A Theoretical Foundation of Goal Representation Heuristic Dynamic Programming
Goal representation heuristic dynamic programming (GrHDP) control design has been developed in recent years. The control performance of this design has been demonstrated in several case studies, and also showed applicable to industrial-scale complex control problems. In this paper, we develop the th...
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 27; číslo 12; s. 2513 - 2525 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Goal representation heuristic dynamic programming (GrHDP) control design has been developed in recent years. The control performance of this design has been demonstrated in several case studies, and also showed applicable to industrial-scale complex control problems. In this paper, we develop the theoretical analysis for the GrHDP design under certain conditions. It has been shown that the internal reinforcement signal is a bounded signal and the performance index can converge to its optimal value monotonically. The existence of the admissible control is also proved. Although the GrHDP control method has been investigated in many areas before, to the best of our knowledge, this is the first study of presenting the theoretical foundation of the internal reinforcement signal and how such an internal reinforcement signal can provide effective information to improve the control performance. Numerous simulation studies are used to validate the theoretical analysis and also demonstrate the effectiveness of the GrHDP design. |
|---|---|
| AbstractList | Goal representation heuristic dynamic programming (GrHDP) control design has been developed in recent years. The control performance of this design has been demonstrated in several case studies, and also showed applicable to industrial-scale complex control problems. In this paper, we develop the theoretical analysis for the GrHDP design under certain conditions. It has been shown that the internal reinforcement signal is a bounded signal and the performance index can converge to its optimal value monotonically. The existence of the admissible control is also proved. Although the GrHDP control method has been investigated in many areas before, to the best of our knowledge, this is the first study of presenting the theoretical foundation of the internal reinforcement signal and how such an internal reinforcement signal can provide effective information to improve the control performance. Numerous simulation studies are used to validate the theoretical analysis and also demonstrate the effectiveness of the GrHDP design. |
| Author | Haibo He Zhen Ni Xiangnan Zhong |
| Author_xml | – sequence: 1 givenname: Xiangnan surname: Zhong fullname: Zhong, Xiangnan – sequence: 2 givenname: Zhen surname: Ni fullname: Ni, Zhen – sequence: 3 givenname: Haibo surname: He fullname: He, Haibo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26571538$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtP6zAQhS0EAi7wB0BCkdjcTYs9ju1kicpTKg9BkdhFrjMFo8QudrLg319DertggTdjjb4zMzrnD9l03iEhh4yOGaPl6ezubvo0BsrEGPKSyrLYILvAJIyAF8Xm-q9edshBjO80PUmFzMttsgNSKCZ4sUtuz7LZG_qAnTW6yS5972rdWe8yv8iufGo94jJgRNcN7Wvsg42Jzs4_nW5TfQj-Nei2te51n2wtdBPxYFX3yPPlxWxyPZreX91MzqYjk0vRjRRyKRa5opqCKY1CoaUouKHaMMaMzs1cyZrnFABULYCJEikyozjOS1lrvkf-DnOXwX_0GLuqtdFg02iHvo8VK0DKtAN4Qk9-oO--Dy5dl6gcgHH6TR2vqH7eYl0tg211-Kz-G5UAGAATfIwBF2uE0eorkOo7kOorkGoVSBIVP0TGDjZ2Qdvmd-nRILWIuN6leHJEAv8HUT2WzQ |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1016_j_ins_2016_05_034 crossref_primary_10_1007_s10462_023_10497_1 crossref_primary_10_1109_TCYB_2018_2853582 crossref_primary_10_1109_TSG_2018_2803822 crossref_primary_10_1109_TCYB_2019_2957406 crossref_primary_10_1016_j_neunet_2017_11_022 crossref_primary_10_1109_TNNLS_2019_2900510 crossref_primary_10_1109_TCSI_2022_3206370 crossref_primary_10_1109_TNNLS_2021_3071545 crossref_primary_10_1016_j_ijepes_2019_02_024 crossref_primary_10_1016_j_neucom_2017_05_051 crossref_primary_10_1109_TNNLS_2019_2919614 crossref_primary_10_1002_rnc_6432 crossref_primary_10_1109_TNNLS_2019_2919338 crossref_primary_10_1016_j_neucom_2021_12_057 crossref_primary_10_1016_j_automatica_2017_03_022 crossref_primary_10_1016_j_ijepes_2020_105936 crossref_primary_10_1007_s11071_017_3778_5 crossref_primary_10_1016_j_neucom_2023_127048 crossref_primary_10_1049_iet_cta_2016_1383 crossref_primary_10_1109_JAS_2021_1003922 crossref_primary_10_1016_j_jfranklin_2018_02_001 crossref_primary_10_1109_TCYB_2016_2598282 crossref_primary_10_1109_TNNLS_2018_2803059 crossref_primary_10_1109_TNNLS_2020_3008249 crossref_primary_10_1109_TNNLS_2017_2660070 crossref_primary_10_1109_TII_2019_2925632 crossref_primary_10_1002_rnc_7939 crossref_primary_10_1016_j_jfranklin_2023_07_029 crossref_primary_10_1155_2017_5476415 crossref_primary_10_1109_TCYB_2017_2712188 crossref_primary_10_1109_TPWRS_2017_2720262 crossref_primary_10_1109_TSMC_2024_3513561 crossref_primary_10_1109_TNNLS_2016_2586303 crossref_primary_10_1109_TSMC_2018_2814018 crossref_primary_10_3390_en11092355 crossref_primary_10_1109_TCYB_2017_2712617 crossref_primary_10_1109_TSMC_2020_3042876 crossref_primary_10_1109_TCYB_2016_2523878 crossref_primary_10_1007_s10462_019_09778_5 crossref_primary_10_1016_j_neucom_2020_06_106 crossref_primary_10_1007_s11071_022_07438_y crossref_primary_10_3390_e25121570 crossref_primary_10_1002_acs_3714 crossref_primary_10_1016_j_oceaneng_2024_118251 crossref_primary_10_1016_j_neucom_2017_04_069 crossref_primary_10_1016_j_neunet_2017_09_005 crossref_primary_10_1109_TIE_2020_3001840 crossref_primary_10_1007_s11071_025_11097_0 crossref_primary_10_1016_j_engappai_2023_106242 crossref_primary_10_1109_JAS_2022_105692 crossref_primary_10_1049_iet_cta_2017_1131 crossref_primary_10_1007_s10462_021_10118_9 |
| Cites_doi | 10.1002/9781118025604 10.1109/TNNLS.2014.2329942 10.1109/TNNLS.2013.2271454 10.1613/jair.639 10.1016/S0921-8890(97)00042-0 10.1016/j.neucom.2014.01.060 10.1109/TNN.2008.2000204 10.1002/acs.1143 10.1109/TNNLS.2013.2247627 10.1109/MCI.2009.932261 10.1109/TSMCB.2012.2216523 10.1109/ADPRL.2013.6614987 10.1002/9781118453988.ch3 10.1109/TSMCB.2008.924139 10.1016/j.ijepes.2015.08.012 10.1109/IJCNN.2012.6252524 10.1109/TNNLS.2013.2281663 10.1007/BFb0006203 10.1002/9780470182963 10.1109/IJCNN.2012.6252512 10.23919/ACC.1989.4790360 10.1109/ADPRL.2014.7010628 10.1109/TNN.2009.2027233 10.1016/j.automatica.2012.05.049 10.1109/TSMCB.2008.926614 10.1007/s10994-010-5186-7 10.1109/TNNLS.2014.2305841 10.1016/j.neunet.2012.02.005 10.1109/72.623201 10.1109/TSMCB.2005.862486 10.1109/CIASG.2013.6611499 10.1109/CIASG.2014.7011566 10.1007/978-3-642-38786-9_33 10.1016/j.automatica.2008.08.017 10.1109/9780470544785 10.1109/TSG.2014.2346740 10.1109/IJCNN.2015.7280471 10.1016/j.neucom.2012.01.025 10.1109/TSMCB.2008.923157 10.1109/ADPRL.2013.6615006 10.1109/IJCNN.2013.6707098 10.1109/TSMCB.2009.2021950 10.1109/TNNLS.2015.2424971 10.1016/j.neunet.2009.03.012 10.1016/j.neucom.2011.05.031 10.1109/72.914523 10.1016/j.neucom.2012.07.046 10.1007/s00500-013-1112-9 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2015.2490698 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 2525 |
| ExternalDocumentID | 26571538 10_1109_TNNLS_2015_2490698 7322262 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Division of Information and Intelligent Systems through the National Science Foundation (NSF) grantid: 1526835 funderid: 10.13039/100000145 – fundername: Army Research Office grantid: W911NF-12-1-0378 funderid: 10.13039/100000183 – fundername: Division of Electrical, Communications and Cyber Systems through NSF grantid: 1053717 funderid: 10.13039/100000148 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c465t-7e365f470a02c9c7e5a6583c0ac111ca4cb76d3402227d52159e0e1c73eb96da3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388919600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X |
| IngestDate | Mon Sep 29 03:34:01 EDT 2025 Sun Oct 05 00:24:56 EDT 2025 Mon Jul 21 05:48:08 EDT 2025 Tue Nov 18 21:32:39 EST 2025 Sat Nov 29 01:39:53 EST 2025 Tue Aug 26 16:42:53 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c465t-7e365f470a02c9c7e5a6583c0ac111ca4cb76d3402227d52159e0e1c73eb96da3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://digitalcommons.uri.edu/ele_facpubs/457 |
| PMID | 26571538 |
| PQID | 1842213023 |
| PQPubID | 85436 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TNNLS_2015_2490698 proquest_miscellaneous_1826636523 pubmed_primary_26571538 proquest_journals_1842213023 ieee_primary_7322262 crossref_citationtrail_10_1109_TNNLS_2015_2490698 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-12-01 |
| PublicationDateYYYYMMDD | 2016-12-01 |
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 anderson (ref48) 2003 ref53 ref52 li (ref23) 1989 ref55 ref11 lewis (ref19) 2013 ref10 ref17 ref16 liu (ref15) 2013; 43 ref18 ref51 luan (ref45) 2010; 24 ref42 ref41 ref44 kundur (ref47) 1994 mitchell (ref43) 1997 ref49 ref8 ref7 ref4 ref3 ref6 ref5 wu (ref46) 2005; 36 ref40 ref35 ref34 ref37 ref36 lewis (ref2) 1999 sutton (ref9) 1998; 1 ref31 ref30 ref33 ref32 ref1 ref39 ref38 liu (ref14) 2014; 25 ref24 ref26 ref25 ref20 yao (ref50) 2012; 36 ref22 ref21 ref28 ni (ref29) 2013; 24 ref27 dietterich (ref54) 2000; 13 |
| References_xml | – ident: ref26 doi: 10.1002/9781118025604 – ident: ref31 doi: 10.1109/TNNLS.2014.2329942 – year: 1997 ident: ref43 publication-title: Machine Learning – volume: 24 start-page: 2038 year: 2013 ident: ref29 article-title: Goal representation heuristic dynamic programming on maze navigation publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2271454 – volume: 13 start-page: 227 year: 2000 ident: ref54 article-title: Hierarchical reinforcement learning with the MAXQ value function decomposition publication-title: J Artif Intell Res doi: 10.1613/jair.639 – year: 2013 ident: ref19 publication-title: Reinforcement Learning and Approximate Dynamic Programming for Feedback Control – ident: ref55 doi: 10.1016/S0921-8890(97)00042-0 – ident: ref5 doi: 10.1016/j.neucom.2014.01.060 – ident: ref39 doi: 10.1109/TNN.2008.2000204 – volume: 24 start-page: 554 year: 2010 ident: ref45 article-title: Neural-network-based finite-time $H_\infty $ control for extended Markov jump nonlinear systems publication-title: Int J Adapt Control Signal Process doi: 10.1002/acs.1143 – ident: ref27 doi: 10.1109/TNNLS.2013.2247627 – ident: ref8 doi: 10.1109/MCI.2009.932261 – volume: 43 start-page: 779 year: 2013 ident: ref15 article-title: Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems publication-title: IEEE Trans Cybern doi: 10.1109/TSMCB.2012.2216523 – year: 2003 ident: ref48 publication-title: Power System Control and Stability – year: 1999 ident: ref2 publication-title: Neural Network Control of Robot Manipulators and Nonlinear Systems – ident: ref44 doi: 10.1109/ADPRL.2013.6614987 – ident: ref24 doi: 10.1002/9781118453988.ch3 – ident: ref4 doi: 10.1109/TSMCB.2008.924139 – ident: ref49 doi: 10.1016/j.ijepes.2015.08.012 – ident: ref28 doi: 10.1109/IJCNN.2012.6252524 – volume: 25 start-page: 621 year: 2014 ident: ref14 article-title: Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2281663 – ident: ref18 doi: 10.1007/BFb0006203 – volume: 36 start-page: 95 year: 2012 ident: ref50 article-title: Development of a MATLAB/Simulink based power system simulation toolbox publication-title: Power Syst Technol – ident: ref1 doi: 10.1002/9780470182963 – ident: ref37 doi: 10.1109/IJCNN.2012.6252512 – start-page: 1136 year: 1989 ident: ref23 article-title: neural network control of unknown nonlinear systems publication-title: 1989 American Control Conference ACC doi: 10.23919/ACC.1989.4790360 – ident: ref17 doi: 10.1109/ADPRL.2014.7010628 – ident: ref16 doi: 10.1109/TNN.2009.2027233 – ident: ref36 doi: 10.1016/j.automatica.2012.05.049 – ident: ref13 doi: 10.1109/TSMCB.2008.926614 – ident: ref42 doi: 10.1007/s10994-010-5186-7 – ident: ref38 doi: 10.1109/TNNLS.2014.2305841 – ident: ref11 doi: 10.1016/j.neunet.2012.02.005 – ident: ref22 doi: 10.1109/72.623201 – volume: 36 start-page: 509 year: 2005 ident: ref46 article-title: Mode-independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2005.862486 – ident: ref52 doi: 10.1109/CIASG.2013.6611499 – ident: ref32 doi: 10.1109/CIASG.2014.7011566 – ident: ref34 doi: 10.1007/978-3-642-38786-9_33 – year: 1994 ident: ref47 publication-title: Power System Stability and Control – ident: ref40 doi: 10.1016/j.automatica.2008.08.017 – ident: ref20 doi: 10.1109/9780470544785 – ident: ref35 doi: 10.1109/TSG.2014.2346740 – ident: ref7 doi: 10.1109/IJCNN.2015.7280471 – ident: ref41 doi: 10.1016/j.neucom.2012.01.025 – ident: ref51 doi: 10.1109/TSMCB.2008.923157 – ident: ref33 doi: 10.1109/ADPRL.2013.6615006 – ident: ref6 doi: 10.1109/IJCNN.2013.6707098 – volume: 1 year: 1998 ident: ref9 publication-title: Reinforcement Learning An Introduction – ident: ref12 doi: 10.1109/TSMCB.2009.2021950 – ident: ref21 doi: 10.1109/TNNLS.2015.2424971 – ident: ref3 doi: 10.1016/j.neunet.2009.03.012 – ident: ref25 doi: 10.1016/j.neucom.2011.05.031 – ident: ref10 doi: 10.1109/72.914523 – ident: ref53 doi: 10.1016/j.neucom.2012.07.046 – ident: ref30 doi: 10.1007/s00500-013-1112-9 |
| SSID | ssj0000605649 |
| Score | 2.4516056 |
| Snippet | Goal representation heuristic dynamic programming (GrHDP) control design has been developed in recent years. The control performance of this design has been... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2513 |
| SubjectTerms | Adaptive dynamic programming (ADP) Algorithm design and analysis Approximation algorithms Control methods Convergence convergence analysis Design Dynamic programming Goal programming goal representation Heuristic Mathematical model neural network online learning and control Performance analysis Performance indices Problem solving Reinforcement Representations Theoretical analysis Upper bound |
| Title | A Theoretical Foundation of Goal Representation Heuristic Dynamic Programming |
| URI | https://ieeexplore.ieee.org/document/7322262 https://www.ncbi.nlm.nih.gov/pubmed/26571538 https://www.proquest.com/docview/1842213023 https://www.proquest.com/docview/1826636523 |
| Volume | 27 |
| WOSCitedRecordID | wos000388919600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8UwEB5UPHhxX54bEbxptU2zvB7F9aAP0ae8W0mnKQjair7n73eSLiKo4K200zbMkvmSmckA7FuFWoksD9AYGQgsTGCiOA80VxnNmQaFT6J5vNaDQX80Sm6n4LCrhbHW-uQze-QufSw_r3DitsqOtQsLuAl3WmtV12p1-ykh4XLl0S6PFA94rEdtjUyYHA8Hg-t7l8glj2i9EarE9enjSmpn8N9cku-x8jvc9G7nYuF_A16E-QZespNaH5ZgypbLsNC2bmCNJa_AzQkbfpUwsq_mSqwq2GVFt-58imxTmVSyKzupz3RmZ3UPe3ZbZ3a9kO9bhYeL8-HpVdB0VghQKDkOtI2VLIQOTcgxQW2lISQSY2iQ5j40AjOt8lj4StmcPLxMbGgj1LHNEpWbeA1myqq0G8AIXkYF4RyDvBAij_oaCTHwXEpeZKQgPYha5qbYHDvuul88p375ESapl03qZJM2sunBQffOa33oxp_UK47zHWXD9B5stzJMG7t8T2k9y7mL1cY92Osek0W5MIkpbTVxNARaiD-OZr2WffftVmU2f_7nFszRyFSd7rINM-O3id2BWfwYP72_7ZLajvq7Xm0_AQeh5bU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ8QNIEXURE8BVkS3qRcu90P-khEPOLREDzMvTXb6TYhgdbAnX-_s9ttCQma-Na003YzHzu_3ZnZATiwCrUSZRWhMTISWJvIJGkVaa5KmjMNCp9E83Oq8_x4Ps8uV-BwqIWx1vrkM3vkLn0sv2px6bbKxtqFBdyE-8J1zgrVWsOOSkzIXHm8yxPFI57qeV8lE2fjWZ5Pf7hULnlEK45YZa5TH1dSO5N_4pR8l5W_A07veM42_m_Ir-FVAJjspNOIN7Bim7ew0TdvYMGWN-HihM0eixjZY3sl1tbsW0u3rnySbKhNatjELrtTndlp18WeXXa5XXfk_d7B9dnX2ZdJFHorRCiUXETapkrWQscm5pihttIQFkkxNkizHxqBpVZVKnytbEU-XmY2tgnq1JaZqky6BatN29j3wAhgJjUhHYO8FqJKjjUSZuCVlLwuSUVGkPTMLTAcPO76X9wWfgESZ4WXTeFkUwTZjODz8M6v7tiNf1JvOs4PlIHpI9jpZVgEy3woaEXLuYvWpiPYHx6TTblAiWlsu3Q0BFuIP45mu5P98O1eZT48_889WJvMLqbF9Dz__hHWaZSqS37ZgdXF_dLuwkv8vbh5uP_klfcPvhjoFg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Theoretical+Foundation+of+Goal+Representation+Heuristic+Dynamic+Programming&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhong%2C+Xiangnan&rft.au=Ni%2C+Zhen&rft.au=He%2C+Haibo&rft.date=2016-12-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=27&rft.issue=12&rft.spage=2513&rft.epage=2525&rft_id=info:doi/10.1109%2FTNNLS.2015.2490698&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2015_2490698 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |