-0167-y
10.1093/gerona/glx175
10.5551/jat.52928
10.1161/HYPERTENSIONAHA.108.126342
10.1016/j.neuroscience.2021.07.022
10.1053/apnr.2000.9231
10.2147/NDT.S145812
10.1212/WNL.0b013e3182190d09
10.1023/a:1010933404324
10.1159/000089515
10.1016/j.psychres.2011.11.012
10.2174/1871527319666200611130804
10.1016/j.jagp.2021.05.014
10.1016/j.arr.2019.101001
10.1016/j.jsmc.2017.09.009
10.1001/archneurol.2009.308
10.1111/jgs.14835
10.3390/nu12092644
10.1161/JAHA.119.014621
10.1038/s41598-020-77296-4
10.1080/15376516.2020.1760984
10.18295/squmj.2016.16.01.009
10.1097/JGP.0b013e31819431d5
10.1212/01.wnl.0000251303.50459.8a
10.3390/nu13062118
10.1016/j.smrv.2019.101250
10.1097/MD.0000000000018248
10.1038/mp.2015.198
10.1002/gps.2503
10.1038/s41598-019-39478-7
10.1017/S0033291720000227
10.1016/j.jad.2018.11.073
10.1370/afm.2367
10.3389/fpsyg.2018.00371
10.14569/ijacsa.2015.061202
10.1186/1756-0500-4-299
10.1016/j.atherosclerosis.2020.10.002
10.1016/j.jad.2021.07.106
10.1016/j.nicl.2014.08.023
10.3390/ijerph19074000
10.1016/j.jbi.2015.05.016
10.1093/geronb/gby128
10.1016/j.sjbs.2021.06.023
10.3233/JAD-2012-120835
10.2165/00019053-200725120-00003
10.3233/jad-201438
10.1093/ije/dys203
10.1007/978-0-387-79948-3_1077
10.1038/s41598-020-75767-2
10.1007/s11357-019-00070-6
10.18632/aging.104078
10.4172/2161-0460.1000435
10.1212/WNL.0b013e3182a08f1b
10.1037/ort0000018
10.1177/23337214211025167
10.1016/j.neurobiolaging.2008.01.008
10.1038/s41386-020-0767-z
10.1007/s10916-018-1088-1
10.1016/j.jstrokecerebrovasdis.2020.105334
10.1111/j.1749-6632.2010.05726.x
10.1186/s12859-018-2264-5
10.6890/IJGE.201909_13(3).0005
10.1097/MD.0000000000014736
10.1016/j.psychres.2021.113823
10.1371/journal.pone.0244773
10.1371/journal.pone.0082450
10.1111/jcpp.12916
10.1186/s13195-019-0527-7
10.1037/neu0000335
10.3233/JAD-190967
10.3390/ijerph16122168
10.1016/s0140-6736(20)30367-6
10.1016/j.jad.2021.08.093
10.1093/arclin/acx021
10.3233/jad-170865
ContentType Journal Article
Copyright Copyright © 2023 Liu, Zhang, Liu and Chong.
Copyright © 2023 Liu, Zhang, Liu and Chong. 2023 Liu, Zhang, Liu and Chong
Copyright_xml – notice: Copyright © 2023 Liu, Zhang, Liu and Chong.
– notice: Copyright © 2023 Liu, Zhang, Liu and Chong. 2023 Liu, Zhang, Liu and Chong
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3389/ijph.2023.1605322
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
DocumentTitleAlternate Liu et al
EISSN 1661-8564
ExternalDocumentID oai_doaj_org_article_062deae934534483bb8e9b7363a9eebc
PMC9926933
36798738
10_3389_ijph_2023_1605322
Genre Journal Article
GroupedDBID ---
..I
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JY
2KG
2LR
2~H
30V
4.4
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
7X7
8C1
8TC
8UJ
95-
95.
95~
96X
9T4
AABHQ
AAFWJ
AAJJC
AAJKR
AARTL
AATVU
AAWCG
AAWTL
AAYIU
AAYQN
AAYXX
ABBBX
ABBXA
ABDZT
ABFTV
ABHLI
ABIPD
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABNWP
ABPLI
ABQBU
ABTMW
ABUWG
ABXPI
ACGFS
ACHQT
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACSNA
ADBBV
ADHIR
ADKPE
ADRFC
ADURQ
ADYFF
ADZKW
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AETLH
AEXYK
AFBBN
AFKRA
AFPKN
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BENPR
BPHCQ
BVXVI
CITATION
CS3
CSCUP
DL5
DU5
EBS
EIOEI
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FNLPD
FRRFC
FWDCC
FYUFA
G-Y
G-Z
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GROUPED_DOAJ
GXS
HF~
HG5
HMJXF
HQYDN
HRMNR
HVGLF
IJ-
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
KDC
KOV
KPH
LAS
MA-
N9A
NB0
NQJWS
O93
O9G
O9I
O9J
OAM
OK1
P9S
PF0
PGMZT
PIMPY
PQQKQ
PROAC
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RPM
RSV
S16
S27
S37
S3B
SAP
SDH
SHX
SISQX
SMD
SOJ
SPISZ
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U9L
UG4
UKHRP
UOJIU
UTJUX
VC2
W48
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~EX
-53
-5E
-5G
-BR
-EM
-Y2
-~C
1CY
2P1
2VQ
3V.
88E
8FI
8FJ
AAAVM
AAIAL
AANXM
AARHV
AAYTO
AAYZH
ABMOR
ABQSL
ABTEG
ACBXY
ACUDM
ADINQ
AEBTG
AEKMD
AFEXP
AFLOW
AJBLW
ALIPV
BDATZ
BGNMA
CAG
CCPQU
CGR
COF
CUY
CVF
ECM
EIF
EJD
EN4
FIGPU
FINBP
FSGXE
GGCAI
GQ6
GRRUI
H13
HG6
HMCUK
HZ~
M1P
M4Y
N2Q
NPM
NU0
PSQYO
ROL
S1Z
SDE
SNE
SNX
UZXMN
VFIZW
W23
XHW
Z7W
Z81
Z83
7X8
5PM
ID FETCH-LOGICAL-c465t-8e4768d793dce80863bd7be7ae4c24577c22eb43d1201d6811a35d37303ec74b3
IEDL.DBID DOA
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000932136100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1661-8564
1661-8556
IngestDate Fri Oct 03 12:51:15 EDT 2025
Tue Sep 30 17:16:36 EDT 2025
Sun Nov 09 09:26:22 EST 2025
Wed Feb 19 02:23:28 EST 2025
Sat Nov 29 01:53:08 EST 2025
Tue Nov 18 21:25:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords middle-aged and older Chinese
dementia
cognitive impairment
longitudinal study
random forest
machine learning
Language English
License Copyright © 2023 Liu, Zhang, Liu and Chong.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-8e4768d793dce80863bd7be7ae4c24577c22eb43d1201d6811a35d37303ec74b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This Original Article is part of the IJPH Special Issue “Public Health and Primary Care, is 1+1=1?”
Edited by: Gabriel Gulis, University of Southern Denmark, Denmark
Reviewed by: Alessandra Costanza, University of Geneva, Switzerland
OpenAccessLink https://doaj.org/article/062deae934534483bb8e9b7363a9eebc
PMID 36798738
PQID 2778601719
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_062deae934534483bb8e9b7363a9eebc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9926933
proquest_miscellaneous_2778601719
pubmed_primary_36798738
crossref_citationtrail_10_3389_ijph_2023_1605322
crossref_primary_10_3389_ijph_2023_1605322
PublicationCentury 2000
PublicationDate 2023-01-19
PublicationDateYYYYMMDD 2023-01-19
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-19
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle International journal of public health
PublicationTitleAlternate Int J Public Health
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Korthauer (B82) 2018; 73
Li (B20) 2014; 9
Seeman (B38) 2004; 30
Roe (B51) 2007; 68
Yang (B47) 2019; 98
Futoma (B10) 2015; 56
Crimmins (B37) 2001
Pondugula (B64) 2020; 30
Nagaraj (B43) 2021; 80
Noh (B65) 2019; 98
Na (B22) 2019; 9
Costanza (B31) 2015; 11
Johansona (B55) 2018; 8
Byeon (B16) 2015; 6
Dzierzewski (B85) 2018; 13
Roebuck-Spencer (B77) 2017; 32
Troyer (B36) 2011
Xu (B66) 2011; 76
Lunetta (B14) 2004; 5
de Montgolfier (B71) 2019; 41
Perez (B25) 2021; 29
Farfel (B50) 2013; 81
Adam (B83) 2016; 16
Noble (B57) 2010; 67
Dimache (B63) 2021; 13
Streit (B70) 2019; 17
Duggan (B74) 2020; 75
Ma (B60) 2017; 12
Elias (B72) 2009; 53
Chen (B34) 2020; 12
Dos Santos (B81) 2018; 9
Kessler (B11) 2016; 21
Farias (B76) 2017; 65
Maroco (B45) 2011; 4
Laurin (B59) 2009; 30
Vanoh (B49) 2019; 13
Abd-El Mohsen (B23) 2021; 28
Ren (B26) 2021; 295
Zhao (B33) 2014; 43
Haynos (B42) 2020; 51
Gomez-Ramirez (B21) 2020; 10
An (B44) 2020; 10
Walsh (B6) 2018; 59
Jak (B40) 2009; 17
Katayama (B28) 2021; 94
Lu (B32) 2021; 472
Pangman (B35) 2000; 13
Lee (B75) 2019; 16
Breiman (B12) 2001; 45
Livingston (B5) 2020; 396
Gorelick (B56) 2010; 1207
Lebedev (B19) 2014; 6
Xia (B69) 2020; 27
Avgerinos (B62) 2020; 58
Liew (B79) 2019; 11
Espeland (B4) 2011; 26
Šimundić (B41) 2009; 19
Patnode (B3) 2020
Burke (B7) 2019; 245
Chen (B27) 2021; 148
Alvarez-Bueno (B73) 2020; 9
Md Fadzil (B78) 2022; 19
Costanza (B30) 2020; 19
van Eeden (B8) 2021; 299
Costanza (B24) 2012; 32
Prince (B1) 2013
Koppe (B9) 2021; 46
Aschwanden (B67) 2020; 75
Sattler (B48) 2012; 196
Anwar (B18) 2018; 42
Zlatar (B80) 2018; 63
Parthasarathy (B61) 2017; 31
Fathima (B13) 2015; 6
Kuroki (B15) 2015; 85
Jimenez-Balado (B53) 2020; 312
Mohd Safien (B84) 2021; 7
Prince (B2) 2015
Getsios (B52) 2007; 25
Bubu (B86) 2020; 50
Fang (B29) 2021; 294
Xue (B54) 2017; 13
Williams (B39) 2020; 29
Velazquez (B17) 2021; 16
Couronne (B46) 2018; 19
Ravaglia (B68) 2006; 21
Ooi (B58) 2020; 12
37273772 - Int J Public Health. 2023 May 18;68:1606127
References_xml – volume: 5
  start-page: 32
  year: 2004
  ident: B14
  article-title: Screening Large-Scale Association Study Data: Exploiting Interactions Using Random Forests
