Nuclear Medicine and Artificial Intelligence: Best Practices for Algorithm Development
The nuclear medicine field has seen a rapid expansion of academic and commercial interest in developing artificial intelligence (AI) algorithms. Users and developers can avoid some of the pitfalls of AI by recognizing and following best practices in AI algorithm development. In this article, recomme...
Saved in:
| Published in: | The Journal of nuclear medicine (1978) Vol. 63; no. 4; p. 500 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.04.2022
|
| Subjects: | |
| ISSN: | 1535-5667, 1535-5667 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The nuclear medicine field has seen a rapid expansion of academic and commercial interest in developing artificial intelligence (AI) algorithms. Users and developers can avoid some of the pitfalls of AI by recognizing and following best practices in AI algorithm development. In this article, recommendations on technical best practices for developing AI algorithms in nuclear medicine are provided, beginning with general recommendations and then continuing with descriptions of how one might practice these principles for specific topics within nuclear medicine. This report was produced by the AI Task Force of the Society of Nuclear Medicine and Molecular Imaging. |
|---|---|
| AbstractList | The nuclear medicine field has seen a rapid expansion of academic and commercial interest in developing artificial intelligence (AI) algorithms. Users and developers can avoid some of the pitfalls of AI by recognizing and following best practices in AI algorithm development. In this article, recommendations on technical best practices for developing AI algorithms in nuclear medicine are provided, beginning with general recommendations and then continuing with descriptions of how one might practice these principles for specific topics within nuclear medicine. This report was produced by the AI Task Force of the Society of Nuclear Medicine and Molecular Imaging. The nuclear medicine field has seen a rapid expansion of academic and commercial interest in developing artificial intelligence (AI) algorithms. Users and developers can avoid some of the pitfalls of AI by recognizing and following best practices in AI algorithm development. In this article, recommendations on technical best practices for developing AI algorithms in nuclear medicine are provided, beginning with general recommendations and then continuing with descriptions of how one might practice these principles for specific topics within nuclear medicine. This report was produced by the AI Task Force of the Society of Nuclear Medicine and Molecular Imaging.The nuclear medicine field has seen a rapid expansion of academic and commercial interest in developing artificial intelligence (AI) algorithms. Users and developers can avoid some of the pitfalls of AI by recognizing and following best practices in AI algorithm development. In this article, recommendations on technical best practices for developing AI algorithms in nuclear medicine are provided, beginning with general recommendations and then continuing with descriptions of how one might practice these principles for specific topics within nuclear medicine. This report was produced by the AI Task Force of the Society of Nuclear Medicine and Molecular Imaging. |
| Author | Rahmim, Arman Buvat, Irène Jacobs, Paul Bradshaw, Tyler J Sunderland, John J Li, Quanzheng Sitek, Arkadiusz Dutta, Joyita Scott, Peter J H Yousefirizi, Fereshteh Slomka, Piotr J Jha, Abhinav K Liu, Chi Boellaard, Ronald Saboury, Babak Wahl, Richard L Zuehlsdorff, Sven |
