A block coordinate variable metric forward–backward algorithm

A number of recent works have emphasized the prominent role played by the Kurdyka-Łojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this...

Full description

Saved in:
Bibliographic Details
Published in:Journal of global optimization Vol. 66; no. 3; pp. 457 - 485
Main Authors: Chouzenoux, Emilie, Pesquet, Jean-Christophe, Repetti, Audrey
Format: Journal Article
Language:English
Published: New York Springer US 01.11.2016
Springer
Springer Nature B.V
Springer Verlag
Subjects:
ISSN:0925-5001, 1573-2916
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A number of recent works have emphasized the prominent role played by the Kurdyka-Łojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this property, which is a sum of two terms: (i) a differentiable, but not necessarily convex, function and (ii) a function that is not necessarily convex, nor necessarily differentiable. The latter function is expressed as a separable sum of functions of blocks of variables. Such an optimization problem can be addressed with the Forward–Backward algorithm which can be accelerated thanks to the use of variable metrics derived from the Majorize–Minimize principle. We propose to combine the latter acceleration technique with an alternating minimization strategy which relies upon a flexible update rule. We give conditions under which the sequence generated by the resulting Block Coordinate Variable Metric Forward–Backward algorithm converges to a critical point of the objective function. An application example to a nonconvex phase retrieval problem encountered in signal/image processing shows the efficiency of the proposed optimization method.
AbstractList A number of recent works have emphasized the prominent role played by the Kurdyka-Lojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this property, which is a sum of two terms: (i) a differentiable, but not necessarily convex, function and (ii) a function that is not necessarily convex, nor necessarily differentiable. The latter function is expressed as a separable sum of functions of blocks of variables. Such an optimization problem can be addressed with the Forward-Backward algorithm which can be accelerated thanks to the use of variable metrics derived from the Majorize-Minimize principle. We propose to combine the latter acceleration technique with an alternating minimization strategy which relies upon a flexible update rule. We give conditions under which the sequence generated by the resulting Block Coordinate Variable Metric Forward-Backward algorithm converges to a critical point of the objective function. An application example to a nonconvex phase retrieval problem encountered in signal/image processing shows the efficiency of the proposed optimization method.
A number of recent works have emphasized the prominent role played by the Kurdyka-ojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this property, which is a sum of two terms: (i) a differentiable, but not necessarily convex, function and (ii) a function that is not necessarily convex, nor necessarily differentiable. The latter function is expressed as a separable sum of functions of blocks of variables. Such an optimization problem can be addressed with the Forward-Backward algorithm which can be accelerated thanks to the use of variable metrics derived from the Majorize-Minimize principle. We propose to combine the latter acceleration technique with an alternating minimization strategy which relies upon a flexible update rule. We give conditions under which the sequence generated by the resulting Block Coordinate Variable Metric Forward-Backward algorithm converges to a critical point of the objective function. An application example to a nonconvex phase retrieval problem encountered in signal/image processing shows the efficiency of the proposed optimization method.
A number of recent works have emphasized the prominent role played by the Kurdyka-Lojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this property, which is a sum of a non necessarily convex differentiable function and a non necessarily differentiable or convex function. The latter function is expressed as a separable sum of functions of blocks of variables. Such an optimization problem can be addressed with the Forward-Backward algorithm which can be accelerated thanks to the use of variable metrics derived from the Majorize-Minimize principle. We propose to combine the latter acceleration technique with an alternating minimization strategy which relies upon a flexible update rule. We give conditions under which the sequence generated by the resulting Block Coordinate Variable Metric Forward-Backward algorithm converges to a critical point of the objective function. An application example to a nonconvex phase retrieval problem encountered in signal/image processing shows the efficiency of the proposed optimization method.
A number of recent works have emphasized the prominent role played by the Kurdyka-Aaojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this property, which is a sum of two terms: (i) a differentiable, but not necessarily convex, function and (ii) a function that is not necessarily convex, nor necessarily differentiable. The latter function is expressed as a separable sum of functions of blocks of variables. Such an optimization problem can be addressed with the Forward-Backward algorithm which can be accelerated thanks to the use of variable metrics derived from the Majorize-Minimize principle. We propose to combine the latter acceleration technique with an alternating minimization strategy which relies upon a flexible update rule. We give conditions under which the sequence generated by the resulting Block Coordinate Variable Metric Forward-Backward algorithm converges to a critical point of the objective function. An application example to a nonconvex phase retrieval problem encountered in signal/image processing shows the efficiency of the proposed optimization method.
A number of recent works have emphasized the prominent role played by the Kurdyka-Łojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this property, which is a sum of two terms: (i) a differentiable, but not necessarily convex, function and (ii) a function that is not necessarily convex, nor necessarily differentiable. The latter function is expressed as a separable sum of functions of blocks of variables. Such an optimization problem can be addressed with the Forward–Backward algorithm which can be accelerated thanks to the use of variable metrics derived from the Majorize–Minimize principle. We propose to combine the latter acceleration technique with an alternating minimization strategy which relies upon a flexible update rule. We give conditions under which the sequence generated by the resulting Block Coordinate Variable Metric Forward–Backward algorithm converges to a critical point of the objective function. An application example to a nonconvex phase retrieval problem encountered in signal/image processing shows the efficiency of the proposed optimization method.
