A block coordinate variable metric forward–backward algorithm
A number of recent works have emphasized the prominent role played by the Kurdyka-Łojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this...
Saved in:
| Published in: | Journal of global optimization Vol. 66; no. 3; pp. 457 - 485 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.11.2016
Springer Springer Nature B.V Springer Verlag |
| Subjects: | |
| ISSN: | 0925-5001, 1573-2916 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A number of recent works have emphasized the prominent role played by the Kurdyka-Łojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this property, which is a sum of two terms: (i) a differentiable, but not necessarily convex, function and (ii) a function that is not necessarily convex, nor necessarily differentiable. The latter function is expressed as a separable sum of functions of blocks of variables. Such an optimization problem can be addressed with the Forward–Backward algorithm which can be accelerated thanks to the use of variable metrics derived from the Majorize–Minimize principle. We propose to combine the latter acceleration technique with an alternating minimization strategy which relies upon a flexible update rule. We give conditions under which the sequence generated by the resulting Block Coordinate Variable Metric Forward–Backward algorithm converges to a critical point of the objective function. An application example to a nonconvex phase retrieval problem encountered in signal/image processing shows the efficiency of the proposed optimization method. |
|---|---|
| AbstractList | A number of recent works have emphasized the prominent role played by the Kurdyka-Lojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this property, which is a sum of two terms: (i) a differentiable, but not necessarily convex, function and (ii) a function that is not necessarily convex, nor necessarily differentiable. The latter function is expressed as a separable sum of functions of blocks of variables. Such an optimization problem can be addressed with the Forward-Backward algorithm which can be accelerated thanks to the use of variable metrics derived from the Majorize-Minimize principle. We propose to combine the latter acceleration technique with an alternating minimization strategy which relies upon a flexible update rule. We give conditions under which the sequence generated by the resulting Block Coordinate Variable Metric Forward-Backward algorithm converges to a critical point of the objective function. An application example to a nonconvex phase retrieval problem encountered in signal/image processing shows the efficiency of the proposed optimization method. A number of recent works have emphasized the prominent role played by the Kurdyka-ojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this property, which is a sum of two terms: (i) a differentiable, but not necessarily convex, function and (ii) a function that is not necessarily convex, nor necessarily differentiable. The latter function is expressed as a separable sum of functions of blocks of variables. Such an optimization problem can be addressed with the Forward-Backward algorithm which can be accelerated thanks to the use of variable metrics derived from the Majorize-Minimize principle. We propose to combine the latter acceleration technique with an alternating minimization strategy which relies upon a flexible update rule. We give conditions under which the sequence generated by the resulting Block Coordinate Variable Metric Forward-Backward algorithm converges to a critical point of the objective function. An application example to a nonconvex phase retrieval problem encountered in signal/image processing shows the efficiency of the proposed optimization method. A number of recent works have emphasized the prominent role played by the Kurdyka-Lojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this property, which is a sum of a non necessarily convex differentiable function and a non necessarily differentiable or convex function. The latter function is expressed as a separable sum of functions of blocks of variables. Such an optimization problem can be addressed with the Forward-Backward algorithm which can be accelerated thanks to the use of variable metrics derived from the Majorize-Minimize principle. We propose to combine the latter acceleration technique with an alternating minimization strategy which relies upon a flexible update rule. We give conditions under which the sequence generated by the resulting Block Coordinate Variable Metric Forward-Backward algorithm converges to a critical point of the objective function. An application example to a nonconvex phase retrieval problem encountered in signal/image processing shows the efficiency of the proposed optimization method. A number of recent works have emphasized the prominent role played by the Kurdyka-Aaojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this property, which is a sum of two terms: (i) a differentiable, but not necessarily convex, function and (ii) a function that is not necessarily convex, nor necessarily differentiable. The latter function is expressed as a separable sum of functions of blocks of variables. Such an optimization problem can be addressed with the Forward-Backward algorithm which can be accelerated thanks to the use of variable metrics derived from the Majorize-Minimize principle. We propose to combine the latter acceleration technique with an alternating minimization strategy which relies upon a flexible update rule. We give conditions under which the sequence generated by the resulting Block Coordinate Variable Metric Forward-Backward algorithm converges to a critical point of the objective function. An application example to a nonconvex phase retrieval problem encountered in signal/image processing shows the efficiency of the proposed optimization method. A number of recent works have emphasized the prominent role played by the Kurdyka-Łojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this property, which is a sum of two terms: (i) a differentiable, but not necessarily convex, function and (ii) a function that is not necessarily convex, nor necessarily differentiable. The latter function is expressed as a separable sum of functions of blocks of variables. Such an optimization problem can be addressed with the Forward–Backward algorithm which can be accelerated thanks to the use of variable metrics derived from the Majorize–Minimize principle. We propose to combine the latter acceleration technique with an alternating minimization strategy which relies upon a flexible update rule. We give conditions under which the sequence generated by the resulting Block Coordinate Variable Metric Forward–Backward algorithm converges to a critical point of the objective function. An application example to a nonconvex phase retrieval problem encountered in signal/image processing shows the efficiency of the proposed optimization method. |
| Audience | Academic |
| Author | Chouzenoux, Emilie Pesquet, Jean-Christophe Repetti, Audrey |
| Author_xml | – sequence: 1 givenname: Emilie surname: Chouzenoux fullname: Chouzenoux, Emilie email: emilie.chouzenoux@univ-mlv.fr organization: Laboratoire d’Informatique Gaspard Monge and CNRS UMR 8049, Université Paris-Est Marne-la-Vallée – sequence: 2 givenname: Jean-Christophe surname: Pesquet fullname: Pesquet, Jean-Christophe organization: Laboratoire d’Informatique Gaspard Monge and CNRS UMR 8049, Université Paris-Est Marne-la-Vallée – sequence: 3 givenname: Audrey surname: Repetti fullname: Repetti, Audrey organization: Institute of Sensors, Signals and Systems, Heriot-Watt University |
| BackLink | https://hal.science/hal-00945918$$DView record in HAL |
| BookMark | eNp9kc9qFTEUh4NU8Lb6AO4G3Ohiav6dmWQll6Jt4YIbXYdM5uQ2bWZSk7kVd76Db-iTmMsoSEHJ4oTD9x348TslJ3OakZCXjJ4zSvu3hVGlVUtZ11JJodVPyIZBL1quWXdCNlRzaIFS9oyclnJLKdUK-Ia82zZDTO6ucSnlMcx2webB5mCHiM2ESw6u8Sl_tXn8-f3HYN3d8dvYuE85LDfTc_LU21jwxe95Rj5_eP_p4qrdfby8vtjuWic7WNqO-8FZcBqACxwHBD4KTkEMwKjVo7e9l4MYEbzng0aNHUc19ijQaumcOCNv1rs3Npr7HCabv5lkg7na7sxxVwNJ0Ew9sMq-Xtn7nL4csCxmCsVhjHbGdCiGKQChmOyhoq8eobfpkOeapFJcUyolV5U6X6m9jWjC7NOSratvxCm4WoQPdb_tmZJMgOqr0K-Cy6mUjN64sNglpLmKIRpGzbE1s7Zmamvm2JrR1WSPzD9h_-fw1SmVnfeY_wrxT-kXl2arUw |
| CitedBy_id | crossref_primary_10_1038_s41467_020_18818_6 crossref_primary_10_1016_j_sigpro_2016_12_022 crossref_primary_10_1016_j_cam_2020_113192 crossref_primary_10_1287_moor_2022_1256 crossref_primary_10_1007_s11590_023_02055_z crossref_primary_10_1080_02331934_2024_2439559 crossref_primary_10_1137_18M1173629 crossref_primary_10_1137_24M164392X crossref_primary_10_1007_s00034_017_0505_x crossref_primary_10_1088_1361_6420_ad3c67 crossref_primary_10_1145_3502729 crossref_primary_10_1007_s40305_023_00518_9 crossref_primary_10_1109_TPAMI_2019_2920591 crossref_primary_10_1007_s10589_022_00394_8 crossref_primary_10_1007_s13198_021_01433_z crossref_primary_10_1093_mnras_stab1903 crossref_primary_10_3934_fods_2025016 crossref_primary_10_1137_20M1357500 crossref_primary_10_1007_s11424_024_3568_3 