  publication-title: BMC Genet
  doi: 10.1186/1471-2156-5-32
– volume: 148
  start-page: 7
  year: 2021
  ident: B27
  article-title: Leisure Activities and Psychological Wellbeing Reduce the Risk of Cognitive Impairment Among Older Adults with Hearing Difficulty: A Longitudinal Study in china
  publication-title: Maturitas
  doi: 10.1016/j.maturitas.2021.03.011
– volume: 94
  start-page: 104034
  year: 2021
  ident: B28
  article-title: Relationship between Instrumental Activities of Daily Living Performance and Incidence of Mild Cognitive Impairment Among Older Adults: A 48-month Follow-Up Study
  publication-title: Arch Gerontol Geriatr
  doi: 10.1016/j.archger.2020.104034
– volume: 12
  start-page: 24
  year: 2017
  ident: B60
  article-title: Blood Cholesterol in Late-Life and Cognitive Decline: A Longitudinal Study of the Chinese Elderly
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-017-0167-y
– volume: 73
  start-page: 506
  year: 2018
  ident: B82
  article-title: Negative Affect Is Associated with Higher Risk of Incident Cognitive Impairment in Nondepressed Postmenopausal Women
  publication-title: J Gerontol A Biol Sci Med Sci
  doi: 10.1093/gerona/glx175
– volume: 27
  start-page: 934
  year: 2020
  ident: B69
  article-title: The Relationship of Coronary Artery Calcium and Clinical Coronary Artery Disease with Cognitive Function: A Systematic Review and Meta-Analysis
  publication-title: J Atheroscler Thromb
  doi: 10.5551/jat.52928
– volume: 30
  start-page: 89
  year: 2004
  ident: B38
  article-title: Supplement: Aging, Health, and Public Policy || Integrating Biology into the Study of Health Disparities
  publication-title: Popul Develop Rev
– volume: 53
  start-page: 668
  year: 2009
  ident: B72
  article-title: Arterial Pulse Wave Velocity and Cognition with Advancing Age
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.108.126342
– volume: 472
  start-page: 25
  year: 2021
  ident: B32
  article-title: Nonlinear Phase Synchronization Analysis of Eeg Signals in Amnesic Mild Cognitive Impairment with Type 2 Diabetes Mellitus
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2021.07.022
– volume: 13
  start-page: 209
  year: 2000
  ident: B35
  article-title: An Examination of Psychometric Properties of the Mini-Mental State Examination and the Standardized Mini-Mental State Examination: Implications for Clinical Practice
  publication-title: Appl Nurs Res
  doi: 10.1053/apnr.2000.9231
– volume: 13
  start-page: 2363
  year: 2017
  ident: B54
  article-title: Low Uric Acid Is a Risk Factor in Mild Cognitive Impairment
  publication-title: Neuropsychiatr Dis Treat
  doi: 10.2147/NDT.S145812
– volume: 76
  start-page: 1568
  year: 2011
  ident: B66
  article-title: Midlife Overweight and Obesity Increase Late-Life Dementia Risk: A Population-Based Twin Study
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182190d09
– volume: 45
  start-page: 5
  year: 2001
  ident: B12
  article-title: Random Forests
  publication-title: Machine Learn
  doi: 10.1023/a:1010933404324
– volume: 21
  start-page: 51
  year: 2006
  ident: B68
  article-title: Conversion of Mild Cognitive Impairment to Dementia: Predictive Role of Mild Cognitive Impairment Subtypes and Vascular Risk Factors
  publication-title: Dement Geriatr Cogn Disord
  doi: 10.1159/000089515
– volume: 196
  start-page: 90
  year: 2012
  ident: B48
  article-title: Cognitive Activity, Education and Socioeconomic Status as Preventive Factors for Mild Cognitive Impairment and Alzheimer's Disease
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2011.11.012
– volume: 19
  start-page: 257
  year: 2020
  ident: B30
  article-title: When Sick Brain and Hopelessness Meet: Some Aspects of Suicidality in the Neurological Patient
  publication-title: CNS Neurol Disord Drug Targets
  doi: 10.2174/1871527319666200611130804
– volume: 29
  start-page: 1062
  year: 2021
  ident: B25
  article-title: Cognitive Impairment in Older Incarcerated Males: Education and Race Considerations
  publication-title: Am J Geriatr Psychiatry
  doi: 10.1016/j.jagp.2021.05.014
– volume: 58
  start-page: 101001
  year: 2020
  ident: B62
  article-title: Medium Chain Triglycerides Induce Mild Ketosis and May Improve Cognition in Alzheimer's Disease. A Systematic Review and Meta-Analysis of Human Studies
  publication-title: Ageing Res Rev
  doi: 10.1016/j.arr.2019.101001
– volume: 13
  start-page: 93
  year: 2018
  ident: B85
  article-title: Sleep and Cognition in Older Adults
  publication-title: Sleep Med Clin
  doi: 10.1016/j.jsmc.2017.09.009
– volume: 19
  start-page: 203
  year: 2009
  ident: B41
  article-title: Measures of Diagnostic Accuracy: Basic Definitions
  publication-title: EJIFCC
– volume: 67
  start-page: 87
  year: 2010
  ident: B57
  article-title: Association of C-Reactive Protein with Cognitive Impairment
  publication-title: Arch Neurol
  doi: 10.1001/archneurol.2009.308
– volume: 65
  start-page: 1152
  year: 2017
  ident: B76
  article-title: Early Functional Limitations in Cognitively normal Older Adults Predict Diagnostic Conversion to Mild Cognitive Impairment
  publication-title: J Am Geriatr Soc
  doi: 10.1111/jgs.14835
– volume: 12
  start-page: 2644
  year: 2020
  ident: B58
  article-title: Intermittent Fasting Enhanced the Cognitive Function in Older Adults with Mild Cognitive Impairment by Inducing Biochemical and Metabolic Changes: A 3-year Progressive Study
  publication-title: Nutrients
  doi: 10.3390/nu12092644
– volume: 9
  start-page: e014621
  year: 2020
  ident: B73
  article-title: Arterial Stiffness and Cognition Among Adults: A Systematic Review and Meta-Analysis of Observational and Longitudinal Studies
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.119.014621
– volume: 10
  start-page: 20630
  year: 2020
  ident: B21
  article-title: Selecting the Most Important Self-Assessed Features for Predicting Conversion to Mild Cognitive Impairment with Random forest and Permutation-Based Methods
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-77296-4
– volume: 11
  start-page: 402
  year: 2015
  ident: B31
  article-title: Neurological Diseases and Suicide: From Neurobiology to Hopelessness
  publication-title: Rev Med Suisse
– start-page: 14
  volume-title: Policy Brief for Heads of Government: The Global Impact of Dementia 2013-2050
  year: 2013
  ident: B1
– volume: 30
  start-page: 454
  year: 2020
  ident: B64
  article-title: Predictable Hematological Markers Associated with Cognitive Decline in Valid Rodent Models of Cognitive Impairment
  publication-title: Toxicol Mech Methods
  doi: 10.1080/15376516.2020.1760984
– volume: 16
  start-page: e47
  year: 2016
  ident: B83
  article-title: Effectiveness of a Combined Dance and Relaxation Intervention on Reducing Anxiety and Depression and Improving Quality of Life Among the Cognitively Impaired Elderly
  publication-title: Sultan Qaboos Univ Med J
  doi: 10.18295/squmj.2016.16.01.009
– volume: 17
  start-page: 368
  year: 2009
  ident: B40
  article-title: Quantification of Five Neuropsychological Approaches to Defining Mild Cognitive Impairment
  publication-title: Am J Geriatr Psychiatry
  doi: 10.1097/JGP.0b013e31819431d5
– volume: 68
  start-page: 223
  year: 2007
  ident: B51
  article-title: Education and Alzheimer Disease without Dementia: Support for the Cognitive reserve Hypothesis
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000251303.50459.8a
– volume: 13
  start-page: 2118
  year: 2021
  ident: B63
  article-title: The Role of High Triglycerides Level in Predicting Cognitive Impairment: A Review of Current Evidence
  publication-title: Nutrients
  doi: 10.3390/nu13062118
– volume: 50
  start-page: 101250
  year: 2020
  ident: B86
  article-title: Obstructive Sleep Apnea, Cognition and Alzheimer's Disease: A Systematic Review Integrating Three Decades of Multidisciplinary Research
  publication-title: Sleep Med Rev
  doi: 10.1016/j.smrv.2019.101250
– volume: 98
  start-page: e18248
  year: 2019
  ident: B47
  article-title: Comparison of Prevalence and Associated Risk Factors of Cognitive Function Status Among Elderly between Nursing Homes and Common Communities of china: A Strobe-Compliant Observational Study
  publication-title: Medicine
  doi: 10.1097/MD.0000000000018248
– volume: 21
  start-page: 1366
  year: 2016
  ident: B11
  article-title: Testing a Machine-Learning Algorithm to Predict the Persistence and Severity of Major Depressive Disorder from Baseline Self-Reports
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2015.198
– volume: 26
  start-page: 135
  year: 2011
  ident: B4
  article-title: Telephone Interview for Cognitive Status (TICS) Screening for Clinical Trials of Physical Activity and Cognitive Training: The Seniors Health and Activity Research Program Pilot (SHARP-P) Study
  publication-title: Int J Geriatr Psychiatry
  doi: 10.1002/gps.2503
– volume: 9
  start-page: 3335
  year: 2019
  ident: B22
  article-title: Prediction of Future Cognitive Impairment Among the Community Elderly: A Machine-Learning Based Approach
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-39478-7
– volume: 51
  start-page: 1392
  year: 2020
  ident: B42
  article-title: Machine Learning Enhances Prediction of Illness Course: A Longitudinal Study in Eating Disorders
  publication-title: Psychol Med
  doi: 10.1017/S0033291720000227
– volume: 245
  start-page: 869
  year: 2019
  ident: B7
  article-title: The Use of Machine Learning in the Study of Suicidal and Non-suicidal Self-Injurious Thoughts and Behaviors: A Systematic Review
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2018.11.073
– volume: 17
  start-page: 100
  year: 2019
  ident: B70
  article-title: Systolic Blood Pressure and Cognitive Decline in Older Adults with Hypertension
  publication-title: Ann Fam Med
  doi: 10.1370/afm.2367
– volume: 9
  start-page: 371
  year: 2018
  ident: B81
  article-title: Association of Lower Spiritual Well-Being, Social Support, Self-Esteem, Subjective Well-Being, Optimism and hope Scores with Mild Cognitive Impairment and Mild Dementia
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2018.00371
– volume: 6
  start-page: 240
  year: 2015
  ident: B13
  article-title: Analysis of Significant Factors for Dengue Infection Prognosis Using the Random forest Classifier
  publication-title: Int J Adv Comput Sci Appl
– volume: 6
  start-page: 8
  year: 2015
  ident: B16
  article-title: A Prediction Model for Mild Cognitive Impairment Using Random Forests
  publication-title: J Int J Adv Comput Sci App
  doi: 10.14569/ijacsa.2015.061202
– volume: 4
  start-page: 299
  year: 2011
  ident: B45
  article-title: Data Mining Methods in the Prediction of Dementia: A Real-Data Comparison of the Accuracy, Sensitivity and Specificity of Linear Discriminant Analysis, Logistic Regression, Neural Networks, Support Vector Machines, Classification Trees and Random Forests
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-4-299
– volume: 312
  start-page: 101
  year: 2020
  ident: B53
  article-title: Non-invasive Markers of Vascular Disease: An Opportunity for Early Diagnosis of Cognitive Impairment
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2020.10.002
– volume: 294
  start-page: 847
  year: 2021
  ident: B29
  article-title: Brain Controllability Distinctiveness between Depression and Cognitive Impairment
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2021.07.106
– volume: 6
  start-page: 115
  year: 2014
  ident: B19
  article-title: Random forest Ensembles for Detection and Prediction of Alzheimer's Disease with a Good Between-Cohort Robustness
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2014.08.023
– volume: 19
  start-page: 4000
  year: 2022
  ident: B78
  article-title: A Scoping Review for Usage of Telerehabilitation Among Older Adults with Mild Cognitive Impairment or Cognitive Frailty
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph19074000
– volume: 56
  start-page: 229
  year: 2015
  ident: B10
  article-title: A Comparison of Models for Predicting Early Hospital Readmissions
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2015.05.016
– volume: 75
  start-page: 937
  year: 2020
  ident: B74
  article-title: Systematic Review of Pulmonary Function and Cognition in Aging
  publication-title: J Gerontol B Psychol Sci Soc Sci
  doi: 10.1093/geronb/gby128
– volume: 28
  start-page: 5781
  year: 2021
  ident: B23
  article-title: Predicting Cognitive Impairment Among Geriatric Patients at Asir central Hospital, saudi arabia
  publication-title: Saudi J Biol Sci
  doi: 10.1016/j.sjbs.2021.06.023
– volume: 32
  start-page: 643
  year: 2012
  ident: B24
  article-title: Microvascular burden and Alzheimer-type Lesions across the Age Spectrum
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2012-120835
– volume: 25
  start-page: 997
  year: 2007
  ident: B52
  article-title: Nice Cost-Effectiveness Appraisal of Cholinesterase Inhibitors
  publication-title: Pharmacoeconomics
  doi: 10.2165/00019053-200725120-00003
– volume: 80
  start-page: 1079
  year: 2021
  ident: B43
  article-title: Deep Learning and Risk Score Classification of Mild Cognitive Impairment and Alzheimer’s Disease
  publication-title: J Alzheimer's Dis
  doi: 10.3233/jad-201438
– volume: 43
  start-page: 61
  year: 2014
  ident: B33
  article-title: Cohort Profile: The china Health and Retirement Longitudinal Study (Charls)
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dys203
– start-page: 28
  volume-title: Encyclopedia of Clinical Neuropsychology
  year: 2011
  ident: B36
  article-title: Activities of Daily Living (ADL)
  doi: 10.1007/978-0-387-79948-3_1077
– volume: 10
  start-page: 18716
  year: 2020
  ident: B44
  article-title: Machine Learning Prediction for Mortality of Patients Diagnosed with Covid-19: A Nationwide Korean Cohort Study
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-75767-2
– volume: 41
  start-page: 511
  year: 2019
  ident: B71
  article-title: Systolic Hypertension-Induced Neurovascular Unit Disruption Magnifies Vascular Cognitive Impairment in Middle-Age Atherosclerotic ldlr(-/-):Hapob(+/+) Mice
  publication-title: Geroscience
  doi: 10.1007/s11357-019-00070-6
– volume-title: U.S. Preventive Services Task Force Evidence Syntheses, Formerly Systematic Evidence Reviews
  year: 2020
  ident: B3
– volume: 12
  start-page: 23129
  year: 2020
  ident: B34
  article-title: Cognitive Frailty in Relation to Adverse Health Outcomes Independent of Multimorbidity: Results from the china Health and Retirement Longitudinal Study
  publication-title: Aging
  doi: 10.18632/aging.104078
– volume: 8
  start-page: 435
  year: 2018
  ident: B55
  article-title: Disrupted Blood-Csf Barrier to Urea and Creatinine in Mild Cognitive Impairment and Alzheimer's Disease
  publication-title: J Alzheimer's Dis
  doi: 10.4172/2161-0460.1000435
– volume: 81
  start-page: 650
  year: 2013
  ident: B50
  article-title: Very Low Levels of Education and Cognitive reserve: A Clinicopathologic Study
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182a08f1b
– volume: 85
  start-page: 34
  year: 2015
  ident: B15
  article-title: Risk Factors for Suicidal Behaviors Among Filipino Americans: A Data Mining Approach
  publication-title: Am J Orthopsychiatry
  doi: 10.1037/ort0000018
– volume: 7
  start-page: 23337214211025167
  year: 2021
  ident: B84
  article-title: Randomized Controlled Trials of a Psychosocial Intervention for Improving the Cognitive Function Among Older Adults: A Scoping Review
  publication-title: Gerontol Geriatr Med
  doi: 10.1177/23337214211025167
– volume: 30
  start-page: 1724
  year: 2009
  ident: B59
  article-title: Midlife C-Reactive Protein and Risk of Cognitive Decline: A 31-year Follow-Up
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2008.01.008
– volume: 46
  start-page: 176
  year: 2021
  ident: B9
  article-title: Deep Learning for Small and Big Data in Psychiatry
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-020-0767-z
– volume: 42
  start-page: 226
  year: 2018
  ident: B18
  article-title: Medical Image Analysis Using Convolutional Neural Networks: A Review
  publication-title: J Med Syst
  doi: 10.1007/s10916-018-1088-1
– volume: 29
  start-page: 105334
  year: 2020
  ident: B39
  article-title: Validation of the 10-item center for Epidemiologic Studies Depression Scale post Stroke
  publication-title: J Stroke Cerebrovasc Dis
  doi: 10.1016/j.jstrokecerebrovasdis.2020.105334
– volume: 1207
  start-page: 155
  year: 2010
  ident: B56
  article-title: Role of Inflammation in Cognitive Impairment: Results of Observational Epidemiological Studies and Clinical Trials
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.2010.05726.x
– volume: 19
  start-page: 270
  year: 2018
  ident: B46
  article-title: Random forest versus Logistic Regression: A Large-Scale Benchmark experiment
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2264-5
– volume: 13
  start-page: 207
  year: 2019
  ident: B49
  article-title: Influence of Gender Disparity in Predicting Occurrence of Successful Aging, Usual Aging and Mild Cognitive Impairment
  publication-title: J Int J Gerontol
  doi: 10.6890/IJGE.201909_13(3).0005
– volume: 98
  start-page: e14736
  year: 2019
  ident: B65
  article-title: Sex Differences in the Relationship between Cognitive Impairment and Overweight or Obesity in Late Life: A 3-year Prospective Study
  publication-title: Medicine
  doi: 10.1097/MD.0000000000014736
– volume: 299
  start-page: 113823
  year: 2021
  ident: B8
  article-title: Predicting the 9-year Course of Mood and Anxiety Disorders with Automated Machine Learning: A Comparison between Auto-Sklearn, Naïve Bayes Classifier, and Traditional Logistic Regression
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2021.113823
– volume: 16
  start-page: e0244773
  year: 2021
  ident: B17
  article-title: Random forest Model for Feature-Based Alzheimer's Disease Conversion Prediction from Early Mild Cognitive Impairment Subjects
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0244773
– volume: 9
  start-page: e82450
  year: 2014
  ident: B20
  article-title: Hierarchical Interactions Model for Predicting Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) Conversion
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0082450
– volume-title: Integrating Biology into Demographic Research on Health and Aging (With a Focus on the Macarthur Study of Successful Aging). Cells and Surveys: Should Biological Measures Be Included in Social Science Research?
  year: 2001
  ident: B37
– volume: 59
  start-page: 1261
  year: 2018
  ident: B6
  article-title: Predicting Suicide Attempts in Adolescents with Longitudinal Clinical Data and Machine Learning
  publication-title: J Child Psychol Psychiatry
  doi: 10.1111/jcpp.12916
– start-page: 89
  volume-title: World Alzheimer Report 2015 - the Global Impact of Dementia
  year: 2015
  ident: B2
– volume: 11
  start-page: 70
  year: 2019
  ident: B79
  article-title: Depression, Subjective Cognitive Decline, and the Risk of Neurocognitive Disorders
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-019-0527-7
– volume: 31
  start-page: 682
  year: 2017
  ident: B61
  article-title: Triglycerides Are Negatively Correlated with Cognitive Function in Nondemented Aging Adults
  publication-title: Neuropsychology
  doi: 10.1037/neu0000335
– volume: 75
  start-page: 717
  year: 2020
  ident: B67
  article-title: Predicting Cognitive Impairment and Dementia: A Machine Learning Approach
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-190967
– volume: 16
  start-page: 2168
  year: 2019
  ident: B75
  article-title: Association between Ambulatory Status and Functional Disability in Elderly People with Dementia
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph16122168
– volume: 396
  start-page: 413
  year: 2020
  ident: B5
  article-title: Dementia Prevention, Intervention, and Care: 2020 Report of the Lancet Commission
  publication-title: The Lancet
  doi: 10.1016/s0140-6736(20)30367-6
– volume: 295
  start-page: 463
  year: 2021
  ident: B26
  article-title: Associations of Body Mass index, Waist Circumference and Waist-To-Height Ratio with Cognitive Impairment Among Chinese Older Adults: Based on the Clhls
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2021.08.093
– volume: 32
  start-page: 491
  year: 2017
  ident: B77
  article-title: Cognitive Screening Tests versus Comprehensive Neuropsychological Test Batteries: A National Academy of Neuropsychology Education Paper†
  publication-title: Arch Clin Neuropsychol
  doi: 10.1093/arclin/acx021
– volume: 63
  start-page: 949
  year: 2018
  ident: B80
  article-title: Subjective Cognitive Decline, Objective Cognition, and Depression in Older Hispanics Screened for Memory Impairment
  publication-title: J Alzheimers Dis
  doi: 10.3233/jad-170865
– reference: 37273772 - Int J Public Health. 2023 May 18;68:1606127
SSID ssj0060801
Score 2.4069111
Snippet Objective: To explore the predictive value of machine learning in cognitive impairment, and identify important factors for cognitive impairment. Methods: A...
To explore the predictive value of machine learning in cognitive impairment, and identify important factors for cognitive impairment. A total of 2,326...
Objective: To explore the predictive value of machine learning in cognitive impairment, and identify important factors for cognitive impairment. Methods: A...
Objective: To explore the predictive value of machine learning in cognitive impairment, and identify important factors for cognitive impairment. Methods: A...
Objective: To explore the predictive value of machine learning in cognitive impairment, and identify important factors for cognitive impairment.Methods: A...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1605322
SubjectTerms Aged
Cognitive Dysfunction - diagnosis
Cognitive Dysfunction - epidemiology
cognitive impairment
Cross-Sectional Studies
dementia
East Asian People
Humans
Longitudinal Studies
longitudinal study
Machine Learning
Middle Aged
middle-aged and older Chinese
Public Health Archive
random forest
Title Using Machine Learning to Predict Cognitive Impairment Among Middle-Aged and Older Chinese: A Longitudinal Study
URI https://www.ncbi.nlm.nih.gov/pubmed/36798738
https://www.proquest.com/docview/2778601719
https://pubmed.ncbi.nlm.nih.gov/PMC9926933
https://doaj.org/article/062deae934534483bb8e9b7363a9eebc
Volume 68
WOSCitedRecordID wos000932136100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1661-8564
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060801
  issn: 1661-8564
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4oCEEG_SlspInJCiJnYS270tVSuQ2tIDSHuz_JiURSi72s0i8e87E2dXXYTgwtWxFccztueV72PsXXDQol2OylsXPqcbOtetdLlqKk145zhoYC25UFdXejo113eovqgmLMEDp4U7LhoRwYGRVS3RlZDeazBeyUY6A-ADnb5o9WycqXQGN9hSphwmumDmePZ9QYkHISmYUkshdm6hAaz_Txbm74WSd26e8yfs8Wgy8kma6lN2D7pn7FGKt_H0G9Fzthhy__xyqI0EPsKm3vB-zq-XlIzp-emmUoh_wjNgtqS4IJ8Q2RC_HMIU-eQGIndd5J-Ju5sTtzas4IRP-MWceI3WkTi0ONUe_nrBvp6ffTn9mI9sCnmomrrPNVToWkTcj_g5Gj0Z6aPyoBxUQVS1UkEI8JWMJdoEsdFl6WQdJZ4AEoKqvHzJ9rp5B68ZL13URYtb2aPxWCpwRQtRtQFM06qicBkrNqtrwwg1TowXPyy6HCQQSwKxJBA7CiRj77dDFgln42-dP5DIth0JIntoQMWxo-LYfylOxt5uBG5xS1GexHUwX6-sIEw9whEyGXuVFGD7KklZKyV1xtSOauzMZfdJN_s2wHYbIxoj5f7_mPwBe0gLQrGg0hyyvX65hjfsQfjZz1bLI3ZfTfXRsCNuAbnMEIM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Machine+Learning+to+Predict+Cognitive+Impairment+Among+Middle-Aged+and+Older+Chinese%3A+A+Longitudinal+Study&rft.jtitle=International+journal+of+public+health&rft.au=Liu%2C+Haihong&rft.au=Zhang%2C+Xiaolei&rft.au=Liu%2C+Haining&rft.au=Chong%2C+Sheau+Tsuey&rft.date=2023-01-19&rft.issn=1661-8564&rft.eissn=1661-8564&rft.volume=68&rft.spage=1605322&rft_id=info:doi/10.3389%2Fijph.2023.1605322&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-8564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-8564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-8564&client=summon