Memetic algorithms for the unconstrained binary quadratic programming problem

This paper presents a memetic algorithm, a highly effective evolutionary algorithm incorporating local search for solving the unconstrained binary quadratic programming problem (BQP). To justify the approach, a fitness landscape analysis is conducted experimentally for several instances of the BQP....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BioSystems Ročník 78; číslo 1; s. 99 - 118
Hlavní autori: Merz, Peter, Katayama, Kengo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Ireland Elsevier Ireland Ltd 01.12.2004
Elsevier BV
Predmet:
ISSN:0303-2647, 1872-8324
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents a memetic algorithm, a highly effective evolutionary algorithm incorporating local search for solving the unconstrained binary quadratic programming problem (BQP). To justify the approach, a fitness landscape analysis is conducted experimentally for several instances of the BQP. The results of the analysis show that recombination-based variation operators are well suited for the evolutionary algorithms with local search. Therefore, the proposed approach includes — besides a highly effective randomized k-opt local search — a new variation operator that has been tailored specially for the application in the hybrid evolutionary framework. The operator is called innovative variation and is fundamentally different from traditional crossover operators, since new genetic material is included in the offspring which is not contained in one of the parents. The evolutionary heuristic is tested on 35 publicly available BQP instances, and it is shown experimentally that the algorithm is capable of finding best-known solutions to large BQPs in a short time and with a high frequency. In comparison to other approaches for the BQP, the approach appears to be much more effective, particularly for large instances of 1000 or 2500 binary variables.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0303-2647
1872-8324
DOI:10.1016/j.biosystems.2004.08.002