Audience Academic
Author Chouzenoux, Emilie
Pesquet, Jean-Christophe
Repetti, Audrey
Author_xml – sequence: 1
  givenname: Emilie
  surname: Chouzenoux
  fullname: Chouzenoux, Emilie
  email: emilie.chouzenoux@univ-mlv.fr
  organization: Laboratoire d’Informatique Gaspard Monge and CNRS UMR 8049, Université Paris-Est Marne-la-Vallée
– sequence: 2
  givenname: Jean-Christophe
  surname: Pesquet
  fullname: Pesquet, Jean-Christophe
  organization: Laboratoire d’Informatique Gaspard Monge and CNRS UMR 8049, Université Paris-Est Marne-la-Vallée
– sequence: 3
  givenname: Audrey
  surname: Repetti
  fullname: Repetti, Audrey
  organization: Institute of Sensors, Signals and Systems, Heriot-Watt University
BackLink https://hal.science/hal-00945918$$DView record in HAL
BookMark eNp9kc9qFTEUh4NU8Lb6AO4G3Ohiav6dmWQll6Jt4YIbXYdM5uQ2bWZSk7kVd76Db-iTmMsoSEHJ4oTD9x348TslJ3OakZCXjJ4zSvu3hVGlVUtZ11JJodVPyIZBL1quWXdCNlRzaIFS9oyclnJLKdUK-Ia82zZDTO6ucSnlMcx2webB5mCHiM2ESw6u8Sl_tXn8-f3HYN3d8dvYuE85LDfTc_LU21jwxe95Rj5_eP_p4qrdfby8vtjuWic7WNqO-8FZcBqACxwHBD4KTkEMwKjVo7e9l4MYEbzng0aNHUc19ijQaumcOCNv1rs3Npr7HCabv5lkg7na7sxxVwNJ0Ew9sMq-Xtn7nL4csCxmCsVhjHbGdCiGKQChmOyhoq8eobfpkOeapFJcUyolV5U6X6m9jWjC7NOSratvxCm4WoQPdb_tmZJMgOqr0K-Cy6mUjN64sNglpLmKIRpGzbE1s7Zmamvm2JrR1WSPzD9h_-fw1SmVnfeY_wrxT-kXl2arUw
CitedBy_id crossref_primary_10_1038_s41467_020_18818_6
crossref_primary_10_1016_j_sigpro_2016_12_022
crossref_primary_10_1016_j_cam_2020_113192
crossref_primary_10_1287_moor_2022_1256
crossref_primary_10_1007_s11590_023_02055_z
crossref_primary_10_1080_02331934_2024_2439559
crossref_primary_10_1137_18M1173629
crossref_primary_10_1137_24M164392X
crossref_primary_10_1007_s00034_017_0505_x
crossref_primary_10_1088_1361_6420_ad3c67
crossref_primary_10_1145_3502729
crossref_primary_10_1007_s40305_023_00518_9
crossref_primary_10_1109_TPAMI_2019_2920591
crossref_primary_10_1007_s10589_022_00394_8
crossref_primary_10_1007_s13198_021_01433_z
crossref_primary_10_1093_mnras_stab1903
crossref_primary_10_3934_fods_2025016
crossref_primary_10_1137_20M1357500
crossref_primary_10_1007_s11424_024_3568_3
crossref_primary_10_1109_TCI_2017_2697206
crossref_primary_10_1016_j_dsp_2019_102611
crossref_primary_10_1007_s00186_024_00851_6
crossref_primary_10_1007_s10107_020_01599_7
crossref_primary_10_1007_s10589_022_00441_4
crossref_primary_10_1007_s10589_018_0031_1
crossref_primary_10_1007_s10957_018_01454_y
crossref_primary_10_1088_1361_6420_ab356d
crossref_primary_10_1007_s10851_016_0696_y
crossref_primary_10_1016_j_amc_2020_125719
crossref_primary_10_1007_s10851_024_01184_z
crossref_primary_10_1109_TGRS_2017_2693366
crossref_primary_10_1016_j_apnum_2023_03_014
crossref_primary_10_1093_mnras_stx1267
crossref_primary_10_1137_17M1156678
crossref_primary_10_1007_s10851_019_00916_w
crossref_primary_10_1093_mnras_stz3555
crossref_primary_10_1109_TASLP_2018_2881925
crossref_primary_10_1007_s10851_017_0732_6
crossref_primary_10_1089_cmb_2021_0108
crossref_primary_10_1007_s40305_023_00459_3
crossref_primary_10_1109_LSP_2023_3251891
crossref_primary_10_1016_j_dsp_2022_103610
crossref_primary_10_1080_17517575_2019_1701713
crossref_primary_10_1007_s10957_020_01639_4
crossref_primary_10_1007_s11075_024_01965_y
crossref_primary_10_1016_j_cam_2020_112837
crossref_primary_10_1007_s10589_025_00708_6
crossref_primary_10_1080_10618600_2023_2282501
crossref_primary_10_1109_ACCESS_2020_3026685
crossref_primary_10_1016_j_sigpro_2018_04_006
crossref_primary_10_1137_19M1277552
crossref_primary_10_1007_s11565_022_00456_z
crossref_primary_10_1109_TIP_2019_2913536
crossref_primary_10_1007_s10915_023_02446_5
crossref_primary_10_1080_02331934_2022_2057309
crossref_primary_10_1109_LGRS_2023_3278026
crossref_primary_10_1109_TSP_2016_2601299
crossref_primary_10_1109_TSP_2019_2959240
crossref_primary_10_1016_j_eswa_2020_114206
crossref_primary_10_1007_s40314_022_02143_3
crossref_primary_10_1137_17M1142624
crossref_primary_10_1109_TGRS_2018_2870486
crossref_primary_10_1137_17M1124085
crossref_primary_10_1137_23M1582345
crossref_primary_10_1016_j_image_2018_08_007
crossref_primary_10_1109_TSP_2021_3069677
crossref_primary_10_1007_s10957_018_1272_y
crossref_primary_10_1007_s10589_018_0011_5
crossref_primary_10_1007_s10107_022_01809_4
crossref_primary_10_1007_s11590_023_01983_0
crossref_primary_10_1016_j_sigpro_2016_05_013
crossref_primary_10_1088_1361_6420_acbdb9
crossref_primary_10_1186_s13634_020_00684_5
crossref_primary_10_1016_j_jmaa_2024_128925
crossref_primary_10_1137_18M1171011
crossref_primary_10_1007_s10851_019_00884_1
crossref_primary_10_1088_1361_6420_acca43
crossref_primary_10_1093_mnras_stx2731
crossref_primary_10_1017_S096249291600009X
crossref_primary_10_1093_mnras_stx415
Cites_doi 10.1088/0266-5611/23/4/008
10.1137/050626090
10.1137/060670080
10.1109/ICIP.2014.7025351
10.1007/BF00940050
10.1109/TSP.2013.2297687
10.1090/S0002-9947-09-05048-X
10.1007/s10957-016-0867-4
10.1109/ICASSP.2014.6853847
10.1007/s10107-011-0484-9
10.1007/s10957-013-0465-7
10.1007/978-3-662-02796-7
10.1007/s10107-013-0701-9
10.1007/s10107-012-0614-z
10.1109/TIP.2007.904387
10.1007/s10107-013-0738-9
10.1137/120887795
10.1287/moor.1100.0449
10.1137/140971233
10.1007/BF01584660
10.1109/ICASSP.2005.1415952
10.1109/42.563662
10.1007/3-540-31247-1
10.1007/s10107-007-0133-5
10.1109/LSP.2014.2362861
10.1137/050644641
10.1364/JOSAA.19.001334
10.1137/0330025
10.1007/BF00939948
10.24033/bsmf.1625
10.1016/j.na.2012.09.008
10.1007/s10957-014-0642-3
10.1137/0325050
10.1023/A:1017501703105
10.1137/130942954
10.1137/110848074
10.1137/120891009
10.1007/978-1-4419-9569-8_10
10.1109/ICIP.1995.537422
10.1364/AO.21.002758
10.1109/ICASSP.2015.7178120
10.1080/02331934.2012.733883
10.1109/ICASSP.2012.6287939
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
COPYRIGHT 2016 Springer
Attribution
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: COPYRIGHT 2016 Springer
– notice: Attribution
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
1XC
VOOES
DOI 10.1007/s10898-016-0405-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Research Library (Proquest)
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)

Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 485
ExternalDocumentID oai:HAL:hal-00945918v1
4215363341
