A Theoretical Foundation of Goal Representation Heuristic Dynamic Programming

Goal representation heuristic dynamic programming (GrHDP) control design has been developed in recent years. The control performance of this design has been demonstrated in several case studies, and also showed applicable to industrial-scale complex control problems. In this paper, we develop the th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 27; číslo 12; s. 2513 - 2525
Hlavní autori: Zhong, Xiangnan, Ni, Zhen, He, Haibo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2162-237X, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Goal representation heuristic dynamic programming (GrHDP) control design has been developed in recent years. The control performance of this design has been demonstrated in several case studies, and also showed applicable to industrial-scale complex control problems. In this paper, we develop the theoretical analysis for the GrHDP design under certain conditions. It has been shown that the internal reinforcement signal is a bounded signal and the performance index can converge to its optimal value monotonically. The existence of the admissible control is also proved. Although the GrHDP control method has been investigated in many areas before, to the best of our knowledge, this is the first study of presenting the theoretical foundation of the internal reinforcement signal and how such an internal reinforcement signal can provide effective information to improve the control performance. Numerous simulation studies are used to validate the theoretical analysis and also demonstrate the effectiveness of the GrHDP design.
AbstractList Goal representation heuristic dynamic programming (GrHDP) control design has been developed in recent years. The control performance of this design has been demonstrated in several case studies, and also showed applicable to industrial-scale complex control problems. In this paper, we develop the theoretical analysis for the GrHDP design under certain conditions. It has been shown that the internal reinforcement signal is a bounded signal and the performance index can converge to its optimal value monotonically. The existence of the admissible control is also proved. Although the GrHDP control method has been investigated in many areas before, to the best of our knowledge, this is the first study of presenting the theoretical foundation of the internal reinforcement signal and how such an internal reinforcement signal can provide effective information to improve the control performance. Numerous simulation studies are used to validate the theoretical analysis and also demonstrate the effectiveness of the GrHDP design.
Author Haibo He
Zhen Ni
Xiangnan Zhong
Author_xml – sequence: 1
  givenname: Xiangnan
  surname: Zhong
  fullname: Zhong, Xiangnan
– sequence: 2
  givenname: Zhen
  surname: Ni
  fullname: Ni, Zhen
– sequence: 3
  givenname: Haibo
  surname: He
  fullname: He, Haibo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26571538$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP6zAQhS0EAi7wB0BCkdjcTYs9ju1kicpTKg9BkdhFrjMFo8QudrLg319DertggTdjjb4zMzrnD9l03iEhh4yOGaPl6ezubvo0BsrEGPKSyrLYILvAJIyAF8Xm-q9edshBjO80PUmFzMttsgNSKCZ4sUtuz7LZG_qAnTW6yS5972rdWe8yv8iufGo94jJgRNcN7Wvsg42Jzs4_nW5TfQj-Nei2te51n2wtdBPxYFX3yPPlxWxyPZreX91MzqYjk0vRjRRyKRa5opqCKY1CoaUouKHaMMaMzs1cyZrnFABULYCJEikyozjOS1lrvkf-DnOXwX_0GLuqtdFg02iHvo8VK0DKtAN4Qk9-oO--Dy5dl6gcgHH6TR2vqH7eYl0tg211-Kz-G5UAGAATfIwBF2uE0eorkOo7kOorkGoVSBIVP0TGDjZ2Qdvmd-nRILWIuN6leHJEAv8HUT2WzQ
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_ins_2016_05_034
crossref_primary_10_1007_s10462_023_10497_1
crossref_primary_10_1109_TCYB_2018_2853582
crossref_primary_10_1109_TSG_2018_2803822
crossref_primary_10_1109_TCYB_2019_2957406
crossref_primary_10_1016_j_neunet_2017_11_022
crossref_primary_10_1109_TNNLS_2019_2900510
crossref_primary_10_1109_TCSI_2022_3206370
crossref_primary_10_1109_TNNLS_2021_3071545
crossref_primary_10_1016_j_ijepes_2019_02_024
crossref_primary_10_1016_j_neucom_2017_05_051
crossref_primary_10_1109_TNNLS_2019_2919614
crossref_primary_10_1002_rnc_6432
crossref_primary_10_1109_TNNLS_2019_2919338
crossref_primary_10_1016_j_neucom_2021_12_057
crossref_primary_10_1016_j_automatica_2017_03_022
crossref_primary_10_1016_j_ijepes_2020_105936
crossref_primary_10_1007_s11071_017_3778_5
crossref_primary_10_1016_j_neucom_2023_127048
crossref_primary_10_1049_iet_cta_2016_1383
crossref_primary_10_1109_JAS_2021_1003922
crossref_primary_10_1016_j_jfranklin_2018_02_001
crossref_primary_10_1109_TCYB_2016_2598282
crossref_primary_10_1109_TNNLS_2018_2803059
crossref_primary_10_1109_TNNLS_2020_3008249
crossref_primary_10_1109_TNNLS_2017_2660070
crossref_primary_10_1109_TII_2019_2925632
crossref_primary_10_1002_rnc_7939
crossref_primary_10_1016_j_jfranklin_2023_07_029
crossref_primary_10_1155_2017_5476415
crossref_primary_10_1109_TCYB_2017_2712188
crossref_primary_10_1109_TPWRS_2017_2720262
crossref_primary_10_1109_TSMC_2024_3513561
crossref_primary_10_1109_TNNLS_2016_2586303
crossref_primary_10_1109_TSMC_2018_2814018
crossref_primary_10_3390_en11092355
crossref_primary_10_1109_TCYB_2017_2712617
crossref_primary_10_1109_TSMC_2020_3042876
crossref_primary_10_1109_TCYB_2016_2523878
crossref_primary_10_1007_s10462_019_09778_5
crossref_primary_10_1016_j_neucom_2020_06_106
crossref_primary_10_1007_s11071_022_07438_y
crossref_primary_10_3390_e25121570
crossref_primary_10_1002_acs_3714
crossref_primary_10_1016_j_oceaneng_2024_118251
crossref_primary_10_1016_j_neucom_2017_04_069
crossref_primary_10_1016_j_neunet_2017_09_005
crossref_primary_10_1109_TIE_2020_3001840
crossref_primary_10_1007_s11071_025_11097_0
crossref_primary_10_1016_j_engappai_2023_106242
crossref_primary_10_1109_JAS_2022_105692
crossref_primary_10_1049_iet_cta_2017_1131
crossref_primary_10_1007_s10462_021_10118_9
Cites_doi 10.1002/9781118025604
10.1109/TNNLS.2014.2329942
10.1109/TNNLS.2013.2271454
10.1613/jair.639
10.1016/S0921-8890(97)00042-0
10.1016/j.neucom.2014.01.060
10.1109/TNN.2008.2000204
10.1002/acs.1143
10.1109/TNNLS.2013.2247627
10.1109/MCI.2009.932261
10.1109/TSMCB.2012.2216523
10.1109/ADPRL.2013.6614987
10.1002/9781118453988.ch3
10.1109/TSMCB.2008.924139
10.1016/j.ijepes.2015.08.012
10.1109/IJCNN.2012.6252524
10.1109/TNNLS.2013.2281663
10.1007/BFb0006203
10.1002/9780470182963
10.1109/IJCNN.2012.6252512
10.23919/ACC.1989.4790360
10.1109/ADPRL.2014.7010628
10.1109/TNN.2009.2027233
10.1016/j.automatica.2012.05.049
10.1109/TSMCB.2008.926614
10.1007/s10994-010-5186-7
10.1109/TNNLS.2014.2305841
10.1016/j.neunet.2012.02.005
10.1109/72.623201
10.1109/TSMCB.2005.862486
10.1109/CIASG.2013.6611499
10.1109/CIASG.2014.7011566
10.1007/978-3-642-38786-9_33
10.1016/j.automatica.2008.08.017
10.1109/9780470544785
10.1109/TSG.2014.2346740
10.1109/IJCNN.2015.7280471
10.1016/j.neucom.2012.01.025
10.1109/TSMCB.2008.923157
10.1109/ADPRL.2013.6615006
10.1109/IJCNN.2013.6707098
10.1109/TSMCB.2009.2021950
10.1109/TNNLS.2015.2424971
10.1016/j.neunet.2009.03.012
10.1016/j.neucom.2011.05.031
10.1109/72.914523
10.1016/j.neucom.2012.07.046
10.1007/s00500-013-1112-9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2015.2490698
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2525
ExternalDocumentID 26571538
10_1109_TNNLS_2015_2490698
7322262
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Division of Information and Intelligent Systems through the National Science Foundation (NSF)
  grantid: 1526835
  funderid: 10.13039/100000145
– fundername: Army Research Office
  grantid: W911NF-12-1-0378
  funderid: 10.13039/100000183
– fundername: Division of Electrical, Communications and Cyber Systems through NSF
  grantid: 1053717
  funderid: 10.13039/100000148
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c465t-7e365f470a02c9c7e5a6583c0ac111ca4cb76d3402227d52159e0e1c73eb96da3
IEDL.DBID RIE
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388919600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
IngestDate Mon Sep 29 03:34:01 EDT 2025
Sun Oct 05 00:24:56 EDT 2025
Mon Jul 21 05:48:08 EDT 2025
Tue Nov 18 21:32:39 EST 2025
Sat Nov 29 01:39:53 EST 2025
Tue Aug 26 16:42:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-7e365f470a02c9c7e5a6583c0ac111ca4cb76d3402227d52159e0e1c73eb96da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://digitalcommons.uri.edu/ele_facpubs/457
PMID 26571538
PQID 1842213023
PQPubID 85436
PageCount 13
ParticipantIDs crossref_primary_10_1109_TNNLS_2015_2490698
proquest_miscellaneous_1826636523
pubmed_primary_26571538
proquest_journals_1842213023
ieee_primary_7322262
crossref_citationtrail_10_1109_TNNLS_2015_2490698
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
anderson (ref48) 2003
ref53
ref52
li (ref23) 1989
ref55
ref11
lewis (ref19) 2013
ref10
ref17
ref16
liu (ref15) 2013; 43
ref18
ref51
luan (ref45) 2010; 24
ref42
ref41
ref44
kundur (ref47) 1994
mitchell (ref43) 1997
ref49
ref8
ref7
ref4
ref3
ref6
ref5
wu (ref46) 2005; 36
ref40
ref35
ref34
ref37
ref36
lewis (ref2) 1999
sutton (ref9) 1998; 1
ref31
ref30
ref33
ref32
ref1
ref39
ref38
liu (ref14) 2014; 25
ref24
ref26
ref25
ref20
yao (ref50) 2012; 36
ref22
ref21
ref28
ni (ref29) 2013; 24
ref27
dietterich (ref54) 2000; 13
References_xml – ident: ref26
  doi: 10.1002/9781118025604
– ident: ref31
  doi: 10.1109/TNNLS.2014.2329942
– year: 1997
  ident: ref43
  publication-title: Machine Learning
– volume: 24
  start-page: 2038
  year: 2013
  ident: ref29
  article-title: Goal representation heuristic dynamic programming on maze navigation
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2271454
– volume: 13
  start-page: 227
  year: 2000
  ident: ref54
  article-title: Hierarchical reinforcement learning with the MAXQ value function decomposition
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.639
– year: 2013
  ident: ref19
  publication-title: Reinforcement Learning and Approximate Dynamic Programming for Feedback Control
– ident: ref55
  doi: 10.1016/S0921-8890(97)00042-0
– ident: ref5
  doi: 10.1016/j.neucom.2014.01.060
– ident: ref39
  doi: 10.1109/TNN.2008.2000204
– volume: 24
  start-page: 554
  year: 2010
  ident: ref45
  article-title: Neural-network-based finite-time $H_\infty $ control for extended Markov jump nonlinear systems
  publication-title: Int J Adapt Control Signal Process
  doi: 10.1002/acs.1143
– ident: ref27
  doi: 10.1109/TNNLS.2013.2247627
– ident: ref8
  doi: 10.1109/MCI.2009.932261
– volume: 43
  start-page: 779
  year: 2013
  ident: ref15
  article-title: Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2216523
– year: 2003
  ident: ref48
  publication-title: Power System Control and Stability
– year: 1999
  ident: ref2
  publication-title: Neural Network Control of Robot Manipulators and Nonlinear Systems
– ident: ref44
  doi: 10.1109/ADPRL.2013.6614987
– ident: ref24
  doi: 10.1002/9781118453988.ch3
– ident: ref4
  doi: 10.1109/TSMCB.2008.924139
– ident: ref49
  doi: 10.1016/j.ijepes.2015.08.012
– ident: ref28
  doi: 10.1109/IJCNN.2012.6252524
– volume: 25
  start-page: 621
  year: 2014
  ident: ref14
  article-title: Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2281663
– ident: ref18
  doi: 10.1007/BFb0006203
– volume: 36
  start-page: 95
  year: 2012
  ident: ref50
  article-title: Development of a MATLAB/Simulink based power system simulation toolbox
  publication-title: Power Syst Technol
– ident: ref1
  doi: 10.1002/9780470182963
– ident: ref37
  doi: 10.1109/IJCNN.2012.6252512
– start-page: 1136
  year: 1989
  ident: ref23
  article-title: neural network control of unknown nonlinear systems
  publication-title: 1989 American Control Conference ACC
  doi: 10.23919/ACC.1989.4790360
– ident: ref17
  doi: 10.1109/ADPRL.2014.7010628
– ident: ref16
  doi: 10.1109/TNN.2009.2027233
– ident: ref36
  doi: 10.1016/j.automatica.2012.05.049
– ident: ref13
  doi: 10.1109/TSMCB.2008.926614
– ident: ref42
  doi: 10.1007/s10994-010-5186-7
– ident: ref38
  doi: 10.1109/TNNLS.2014.2305841
– ident: ref11
  doi: 10.1016/j.neunet.2012.02.005
– ident: ref22
  doi: 10.1109/72.623201
– volume: 36
  start-page: 509
  year: 2005
  ident: ref46
  article-title: Mode-independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2005.862486
– ident: ref52
  doi: 10.1109/CIASG.2013.6611499
– ident: ref32
  doi: 10.1109/CIASG.2014.7011566
– ident: ref34
  doi: 10.1007/978-3-642-38786-9_33
– year: 1994
  ident: ref47
  publication-title: Power System Stability and Control
– ident: ref40
  doi: 10.1016/j.automatica.2008.08.017
– ident: ref20
  doi: 10.1109/9780470544785
– ident: ref35
  doi: 10.1109/TSG.2014.2346740
– ident: ref7
  doi: 10.1109/IJCNN.2015.7280471
– ident: ref41
  doi: 10.1016/j.neucom.2012.01.025
– ident: ref51
  doi: 10.1109/TSMCB.2008.923157
– ident: ref33
  doi: 10.1109/ADPRL.2013.6615006
– ident: ref6
  doi: 10.1109/IJCNN.2013.6707098
– volume: 1
  year: 1998
  ident: ref9
  publication-title: Reinforcement Learning An Introduction
– ident: ref12
  doi: 10.1109/TSMCB.2009.2021950
– ident: ref21
  doi: 10.1109/TNNLS.2015.2424971
– ident: ref3
  doi: 10.1016/j.neunet.2009.03.012
– ident: ref25
  doi: 10.1016/j.neucom.2011.05.031
– ident: ref10
  doi: 10.1109/72.914523
– ident: ref53
  doi: 10.1016/j.neucom.2012.07.046
– ident: ref30
  doi: 10.1007/s00500-013-1112-9
SSID ssj0000605649
Score 2.4516056
Snippet Goal representation heuristic dynamic programming (GrHDP) control design has been developed in recent years. The control performance of this design has been...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2513
SubjectTerms Adaptive dynamic programming (ADP)
Algorithm design and analysis
Approximation algorithms
Control methods
Convergence
convergence analysis
Design
Dynamic programming
Goal programming
goal representation
Heuristic
Mathematical model
neural network
online learning and control
Performance analysis
Performance indices
Problem solving
Reinforcement
Representations
Theoretical analysis
Upper bound
Title A Theoretical Foundation of Goal Representation Heuristic Dynamic Programming
URI https://ieeexplore.ieee.org/document/7322262
https://www.ncbi.nlm.nih.gov/pubmed/26571538
https://www.proquest.com/docview/1842213023
https://www.proquest.com/docview/1826636523
Volume 27
WOSCitedRecordID wos000388919600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8UwEB5UPHhxX54bEbxptU2zvB7F9aAP0ae8W0mnKQjair7n73eSLiKo4K200zbMkvmSmckA7FuFWoksD9AYGQgsTGCiOA80VxnNmQaFT6J5vNaDQX80Sm6n4LCrhbHW-uQze-QufSw_r3DitsqOtQsLuAl3WmtV12p1-ykh4XLl0S6PFA94rEdtjUyYHA8Hg-t7l8glj2i9EarE9enjSmpn8N9cku-x8jvc9G7nYuF_A16E-QZespNaH5ZgypbLsNC2bmCNJa_AzQkbfpUwsq_mSqwq2GVFt-58imxTmVSyKzupz3RmZ3UPe3ZbZ3a9kO9bhYeL8-HpVdB0VghQKDkOtI2VLIQOTcgxQW2lISQSY2iQ5j40AjOt8lj4StmcPLxMbGgj1LHNEpWbeA1myqq0G8AIXkYF4RyDvBAij_oaCTHwXEpeZKQgPYha5qbYHDvuul88p375ESapl03qZJM2sunBQffOa33oxp_UK47zHWXD9B5stzJMG7t8T2k9y7mL1cY92Osek0W5MIkpbTVxNARaiD-OZr2WffftVmU2f_7nFszRyFSd7rINM-O3id2BWfwYP72_7ZLajvq7Xm0_AQeh5bU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ8QNIEXURE8BVkS3qRcu90P-khEPOLREDzMvTXb6TYhgdbAnX-_s9ttCQma-Na003YzHzu_3ZnZATiwCrUSZRWhMTISWJvIJGkVaa5KmjMNCp9E83Oq8_x4Ps8uV-BwqIWx1vrkM3vkLn0sv2px6bbKxtqFBdyE-8J1zgrVWsOOSkzIXHm8yxPFI57qeV8lE2fjWZ5Pf7hULnlEK45YZa5TH1dSO5N_4pR8l5W_A07veM42_m_Ir-FVAJjspNOIN7Bim7ew0TdvYMGWN-HihM0eixjZY3sl1tbsW0u3rnySbKhNatjELrtTndlp18WeXXa5XXfk_d7B9dnX2ZdJFHorRCiUXETapkrWQscm5pihttIQFkkxNkizHxqBpVZVKnytbEU-XmY2tgnq1JaZqky6BatN29j3wAhgJjUhHYO8FqJKjjUSZuCVlLwuSUVGkPTMLTAcPO76X9wWfgESZ4WXTeFkUwTZjODz8M6v7tiNf1JvOs4PlIHpI9jpZVgEy3woaEXLuYvWpiPYHx6TTblAiWlsu3Q0BFuIP45mu5P98O1eZT48_889WJvMLqbF9Dz__hHWaZSqS37ZgdXF_dLuwkv8vbh5uP_klfcPvhjoFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Theoretical+Foundation+of+Goal+Representation+Heuristic+Dynamic+Programming&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhong%2C+Xiangnan&rft.au=Ni%2C+Zhen&rft.au=He%2C+Haibo&rft.date=2016-12-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=27&rft.issue=12&rft.spage=2513&rft.epage=2525&rft_id=info:doi/10.1109%2FTNNLS.2015.2490698&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2015_2490698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon