Vitamin C and Doxycycline: A synthetic lethal combination therapy targeting metabolic flexibility in cancer stem cells (CSCs)

Here, we developed a new synthetic lethal strategy for further optimizing the eradication of cancer stem cells (CSCs). Briefly, we show that chronic treatment with the FDA-approved antibiotic Doxycycline effectively reduces cellular respiration, by targeting mitochondrial protein translation. The ex...

Full description

Saved in:
Bibliographic Details
Published in:Oncotarget Vol. 8; no. 40; p. 67269
Main Authors: De Francesco, Ernestina Marianna, Bonuccelli, Gloria, Maggiolini, Marcello, Sotgia, Federica, Lisanti, Michael P
Format: Journal Article
Language:English
Published: United States 15.09.2017
Subjects:
ISSN:1949-2553, 1949-2553
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Here, we developed a new synthetic lethal strategy for further optimizing the eradication of cancer stem cells (CSCs). Briefly, we show that chronic treatment with the FDA-approved antibiotic Doxycycline effectively reduces cellular respiration, by targeting mitochondrial protein translation. The expression of four mitochondrial DNA encoded proteins (MT-ND3, MT-CO2, MT-ATP6 and MT-ATP8) is suppressed, by up to 35-fold. This high selection pressure metabolically synchronizes the surviving cancer cell sub-population towards a predominantly glycolytic phenotype, resulting in metabolic inflexibility. We directly validated this Doxycycline-induced glycolytic phenotype, by using metabolic flux analysis and label-free unbiased proteomics. Next, we identified two natural products (Vitamin C and Berberine) and six clinically-approved drugs, for metabolically targeting the Doxycycline-resistant CSC population (Atovaquone, Irinotecan, Sorafenib, Niclosamide, Chloroquine, and Stiripentol). This new combination strategy allows for the more efficacious eradication of CSCs with Doxycycline, and provides a simple pragmatic solution to the possible development of Doxycycline-resistance in cancer cells. In summary, we propose the combined use of i) Doxycycline (Hit-1: targeting mitochondria) and ii) Vitamin C (Hit-2: targeting glycolysis), which represents a new synthetic-lethal metabolic strategy for eradicating CSCs. This type of metabolic Achilles' heel will allow us and others to more effectively "starve" the CSC population.
AbstractList Here, we developed a new synthetic lethal strategy for further optimizing the eradication of cancer stem cells (CSCs). Briefly, we show that chronic treatment with the FDA-approved antibiotic Doxycycline effectively reduces cellular respiration, by targeting mitochondrial protein translation. The expression of four mitochondrial DNA encoded proteins (MT-ND3, MT-CO2, MT-ATP6 and MT-ATP8) is suppressed, by up to 35-fold. This high selection pressure metabolically synchronizes the surviving cancer cell sub-population towards a predominantly glycolytic phenotype, resulting in metabolic inflexibility. We directly validated this Doxycycline-induced glycolytic phenotype, by using metabolic flux analysis and label-free unbiased proteomics. Next, we identified two natural products (Vitamin C and Berberine) and six clinically-approved drugs, for metabolically targeting the Doxycycline-resistant CSC population (Atovaquone, Irinotecan, Sorafenib, Niclosamide, Chloroquine, and Stiripentol). This new combination strategy allows for the more efficacious eradication of CSCs with Doxycycline, and provides a simple pragmatic solution to the possible development of Doxycycline-resistance in cancer cells. In summary, we propose the combined use of i) Doxycycline (Hit-1: targeting mitochondria) and ii) Vitamin C (Hit-2: targeting glycolysis), which represents a new synthetic-lethal metabolic strategy for eradicating CSCs. This type of metabolic Achilles' heel will allow us and others to more effectively "starve" the CSC population.
Here, we developed a new synthetic lethal strategy for further optimizing the eradication of cancer stem cells (CSCs). Briefly, we show that chronic treatment with the FDA-approved antibiotic Doxycycline effectively reduces cellular respiration, by targeting mitochondrial protein translation. The expression of four mitochondrial DNA encoded proteins (MT-ND3, MT-CO2, MT-ATP6 and MT-ATP8) is suppressed, by up to 35-fold. This high selection pressure metabolically synchronizes the surviving cancer cell sub-population towards a predominantly glycolytic phenotype, resulting in metabolic inflexibility. We directly validated this Doxycycline-induced glycolytic phenotype, by using metabolic flux analysis and label-free unbiased proteomics. Next, we identified two natural products (Vitamin C and Berberine) and six clinically-approved drugs, for metabolically targeting the Doxycycline-resistant CSC population (Atovaquone, Irinotecan, Sorafenib, Niclosamide, Chloroquine, and Stiripentol). This new combination strategy allows for the more efficacious eradication of CSCs with Doxycycline, and provides a simple pragmatic solution to the possible development of Doxycycline-resistance in cancer cells. In summary, we propose the combined use of i) Doxycycline (Hit-1: targeting mitochondria) and ii) Vitamin C (Hit-2: targeting glycolysis), which represents a new synthetic-lethal metabolic strategy for eradicating CSCs. This type of metabolic Achilles' heel will allow us and others to more effectively "starve" the CSC population.Here, we developed a new synthetic lethal strategy for further optimizing the eradication of cancer stem cells (CSCs). Briefly, we show that chronic treatment with the FDA-approved antibiotic Doxycycline effectively reduces cellular respiration, by targeting mitochondrial protein translation. The expression of four mitochondrial DNA encoded proteins (MT-ND3, MT-CO2, MT-ATP6 and MT-ATP8) is suppressed, by up to 35-fold. This high selection pressure metabolically synchronizes the surviving cancer cell sub-population towards a predominantly glycolytic phenotype, resulting in metabolic inflexibility. We directly validated this Doxycycline-induced glycolytic phenotype, by using metabolic flux analysis and label-free unbiased proteomics. Next, we identified two natural products (Vitamin C and Berberine) and six clinically-approved drugs, for metabolically targeting the Doxycycline-resistant CSC population (Atovaquone, Irinotecan, Sorafenib, Niclosamide, Chloroquine, and Stiripentol). This new combination strategy allows for the more efficacious eradication of CSCs with Doxycycline, and provides a simple pragmatic solution to the possible development of Doxycycline-resistance in cancer cells. In summary, we propose the combined use of i) Doxycycline (Hit-1: targeting mitochondria) and ii) Vitamin C (Hit-2: targeting glycolysis), which represents a new synthetic-lethal metabolic strategy for eradicating CSCs. This type of metabolic Achilles' heel will allow us and others to more effectively "starve" the CSC population.
Author Lisanti, Michael P
Maggiolini, Marcello
Bonuccelli, Gloria
De Francesco, Ernestina Marianna
Sotgia, Federica
Author_xml – sequence: 1
  givenname: Ernestina Marianna
  surname: De Francesco
  fullname: De Francesco, Ernestina Marianna
  organization: The Paterson Institute, University of Manchester, Withington, United Kingdom
– sequence: 2
  givenname: Gloria
  surname: Bonuccelli
  fullname: Bonuccelli, Gloria
  organization: Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
– sequence: 3
  givenname: Marcello
  surname: Maggiolini
  fullname: Maggiolini, Marcello
  organization: Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
– sequence: 4
  givenname: Federica
  surname: Sotgia
  fullname: Sotgia, Federica
  organization: Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
– sequence: 5
  givenname: Michael P
  surname: Lisanti
  fullname: Lisanti, Michael P
  organization: Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28978032$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtPwzAQhC0EoqX0B3BBPpZDILEd2-VWhadUiQOPa-Q4m9bIsUvsSs2B_05Qi8RedjX7aTSaM3TsvAOELrL0OpOckhvvtI-qW0EcBEbkERpnczZPSJ7T43_3CE1D-EyHyZmQZH6KRkTOhUwpGaPvDxNVaxwusHI1vvO7XvfaGge3eIFD7-IaotHYQlwri7VvK-NUNN7h4dOpTY_3GYxb4Raiqrwd8MbCzlTGmtjjwVwrp6HDIUKLNVgb8Kx4LcLVOTpplA0wPewJen-4fyuekuXL43OxWCaa8TwmUupK0bSueFo10LBG5YJrqQgVvGGsShljnFDZ0Bp4zongMuN11khQIssJIxM02_tuOv-1hRDL1oTfIMqB34Zy6ErwjAoqBvTygG6rFupy05lWdX35Vxn5AXlJc1s
CitedBy_id crossref_primary_10_1002_adfm_202422196
crossref_primary_10_1007_s11696_021_01936_w
crossref_primary_10_1186_s13058_023_01686_5
crossref_primary_10_1007_s11010_021_04281_4
crossref_primary_10_3389_fmed_2025_1633447
crossref_primary_10_3390_ph14090852
crossref_primary_10_1186_s12935_018_0710_0
crossref_primary_10_1016_j_bbadis_2023_166849
crossref_primary_10_3390_molecules27020358
crossref_primary_10_3390_pr10061222
crossref_primary_10_3390_nu12051501
crossref_primary_10_1016_j_bcp_2022_114966
crossref_primary_10_3389_fonc_2020_01776
crossref_primary_10_3390_cells9071693
crossref_primary_10_1097_MD_0000000000039450
crossref_primary_10_1161_CIRCRESAHA_118_312439
crossref_primary_10_1016_j_semcancer_2020_04_006
crossref_primary_10_1016_j_biopha_2023_114496
crossref_primary_10_3390_molecules25143230
crossref_primary_10_3389_fmicb_2021_643472
crossref_primary_10_4252_wjsc_v12_i11_1295
crossref_primary_10_3390_ijms25168647
crossref_primary_10_3390_ijms26146829
crossref_primary_10_1016_j_ijpharm_2024_124358
crossref_primary_10_3389_fphys_2018_00809
crossref_primary_10_1016_j_canlet_2018_05_039
crossref_primary_10_1007_s12094_024_03553_x
crossref_primary_10_3390_medicina58091289
crossref_primary_10_1177_1535370220909309
crossref_primary_10_1016_j_cytogfr_2019_12_002
crossref_primary_10_1002_adma_202202715
crossref_primary_10_23736_S0392_9590_21_04556_9
crossref_primary_10_1042_BCJ20170164
crossref_primary_10_1172_JCI121685
crossref_primary_10_3389_fonc_2021_740720
crossref_primary_10_3389_fonc_2021_689068
crossref_primary_10_3390_cancers14112608
crossref_primary_10_3390_cancers17010059
crossref_primary_10_1039_D5BM00253B
crossref_primary_10_3390_antiox10020205
crossref_primary_10_21307_PM_2018_57_4_301
crossref_primary_10_1080_15384101_2018_1515551
crossref_primary_10_1016_j_drup_2025_101226
crossref_primary_10_3389_fonc_2019_00615
crossref_primary_10_3390_cells12232686
crossref_primary_10_3390_molecules25235776
crossref_primary_10_3389_fphar_2019_00681
crossref_primary_10_1186_s13046_021_02134_y
crossref_primary_10_3892_ol_2019_10686
crossref_primary_10_3390_cancers16142517
crossref_primary_10_1016_j_freeradbiomed_2022_12_082
crossref_primary_10_1016_j_ejphar_2019_172784
crossref_primary_10_34172_apb_2023_073
crossref_primary_10_1155_2019_7286737
crossref_primary_10_1002_cnr2_1003
crossref_primary_10_1039_D4RA02638A
crossref_primary_10_3389_fonc_2018_00452
crossref_primary_10_3390_biom10010079
crossref_primary_10_1002_ejic_201800066
crossref_primary_10_3390_cancers15153775
crossref_primary_10_1186_s12935_020_01719_5
crossref_primary_10_1016_j_ejphar_2021_174593
crossref_primary_10_1016_j_rvsc_2021_02_022
crossref_primary_10_3390_cancers12102780
crossref_primary_10_1016_j_canlet_2020_08_018
ContentType Journal Article
DBID NPM
7X8
DOI 10.18632/oncotarget.18428
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
EISSN 1949-2553
ExternalDocumentID 28978032
Genre Journal Article
GroupedDBID ---
53G
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
DIK
FRJ
GX1
HYE
KQ8
M48
NPM
OK1
PGMZT
RPM
7X8
ID FETCH-LOGICAL-c465t-88cba30db60bfef4fa576c8a2376f44b04446238f3de656276816d1f8ea715242
IEDL.DBID 7X8
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000410790500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1949-2553
IngestDate Thu Jul 10 22:04:42 EDT 2025
Mon Aug 18 08:05:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 40
Keywords cancer stem-like cells (CSCs)
doxycycline
vitamin C
mitochondrial biogenesis
mitochondrial DNA (mt-DNA)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-88cba30db60bfef4fa576c8a2376f44b04446238f3de656276816d1f8ea715242
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=18428&path%5B%5D=59194
PMID 28978032
PQID 1947613737
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1947613737
pubmed_primary_28978032
PublicationCentury 2000
PublicationDate 2017-09-15
PublicationDateYYYYMMDD 2017-09-15
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Oncotarget
PublicationTitleAlternate Oncotarget
PublicationYear 2017
References 28039467 - Oncotarget. 2017 Feb 7;8(6):9868-9884
27220421 - Breast Cancer Res. 2016 May 24;18(1):55
22033146 - Cell Cycle. 2011 Dec 15;10(24):4208-16
22665270 - J Mammary Gland Biol Neoplasia. 2012 Jun;17(2):111-7
22236876 - Cancer Biol Ther. 2011 Dec 15;12(12):1085-97
26350063 - Sci Rep. 2015 Sep 09;5:13896
20208035 - J Biomol Screen. 2010 Apr;15(4):427-33
27141887 - Nat Rev Clin Oncol. 2017 Jan;14 (1):11-31
21177425 - Cancer Epidemiol Biomarkers Prev. 2011 Feb;20(2):262-71
25668730 - Nat Rev Clin Oncol. 2015 Apr;12(4):190
27136895 - Oncotarget. 2016 Jun 7;7(23):34084-99
20587011 - Stem Cell Res Ther. 2010 May 20;1(2):13
25325014 - Front Oncol. 2014 Sep 29;4:262
26087310 - Oncotarget. 2015 Jun 20;6(17 ):14777-95
23172368 - Cell Cycle. 2012 Dec 1;11(23):4390-401
24613622 - Eur J Cancer. 2014 May;50(7):1223-31
18450228 - P R Health Sci J. 2008 Mar;27(1):7-19
22234241 - Cell Cycle. 2012 Jan 15;11(2):253-63
25625193 - Oncotarget. 2015 Mar 10;6(7):4569-84
22395432 - Cell Cycle. 2012 Apr 1;11(7):1445-54
25415228 - Oncotarget. 2014 Nov 30;5(22):11029-37
27344270 - Aging (Albany NY). 2016 Aug;8(8):1593-607
19545218 - Expert Opin Biol Ther. 2009 Aug;9(8):1005-16
26087309 - Oncotarget. 2015 Jun 10;6(16):14005-25
22225869 - Cell Metab. 2012 Jan 4;15(1):4-5
19780738 - Aust N Z J Obstet Gynaecol. 2009 Oct;49(5):525-30
23257779 - Cell Cycle. 2013 Jan 1;12 (1):172-82
26224121 - Cancer Res. 2015 Aug 15;75(16):3203-8
23070475 - Cell Cycle. 2012 Nov 15;11(22):4174-80
12914777 - Biochem Biophys Res Commun. 2003 Aug 29;308(3):492-6
26337609 - IUBMB Life. 2015 Sep;67(9):687-93
26421710 - Oncotarget. 2015 Oct 13;6(31):30472-86
25848948 - PLoS One. 2015 Apr 07;10(4):e0120228
28411284 - Oncotarget. 2017 Mar 2;8(12 ):20309-20327
22134189 - Cell Cycle. 2011 Dec 1;10(23):4047-64
28805671 - Nutrients. 2017 Aug 12;9(8):null
20818174 - Cell Cycle. 2010 Sep 1;9(17):3506-14
28223550 - Oncotarget. 2017 Mar 28;8(13):20667-20678
27570483 - Int J Biol Sci. 2016 Jul 22;12(9):1093-103
20171954 - Biochem Biophys Res Commun. 2010 Apr 2;394(2):249-53
26340526 - Cell Stem Cell. 2015 Sep 3;17(3):260-71
22041887 - Cancer Biol Ther. 2011 Nov 15;12(10):924-38
24699023 - J Stem Cells. 2013;8(3-4):135-49
22722266 - Cell Cycle. 2012 Jul 1;11(13):2545-56
23082721 - Cell Cycle. 2012 Nov 1;11(21):3956-63
26541605 - Science. 2015 Dec 11;350(6266):1391-6
25565207 - Cell Metab. 2015 Jan 6;21(1):81-94
16377171 - Curr Opin Genet Dev. 2006 Feb;16(1):60-4
17785204 - Cancer Cell. 2007 Sep;12(3):230-8
23082722 - Cell Cycle. 2012 Nov 1;11(21):3964-71
26421711 - Oncotarget. 2015 Oct 13;6(31):30453-71
7609676 - Med Hypotheses. 1995 Mar;44(3):207-13
15068981 - Ann Intern Med. 2004 Apr 6;140(7):533-7
8517665 - Anticancer Res. 1993 Mar-Apr;13(2):475-80
References_xml – reference: 26224121 - Cancer Res. 2015 Aug 15;75(16):3203-8
– reference: 23082722 - Cell Cycle. 2012 Nov 1;11(21):3964-71
– reference: 21177425 - Cancer Epidemiol Biomarkers Prev. 2011 Feb;20(2):262-71
– reference: 22041887 - Cancer Biol Ther. 2011 Nov 15;12(10):924-38
– reference: 26087310 - Oncotarget. 2015 Jun 20;6(17 ):14777-95
– reference: 25625193 - Oncotarget. 2015 Mar 10;6(7):4569-84
– reference: 16377171 - Curr Opin Genet Dev. 2006 Feb;16(1):60-4
– reference: 8517665 - Anticancer Res. 1993 Mar-Apr;13(2):475-80
– reference: 22225869 - Cell Metab. 2012 Jan 4;15(1):4-5
– reference: 18450228 - P R Health Sci J. 2008 Mar;27(1):7-19
– reference: 26421710 - Oncotarget. 2015 Oct 13;6(31):30472-86
– reference: 22236876 - Cancer Biol Ther. 2011 Dec 15;12(12):1085-97
– reference: 7609676 - Med Hypotheses. 1995 Mar;44(3):207-13
– reference: 23082721 - Cell Cycle. 2012 Nov 1;11(21):3956-63
– reference: 24699023 - J Stem Cells. 2013;8(3-4):135-49
– reference: 25668730 - Nat Rev Clin Oncol. 2015 Apr;12(4):190
– reference: 20208035 - J Biomol Screen. 2010 Apr;15(4):427-33
– reference: 20818174 - Cell Cycle. 2010 Sep 1;9(17):3506-14
– reference: 28039467 - Oncotarget. 2017 Feb 7;8(6):9868-9884
– reference: 23172368 - Cell Cycle. 2012 Dec 1;11(23):4390-401
– reference: 26350063 - Sci Rep. 2015 Sep 09;5:13896
– reference: 22395432 - Cell Cycle. 2012 Apr 1;11(7):1445-54
– reference: 26421711 - Oncotarget. 2015 Oct 13;6(31):30453-71
– reference: 27344270 - Aging (Albany NY). 2016 Aug;8(8):1593-607
– reference: 25325014 - Front Oncol. 2014 Sep 29;4:262
– reference: 23257779 - Cell Cycle. 2013 Jan 1;12 (1):172-82
– reference: 27570483 - Int J Biol Sci. 2016 Jul 22;12(9):1093-103
– reference: 28411284 - Oncotarget. 2017 Mar 2;8(12 ):20309-20327
– reference: 20587011 - Stem Cell Res Ther. 2010 May 20;1(2):13
– reference: 27141887 - Nat Rev Clin Oncol. 2017 Jan;14 (1):11-31
– reference: 19545218 - Expert Opin Biol Ther. 2009 Aug;9(8):1005-16
– reference: 27136895 - Oncotarget. 2016 Jun 7;7(23):34084-99
– reference: 27220421 - Breast Cancer Res. 2016 May 24;18(1):55
– reference: 23070475 - Cell Cycle. 2012 Nov 15;11(22):4174-80
– reference: 28223550 - Oncotarget. 2017 Mar 28;8(13):20667-20678
– reference: 22134189 - Cell Cycle. 2011 Dec 1;10(23):4047-64
– reference: 26087309 - Oncotarget. 2015 Jun 10;6(16):14005-25
– reference: 20171954 - Biochem Biophys Res Commun. 2010 Apr 2;394(2):249-53
– reference: 26541605 - Science. 2015 Dec 11;350(6266):1391-6
– reference: 25565207 - Cell Metab. 2015 Jan 6;21(1):81-94
– reference: 22234241 - Cell Cycle. 2012 Jan 15;11(2):253-63
– reference: 28805671 - Nutrients. 2017 Aug 12;9(8):null
– reference: 26340526 - Cell Stem Cell. 2015 Sep 3;17(3):260-71
– reference: 22665270 - J Mammary Gland Biol Neoplasia. 2012 Jun;17(2):111-7
– reference: 12914777 - Biochem Biophys Res Commun. 2003 Aug 29;308(3):492-6
– reference: 22722266 - Cell Cycle. 2012 Jul 1;11(13):2545-56
– reference: 17785204 - Cancer Cell. 2007 Sep;12(3):230-8
– reference: 26337609 - IUBMB Life. 2015 Sep;67(9):687-93
– reference: 25415228 - Oncotarget. 2014 Nov 30;5(22):11029-37
– reference: 19780738 - Aust N Z J Obstet Gynaecol. 2009 Oct;49(5):525-30
– reference: 22033146 - Cell Cycle. 2011 Dec 15;10(24):4208-16
– reference: 15068981 - Ann Intern Med. 2004 Apr 6;140(7):533-7
– reference: 24613622 - Eur J Cancer. 2014 May;50(7):1223-31
– reference: 25848948 - PLoS One. 2015 Apr 07;10(4):e0120228
SSID ssj0000547829
Score 2.4620805
Snippet Here, we developed a new synthetic lethal strategy for further optimizing the eradication of cancer stem cells (CSCs). Briefly, we show that chronic treatment...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 67269
Title Vitamin C and Doxycycline: A synthetic lethal combination therapy targeting metabolic flexibility in cancer stem cells (CSCs)
URI https://www.ncbi.nlm.nih.gov/pubmed/28978032
https://www.proquest.com/docview/1947613737
Volume 8
WOSCitedRecordID wos000410790500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrDwEO-XjMQAQ0Rqu7HDglABsVBV4qFulZ-iEk0KKYgM_HfukgATEhJLhshOHN_F933n8x0hh7HmzDGnIm6DjIBvuMiAoUEgJ1RqhPJOVcUmZK-nBoO03zjciias8mtNrBZql1v0kZ8A2QbGzSWXZ5PnCKtG4e5qU0JjlrQ4QBnUajlQ3z6WGJNVVYXKoHcaAXrmzcamSjg7yTH9QRVvDTcEU7-DzMrYXC39d5jLZLGBmfS81osVMuOzVfLxMJrq8SijXaozRy_y99KWeDTSn9JzWpQZgEFoT0GUj9AZXgi0uZIcrY9plbT-EDB3dOynoD9P0DxgTs0qxrak8HCLevRCMUE0xW2Bgh51b7vF8Rq5v7q8615HTfmFyIqkM42Uskbz2JkkNsEHETRwE6s0xtEEIQxmmgPwpAJ3HlAhA-LSTlw7KK8loALB1slclmd-k1AtY2ZSHhLfNsIl3hidxtxp47UO0iZb5OBrNoeg3jg4nfn8tRj-zOcW2ahFMpzUeTiGwBWlijnb_kPvHbLA0CBj8YfOLmkF-Ln9Hpm3b9NR8bJf6Q1ce_2bT1DB0Aw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vitamin+C+and+Doxycycline%3A+A+synthetic+lethal+combination+therapy+targeting+metabolic+flexibility+in+cancer+stem+cells+%28CSCs%29&rft.jtitle=Oncotarget&rft.au=De+Francesco%2C+Ernestina+Marianna&rft.au=Bonuccelli%2C+Gloria&rft.au=Maggiolini%2C+Marcello&rft.au=Sotgia%2C+Federica&rft.date=2017-09-15&rft.eissn=1949-2553&rft.volume=8&rft.issue=40&rft.spage=67269&rft_id=info:doi/10.18632%2Foncotarget.18428&rft_id=info%3Apmid%2F28978032&rft_id=info%3Apmid%2F28978032&rft.externalDocID=28978032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-2553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-2553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-2553&client=summon