A718413587
10_1007_s10898_016_0405_9
Genre Feature
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
1XC
VOOES
ID FETCH-LOGICAL-c465t-62fbca5c95523edbe52d32053b510a9dfa7f4b3de5ff2b9e9e62e8d7e3ea94cc3
IEDL.DBID RSV
ISICitedReferencesCount 98
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386373700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-5001
IngestDate Tue Oct 14 20:53:51 EDT 2025
Thu Sep 04 14:57:38 EDT 2025
Tue Nov 04 22:07:19 EST 2025
Sat Nov 29 10:09:45 EST 2025
Tue Nov 18 22:23:47 EST 2025
Sat Nov 29 07:51:58 EST 2025
Fri Feb 21 02:42:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 68U10
Nonconvex optimization
Phase retrieval
Proximity operator
Block coordinate descent
Alternating minimization
90C26
90C05
Inverse problems
90C25
94A08
65K10
Nonsmooth optimization
49M27
65F08
Majorize–Minimize algorithm
Majorize-Minimize algorithm
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-62fbca5c95523edbe52d32053b510a9dfa7f4b3de5ff2b9e9e62e8d7e3ea94cc3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3631-6093
0000-0002-5943-8061
OpenAccessLink https://hal.science/hal-00945918
PQID 1829004428
PQPubID 29930
PageCount 29
ParticipantIDs hal_primary_oai_HAL_hal_00945918v1
proquest_miscellaneous_1855381475
proquest_journals_1829004428
gale_infotracacademiconefile_A718413587
crossref_citationtrail_10_1007_s10898_016_0405_9
crossref_primary_10_1007_s10898_016_0405_9
springer_journals_10_1007_s10898_016_0405_9
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2016
Publisher Springer US
Springer
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
– name: Springer Verlag
References JacobsonMWFesslerJAAn expanded theoretical treatment of iteration-dependent majorize-minimize algorithmsIEEE Trans. Image Process.2007161024112422246777410.1109/TIP.2007.904387
RazaviyaynMHongMLuoZA unified convergence analysis of block successive minimization methods for nonsmooth optimizationSIAM J. Optim.20132321126115330631521273.9012310.1137/120891009
BertsekasDPNonlinear Programming19992Belmont, MAAthena Scientific1015.90077
Chouzenoux, E., Pesquet, J.-C., Repetti, A.: Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory Appl. 162(1), 107–132 (2014)
AttouchHBolteJOn the convergence of the proximal algorithm for nonsmooth functions involving analytic featuresMath. Program.200911651624212701165.9001810.1007/s10107-007-0133-5
XuYYinWA block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completionSIAM J. Imaging Sci.2013631758178931057871280.4904210.1137/120887795
CombettesPLVũBCVariable metric quasi-Fejér monotonicityNonlinear Anal.201378173129929831266.6508710.1016/j.na.2012.09.008
ShechtmanYBeckAEldarYGESPAR: efficient phase retrieval of sparse signalsIEEE Trans. Signal Process.2014462928938316032410.1109/TSP.2013.2297687
Chaux, C., Combettes, P.L., Pesquet, J.-C., Wajs, V.R.: A variational formulation for frame based inverse problems. Inverse Probl. 23(4), 1495–1518 (2007)
PowellMJDOn search directions for minimization algorithmsMath. Program.197341932013215410258.9004310.1007/BF01584660
BauschkeHHCombettesPLLukeDRPhase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimizationJ. Opt. Soc. Am. A200219713341345191436510.1364/JOSAA.19.001334
LuoZQTsengPOn the linear convergence of descent methods for convex essentially smooth minimizationSIAM J. Control Optim.199230240842511490760756.9008410.1137/0330025
GerchbergRWSaxtonWOA practical algorithm for the determination of phase from image and diffraction plane picturesOptik197235237246
Repetti, A., Pham, M.Q., Duval, L., Chouzenoux, E., Pesquet, J.-C.: Euclid in a taxicab: Sparse blind deconvolution with smoothed ℓ1/ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1/\ell _2$$\end{document} regularization. IEEE Signal Process. Lett. 22(5), 539–543 (2015)
Pustelnik, N., Benazza-Benhayia, A., Zheng, Y., Pesquet, J.-C.: Wavelet-based image deconvolution and reconstruction. To appear in Wiley Encyclopedia of Electrical and Electronics Engineering (2016). https://hal.archives-ouvertes.fr/hal-01164833v1
AttouchHBolteJSvaiterBFConvergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methodsMath. Program.20111379112930104211260.4904810.1007/s10107-011-0484-9
Mukherjee, S., Seelamantula, C.S.: An iterative algorithm for phase retrieval with sparsity constraints: application to frequency domain optical coherence tomography. In: Proceedings of IEEE Internationl Conference Acoust., Speech and Signal Process. (ICASSP 2012), pp. 553–556. Kyoto, Japan (2012)
Bauschke, H.H., Combettes, P.L., Luke, D.R.: A new generation of iterative transform algorithms for phase contrast tomography. In: Proceedings of IEEE International Conference Acoust., Speech Signal Process. (ICASSP 2005), vol. 4, pp. 89–92. Philadelphia, PA (2005)
RichtárikPTalácMIteration complexity of randomized block-coordinate descent methods for minimizing a composite functionMath. Program.2014144113831799531301.6505110.1007/s10107-012-0614-z
Pirayre, A., Couprie, C., Duval, L., Pesquet, J.-C.: Fast convex optimization for connectivity enforcement in gene regulatory network inference. In: Proceedings of IEEE International Conference Acoust., Speech Signal Process. (ICASSP 2015), pp. 1002–1006. Brisbane, Australia (2015)
Repetti, A., Chouzenoux, E., Pesquet, J.-C.: A nonconvex regularized approach for phase retrieval. In: Proceedings of IEEE International Conference Image Process. (ICIP 2014), pp. 1753–1757. Paris, France (2014)
Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. Editions du centre National de la Recherche Scientifique, pp. 87–89 (1963)
DaintyJCFienupJRStarkHPhase retrieval and image reconstruction for astronomyImage Recovery: Theory and Application1987Orlando, FLAcademic Press231275
FrankelPGarrigosGPeypouquetJSplitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence ratesJ. Optim. Theory Appl.2015165387490033416711316.4903910.1007/s10957-014-0642-3
Hiriart-UrrutyJBLemaréchalCConvex Analysis and Minimization Algorithms1993New YorkSpringer0795.49001
WaldspurgerId’AspremontAMallatSPhase recovery, maxcut and complex semidefinite programmingMath. Program.20151491478133004561329.9401810.1007/s10107-013-0738-9
CandèsEEldarYStrohmerTVoroninskiVPhase retrieval via matrix completionSIAM J. Imaging Sci.20136119922530329521280.4905210.1137/110848074
FesslerJAGrouped coordinate ascent algorithms for penalized-likelihood transmission image reconstructionIEEE Trans. Med. Imag.199716216617510.1109/42.563662
OrtegaJMRheinboldtWCIterative Solution of Nonlinear Equations in Several Variables1970New YorkAcademic Press0241.65046
Tappenden, R., Richtárik, P., Gondzio, J.: Inexact coordinate descent: complexity and preconditioning. J. Optim. Theory Appl. (to appear). arXiv:1304.5530v2
BrègmanLMThe method of successive projection for finding a common point of convex setsSoviet Math. Dokl.196566886920142.16804
CombettesPLPesquetJ-CStochastic quasi-Fejér block-coordinate fixed point iterations with random sweepingSIAM J. Optim.2015251221124833614441317.6513510.1137/140971233
LuenbergerDGLinear and Nonlinear Programming1973ReadingAddison-Wesley0297.90044
AttouchHBolteJRedontPSoubeyranAProximal alternating minimization and projection methods for nonconvex problems. An approach based on the Kurdyka-Łojasiewicz inequalityMath. Oper. Res.201035243845726747281214.6503610.1287/moor.1100.0449
SotthiviratSFesslerJAImage recovery using partitioned-separable paraboloidal surrogate coordinate ascent algorithmsIEEE Trans. Signal Process.2002113306317
BolteJDaniilidisALewisAThe Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systemsSIAM J. Optim.2006171205122322745101129.2601210.1137/050644641
RockafellarRTWetsRJBVariational Analysis19971BerlinSpringer0888.49001
KurdykaKParusinskiAwf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_f$$\end{document}-stratification of subanalytic functions and the Łojasiewicz inequality. Comptes rendus de l’Académie des sciencesSérie 1, Mathématique1994318212913312603240799.32007
BolteJDaniilidisALewisAShiotaMClarke subgradients of stratifiable functionsSIAM J. Optim.200718255657223384511142.4900610.1137/060670080
MordukhovichBSVariational Analysis and Generalized Differentiation. Vol. I: Basic theory, Series of Comprehensive Studies in Mathematics, vol. 3302006BerlinSpringer
CombettesPLWajsVRSignal recovery by proximal forward-backward splittingMultiscale Model. Simul.2005441168120022038491179.9403110.1137/050626090
MoreauJJProximité et dualité dans un espace hilbertienBull. Soc. Math. France1965932732992019520136.12101
TsengPConvergence of a block coordinate descent method for nondifferentiable minimizationJ. Optim. Theory Appl.2001109347549418350691006.6506210.1023/A:1017501703105
BolteJDaniilidisALeyOMazetLCharacterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexityTrans. Am. Math. Soc.201036263319336325929581202.2602610.1090/S0002-9947-09-05048-X
MallatSA Wavelet Tour of Signal Processing20093BurlingtonAcademic Press1170.94003
Repetti, A., Chouzenoux, E., Pesquet, J.-C.: A preconditioned forward-backward approach with application to large-scale nonconvex spectral unmixing problems. In: Proceedings of IEEE International Conference Acoust., Speech Signal Process. (ICASSP 2014), pp. 1498–1502. Firenze, Italy (2014)
CensorYLentAOptimization of logx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log x$$\end{document} entropy over linear equality constraintsSIAM J. Control Optim.19872549219338939900631.9005010.1137/0325050
CombettesPLVũBCVariable metric forward-backward splitting with applications to monotone inclusions in dualityOptimization20146391289131832258451309.9010910.1080/02331934.2012.733883
SaxtonWOComputer Techniques for Image Processing in Electron Microscopy1978New YorkAcademic Press
Abboud, F., Chouzenoux, E., Pesquet, J.-C., Chenot, J.H., Laborelli, L.: A hybrid alternating proximal method for blind video restoration. In: Proceedings of European Signal Processing Conference (EUSIPCO 2014), pp. 1811–1815. Lisboa, Portugal (2014)
BolteJSabachSTeboulleMProximal alternating linearized minimization for nonconvex and nonsmooth problemsMath. Program.2014146145949432326231297.9012510.1007/s10107-013-0701-9
FienupJRPhase retrieval algorithms: a comparisonAppl. Opt.198221152758276910.1364/AO.21.002758
Saquib, S., Zheng, J., Bouman, C.A., Sauer, K.D.: Parallel computation of sequential pixel updates in statistical tomographic reconstruction. In: Proceedings of IEEE International Conference Image Process. (ICIP 1995), vol. 2, 93–96. Washington, DC (1995)
Hesse, R., Luke, D.R., Sabach, S., Tam, M.K.: Proximal heterogeneous block input-output method and application to blind ptychographic diffraction imaging. Tech. rep. (2014). arXiv:1408.1887
Xu, Y., Yin, W.: A globally convergent algorithm f
ZQ Luo (405_CR37) 1992; 30
405_CR61
RT Rockafellar (405_CR52) 1997
J Bolte (405_CR11) 2007; 18
H Attouch (405_CR3) 2010; 35
JC Dainty (405_CR24) 1987
JJ Moreau (405_CR40) 1965; 93
MJD Powell (405_CR45) 1973; 4
I Waldspurger (405_CR59) 2015; 149
DG Luenberger (405_CR35) 1973
WO Saxton (405_CR54) 1978
DP Bertsekas (405_CR9) 1999
JA Fessler (405_CR25) 1997; 16
405_CR53
405_CR50
405_CR57
P Richtárik (405_CR51) 2014; 144
Y Shechtman (405_CR55) 2014; 4
405_CR17
S Mallat (405_CR38) 2009
PL Combettes (405_CR21) 2013; 78
405_CR19
405_CR18
H Attouch (405_CR4) 2011; 137
PL Combettes (405_CR23) 2005; 4
Y Xu (405_CR60) 2013; 6
PL Combettes (405_CR22) 2014; 63
JB Hiriart-Urruty (405_CR31) 1993
A Auslender (405_CR5) 1992; 73
J Bolte (405_CR12) 2010; 362
405_CR41
E Candès (405_CR15) 2013; 6
405_CR46
405_CR44
PL Combettes (405_CR20) 2015; 25
P Ochs (405_CR42) 2014; 7
405_CR49
405_CR48
P Frankel (405_CR27) 2015; 165
HH Bauschke (405_CR6) 2002; 19
M Razaviyayn (405_CR47) 2013; 23
GH Golub (405_CR29) 1996
BS Mordukhovich (405_CR39) 2006
RW Gerchberg (405_CR28) 1972; 35
H Attouch (405_CR2) 2009; 116
J Bolte (405_CR13) 2014; 146
JR Fienup (405_CR26) 1982; 21
405_CR1
405_CR7
405_CR30
ZQ Luo (405_CR36) 1992; 72
LM Brègman (405_CR14) 1965; 6
MW Jacobson (405_CR32) 2007; 16
405_CR34
Y Censor (405_CR16) 1987; 25
JM Ortega (405_CR43) 1970
WI Zangwill (405_CR62) 1969
J Bolte (405_CR10) 2006; 17
HH Bauschke (405_CR8) 2006; 2
P Tseng (405_CR58) 2001; 109
S Sotthivirat (405_CR56) 2002; 11
K Kurdyka (405_CR33) 1994; 318
References_xml – reference: BertsekasDPNonlinear Programming19992Belmont, MAAthena Scientific1015.90077
– reference: BolteJSabachSTeboulleMProximal alternating linearized minimization for nonconvex and nonsmooth problemsMath. Program.2014146145949432326231297.9012510.1007/s10107-013-0701-9
– reference: MordukhovichBSVariational Analysis and Generalized Differentiation. Vol. I: Basic theory, Series of Comprehensive Studies in Mathematics, vol. 3302006BerlinSpringer
– reference: ShechtmanYBeckAEldarYGESPAR: efficient phase retrieval of sparse signalsIEEE Trans. Signal Process.2014462928938316032410.1109/TSP.2013.2297687
– reference: Bauschke, H.H., Combettes, P.L., Luke, D.R.: A new generation of iterative transform algorithms for phase contrast tomography. In: Proceedings of IEEE International Conference Acoust., Speech Signal Process. (ICASSP 2005), vol. 4, pp. 89–92. Philadelphia, PA (2005)
– reference: CombettesPLVũBCVariable metric quasi-Fejér monotonicityNonlinear Anal.201378173129929831266.6508710.1016/j.na.2012.09.008
– reference: MoreauJJProximité et dualité dans un espace hilbertienBull. Soc. Math. France1965932732992019520136.12101
– reference: XuYYinWA block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completionSIAM J. Imaging Sci.2013631758178931057871280.4904210.1137/120887795
– reference: BolteJDaniilidisALewisAThe Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systemsSIAM J. Optim.2006171205122322745101129.2601210.1137/050644641
– reference: CandèsEEldarYStrohmerTVoroninskiVPhase retrieval via matrix completionSIAM J. Imaging Sci.20136119922530329521280.4905210.1137/110848074
– reference: PowellMJDOn search directions for minimization algorithmsMath. Program.197341932013215410258.9004310.1007/BF01584660
– reference: CensorYLentAOptimization of logx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log x$$\end{document} entropy over linear equality constraintsSIAM J. Control Optim.19872549219338939900631.9005010.1137/0325050
– reference: KurdykaKParusinskiAwf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_f$$\end{document}-stratification of subanalytic functions and the Łojasiewicz inequality. Comptes rendus de l’Académie des sciencesSérie 1, Mathématique1994318212913312603240799.32007
– reference: Tappenden, R., Richtárik, P., Gondzio, J.: Inexact coordinate descent: complexity and preconditioning. J. Optim. Theory Appl. (to appear). arXiv:1304.5530v2
– reference: AttouchHBolteJRedontPSoubeyranAProximal alternating minimization and projection methods for nonconvex problems. An approach based on the Kurdyka-Łojasiewicz inequalityMath. Oper. Res.201035243845726747281214.6503610.1287/moor.1100.0449
– reference: ZangwillWINonlinear Programming1969Englewood CliffsPrentice-Hall0191.49101
– reference: LuenbergerDGLinear and Nonlinear Programming1973ReadingAddison-Wesley0297.90044
– reference: GolubGHVan LoanCFMatrix Computations19963BaltimoreJohns Hopkins University Press0865.65009
– reference: Repetti, A., Pham, M.Q., Duval, L., Chouzenoux, E., Pesquet, J.-C.: Euclid in a taxicab: Sparse blind deconvolution with smoothed ℓ1/ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1/\ell _2$$\end{document} regularization. IEEE Signal Process. Lett. 22(5), 539–543 (2015)
– reference: AttouchHBolteJOn the convergence of the proximal algorithm for nonsmooth functions involving analytic featuresMath. Program.200911651624212701165.9001810.1007/s10107-007-0133-5
– reference: WaldspurgerId’AspremontAMallatSPhase recovery, maxcut and complex semidefinite programmingMath. Program.20151491478133004561329.9401810.1007/s10107-013-0738-9
– reference: Chaux, C., Combettes, P.L., Pesquet, J.-C., Wajs, V.R.: A variational formulation for frame based inverse problems. Inverse Probl. 23(4), 1495–1518 (2007)
– reference: Xu, Y., Yin, W.: A globally convergent algorithm for nonconvex optimization based on block coordinate update. Tech. rep. (2014). arXiv:1410.1386
– reference: Repetti, A., Chouzenoux, E., Pesquet, J.-C.: A nonconvex regularized approach for phase retrieval. In: Proceedings of IEEE International Conference Image Process. (ICIP 2014), pp. 1753–1757. Paris, France (2014)
– reference: BolteJDaniilidisALeyOMazetLCharacterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexityTrans. Am. Math. Soc.201036263319336325929581202.2602610.1090/S0002-9947-09-05048-X
– reference: Hiriart-UrrutyJBLemaréchalCConvex Analysis and Minimization Algorithms1993New YorkSpringer0795.49001
– reference: RockafellarRTWetsRJBVariational Analysis19971BerlinSpringer0888.49001
– reference: LuoZQTsengPOn the convergence of the coordinate descent method for convex differentiable minimizationJ. Optim. Theory Appl.199272173511417640795.9006910.1007/BF00939948
– reference: Pustelnik, N., Benazza-Benhayia, A., Zheng, Y., Pesquet, J.-C.: Wavelet-based image deconvolution and reconstruction. To appear in Wiley Encyclopedia of Electrical and Electronics Engineering (2016). https://hal.archives-ouvertes.fr/hal-01164833v1
– reference: FesslerJAGrouped coordinate ascent algorithms for penalized-likelihood transmission image reconstructionIEEE Trans. Med. Imag.199716216617510.1109/42.563662
– reference: FienupJRPhase retrieval algorithms: a comparisonAppl. Opt.198221152758276910.1364/AO.21.002758
– reference: Abboud, F., Chouzenoux, E., Pesquet, J.-C., Chenot, J.H., Laborelli, L.: A hybrid alternating proximal method for blind video restoration. In: Proceedings of European Signal Processing Conference (EUSIPCO 2014), pp. 1811–1815. Lisboa, Portugal (2014)
– reference: BolteJDaniilidisALewisAShiotaMClarke subgradients of stratifiable functionsSIAM J. Optim.200718255657223384511142.4900610.1137/060670080
– reference: OchsPChenYBroxTPockTiPiano: inertial proximal algorithm for non-convex optimizationSIAM J. Imaging Sci.2014721388141932188221296.9009410.1137/130942954
– reference: RazaviyaynMHongMLuoZA unified convergence analysis of block successive minimization methods for nonsmooth optimizationSIAM J. Optim.20132321126115330631521273.9012310.1137/120891009
– reference: BauschkeHHCombettesPLNollDJoint minimization with alternating Bregman proximity operatorsPac. J. Optim.20062340142422657471124.90019
– reference: Saquib, S., Zheng, J., Bouman, C.A., Sauer, K.D.: Parallel computation of sequential pixel updates in statistical tomographic reconstruction. In: Proceedings of IEEE International Conference Image Process. (ICIP 1995), vol. 2, 93–96. Washington, DC (1995)
– reference: Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. Editions du centre National de la Recherche Scientifique, pp. 87–89 (1963)
– reference: Pirayre, A., Couprie, C., Duval, L., Pesquet, J.-C.: Fast convex optimization for connectivity enforcement in gene regulatory network inference. In: Proceedings of IEEE International Conference Acoust., Speech Signal Process. (ICASSP 2015), pp. 1002–1006. Brisbane, Australia (2015)
– reference: BauschkeHHCombettesPLLukeDRPhase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimizationJ. Opt. Soc. Am. A200219713341345191436510.1364/JOSAA.19.001334
– reference: RichtárikPTalácMIteration complexity of randomized block-coordinate descent methods for minimizing a composite functionMath. Program.2014144113831799531301.6505110.1007/s10107-012-0614-z
– reference: GerchbergRWSaxtonWOA practical algorithm for the determination of phase from image and diffraction plane picturesOptik197235237246
– reference: TsengPConvergence of a block coordinate descent method for nondifferentiable minimizationJ. Optim. Theory Appl.2001109347549418350691006.6506210.1023/A:1017501703105
– reference: AuslenderAAsymptotic properties of the Fenchel dual functional and applications to decomposition problemsJ. Optim. Theory Appl.199273342744911648020794.4902610.1007/BF00940050
– reference: MallatSA Wavelet Tour of Signal Processing20093BurlingtonAcademic Press1170.94003
– reference: Repetti, A., Chouzenoux, E., Pesquet, J.-C.: A preconditioned forward-backward approach with application to large-scale nonconvex spectral unmixing problems. In: Proceedings of IEEE International Conference Acoust., Speech Signal Process. (ICASSP 2014), pp. 1498–1502. Firenze, Italy (2014)
– reference: CombettesPLWajsVRSignal recovery by proximal forward-backward splittingMultiscale Model. Simul.2005441168120022038491179.9403110.1137/050626090
– reference: JacobsonMWFesslerJAAn expanded theoretical treatment of iteration-dependent majorize-minimize algorithmsIEEE Trans. Image Process.2007161024112422246777410.1109/TIP.2007.904387
– reference: Hesse, R., Luke, D.R., Sabach, S., Tam, M.K.: Proximal heterogeneous block input-output method and application to blind ptychographic diffraction imaging. Tech. rep. (2014). arXiv:1408.1887
– reference: AttouchHBolteJSvaiterBFConvergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methodsMath. Program.20111379112930104211260.4904810.1007/s10107-011-0484-9
– reference: Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2010)
– reference: CombettesPLVũBCVariable metric forward-backward splitting with applications to monotone inclusions in dualityOptimization20146391289131832258451309.9010910.1080/02331934.2012.733883
– reference: Mukherjee, S., Seelamantula, C.S.: An iterative algorithm for phase retrieval with sparsity constraints: application to frequency domain optical coherence tomography. In: Proceedings of IEEE Internationl Conference Acoust., Speech and Signal Process. (ICASSP 2012), pp. 553–556. Kyoto, Japan (2012)
– reference: SotthiviratSFesslerJAImage recovery using partitioned-separable paraboloidal surrogate coordinate ascent algorithmsIEEE Trans. Signal Process.2002113306317
– reference: OrtegaJMRheinboldtWCIterative Solution of Nonlinear Equations in Several Variables1970New YorkAcademic Press0241.65046
– reference: BrègmanLMThe method of successive projection for finding a common point of convex setsSoviet Math. Dokl.196566886920142.16804
– reference: LuoZQTsengPOn the linear convergence of descent methods for convex essentially smooth minimizationSIAM J. Control Optim.199230240842511490760756.9008410.1137/0330025
– reference: FrankelPGarrigosGPeypouquetJSplitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence ratesJ. Optim. Theory Appl.2015165387490033416711316.4903910.1007/s10957-014-0642-3
– reference: Chouzenoux, E., Pesquet, J.-C., Repetti, A.: Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory Appl. 162(1), 107–132 (2014)
– reference: DaintyJCFienupJRStarkHPhase retrieval and image reconstruction for astronomyImage Recovery: Theory and Application1987Orlando, FLAcademic Press231275
– reference: CombettesPLPesquetJ-CStochastic quasi-Fejér block-coordinate fixed point iterations with random sweepingSIAM J. Optim.2015251221124833614441317.6513510.1137/140971233
– reference: SaxtonWOComputer Techniques for Image Processing in Electron Microscopy1978New YorkAcademic Press
– ident: 405_CR17
  doi: 10.1088/0266-5611/23/4/008
– ident: 405_CR61
– volume: 4
  start-page: 1168
  issue: 4
  year: 2005
  ident: 405_CR23
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/050626090
– volume: 18
  start-page: 556
  issue: 2
  year: 2007
  ident: 405_CR11
  publication-title: SIAM J. Optim.
  doi: 10.1137/060670080
– ident: 405_CR50
  doi: 10.1109/ICIP.2014.7025351
– volume: 35
  start-page: 237
  year: 1972
  ident: 405_CR28
  publication-title: Optik
– volume: 73
  start-page: 427
  issue: 3
  year: 1992
  ident: 405_CR5
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940050
– volume: 4
  start-page: 928
  issue: 62
  year: 2014
  ident: 405_CR55
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2297687
– volume: 362
  start-page: 3319
  issue: 6
  year: 2010
  ident: 405_CR12
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-09-05048-X
– ident: 405_CR57
  doi: 10.1007/s10957-016-0867-4
– ident: 405_CR49
  doi: 10.1109/ICASSP.2014.6853847
– volume: 137
  start-page: 91
  year: 2011
  ident: 405_CR4
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0484-9
– volume-title: Computer Techniques for Image Processing in Electron Microscopy
  year: 1978
  ident: 405_CR54
– ident: 405_CR18
  doi: 10.1007/s10957-013-0465-7
– volume-title: Convex Analysis and Minimization Algorithms
  year: 1993
  ident: 405_CR31
  doi: 10.1007/978-3-662-02796-7
– volume: 146
  start-page: 459
  issue: 1
  year: 2014
  ident: 405_CR13
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0701-9
– volume: 144
  start-page: 1
  issue: 1
  year: 2014
  ident: 405_CR51
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0614-z
– volume: 6
  start-page: 688
  year: 1965
  ident: 405_CR14
  publication-title: Soviet Math. Dokl.
– volume-title: Nonlinear Programming
  year: 1999
  ident: 405_CR9
– volume: 16
  start-page: 2411
  issue: 10
  year: 2007
  ident: 405_CR32
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.904387
– volume: 318
  start-page: 129
  issue: 2
  year: 1994
  ident: 405_CR33
  publication-title: Série 1, Mathématique
– volume: 149
  start-page: 47
  issue: 1
  year: 2015
  ident: 405_CR59
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0738-9
– ident: 405_CR46
– volume-title: Matrix Computations
  year: 1996
  ident: 405_CR29
– volume: 2
  start-page: 401
  issue: 3
  year: 2006
  ident: 405_CR8
  publication-title: Pac. J. Optim.
– volume: 6
  start-page: 1758
  issue: 3
  year: 2013
  ident: 405_CR60
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120887795
– volume-title: Variational Analysis
  year: 1997
  ident: 405_CR52
– volume: 35
  start-page: 438
  issue: 2
  year: 2010
  ident: 405_CR3
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0449
– volume: 25
  start-page: 1221
  year: 2015
  ident: 405_CR20
  publication-title: SIAM J. Optim.
  doi: 10.1137/140971233
– volume: 4
  start-page: 193
  year: 1973
  ident: 405_CR45
  publication-title: Math. Program.
  doi: 10.1007/BF01584660
– ident: 405_CR7
  doi: 10.1109/ICASSP.2005.1415952
– volume: 16
  start-page: 166
  issue: 2
  year: 1997
  ident: 405_CR25
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.563662
– ident: 405_CR34
– volume-title: Nonlinear Programming
  year: 1969
  ident: 405_CR62
– ident: 405_CR30
– volume-title: Variational Analysis and Generalized Differentiation. Vol. I: Basic theory, Series of Comprehensive Studies in Mathematics, vol. 330
  year: 2006
  ident: 405_CR39
  doi: 10.1007/3-540-31247-1
– volume: 116
  start-page: 5
  year: 2009
  ident: 405_CR2
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0133-5
– ident: 405_CR48
  doi: 10.1109/LSP.2014.2362861
– volume: 17
  start-page: 1205
  year: 2006
  ident: 405_CR10
  publication-title: SIAM J. Optim.
  doi: 10.1137/050644641
– volume-title: Linear and Nonlinear Programming
  year: 1973
  ident: 405_CR35
– volume: 19
  start-page: 1334
  issue: 7
  year: 2002
  ident: 405_CR6
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.19.001334
– volume: 30
  start-page: 408
  issue: 2
  year: 1992
  ident: 405_CR37
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0330025
– volume: 11
  start-page: 306
  issue: 3
  year: 2002
  ident: 405_CR56
  publication-title: IEEE Trans. Signal Process.
– volume-title: Iterative Solution of Nonlinear Equations in Several Variables
  year: 1970
  ident: 405_CR43
– volume: 72
  start-page: 7
  issue: 1
  year: 1992
  ident: 405_CR36
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00939948
– volume: 93
  start-page: 273
  year: 1965
  ident: 405_CR40
  publication-title: Bull. Soc. Math. France
  doi: 10.24033/bsmf.1625
– volume: 78
  start-page: 17
  year: 2013
  ident: 405_CR21
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2012.09.008
– volume: 165
  start-page: 874
  issue: 3
  year: 2015
  ident: 405_CR27
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-014-0642-3
– volume: 25
  start-page: 921
  issue: 4
  year: 1987
  ident: 405_CR16
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0325050
– volume: 109
  start-page: 475
  issue: 3
  year: 2001
  ident: 405_CR58
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1017501703105
– volume-title: A Wavelet Tour of Signal Processing
  year: 2009
  ident: 405_CR38
– volume: 7
  start-page: 1388
  issue: 2
  year: 2014
  ident: 405_CR42
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/130942954
– volume: 6
  start-page: 199
  issue: 1
  year: 2013
  ident: 405_CR15
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/110848074
– volume: 23
  start-page: 1126
  issue: 2
  year: 2013
  ident: 405_CR47
  publication-title: SIAM J. Optim.
  doi: 10.1137/120891009
– ident: 405_CR19
  doi: 10.1007/978-1-4419-9569-8_10
– ident: 405_CR53
  doi: 10.1109/ICIP.1995.537422
– volume: 21
  start-page: 2758
  issue: 15
  year: 1982
  ident: 405_CR26
  publication-title: Appl. Opt.
  doi: 10.1364/AO.21.002758
– ident: 405_CR44
  doi: 10.1109/ICASSP.2015.7178120
– ident: 405_CR1
– volume: 63
  start-page: 1289
  issue: 9
  year: 2014
  ident: 405_CR22
  publication-title: Optimization
  doi: 10.1080/02331934.2012.733883
– ident: 405_CR41
  doi: 10.1109/ICASSP.2012.6287939
– start-page: 231
  volume-title: Image Recovery: Theory and Application
  year: 1987
  ident: 405_CR24
SSID ssj0009852
Score 2.5205982
Snippet A number of recent works have emphasized the prominent role played by the Kurdyka-Łojasiewicz inequality for proving the convergence of iterative algorithms...
A number of recent works have emphasized the prominent role played by the Kurdyka-Lojasiewicz inequality for proving the convergence of iterative algorithms...
A number of recent works have emphasized the prominent role played by the Kurdyka-ojasiewicz inequality for proving the convergence of iterative algorithms...
A number of recent works have emphasized the prominent role played by the Kurdyka-Aaojasiewicz inequality for proving the convergence of iterative algorithms...
SourceID hal
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 457
SubjectTerms Algorithms
Computer Science
Convergence
Convex analysis
Efficiency
Engineering Sciences
Inequalities
Mathematical analysis
Mathematics
Mathematics and Statistics
Minimization
Operations Research/Decision Theory
Optimization
Real Functions
Signal and Image processing
Strategy
Studies
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfY4IE9MDZA6zZQQEh8TBFtmrTNA0InxLQHmPYA0t6qfLKJrbftbvf3Y_fSuwOJvfBWtWlq1XFsx_bPAK-rhkDKrOHOe8dlLCtuvHAcHTGKe5WhiXnfbKI-Pm5OT_VJOnCbpLTKYU_sN2o_dnRG_qGgiF8u0Vr-dHXNqWsURVdTC401uI-WTUEpXd_EyRJ0t-k77uRaKK5wPx6imvPSuYaKywr0p9Fm4foPvZR257UzSo5csTz_Cpb2Ouhw83-pfwyPkvXJRvPlsgX3QrcNGyuYhNuwlaR9wt4mSOp3T-DjiFnUer-YG6Ozet6hgcpm6GVT3RW7pKZcjqH122fgWjoRxAtmLn4iCdOzy6fw4_DL989HPDVe4E5WasorEa0zymmFbmrwNijhS4HialGCjfbR1FHa0gcVo7A66FCJ0Pg6lMFo6Vz5DNa7cRd2gOWxtjLaaKSrpa61jV4b9BmVDV4EVWeQD7-9dQmVnJpjXLRLPGXiVEuZaMSpVmfwfvHK1RyS467Bb4iXLYkrzutMqjpA6gj4qh2hbkY9rhqk5BWyezEjwW4fjb62dI_SL5UumlmRwf7A3zYJ-6RdMjeDl4vHKKYUezFdGN_SGIWqpZC1yuBgWEUrU_yL_t27P7gHDwWt4b44ch_Wpze34Tk8cLPp-eTmRS8NvwGeyQ3d
  priority: 102
  providerName: ProQuest
Title A block coordinate variable metric forward–backward algorithm
URI https://link.springer.com/article/10.1007/s10898-016-0405-9
https://www.proquest.com/docview/1829004428
https://www.proquest.com/docview/1855381475
https://hal.science/hal-00945918
Volume 66
WOSCitedRecordID wos000386373700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Research Library
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: M2O
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xLQc4ULqACJSVQUi8FCkvx_EJLVWrStBl1fIoXCLbsemKNos22z3zH_iH_BJmUme7IECCyygPx7KSGc9MZuYbgId5QSBlWoWmqkyYuTQPVZWYEB0xinultnBR22xCjEbF0ZEc-zrupst270KS7U69UuxWUDlYjB4wWhmh7ME6aruC-jUcHL67QNot2jY7kUx4yHET7kKZv5viJ2Xkt-TeMWVErpibv0RIW8Wzu_FfS74O17ydyYbnjLEJl2zdh42uhwPzIt2HqyuAhHi2v0Rxbfqw6Uc17LFHp35yA54PmUYF-JmZKfqtkxptVbZAh5tKsNgp9ecyDA1hSsb9_vWbpt-DeMjUyafpbDI_Pr0Jb3d33mzvhb4LQ2iynM_DPHHaKG4kR5_VVtrypEoTlF2N4qxk5ZRwmU4ry51LtLTS5oktKmFTq2RmTHoL1uppbW8Di5zQmdNOZUZkUkjtKqnQgeTaVonlIoCo-xyl8RDl1CnjpLwAV6Y3WlJaGr3RUgbwdPnIl3N8jr8NfkTfuCTZxXmN8iUIuDpCwSqHqKhRqfMCV_IA2WA5I2Fw7w1flXSNcjG5jItFHMBWxyWll_ymjCkyHWXo1QVwf3kbZZYCMaq20zMaw1HPxJngATzrOGdlij-t_84_jb4LVxJivbZwcgvW5rMzew8um8V80swG0BPvPwxg_cXOaHyAZy9FiHQ_2iaavG7pmKg4RDrmHwetmP0AALAYOQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BQk4AC0gAgUMAlFAK-z1ru09VCgCqlQNUQ9F6s3sk1akTmnSIP4Uv5EZx04CEr31wM3yY722v52HZ-YbgOdZQSRlRjPrnGUipBnTjluGjhjFvVJfhLhuNpEPBsXhodpfgV9tLQylVbYysRbUbmTpH_nbhCJ-sUBr-d3pd0Zdoyi62rbQmMFiz__8gS7beHv3A37fF5zvfDx432NNVwFmRSYnLOPBWC2tkuiDeWe85C7liEWD8NTKBZ0HYVLnZQjcKK98xn3hcp96rYS1KY67ClcEMYtRqiDfX5D8FnWHn1hxySTK_zaKOivVK6iYLUH_HW0kpv7Qg402WD2iZMwlS_ev4Gyt83Zu_W9v6zbcbKzrqDtbDuuw4qsNuLHEubgB6400G0dbDeX2qzuw3Y0MavVvkR3hXI8rNMCjqca1aYY-OqGmYzZC677OMDb0xxM3Ij38io88OTq5C58v5aHuwVo1qvx9iOKQGxFM0MLmQuXKBKc0-sTSeMe9zDsQt5-5tA3rOjX_GJYLvmhCRkmZdoSMUnXg9fyS0xnlyEUnvyTslCSOcFyrm6oKnB0Re5VdtD3QTpEFzuQZwms-ItGK97r9kvZReqlUSTFNOrDZ4qlshNm4XICpA0_nh1EMUWxJV350TudIVJ2JyGUH3rSoXRriX_N_cPENn8C13sGnftnfHew9hOuc1k9dCLoJa5Ozc_8Irtrp5Hh89rheiRF8uWww_wYAG25_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BSE4AC0gDAUWBOIlq_baa3sPFYooUatWUQ4gVVyWfdKKNClNGsRf49cx49hJQKK3HrhZfqzX9rfz8Mx8A_C8qIikzOjYOmfjPGRFrB23MTpiFPfKfBWSutlE2etVh4eyvwK_2loYSqtsZWItqN3I0j_yrZQifkmO1vJWaNIi-jvdd6ffY-ogRZHWtp3GDCL7_ucPdN_G23s7-K1fcN798PH9btx0GIhtXohJXPBgrBZWCvTHvDNecJdxxKVBqGrpgi5DbjLnRQjcSC99wX3lSp95LXNrMxx3Fa6U6GNSOmFffF4Q_lZ1t59EchEL1AVtRHVWtldRYVuKvjzaS7H8Qyc2mmH1iBIzl6zevwK1tf7r3vqf39xtuNlY3awzWybrsOKHG3BjiYtxA9YbKTdmrxoq7td3YLvDDGr7b8yOcK7HQzTM2VTjmjUDz06oGZllaPXXmceG_oTiBtODr_jIk6OTu_DpUh7qHqwNR0N_H1gSSpMHE3Ruy1yW0gQnNfrKwnjHvSgjSNpPrmzDxk5NQQZqwSNNKFGUgUcoUTKCN_NLTmdUJBed_JJwpEhM4bhWN9UWODsi_FIdtEnQfhEVzuQZQm0-ItGN73YOFO2jtFMh02qaRrDZYks1Qm6sFsCK4On8MIonijnpoR-d0zkCVWqalyKCty2Cl4b41_wfXHzDJ3ANMawO9nr7D-E6p6VU14duwtrk7Nw_gqt2Ojkenz2uFyWDL5eN5d9oOndr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+block+coordinate+variable+metric+forward-backward+algorithm&rft.jtitle=Journal+of+global+optimization&rft.au=Chouzenoux%2C+Emilie&rft.au=Pesquet%2C+Jean-Christophe&rft.au=Repetti%2C+Audrey&rft.date=2016-11-01&rft.pub=Springer&rft.issn=0925-5001&rft.volume=66&rft.issue=3&rft.spage=457&rft_id=info:doi/10.1007%2Fs10898-016-0405-9&rft.externalDocID=A718413587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon