Poly(ADP-Ribosyl) Glycohydrolase Prevents the Accumulation of Unusual Replication Structures during Unperturbed S Phase

Poly(ADP-ribosyl)ation (PAR) has been implicated in various aspects of the cellular response to DNA damage and genome stability. Although 17 human poly(ADP-ribose) polymerase (PARP) genes have been identified, a single poly(ADP-ribosyl) glycohydrolase (PARG) mediates PAR degradation. Here we investi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Molecular and cellular biology Ročník 35; číslo 5; s. 856 - 865
Hlavní autoři: Ray Chaudhuri, Arnab, Ahuja, Akshay Kumar, Herrador, Raquel, Lopes, Massimo
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Taylor & Francis 01.03.2015
American Society for Microbiology
Témata:
ISSN:1098-5549, 0270-7306, 1098-5549
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Poly(ADP-ribosyl)ation (PAR) has been implicated in various aspects of the cellular response to DNA damage and genome stability. Although 17 human poly(ADP-ribose) polymerase (PARP) genes have been identified, a single poly(ADP-ribosyl) glycohydrolase (PARG) mediates PAR degradation. Here we investigated the role of PARG in the replication of human chromosomes. We show that PARG depletion affects cell proliferation and DNA synthesis, leading to replication-coupled H2AX phosphorylation. Furthermore, PARG depletion or inhibition per se slows down individual replication forks similarly to mild chemotherapeutic treatment. Electron microscopic analysis of replication intermediates reveals marked accumulation of reversed forks and single-stranded DNA (ssDNA) gaps in unperturbed PARG-defective cells. Intriguingly, while we found no physical evidence for chromosomal breakage, PARG-defective cells displayed both ataxia-telangiectasia-mutated (ATM) and ataxia-Rad3-related (ATR) activation, as well as chromatin recruitment of standard double-strand-break-repair factors, such as 53BP1 and RAD51. Overall, these data prove PAR degradation to be essential to promote resumption of replication at endogenous and exogenous lesions, preventing idle recruitment of repair factors to remodeled replication forks. Furthermore, they suggest that fork remodeling and restarting are surprisingly frequent in unperturbed cells and provide a molecular rationale to explore PARG inhibition in cancer chemotherapy.
AbstractList Poly(ADP-ribosyl)ation (PAR) has been implicated in various aspects of the cellular response to DNA damage and genome stability. Although 17 human poly(ADP-ribose) polymerase (PARP) genes have been identified, a single poly(ADP-ribosyl) glycohydrolase (PARG) mediates PAR degradation. Here we investigated the role of PARG in the replication of human chromosomes. We show that PARG depletion affects cell proliferation and DNA synthesis, leading to replication-coupled H2AX phosphorylation. Furthermore, PARG depletion or inhibition per se slows down individual replication forks similarly to mild chemotherapeutic treatment. Electron microscopic analysis of replication intermediates reveals marked accumulation of reversed forks and single-stranded DNA (ssDNA) gaps in unperturbed PARG-defective cells. Intriguingly, while we found no physical evidence for chromosomal breakage, PARG-defective cells displayed both ataxia-telangiectasia-mutated (ATM) and ataxia-Rad3-related (ATR) activation, as well as chromatin recruitment of standard double-strand-break-repair factors, such as 53BP1 and RAD51. Overall, these data prove PAR degradation to be essential to promote resumption of replication at endogenous and exogenous lesions, preventing idle recruitment of repair factors to remodeled replication forks. Furthermore, they suggest that fork remodeling and restarting are surprisingly frequent in unperturbed cells and provide a molecular rationale to explore PARG inhibition in cancer chemotherapy.Poly(ADP-ribosyl)ation (PAR) has been implicated in various aspects of the cellular response to DNA damage and genome stability. Although 17 human poly(ADP-ribose) polymerase (PARP) genes have been identified, a single poly(ADP-ribosyl) glycohydrolase (PARG) mediates PAR degradation. Here we investigated the role of PARG in the replication of human chromosomes. We show that PARG depletion affects cell proliferation and DNA synthesis, leading to replication-coupled H2AX phosphorylation. Furthermore, PARG depletion or inhibition per se slows down individual replication forks similarly to mild chemotherapeutic treatment. Electron microscopic analysis of replication intermediates reveals marked accumulation of reversed forks and single-stranded DNA (ssDNA) gaps in unperturbed PARG-defective cells. Intriguingly, while we found no physical evidence for chromosomal breakage, PARG-defective cells displayed both ataxia-telangiectasia-mutated (ATM) and ataxia-Rad3-related (ATR) activation, as well as chromatin recruitment of standard double-strand-break-repair factors, such as 53BP1 and RAD51. Overall, these data prove PAR degradation to be essential to promote resumption of replication at endogenous and exogenous lesions, preventing idle recruitment of repair factors to remodeled replication forks. Furthermore, they suggest that fork remodeling and restarting are surprisingly frequent in unperturbed cells and provide a molecular rationale to explore PARG inhibition in cancer chemotherapy.
Poly(ADP-ribosyl)ation (PAR) has been implicated in various aspects of the cellular response to DNA damage and genome stability. Although 17 human poly(ADP-ribose) polymerase (PARP) genes have been identified, a single poly(ADP-ribosyl) glycohydrolase (PARG) mediates PAR degradation. Here we investigated the role of PARG in the replication of human chromosomes. We show that PARG depletion affects cell proliferation and DNA synthesis, leading to replication-coupled H2AX phosphorylation. Furthermore, PARG depletion or inhibition per se slows down individual replication forks similarly to mild chemotherapeutic treatment. Electron microscopic analysis of replication intermediates reveals marked accumulation of reversed forks and single-stranded DNA (ssDNA) gaps in unperturbed PARG-defective cells. Intriguingly, while we found no physical evidence for chromosomal breakage, PARG-defective cells displayed both ataxia-telangiectasia-mutated (ATM) and ataxia-Rad3-related (ATR) activation, as well as chromatin recruitment of standard double-strand-break-repair factors, such as 53BP1 and RAD51. Overall, these data prove PAR degradation to be essential to promote resumption of replication at endogenous and exogenous lesions, preventing idle recruitment of repair factors to remodeled replication forks. Furthermore, they suggest that fork remodeling and restarting are surprisingly frequent in unperturbed cells and provide a molecular rationale to explore PARG inhibition in cancer chemotherapy.
Author Ahuja, Akshay Kumar
Lopes, Massimo
Ray Chaudhuri, Arnab
Herrador, Raquel
Author_xml – sequence: 1
  givenname: Arnab
  surname: Ray Chaudhuri
  fullname: Ray Chaudhuri, Arnab
  organization: Institute of Molecular Cancer Research, University of Zurich
– sequence: 2
  givenname: Akshay Kumar
  surname: Ahuja
  fullname: Ahuja, Akshay Kumar
  organization: Institute of Molecular Cancer Research, University of Zurich
– sequence: 3
  givenname: Raquel
  surname: Herrador
  fullname: Herrador, Raquel
  organization: Institute of Molecular Cancer Research, University of Zurich
– sequence: 4
  givenname: Massimo
  surname: Lopes
  fullname: Lopes, Massimo
  email: lopes@imcr.uzh.ch
  organization: Institute of Molecular Cancer Research, University of Zurich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25535335$$D View this record in MEDLINE/PubMed
BookMark eNqFkdtvFCEUxompsRd989nwWBOnwgBzeTFZV60mNW5a-0wYLl0MA1sY2sx_L9ttTTUanw4cfufLd_gOwZ4PXgPwEqMTjOvu7dfl-xOEUdtWmD4BBxj1XcUY7fcenffBYUo_EEJNj8gzsF8zRhgh7ADcroKbjxcfVtW5HUKa3Wt46mYZ1rOKwYmk4SrqG-2nBKe1hgsp85idmGzwMBh46XPKwsFzvXFW7toXU8xyylEnqHK0_qpQGx1LZ9AKXsDVusg-B0-NcEm_uK9H4PLTx-_Lz9XZt9Mvy8VZJWnDpqqjpBG000Zi0WpFe2U0ajDB5YoGsy1Na0RvOqrVFm7qBplBEyQ6ppQiR-DdTneTh1ErWTaJwvFNtKOIMw_C8t9fvF3zq3DDKakJ7XEROL4XiOE66zTx0SapnRNeh5x43RFa14w07X9R3LCakq5DrKCvHtv65echmALUO0DGkFLUhks73f1vcWkdx4hv0-clfX6XPse0DL35Y-hB9x94u8OtNyGO4jZEp_gkZheiicJLmzj56-RPILLEyQ
CitedBy_id crossref_primary_10_1093_jmcb_mjae050
crossref_primary_10_1101_gad_334730_119
crossref_primary_10_1073_pnas_2413954121
crossref_primary_10_1038_s41467_019_13508_4
crossref_primary_10_1038_s44318_024_00043_2
crossref_primary_10_1096_fj_202403378R
crossref_primary_10_1016_j_dnarep_2017_02_010
crossref_primary_10_1016_j_canlet_2025_217599
crossref_primary_10_7554_eLife_89303_4
crossref_primary_10_1016_j_molcel_2021_04_028
crossref_primary_10_1016_j_semcdb_2016_09_009
crossref_primary_10_1186_s13046_022_02459_2
crossref_primary_10_1158_0008_5472_CAN_16_2704
crossref_primary_10_7554_eLife_89303
crossref_primary_10_1016_j_pbiomolbio_2021_01_004
crossref_primary_10_1038_s41419_024_06541_9
crossref_primary_10_1016_j_bpc_2016_11_014
crossref_primary_10_1016_j_molcel_2015_07_030
crossref_primary_10_1038_s41586_018_0261_5
crossref_primary_10_1093_annonc_mdv393
crossref_primary_10_1016_j_cell_2017_11_047
crossref_primary_10_1038_nrm_2017_53
crossref_primary_10_1038_nrm3935
crossref_primary_10_1158_1541_7786_MCR_20_0708
crossref_primary_10_1016_j_molcel_2022_02_021
crossref_primary_10_1016_j_molcel_2018_06_004
crossref_primary_10_1016_j_bcp_2019_03_028
crossref_primary_10_1016_j_tig_2019_03_008
crossref_primary_10_1101_gad_334516_119
crossref_primary_10_1101_gad_334631_119
crossref_primary_10_1016_j_dnarep_2019_102654
crossref_primary_10_1038_s41467_019_08859_x
crossref_primary_10_1038_s41418_022_00999_w
crossref_primary_10_3390_genes9080416
crossref_primary_10_1016_j_ccell_2019_02_004
crossref_primary_10_1038_s41467_019_12297_0
crossref_primary_10_1016_j_semcdb_2016_09_011
crossref_primary_10_1016_j_dnarep_2017_11_004
Cites_doi 10.1016/j.molcel.2005.11.015
10.1038/nature05977
10.1038/nature03443
10.1186/1476-4598-11-48
10.1101/gad.11.18.2347
10.1093/emboj/cdg206
10.1038/nsmb.2258
10.1038/nsmb.2501
10.1016/j.ceb.2006.02.013
10.1016/j.cell.2012.04.030
10.1158/1078-0432.CCR-10-0939
10.1128/MCB.24.16.7163-7178.2004
10.1083/jcb.201212058
10.1016/j.ccr.2012.05.015
10.1038/nature03445
10.1038/ncomms3993
10.1016/j.cell.2011.03.041
10.1016/j.yexcr.2004.03.050
10.1073/pnas.94.14.7303
10.1093/nar/gkr099
10.2741/3652
10.1038/nature04329
10.1016/S0301-472X(03)00083-3
10.1083/jcb.140.6.1285
10.1016/j.mad.2008.01.007
10.1128/MCB.02248-06
10.1038/nsmb.1927
10.1007/978-1-62703-706-8_15
10.1242/jcs.039115
10.1073/pnas.0406182101
10.1096/fj.09-133264
10.1038/nature10404
10.1016/j.molcel.2010.01.021
10.1038/emboj.2013.51
10.1093/nar/gku505
10.4161/cc.11.5.19482
10.1016/j.molcel.2004.11.032
10.1016/j.dnarep.2008.03.009
10.1038/nrm3376
10.2741/3329
10.1016/j.ejca.2005.08.027
10.1038/bjp.2008.370
ContentType Journal Article
Copyright Copyright © 2015, American Society for Microbiology 2015
Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
Copyright_xml – notice: Copyright © 2015, American Society for Microbiology 2015
– notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved.
– notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1128/MCB.01077-14
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate PARG Controls Replication Fork Speed and Structure
EISSN 1098-5549
EndPage 865
ExternalDocumentID PMC4323491
25535335
10_1128_MCB_01077_14
12275538
Genre Research Article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0R~
123
18M
29M
2WC
39C
4.4
53G
5RE
5VS
AAGFI
ABJNI
ACGFO
ACNCT
ADBBV
ADIYS
AENEX
AEOZL
AGHSJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AQTUD
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HH5
HYE
HZ~
IH2
KQ8
L7B
M4Z
N9A
O9-
OK1
P2P
RHI
RNS
RPM
TASJS
TDBHL
TFL
TFW
TR2
UDS
W8F
WH7
WOQ
ZCA
AAYXX
CITATION
.55
.GJ
3O-
9M8
ABRLO
ABTAH
ACKIV
AFFNX
AGVNZ
C1A
CGR
CUY
CVF
ECM
EIF
EMOBN
MVM
NPM
RSF
WHG
X7M
Y6R
YYP
ZGI
ZXP
ZY4
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c465t-8436a48efc1a7ed49dfe061311a70bf11a767fa9f84ed84366260fbe30a85ddd3
IEDL.DBID TFW
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000349300200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1098-5549
0270-7306
IngestDate Tue Nov 04 01:48:24 EST 2025
Fri Sep 05 17:28:21 EDT 2025
Sun Nov 09 14:44:27 EST 2025
Thu Apr 03 07:07:54 EDT 2025
Tue Nov 18 22:33:52 EST 2025
Sat Nov 29 02:59:29 EST 2025
Mon Oct 20 23:46:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright © 2015, American Society for Microbiology. All Rights Reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-8436a48efc1a7ed49dfe061311a70bf11a767fa9f84ed84366260fbe30a85ddd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Ray Chaudhuri A, Ahuja AK, Herrador R, Lopes M. 2015. Poly(ADP-ribosyl) glycohydrolase prevents the accumulation of unusual replication structures during unperturbed S phase. Mol Cell Biol 35:856–865. doi:10.1128/MCB.01077-14.
Present address: Arnab Ray Chaudhuri, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
A.R.C. and A.K.A. contributed equally to this article.
OpenAccessLink https://mcb.asm.org/content/mcb/35/5/856.full.pdf
PMID 25535335
PQID 1652438805
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4323491
pubmed_primary_25535335
crossref_citationtrail_10_1128_MCB_01077_14
proquest_miscellaneous_2834225367
crossref_primary_10_1128_MCB_01077_14
informaworld_taylorfrancis_310_1128_MCB_01077_14
proquest_miscellaneous_1652438805
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Molecular and cellular biology
PublicationTitleAlternate Mol Cell Biol
PublicationYear 2015
Publisher Taylor & Francis
American Society for Microbiology
Publisher_xml – name: Taylor & Francis
– name: American Society for Microbiology
References B20
B42
B21
B43
B22
B44
B23
B45
Cortes U (B19) 2004; 24
B24
B25
B27
B28
Feng X (B17) 2012; 11
Neelsen KJ (B26) 2014; 1094
Zellweger R (B34)
B30
B31
B10
B11
B33
B12
B13
B35
B36
Min W (B14) 2009; 14
B37
B16
B38
B39
B18
Meyer-Ficca ML (B15) 2004; 297
B1
B2
B3
Neelsen KJ (B32)
B4
Follonier C (B29) 2013
B5
B6
B7
B8
B9
B40
B41
16387650 - Mol Cell. 2006 Jan 6;21(1):15-27
21892188 - Nature. 2011 Sep 29;477(7366):616-20
15591342 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17699-704
12829019 - Exp Hematol. 2003 Jun;31(6):446-54
23481255 - EMBO J. 2013 May 2;32(9):1225-37
9308963 - Genes Dev. 1997 Sep 15;11(18):2347-58
23454978 - Nat Struct Mol Biol. 2013 Apr;20(4):486-94
24356582 - Nat Commun. 2013;4:2993
19273151 - Front Biosci (Landmark Ed). 2009;14:1619-26
18355895 - Mech Ageing Dev. 2008 Jul-Aug;129(7-8):353-65
20188668 - Mol Cell. 2010 Feb 26;37(4):492-502
15212953 - Exp Cell Res. 2004 Jul 15;297(2):521-32
22682245 - Cell. 2012 Jun 8;149(6):1221-32
18468963 - DNA Repair (Amst). 2008 Jul 1;7(7):1077-86
15829966 - Nature. 2005 Apr 14;434(7035):913-7
21398629 - Nucleic Acids Res. 2011 Jul;39(12):5045-56
20858840 - Clin Cancer Res. 2010 Oct 1;16(19):4702-10
23396353 - Nat Struct Mol Biol. 2013 Mar;20(3):347-54
16516457 - Curr Opin Cell Biol. 2006 Apr;18(2):145-51
24906880 - Nucleic Acids Res. 2014 Jul;42(12):7776-92
20935632 - Nat Struct Mol Biol. 2010 Nov;17(11):1305-11
18806807 - Br J Pharmacol. 2008 Dec;155(8):1235-49
22333589 - Cell Cycle. 2012 Mar 1;11(5):990-7
16288862 - Eur J Cancer. 2005 Dec;41(18):2948-57
21565612 - Cell. 2011 May 13;145(4):529-42
25733714 - J Cell Biol. 2015 Mar 2;208(5):563-79
17548475 - Mol Cell Biol. 2007 Aug;27(15):5597-605
9508763 - J Cell Biol. 1998 Mar 23;140(6):1285-95
15829967 - Nature. 2005 Apr 14;434(7035):917-21
17581576 - Nature. 2007 Jun 21;447(7147):932-40
22713970 - Nat Rev Mol Cell Biol. 2012 Jul;13(7):411-24
12727891 - EMBO J. 2003 May 1;22(9):2255-63
24162989 - Methods Mol Biol. 2014;1094:177-208
22789542 - Cancer Cell. 2012 Jul 10;22(1):106-16
19454480 - J Cell Sci. 2009 Jun 15;122(Pt 12):1990-2002
15282315 - Mol Cell Biol. 2004 Aug;24(16):7163-78
16452972 - Nature. 2006 Feb 2;439(7076):557-62
25714681 - Nat Rev Mol Cell Biol. 2015 Apr;16(4):207-20
19571039 - FASEB J. 2009 Oct;23(10):3553-63
9207086 - Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7303-7
22388737 - Nat Struct Mol Biol. 2012 Apr;19(4):417-23
22839996 - Mol Cancer. 2012;11:48
23479741 - J Cell Biol. 2013 Mar 18;200(6):699-708
20515732 - Front Biosci (Landmark Ed). 2010;15:883-900
15629726 - Mol Cell. 2005 Jan 7;17(1):153-9
References_xml – ident: B37
  doi: 10.1016/j.molcel.2005.11.015
– ident: B31
  doi: 10.1038/nature05977
– ident: B8
  doi: 10.1038/nature03443
– volume: 11
  start-page: 48
  year: 2012
  ident: B17
  publication-title: Mol Cancer
  doi: 10.1186/1476-4598-11-48
– ident: B34
  publication-title: J Cell Biol
– ident: B6
  doi: 10.1101/gad.11.18.2347
– ident: B5
  doi: 10.1093/emboj/cdg206
– ident: B11
  doi: 10.1038/nsmb.2258
– ident: B12
  doi: 10.1038/nsmb.2501
– ident: B13
  doi: 10.1016/j.ceb.2006.02.013
– ident: B39
  doi: 10.1016/j.cell.2012.04.030
– ident: B7
  doi: 10.1158/1078-0432.CCR-10-0939
– volume: 24
  start-page: 7163
  year: 2004
  ident: B19
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.16.7163-7178.2004
– ident: B33
  doi: 10.1083/jcb.201212058
– ident: B42
  doi: 10.1016/j.ccr.2012.05.015
– ident: B9
  doi: 10.1038/nature03445
– year: 2013
  ident: B29
  publication-title: Nat Struct Mol Biol
– ident: B35
  doi: 10.1038/ncomms3993
– ident: B41
  doi: 10.1016/j.cell.2011.03.041
– volume: 297
  start-page: 521
  year: 2004
  ident: B15
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2004.03.050
– ident: B32
  publication-title: Nat Rev Mol Cell Biol
– ident: B4
  doi: 10.1073/pnas.94.14.7303
– ident: B21
  doi: 10.1093/nar/gkr099
– ident: B28
  doi: 10.2741/3652
– ident: B36
  doi: 10.1038/nature04329
– ident: B2
  doi: 10.1016/S0301-472X(03)00083-3
– ident: B25
  doi: 10.1083/jcb.140.6.1285
– ident: B30
  doi: 10.1016/j.mad.2008.01.007
– ident: B20
  doi: 10.1128/MCB.02248-06
– ident: B40
  doi: 10.1038/nsmb.1927
– volume: 1094
  start-page: 177
  year: 2014
  ident: B26
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-62703-706-8_15
– ident: B22
  doi: 10.1242/jcs.039115
– ident: B18
  doi: 10.1073/pnas.0406182101
– ident: B16
  doi: 10.1096/fj.09-133264
– ident: B44
  doi: 10.1038/nature10404
– ident: B10
  doi: 10.1016/j.molcel.2010.01.021
– ident: B45
  doi: 10.1038/emboj.2013.51
– ident: B24
  doi: 10.1093/nar/gku505
– ident: B23
  doi: 10.4161/cc.11.5.19482
– ident: B38
  doi: 10.1016/j.molcel.2004.11.032
– ident: B3
  doi: 10.1016/j.dnarep.2008.03.009
– ident: B1
  doi: 10.1038/nrm3376
– volume: 14
  start-page: 1619
  year: 2009
  ident: B14
  publication-title: Front Biosci
  doi: 10.2741/3329
– ident: B43
  doi: 10.1016/j.ejca.2005.08.027
– ident: B27
  doi: 10.1038/bjp.2008.370
– reference: 21565612 - Cell. 2011 May 13;145(4):529-42
– reference: 21892188 - Nature. 2011 Sep 29;477(7366):616-20
– reference: 9207086 - Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7303-7
– reference: 16387650 - Mol Cell. 2006 Jan 6;21(1):15-27
– reference: 12829019 - Exp Hematol. 2003 Jun;31(6):446-54
– reference: 22839996 - Mol Cancer. 2012;11:48
– reference: 20515732 - Front Biosci (Landmark Ed). 2010;15:883-900
– reference: 15829967 - Nature. 2005 Apr 14;434(7035):917-21
– reference: 22713970 - Nat Rev Mol Cell Biol. 2012 Jul;13(7):411-24
– reference: 20188668 - Mol Cell. 2010 Feb 26;37(4):492-502
– reference: 23454978 - Nat Struct Mol Biol. 2013 Apr;20(4):486-94
– reference: 25733714 - J Cell Biol. 2015 Mar 2;208(5):563-79
– reference: 17581576 - Nature. 2007 Jun 21;447(7147):932-40
– reference: 16516457 - Curr Opin Cell Biol. 2006 Apr;18(2):145-51
– reference: 24356582 - Nat Commun. 2013;4:2993
– reference: 23396353 - Nat Struct Mol Biol. 2013 Mar;20(3):347-54
– reference: 19273151 - Front Biosci (Landmark Ed). 2009;14:1619-26
– reference: 18468963 - DNA Repair (Amst). 2008 Jul 1;7(7):1077-86
– reference: 15212953 - Exp Cell Res. 2004 Jul 15;297(2):521-32
– reference: 9508763 - J Cell Biol. 1998 Mar 23;140(6):1285-95
– reference: 17548475 - Mol Cell Biol. 2007 Aug;27(15):5597-605
– reference: 18806807 - Br J Pharmacol. 2008 Dec;155(8):1235-49
– reference: 12727891 - EMBO J. 2003 May 1;22(9):2255-63
– reference: 24906880 - Nucleic Acids Res. 2014 Jul;42(12):7776-92
– reference: 9308963 - Genes Dev. 1997 Sep 15;11(18):2347-58
– reference: 22682245 - Cell. 2012 Jun 8;149(6):1221-32
– reference: 15829966 - Nature. 2005 Apr 14;434(7035):913-7
– reference: 20935632 - Nat Struct Mol Biol. 2010 Nov;17(11):1305-11
– reference: 22388737 - Nat Struct Mol Biol. 2012 Apr;19(4):417-23
– reference: 16452972 - Nature. 2006 Feb 2;439(7076):557-62
– reference: 22789542 - Cancer Cell. 2012 Jul 10;22(1):106-16
– reference: 19571039 - FASEB J. 2009 Oct;23(10):3553-63
– reference: 16288862 - Eur J Cancer. 2005 Dec;41(18):2948-57
– reference: 15282315 - Mol Cell Biol. 2004 Aug;24(16):7163-78
– reference: 22333589 - Cell Cycle. 2012 Mar 1;11(5):990-7
– reference: 23481255 - EMBO J. 2013 May 2;32(9):1225-37
– reference: 25714681 - Nat Rev Mol Cell Biol. 2015 Apr;16(4):207-20
– reference: 21398629 - Nucleic Acids Res. 2011 Jul;39(12):5045-56
– reference: 15629726 - Mol Cell. 2005 Jan 7;17(1):153-9
– reference: 18355895 - Mech Ageing Dev. 2008 Jul-Aug;129(7-8):353-65
– reference: 15591342 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17699-704
– reference: 24162989 - Methods Mol Biol. 2014;1094:177-208
– reference: 20858840 - Clin Cancer Res. 2010 Oct 1;16(19):4702-10
– reference: 19454480 - J Cell Sci. 2009 Jun 15;122(Pt 12):1990-2002
– reference: 23479741 - J Cell Biol. 2013 Mar 18;200(6):699-708
SSID ssj0006903
Score 2.3636713
Snippet Poly(ADP-ribosyl)ation (PAR) has been implicated in various aspects of the cellular response to DNA damage and genome stability. Although 17 human...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 856
SubjectTerms Ataxia Telangiectasia Mutated Proteins - metabolism
Cell Proliferation
chromatin
Chromatin - metabolism
DNA Damage
DNA Repair
DNA replication
DNA, Single-Stranded
drug therapy
electron microscopy
genome
Glycoside Hydrolases - metabolism
GTPase-Activating Proteins - metabolism
HeLa Cells
Humans
interphase
Intracellular Signaling Peptides and Proteins - metabolism
Microscopy, Confocal
Microscopy, Electron
Phenotype
phosphorylation
Rad51 Recombinase - metabolism
S Phase
single-stranded DNA
Tumor Suppressor p53-Binding Protein 1
Title Poly(ADP-Ribosyl) Glycohydrolase Prevents the Accumulation of Unusual Replication Structures during Unperturbed S Phase
URI https://www.tandfonline.com/doi/abs/10.1128/MCB.01077-14
https://www.ncbi.nlm.nih.gov/pubmed/25535335
https://www.proquest.com/docview/1652438805
https://www.proquest.com/docview/2834225367
https://pubmed.ncbi.nlm.nih.gov/PMC4323491
Volume 35
WOSCitedRecordID wos000349300200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1098-5549
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006903
  issn: 1098-5549
  databaseCode: TFW
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL0aE4i98DFgFMZkJJBAKCyNndh57AqFF6aKbaJvkeMPtVKXTE0Dyr_n2kmqddoe4ClKcp0v39jnOM45AO_iJE8VD00grVIBk0YG2I3oILXKxu5TmrahN5vgp6diNkunOyD6f2HctErHoW0rFOHbavdyy7xzIInE8Y_xyWekEZwH3sEaAb1L7fPJr00TjJSP9rPcbxTY6n-21Elvw5g3p0pe63smj___qp_Aow5vklGbIE9hxxT78KB1oGz24eG4N3x7Bn-m5bL5MPoyDX4u8rJqlh_Jt2WjynmjV0iAK0M6vaeKIGokI6Xqy878i5SWXBR1VeOpENL3A4HkzKvT1kjpSfs_JEZdmRVuyY0mZ2Q6x8M-h4vJ1_Px96DzZQgUS-J1IBhNJBPGqqHkRrNUW-NgwRBXw9y6RcKtTK1gRrtgR5psbmgoRay1pi9gtygL8xKINSq2PJfK5pwlinnMEimBQNBBCTaAT31tZaoTLXfeGcvMk5dIZPhYM_9YkcQM4P0m-qoV67gjLrxe8dnaD47Y1skko7cXedsnR4bV4r6qyMKUdZUNkzhiTlInvjsGMRzDhpMmfAAHbUJtLhA5HUXMjaX5VqptApwA-PaeYjH3QuCMRpSlw1f_fjuvYQ-RX9xOpjuEXcwG8wbuq9_rRbU6gnt8Jo78K_UXCZ4meA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwGLXQAI0XLuNWrkYCCYQMaW3HyWMplCG2qmKd2Jvl-KJWKsnUNKD8ez47SdVO2wPiKWryuUnjL_Y5ztdzEHrN4yzVIrJEOa0JU1YRmEYMSZ123L9KMy4KZhNiMknOztLpltWXL6v0HNo1QhFhrPYPt1-Mbj0Jk4_Ho08fgEcIQbyF9XUOU6yv5puNf24GYSB9tKtzv9BiZwba0Se9DGVeLJbcmn3Gd_7juu-i2y3kxMMmR-6hazY_QDcbE8r6AO2POs-3--jPtFjWb4efp-THIivKevkOf13WupjXZgUcuLS4lXwqMQBHPNS6-tX6f-HC4dO8Kis4FaD6bi0QnwSB2gpYPW7-EglR53YFezJr8AmezuFrH6DT8ZfZ6JC01gxEs5ivScJorFhine4rYQ1LjbMeGfThY5Q5v4mFU6lLmDU-2PMml1kaqYQbY-hDtJcXuX2MsLOaO5Ep7TLBYs0CbBnoBLCgRxOsh9533SV1q1vu7TOWMvCXQSLhtspwW4HH9NCbTfR5o9dxRVy03fNyHdZHXGNmIunlTV512SGhW_yLFZXboiplP-YD5lV1-NUxAOMYjJ00Fj30qMmozQUCraMAu6G12Mm1TYDXAN89ki_mQQuc0QFlaf_Jv_-cl2j_cHZ8JI--Tb4_RbcACPKmtu4Z2oPMsM_RDf17vShXL8KT9RdlRymx
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGLWmcRkvDAaDwgAjgQRChrR24uSxdBQQUEVs0_ZmOb6olUpSNc2m_Hs-O0m1TtsDPEVJPufmL_Y5jnMOQm_CKEsUDwyRVinCpJEEuhFNEqts6D6laRt4swk-mcRnZ0m6heLuXxg3rdJxaNsIRfi22r3cC21bS8L406_R549AIzgnzsH6ltfEgkw-Hp-u22DgfLSb5n6lxEYHtCFPeh3IvDpX8lLnM979_8t-gO63gBMPmwx5iLZMvofuNBaU9R7aGXWOb4_QRVrM63fDw5T8nmVFWc_f46_zWhXTWi-BAZcGt4JPJQbYiIdKVX9a9y9cWHySV2UFpwJM340E4iMvT1sBp8fND5EQtTBL2JIZjY9wOoXDPkYn4y_Ho2-kNWYgikXhisSMRpLFxqq-5EazRFvjcEEfVoPMukXErUxszIx2wY412czQQMah1pruo-28yM1ThK1RoeWZVDbjLFLMg5aBigEJOizBeuhDV1tCtarlzjxjLjx7GcQCHqvwjxVYTA-9XUcvGrWOG-KCyxUvVn50xDZWJoJeX-R1lxwCqsV9VpG5KapS9KNwwJymTnhzDIA4Bi0njXgPPWkSan2BQOoogG4ozTdSbR3gFMA39-SzqVcCZ3RAWdJ_9u-38wrdTQ_H4uf3yY_n6B6gwLCZWHeAtiExzAt0W52vZuXypX-v_gKsgShV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poly%28ADP-ribosyl%29+glycohydrolase+prevents+the+accumulation+of+unusual+replication+structures+during+unperturbed+S+phase&rft.jtitle=Molecular+and+cellular+biology&rft.au=Ray+Chaudhuri%2C+Arnab&rft.au=Ahuja%2C+Akshay+Kumar&rft.au=Herrador%2C+Raquel&rft.au=Lopes%2C+Massimo&rft.date=2015-03-01&rft.eissn=1098-5549&rft.volume=35&rft.issue=5&rft.spage=856&rft_id=info:doi/10.1128%2FMCB.01077-14&rft_id=info%3Apmid%2F25535335&rft.externalDocID=25535335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5549&client=summon