| Author_xml | – sequence: 1 givenname: Tyler J surname: Bradshaw fullname: Bradshaw, Tyler J email: tbradshaw@wisc.edu organization: Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin; tbradshaw@wisc.edu – sequence: 2 givenname: Ronald surname: Boellaard fullname: Boellaard, Ronald organization: Department of Radiology and Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centres, Amsterdam, The Netherlands – sequence: 3 givenname: Joyita surname: Dutta fullname: Dutta, Joyita organization: Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, Massachusetts – sequence: 4 givenname: Abhinav K surname: Jha fullname: Jha, Abhinav K organization: Department of Biomedical Engineering and Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri – sequence: 5 givenname: Paul surname: Jacobs fullname: Jacobs, Paul organization: MIM Software Inc., Cleveland, Ohio – sequence: 6 givenname: Quanzheng surname: Li fullname: Li, Quanzheng organization: Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts – sequence: 7 givenname: Chi surname: Liu fullname: Liu, Chi organization: Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut – sequence: 8 givenname: Arkadiusz surname: Sitek fullname: Sitek, Arkadiusz organization: Sano Centre for Computational Medicine, Kraków, Poland – sequence: 9 givenname: Babak surname: Saboury fullname: Saboury, Babak organization: Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland – sequence: 10 givenname: Peter J H surname: Scott fullname: Scott, Peter J H organization: Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan – sequence: 11 givenname: Piotr J surname: Slomka fullname: Slomka, Piotr J organization: Department of Imaging, Medicine, and Cardiology, Cedars-Sinai Medical Center, Los Angeles, California – sequence: 12 givenname: John J surname: Sunderland fullname: Sunderland, John J organization: Departments of Radiology and Physics, University of Iowa, Iowa City, Iowa – sequence: 13 givenname: Richard L surname: Wahl fullname: Wahl, Richard L organization: Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri – sequence: 14 givenname: Fereshteh surname: Yousefirizi fullname: Yousefirizi, Fereshteh organization: Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada – sequence: 15 givenname: Sven surname: Zuehlsdorff fullname: Zuehlsdorff, Sven organization: Siemens Medical Solutions USA, Inc., Hoffman Estates, Illinois – sequence: 16 givenname: Arman surname: Rahmim fullname: Rahmim, Arman organization: Departments of Radiology and Physics, University of British Columbia, Vancouver, British Columbia, Canada; and – sequence: 17 givenname: Irène surname: Buvat fullname: Buvat, Irène organization: Institut Curie, Université PSL, INSERM, Université Paris-Saclay, Orsay, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34740952$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtOwzAURC0Eog_4ADbISzYpieNrJ-xKeVUqj0XFNnLtm-IqcYrtIPH3RKJIrGZGGo1GZ0KOXeeQkIssnbFSyOud61s0s4xlMyYYCHlExhnkkIAQ8vifH5FJCLs0TUVRFKdklHPJ0xLYmLy_9LpB5ekzGqutQ6qcoXMfbT1E1dCli9g0dotO4w29xRDpm1c6Wo2B1p2n82bbeRs_WnqHX9h0-xZdPCMntWoCnh90StYP9-vFU7J6fVwu5qtEcwExKTgCGCiN4lpkpdIaTWYMq1HKDWLOMRcoeCGVACmAl1oBQ8NSVWtZKzYlV7-ze9999sO3qrVBD3-Vw64PFYOSD6SAi6F6eaj2mwFatfe2Vf67-kPBfgCgwWSx |
| CitedBy_id | crossref_primary_10_1016_j_neunet_2023_08_026 crossref_primary_10_1080_09553002_2023_2214206 crossref_primary_10_1038_s41571_023_00799_2 crossref_primary_10_1097_RLU_0000000000005526 crossref_primary_10_1186_s13550_025_01269_9 crossref_primary_10_1080_08164622_2023_2197578 crossref_primary_10_3390_cancers14071674 crossref_primary_10_1002_mp_16967 crossref_primary_10_1080_14737159_2024_2383439 crossref_primary_10_1088_1361_6560_ac6fab crossref_primary_10_1093_ageing_afae101 crossref_primary_10_1186_s40658_023_00598_9 crossref_primary_10_1007_s44373_025_00042_w crossref_primary_10_61186_ijrr_23_1_239 crossref_primary_10_1007_s00259_024_06616_x crossref_primary_10_3390_cancers16061090 crossref_primary_10_1186_s41824_025_00253_9 crossref_primary_10_2967_jnumed_124_269425 crossref_primary_10_1007_s00259_023_06152_0 crossref_primary_10_1148_ryai_220232 crossref_primary_10_1109_ACCESS_2023_3244741 crossref_primary_10_1186_s41181_023_00218_y crossref_primary_10_1200_JCO_24_00675 crossref_primary_10_1186_s13550_025_01238_2 crossref_primary_10_1007_s00259_022_05891_w crossref_primary_10_1007_s13246_024_01408_x crossref_primary_10_3390_diagnostics14020181 crossref_primary_10_1136_bmj_2024_081554 crossref_primary_10_1016_j_pdpdt_2025_104528 crossref_primary_10_1097_MNM_0000000000001723 crossref_primary_10_1007_s11547_024_01770_6 crossref_primary_10_1053_j_semnuclmed_2022_11_003 crossref_primary_10_1111_all_15849 crossref_primary_10_1016_S1470_2045_24_00030_5 crossref_primary_10_3390_jcm13010117 crossref_primary_10_1016_j_ejmp_2023_102615 crossref_primary_10_1016_j_nucmedbio_2025_109010 crossref_primary_10_3389_fphar_2023_1173596 crossref_primary_10_1016_j_compbiomed_2022_106165 crossref_primary_10_3390_diagnostics14121240 crossref_primary_10_1055_a_1909_7013 crossref_primary_10_1093_bjr_tqae235 |
| ContentType | Journal Article |
| Copyright | 2022 by the Society of Nuclear Medicine and Molecular Imaging. |
| Copyright_xml | – notice: 2022 by the Society of Nuclear Medicine and Molecular Imaging. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.2967/jnumed.121.262567 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1535-5667 |
| ExternalDocumentID | 34740952 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG072669 – fundername: NIA NIH HHS grantid: R03 AG070750 |
| GroupedDBID | --- -~X .55 .GJ 29L 2WC 3O- 3V. 41~ 53G 5RE 7RV 7X7 88E 88I 8AF 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8WZ A6W ABEFU ABSQV ABUWG ACGOD ACIWK ACPRK ADDZX ADMOG AENEX AFFNX AFKRA AFOSN AFRAH AHMBA AI. ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI CCPQU CGR CS3 CUY CVF DIK DU5 DWQXO E3Z EBD EBS ECM EIF EJD EMOBN EX3 F5P F9R FYUFA GNUQQ H13 HCIFZ HMCUK I-F IL9 INIJC J5H KQ8 L7B LK8 M1P M2P M2Q M7P N4W NAPCQ NPM OK1 P2P P62 PQQKQ PROAC PSQYO Q2X R0Z RHF RHI RNS RWL S0X SJN SV3 TAE TR2 TSM TUS UKHRP VH1 W8F WH7 WOQ WOW X7M YHG YQJ ZGI ZXP 7X8 |
| ID | FETCH-LOGICAL-c465t-84e55d59da4c619acced1dd2fe77bee34e36e6487a6576549ca52ed20afc7fa2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000796182700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1535-5667 |
| IngestDate | Fri Sep 05 09:55:09 EDT 2025 Wed Feb 19 02:05:11 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | research methods computer/PACS artificial intelligence best practices algorithm statistics |
| Language | English |
| License | 2022 by the Society of Nuclear Medicine and Molecular Imaging. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c465t-84e55d59da4c619acced1dd2fe77bee34e36e6487a6576549ca52ed20afc7fa2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://jnm.snmjournals.org/content/jnumed/63/4/500.full.pdf |
| PMID | 34740952 |
| PQID | 2594296546 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2594296546 pubmed_primary_34740952 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of nuclear medicine (1978) |
| PublicationTitleAlternate | J Nucl Med |
| PublicationYear | 2022 |
| SSID | ssj0006888 |
| Score | 2.5996032 |
| Snippet | The nuclear medicine field has seen a rapid expansion of academic and commercial interest in developing artificial intelligence (AI) algorithms. Users and... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 500 |
| SubjectTerms | Algorithms Artificial Intelligence Molecular Imaging Nuclear Medicine Radionuclide Imaging |
| Title | Nuclear Medicine and Artificial Intelligence: Best Practices for Algorithm Development |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34740952 https://www.proquest.com/docview/2594296546 |
| Volume | 63 |
| WOSCitedRecordID | wos000796182700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI6AIcSF92O8FCSuYWuaNC0XNBATSKzaYUK7VVni8hC0Yx38fpy203bggMSlh6pNI8t2P8f2Z0IudGgQF-uASXR_TETgMe2JlEVhW2ktXCanJHF9VHEcDodRvz5wK-qyyplPLB21zY07I28hTEfX6VpvrsefzE2NctnVeoTGMmn4CGVcSZcaztnCg7CcO4lGLRnCFlVlNXEV1XrL0PSt41a45BgCVGPmf0eY5Z-mu_nfPW6RjRpj0k6lFNtkCbIdstars-i75Cl2JMZ6Qme3qM5s-XhFJ0EfFng6r-gNboD2626qgiLKpZ33Z_zu9OWDLhQd7ZFB925we8_q-QrMiEBOWShASisjq4XBOEobA9azlqeg1AjAF-AHEGBEowOMSjCQNFpysLytU6NSzffJSpZncEhoaMFTvkLvoAAXTbUFw0cIHdomcKneJjmfCSxB9XU5CZ1B_lUkc5E1yUEl9WRc8WwkvlAYfUp-9Ie3j8k6d40JZU3NCWmkaLxwSlbN9_S1mJyVeoHXuN_7AVhWwuw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+Medicine+and+Artificial+Intelligence%3A+Best+Practices+for+Algorithm+Development&rft.jtitle=The+Journal+of+nuclear+medicine+%281978%29&rft.au=Bradshaw%2C+Tyler+J&rft.au=Boellaard%2C+Ronald&rft.au=Dutta%2C+Joyita&rft.au=Jha%2C+Abhinav+K&rft.date=2022-04-01&rft.eissn=1535-5667&rft.volume=63&rft.issue=4&rft.spage=500&rft_id=info:doi/10.2967%2Fjnumed.121.262567&rft_id=info%3Apmid%2F34740952&rft_id=info%3Apmid%2F34740952&rft.externalDocID=34740952 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-5667&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-5667&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-5667&client=summon |