crossref_primary_10_1109_TCI_2017_2697206 crossref_primary_10_1016_j_dsp_2019_102611 crossref_primary_10_1007_s00186_024_00851_6 crossref_primary_10_1007_s10107_020_01599_7 crossref_primary_10_1007_s10589_022_00441_4 crossref_primary_10_1007_s10589_018_0031_1 crossref_primary_10_1007_s10957_018_01454_y crossref_primary_10_1088_1361_6420_ab356d crossref_primary_10_1007_s10851_016_0696_y crossref_primary_10_1016_j_amc_2020_125719 crossref_primary_10_1007_s10851_024_01184_z crossref_primary_10_1109_TGRS_2017_2693366 crossref_primary_10_1016_j_apnum_2023_03_014 crossref_primary_10_1093_mnras_stx1267 crossref_primary_10_1137_17M1156678 crossref_primary_10_1007_s10851_019_00916_w crossref_primary_10_1093_mnras_stz3555 crossref_primary_10_1109_TASLP_2018_2881925 crossref_primary_10_1007_s10851_017_0732_6 crossref_primary_10_1089_cmb_2021_0108 crossref_primary_10_1007_s40305_023_00459_3 crossref_primary_10_1109_LSP_2023_3251891 crossref_primary_10_1016_j_dsp_2022_103610 crossref_primary_10_1080_17517575_2019_1701713 crossref_primary_10_1007_s10957_020_01639_4 crossref_primary_10_1007_s11075_024_01965_y crossref_primary_10_1016_j_cam_2020_112837 crossref_primary_10_1007_s10589_025_00708_6 crossref_primary_10_1080_10618600_2023_2282501 crossref_primary_10_1109_ACCESS_2020_3026685 crossref_primary_10_1016_j_sigpro_2018_04_006 crossref_primary_10_1137_19M1277552 crossref_primary_10_1007_s11565_022_00456_z crossref_primary_10_1109_TIP_2019_2913536 crossref_primary_10_1007_s10915_023_02446_5 crossref_primary_10_1080_02331934_2022_2057309 crossref_primary_10_1109_LGRS_2023_3278026 crossref_primary_10_1109_TSP_2016_2601299 crossref_primary_10_1109_TSP_2019_2959240 crossref_primary_10_1016_j_eswa_2020_114206 crossref_primary_10_1007_s40314_022_02143_3 crossref_primary_10_1137_17M1142624 crossref_primary_10_1109_TGRS_2018_2870486 crossref_primary_10_1137_17M1124085 crossref_primary_10_1137_23M1582345 crossref_primary_10_1016_j_image_2018_08_007 crossref_primary_10_1109_TSP_2021_3069677 crossref_primary_10_1007_s10957_018_1272_y crossref_primary_10_1007_s10589_018_0011_5 crossref_primary_10_1007_s10107_022_01809_4 crossref_primary_10_1007_s11590_023_01983_0 crossref_primary_10_1016_j_sigpro_2016_05_013 crossref_primary_10_1088_1361_6420_acbdb9 crossref_primary_10_1186_s13634_020_00684_5 crossref_primary_10_1016_j_jmaa_2024_128925 crossref_primary_10_1137_18M1171011 crossref_primary_10_1007_s10851_019_00884_1 crossref_primary_10_1088_1361_6420_acca43 crossref_primary_10_1093_mnras_stx2731 crossref_primary_10_1017_S096249291600009X crossref_primary_10_1093_mnras_stx415 |
| Cites_doi | 10.1088/0266-5611/23/4/008 10.1137/050626090 10.1137/060670080 10.1109/ICIP.2014.7025351 10.1007/BF00940050 10.1109/TSP.2013.2297687 10.1090/S0002-9947-09-05048-X 10.1007/s10957-016-0867-4 10.1109/ICASSP.2014.6853847 10.1007/s10107-011-0484-9 10.1007/s10957-013-0465-7 10.1007/978-3-662-02796-7 10.1007/s10107-013-0701-9 10.1007/s10107-012-0614-z 10.1109/TIP.2007.904387 10.1007/s10107-013-0738-9 10.1137/120887795 10.1287/moor.1100.0449 10.1137/140971233 10.1007/BF01584660 10.1109/ICASSP.2005.1415952 10.1109/42.563662 10.1007/3-540-31247-1 10.1007/s10107-007-0133-5 10.1109/LSP.2014.2362861 10.1137/050644641 10.1364/JOSAA.19.001334 10.1137/0330025 10.1007/BF00939948 10.24033/bsmf.1625 10.1016/j.na.2012.09.008 10.1007/s10957-014-0642-3 10.1137/0325050 10.1023/A:1017501703105 10.1137/130942954 10.1137/110848074 10.1137/120891009 10.1007/978-1-4419-9569-8_10 10.1109/ICIP.1995.537422 10.1364/AO.21.002758 10.1109/ICASSP.2015.7178120 10.1080/02331934.2012.733883 10.1109/ICASSP.2012.6287939 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2016 COPYRIGHT 2016 Springer Attribution |
| Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: COPYRIGHT 2016 Springer – notice: Attribution |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 1XC VOOES |
| DOI | 10.1007/s10898-016-0405-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Research Library (Proquest) Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Sciences (General) Computer Science |
| EISSN | 1573-2916 |
| EndPage | 485 |
| ExternalDocumentID | oai:HAL:hal-00945918v1 4215363341 A718413587 10_1007_s10898_016_0405_9 |
| Genre | Feature |
| GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L.0 L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U PUEGO 1XC VOOES |
| ID | FETCH-LOGICAL-c465t-62fbca5c95523edbe52d32053b510a9dfa7f4b3de5ff2b9e9e62e8d7e3ea94cc3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 98 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386373700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-5001 |
| IngestDate | Tue Oct 14 20:53:51 EDT 2025 Thu Sep 04 14:57:38 EDT 2025 Tue Nov 04 22:07:19 EST 2025 Sat Nov 29 10:09:45 EST 2025 Tue Nov 18 22:23:47 EST 2025 Sat Nov 29 07:51:58 EST 2025 Fri Feb 21 02:42:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | 68U10 Nonconvex optimization Phase retrieval Proximity operator Block coordinate descent Alternating minimization 90C26 90C05 Inverse problems 90C25 94A08 65K10 Nonsmooth optimization 49M27 65F08 Majorize–Minimize algorithm Majorize-Minimize algorithm |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c465t-62fbca5c95523edbe52d32053b510a9dfa7f4b3de5ff2b9e9e62e8d7e3ea94cc3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3631-6093 0000-0002-5943-8061 |
| OpenAccessLink | https://hal.science/hal-00945918 |
| PQID | 1829004428 |
| PQPubID | 29930 |
| PageCount | 29 |
| ParticipantIDs | hal_primary_oai_HAL_hal_00945918v1 proquest_miscellaneous_1855381475 proquest_journals_1829004428 gale_infotracacademiconefile_A718413587 crossref_citationtrail_10_1007_s10898_016_0405_9 crossref_primary_10_1007_s10898_016_0405_9 springer_journals_10_1007_s10898_016_0405_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-11-01 |
| PublicationDateYYYYMMDD | 2016-11-01 |
| PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
| PublicationTitle | Journal of global optimization |
| PublicationTitleAbbrev | J Glob Optim |
| PublicationYear | 2016 |
| Publisher | Springer US Springer Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V – name: Springer Verlag |
| References | JacobsonMWFesslerJAAn expanded theoretical treatment of iteration-dependent majorize-minimize algorithmsIEEE Trans. Image Process.2007161024112422246777410.1109/TIP.2007.904387 RazaviyaynMHongMLuoZA unified convergence analysis of block successive minimization methods for nonsmooth optimizationSIAM J. Optim.20132321126115330631521273.9012310.1137/120891009 BertsekasDPNonlinear Programming19992Belmont, MAAthena Scientific1015.90077 Chouzenoux, E., Pesquet, J.-C., Repetti, A.: Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory Appl. 162(1), 107–132 (2014) AttouchHBolteJOn the convergence of the proximal algorithm for nonsmooth functions involving analytic featuresMath. Program.200911651624212701165.9001810.1007/s10107-007-0133-5 XuYYinWA block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completionSIAM J. Imaging Sci.2013631758178931057871280.4904210.1137/120887795 CombettesPLVũBCVariable metric quasi-Fejér monotonicityNonlinear Anal.201378173129929831266.6508710.1016/j.na.2012.09.008 ShechtmanYBeckAEldarYGESPAR: efficient phase retrieval of sparse signalsIEEE Trans. Signal Process.2014462928938316032410.1109/TSP.2013.2297687 Chaux, C., Combettes, P.L., Pesquet, J.-C., Wajs, V.R.: A variational formulation for frame based inverse problems. Inverse Probl. 23(4), 1495–1518 (2007) PowellMJDOn search directions for minimization algorithmsMath. Program.197341932013215410258.9004310.1007/BF01584660 BauschkeHHCombettesPLLukeDRPhase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimizationJ. Opt. Soc. Am. A200219713341345191436510.1364/JOSAA.19.001334 LuoZQTsengPOn the linear convergence of descent methods for convex essentially smooth minimizationSIAM J. Control Optim.199230240842511490760756.9008410.1137/0330025 GerchbergRWSaxtonWOA practical algorithm for the determination of phase from image and diffraction plane picturesOptik197235237246 Repetti, A., Pham, M.Q., Duval, L., Chouzenoux, E., Pesquet, J.-C.: Euclid in a taxicab: Sparse blind deconvolution with smoothed ℓ1/ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1/\ell _2$$\end{document} regularization. IEEE Signal Process. Lett. 22(5), 539–543 (2015) Pustelnik, N., Benazza-Benhayia, A., Zheng, Y., Pesquet, J.-C.: Wavelet-based image deconvolution and reconstruction. To appear in Wiley Encyclopedia of Electrical and Electronics Engineering (2016). https://hal.archives-ouvertes.fr/hal-01164833v1 AttouchHBolteJSvaiterBFConvergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methodsMath. Program.20111379112930104211260.4904810.1007/s10107-011-0484-9 Mukherjee, S., Seelamantula, C.S.: An iterative algorithm for phase retrieval with sparsity constraints: application to frequency domain optical coherence tomography. In: Proceedings of IEEE Internationl Conference Acoust., Speech and Signal Process. (ICASSP 2012), pp. 553–556. Kyoto, Japan (2012) Bauschke, H.H., Combettes, P.L., Luke, D.R.: A new generation of iterative transform algorithms for phase contrast tomography. In: Proceedings of IEEE International Conference Acoust., Speech Signal Process. (ICASSP 2005), vol. 4, pp. 89–92. Philadelphia, PA (2005) RichtárikPTalácMIteration complexity of randomized block-coordinate descent methods for minimizing a composite functionMath. Program.2014144113831799531301.6505110.1007/s10107-012-0614-z Pirayre, A., Couprie, C., Duval, L., Pesquet, J.-C.: Fast convex optimization for connectivity enforcement in gene regulatory network inference. In: Proceedings of IEEE International Conference Acoust., Speech Signal Process. (ICASSP 2015), pp. 1002–1006. Brisbane, Australia (2015) Repetti, A., Chouzenoux, E., Pesquet, J.-C.: A nonconvex regularized approach for phase retrieval. In: Proceedings of IEEE International Conference Image Process. (ICIP 2014), pp. 1753–1757. Paris, France (2014) Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. Editions du centre National de la Recherche Scientifique, pp. 87–89 (1963) DaintyJCFienupJRStarkHPhase retrieval and image reconstruction for astronomyImage Recovery: Theory and Application1987Orlando, FLAcademic Press231275 FrankelPGarrigosGPeypouquetJSplitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence ratesJ. Optim. Theory Appl.2015165387490033416711316.4903910.1007/s10957-014-0642-3 Hiriart-UrrutyJBLemaréchalCConvex Analysis and Minimization Algorithms1993New YorkSpringer0795.49001 WaldspurgerId’AspremontAMallatSPhase recovery, maxcut and complex semidefinite programmingMath. Program.20151491478133004561329.9401810.1007/s10107-013-0738-9 CandèsEEldarYStrohmerTVoroninskiVPhase retrieval via matrix completionSIAM J. Imaging Sci.20136119922530329521280.4905210.1137/110848074 FesslerJAGrouped coordinate ascent algorithms for penalized-likelihood transmission image reconstructionIEEE Trans. Med. Imag.199716216617510.1109/42.563662 OrtegaJMRheinboldtWCIterative Solution of Nonlinear Equations in Several Variables1970New YorkAcademic Press0241.65046 Tappenden, R., Richtárik, P., Gondzio, J.: Inexact coordinate descent: complexity and preconditioning. J. Optim. Theory Appl. (to appear). arXiv:1304.5530v2 BrègmanLMThe method of successive projection for finding a common point of convex setsSoviet Math. Dokl.196566886920142.16804 CombettesPLPesquetJ-CStochastic quasi-Fejér block-coordinate fixed point iterations with random sweepingSIAM J. Optim.2015251221124833614441317.6513510.1137/140971233 LuenbergerDGLinear and Nonlinear Programming1973ReadingAddison-Wesley0297.90044 AttouchHBolteJRedontPSoubeyranAProximal alternating minimization and projection methods for nonconvex problems. An approach based on the Kurdyka-Łojasiewicz inequalityMath. Oper. Res.201035243845726747281214.6503610.1287/moor.1100.0449 SotthiviratSFesslerJAImage recovery using partitioned-separable paraboloidal surrogate coordinate ascent algorithmsIEEE Trans. Signal Process.2002113306317 BolteJDaniilidisALewisAThe Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systemsSIAM J. Optim.2006171205122322745101129.2601210.1137/050644641 RockafellarRTWetsRJBVariational Analysis19971BerlinSpringer0888.49001 KurdykaKParusinskiAwf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_f$$\end{document}-stratification of subanalytic functions and the Łojasiewicz inequality. Comptes rendus de l’Académie des sciencesSérie 1, Mathématique1994318212913312603240799.32007 BolteJDaniilidisALewisAShiotaMClarke subgradients of stratifiable functionsSIAM J. Optim.200718255657223384511142.4900610.1137/060670080 MordukhovichBSVariational Analysis and Generalized Differentiation. Vol. I: Basic theory, Series of Comprehensive Studies in Mathematics, vol. 3302006BerlinSpringer CombettesPLWajsVRSignal recovery by proximal forward-backward splittingMultiscale Model. Simul.2005441168120022038491179.9403110.1137/050626090 MoreauJJProximité et dualité dans un espace hilbertienBull. Soc. Math. France1965932732992019520136.12101 TsengPConvergence of a block coordinate descent method for nondifferentiable minimizationJ. Optim. Theory Appl.2001109347549418350691006.6506210.1023/A:1017501703105 BolteJDaniilidisALeyOMazetLCharacterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexityTrans. Am. Math. Soc.201036263319336325929581202.2602610.1090/S0002-9947-09-05048-X MallatSA Wavelet Tour of Signal Processing20093BurlingtonAcademic Press1170.94003 Repetti, A., Chouzenoux, E., Pesquet, J.-C.: A preconditioned forward-backward approach with application to large-scale nonconvex spectral unmixing problems. In: Proceedings of IEEE International Conference Acoust., Speech Signal Process. (ICASSP 2014), pp. 1498–1502. Firenze, Italy (2014) CensorYLentAOptimization of logx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log x$$\end{document} entropy over linear equality constraintsSIAM J. Control Optim.19872549219338939900631.9005010.1137/0325050 CombettesPLVũBCVariable metric forward-backward splitting with applications to monotone inclusions in dualityOptimization20146391289131832258451309.9010910.1080/02331934.2012.733883 SaxtonWOComputer Techniques for Image Processing in Electron Microscopy1978New YorkAcademic Press Abboud, F., Chouzenoux, E., Pesquet, J.-C., Chenot, J.H., Laborelli, L.: A hybrid alternating proximal method for blind video restoration. In: Proceedings of European Signal Processing Conference (EUSIPCO 2014), pp. 1811–1815. Lisboa, Portugal (2014) BolteJSabachSTeboulleMProximal alternating linearized minimization for nonconvex and nonsmooth problemsMath. Program.2014146145949432326231297.9012510.1007/s10107-013-0701-9 FienupJRPhase retrieval algorithms: a comparisonAppl. Opt.198221152758276910.1364/AO.21.002758 Saquib, S., Zheng, J., Bouman, C.A., Sauer, K.D.: Parallel computation of sequential pixel updates in statistical tomographic reconstruction. In: Proceedings of IEEE International Conference Image Process. (ICIP 1995), vol. 2, 93–96. Washington, DC (1995) Hesse, R., Luke, D.R., Sabach, S., Tam, M.K.: Proximal heterogeneous block input-output method and application to blind ptychographic diffraction imaging. Tech. rep. (2014). arXiv:1408.1887 Xu, Y., Yin, W.: A globally convergent algorithm f ZQ Luo (405_CR37) 1992; 30 405_CR61 RT Rockafellar (405_CR52) 1997 J Bolte (405_CR11) 2007; 18 H Attouch (405_CR3) 2010; 35 JC Dainty (405_CR24) 1987 JJ Moreau (405_CR40) 1965; 93 MJD Powell (405_CR45) 1973; 4 I Waldspurger (405_CR59) 2015; 149 DG Luenberger (405_CR35) 1973 WO Saxton (405_CR54) 1978 DP Bertsekas (405_CR9) 1999 JA Fessler (405_CR25) 1997; 16 405_CR53 405_CR50 405_CR57 P Richtárik (405_CR51) 2014; 144 Y Shechtman (405_CR55) 2014; 4 405_CR17 S Mallat (405_CR38) 2009 PL Combettes (405_CR21) 2013; 78 405_CR19 405_CR18 H Attouch (405_CR4) 2011; 137 PL Combettes (405_CR23) 2005; 4 Y Xu (405_CR60) 2013; 6 PL Combettes (405_CR22) 2014; 63 JB Hiriart-Urruty (405_CR31) 1993 A Auslender (405_CR5) 1992; 73 J Bolte (405_CR12) 2010; 362 405_CR41 E Candès (405_CR15) 2013; 6 405_CR46 405_CR44 PL Combettes (405_CR20) 2015; 25 P Ochs (405_CR42) 2014; 7 405_CR49 405_CR48 P Frankel (405_CR27) 2015; 165 HH Bauschke (405_CR6) 2002; 19 M Razaviyayn (405_CR47) 2013; 23 GH Golub (405_CR29) 1996 BS Mordukhovich (405_CR39) 2006 RW Gerchberg (405_CR28) 1972; 35 H Attouch (405_CR2) 2009; 116 J Bolte (405_CR13) 2014; 146 JR Fienup (405_CR26) 1982; 21 405_CR1 405_CR7 405_CR30 ZQ Luo (405_CR36) 1992; 72 LM Brègman (405_CR14) 1965; 6 MW Jacobson (405_CR32) 2007; 16 405_CR34 Y Censor (405_CR16) 1987; 25 JM Ortega (405_CR43) 1970 WI Zangwill (405_CR62) 1969 J Bolte (405_CR10) 2006; 17 HH Bauschke (405_CR8) 2006; 2 P Tseng (405_CR58) 2001; 109 S Sotthivirat (405_CR56) 2002; 11 K Kurdyka (405_CR33) 1994; 318 |
| References_xml | – reference: BertsekasDPNonlinear Programming19992Belmont, MAAthena Scientific1015.90077 – reference: BolteJSabachSTeboulleMProximal alternating linearized minimization for nonconvex and nonsmooth problemsMath. Program.2014146145949432326231297.9012510.1007/s10107-013-0701-9 – reference: MordukhovichBSVariational Analysis and Generalized Differentiation. Vol. I: Basic theory, Series of Comprehensive Studies in Mathematics, vol. 3302006BerlinSpringer – reference: ShechtmanYBeckAEldarYGESPAR: efficient phase retrieval of sparse signalsIEEE Trans. Signal Process.2014462928938316032410.1109/TSP.2013.2297687 – reference: Bauschke, H.H., Combettes, P.L., Luke, D.R.: A new generation of iterative transform algorithms for phase contrast tomography. In: Proceedings of IEEE International Conference Acoust., Speech Signal Process. (ICASSP 2005), vol. 4, pp. 89–92. Philadelphia, PA (2005) – reference: CombettesPLVũBCVariable metric quasi-Fejér monotonicityNonlinear Anal.201378173129929831266.6508710.1016/j.na.2012.09.008 – reference: MoreauJJProximité et dualité dans un espace hilbertienBull. Soc. Math. France1965932732992019520136.12101 – reference: XuYYinWA block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completionSIAM J. Imaging Sci.2013631758178931057871280.4904210.1137/120887795 – reference: BolteJDaniilidisALewisAThe Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systemsSIAM J. Optim.2006171205122322745101129.2601210.1137/050644641 – reference: CandèsEEldarYStrohmerTVoroninskiVPhase retrieval via matrix completionSIAM J. Imaging Sci.20136119922530329521280.4905210.1137/110848074 – reference: PowellMJDOn search directions for minimization algorithmsMath. Program.197341932013215410258.9004310.1007/BF01584660 – reference: CensorYLentAOptimization of logx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log x$$\end{document} entropy over linear equality constraintsSIAM J. Control Optim.19872549219338939900631.9005010.1137/0325050 – reference: KurdykaKParusinskiAwf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_f$$\end{document}-stratification of subanalytic functions and the Łojasiewicz inequality. Comptes rendus de l’Académie des sciencesSérie 1, Mathématique1994318212913312603240799.32007 – reference: Tappenden, R., Richtárik, P., Gondzio, J.: Inexact coordinate descent: complexity and preconditioning. J. Optim. Theory Appl. (to appear). arXiv:1304.5530v2 – reference: AttouchHBolteJRedontPSoubeyranAProximal alternating minimization and projection methods for nonconvex problems. An approach based on the Kurdyka-Łojasiewicz inequalityMath. Oper. Res.201035243845726747281214.6503610.1287/moor.1100.0449 – reference: ZangwillWINonlinear Programming1969Englewood CliffsPrentice-Hall0191.49101 – reference: LuenbergerDGLinear and Nonlinear Programming1973ReadingAddison-Wesley0297.90044 – reference: GolubGHVan LoanCFMatrix Computations19963BaltimoreJohns Hopkins University Press0865.65009 – reference: Repetti, A., Pham, M.Q., Duval, L., Chouzenoux, E., Pesquet, J.-C.: Euclid in a taxicab: Sparse blind deconvolution with smoothed ℓ1/ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1/\ell _2$$\end{document} regularization. IEEE Signal Process. Lett. 22(5), 539–543 (2015) – reference: AttouchHBolteJOn the convergence of the proximal algorithm for nonsmooth functions involving analytic featuresMath. Program.200911651624212701165.9001810.1007/s10107-007-0133-5 – reference: WaldspurgerId’AspremontAMallatSPhase recovery, maxcut and complex semidefinite programmingMath. Program.20151491478133004561329.9401810.1007/s10107-013-0738-9 – reference: Chaux, C., Combettes, P.L., Pesquet, J.-C., Wajs, V.R.: A variational formulation for frame based inverse problems. Inverse Probl. 23(4), 1495–1518 (2007) – reference: Xu, Y., Yin, W.: A globally convergent algorithm for nonconvex optimization based on block coordinate update. Tech. rep. (2014). arXiv:1410.1386 – reference: Repetti, A., Chouzenoux, E., Pesquet, J.-C.: A nonconvex regularized approach for phase retrieval. In: Proceedings of IEEE International Conference Image Process. (ICIP 2014), pp. 1753–1757. Paris, France (2014) – reference: BolteJDaniilidisALeyOMazetLCharacterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexityTrans. Am. Math. Soc.201036263319336325929581202.2602610.1090/S0002-9947-09-05048-X – reference: Hiriart-UrrutyJBLemaréchalCConvex Analysis and Minimization Algorithms1993New YorkSpringer0795.49001 – reference: RockafellarRTWetsRJBVariational Analysis19971BerlinSpringer0888.49001 – reference: LuoZQTsengPOn the convergence of the coordinate descent method for convex differentiable minimizationJ. Optim. Theory Appl.199272173511417640795.9006910.1007/BF00939948 – reference: Pustelnik, N., Benazza-Benhayia, A., Zheng, Y., Pesquet, J.-C.: Wavelet-based image deconvolution and reconstruction. To appear in Wiley Encyclopedia of Electrical and Electronics Engineering (2016). https://hal.archives-ouvertes.fr/hal-01164833v1 – reference: FesslerJAGrouped coordinate ascent algorithms for penalized-likelihood transmission image reconstructionIEEE Trans. Med. Imag.199716216617510.1109/42.563662 – reference: FienupJRPhase retrieval algorithms: a comparisonAppl. Opt.198221152758276910.1364/AO.21.002758 – reference: Abboud, F., Chouzenoux, E., Pesquet, J.-C., Chenot, J.H., Laborelli, L.: A hybrid alternating proximal method for blind video restoration. In: Proceedings of European Signal Processing Conference (EUSIPCO 2014), pp. 1811–1815. Lisboa, Portugal (2014) – reference: BolteJDaniilidisALewisAShiotaMClarke subgradients of stratifiable functionsSIAM J. Optim.200718255657223384511142.4900610.1137/060670080 – reference: OchsPChenYBroxTPockTiPiano: inertial proximal algorithm for non-convex optimizationSIAM J. Imaging Sci.2014721388141932188221296.9009410.1137/130942954 – reference: RazaviyaynMHongMLuoZA unified convergence analysis of block successive minimization methods for nonsmooth optimizationSIAM J. Optim.20132321126115330631521273.9012310.1137/120891009 – reference: BauschkeHHCombettesPLNollDJoint minimization with alternating Bregman proximity operatorsPac. J. Optim.20062340142422657471124.90019 – reference: Saquib, S., Zheng, J., Bouman, C.A., Sauer, K.D.: Parallel computation of sequential pixel updates in statistical tomographic reconstruction. In: Proceedings of IEEE International Conference Image Process. (ICIP 1995), vol. 2, 93–96. Washington, DC (1995) – reference: Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. Editions du centre National de la Recherche Scientifique, pp. 87–89 (1963) – reference: Pirayre, A., Couprie, C., Duval, L., Pesquet, J.-C.: Fast convex optimization for connectivity enforcement in gene regulatory network inference. In: Proceedings of IEEE International Conference Acoust., Speech Signal Process. (ICASSP 2015), pp. 1002–1006. Brisbane, Australia (2015) – reference: BauschkeHHCombettesPLLukeDRPhase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimizationJ. Opt. Soc. Am. A200219713341345191436510.1364/JOSAA.19.001334 – reference: RichtárikPTalácMIteration complexity of randomized block-coordinate descent methods for minimizing a composite functionMath. Program.2014144113831799531301.6505110.1007/s10107-012-0614-z – reference: GerchbergRWSaxtonWOA practical algorithm for the determination of phase from image and diffraction plane picturesOptik197235237246 – reference: TsengPConvergence of a block coordinate descent method for nondifferentiable minimizationJ. Optim. Theory Appl.2001109347549418350691006.6506210.1023/A:1017501703105 – reference: AuslenderAAsymptotic properties of the Fenchel dual functional and applications to decomposition problemsJ. Optim. Theory Appl.199273342744911648020794.4902610.1007/BF00940050 – reference: MallatSA Wavelet Tour of Signal Processing20093BurlingtonAcademic Press1170.94003 – reference: Repetti, A., Chouzenoux, E., Pesquet, J.-C.: A preconditioned forward-backward approach with application to large-scale nonconvex spectral unmixing problems. In: Proceedings of IEEE International Conference Acoust., Speech Signal Process. (ICASSP 2014), pp. 1498–1502. Firenze, Italy (2014) – reference: CombettesPLWajsVRSignal recovery by proximal forward-backward splittingMultiscale Model. Simul.2005441168120022038491179.9403110.1137/050626090 – reference: JacobsonMWFesslerJAAn expanded theoretical treatment of iteration-dependent majorize-minimize algorithmsIEEE Trans. Image Process.2007161024112422246777410.1109/TIP.2007.904387 – reference: Hesse, R., Luke, D.R., Sabach, S., Tam, M.K.: Proximal heterogeneous block input-output method and application to blind ptychographic diffraction imaging. Tech. rep. (2014). arXiv:1408.1887 – reference: AttouchHBolteJSvaiterBFConvergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methodsMath. Program.20111379112930104211260.4904810.1007/s10107-011-0484-9 – reference: Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2010) – reference: CombettesPLVũBCVariable metric forward-backward splitting with applications to monotone inclusions in dualityOptimization20146391289131832258451309.9010910.1080/02331934.2012.733883 – reference: Mukherjee, S., Seelamantula, C.S.: An iterative algorithm for phase retrieval with sparsity constraints: application to frequency domain optical coherence tomography. In: Proceedings of IEEE Internationl Conference Acoust., Speech and Signal Process. (ICASSP 2012), pp. 553–556. Kyoto, Japan (2012) – reference: SotthiviratSFesslerJAImage recovery using partitioned-separable paraboloidal surrogate coordinate ascent algorithmsIEEE Trans. Signal Process.2002113306317 – reference: OrtegaJMRheinboldtWCIterative Solution of Nonlinear Equations in Several Variables1970New YorkAcademic Press0241.65046 – reference: BrègmanLMThe method of successive projection for finding a common point of convex setsSoviet Math. Dokl.196566886920142.16804 – reference: LuoZQTsengPOn the linear convergence of descent methods for convex essentially smooth minimizationSIAM J. Control Optim.199230240842511490760756.9008410.1137/0330025 – reference: FrankelPGarrigosGPeypouquetJSplitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence ratesJ. Optim. Theory Appl.2015165387490033416711316.4903910.1007/s10957-014-0642-3 – reference: Chouzenoux, E., Pesquet, J.-C., Repetti, A.: Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory Appl. 162(1), 107–132 (2014) – reference: DaintyJCFienupJRStarkHPhase retrieval and image reconstruction for astronomyImage Recovery: Theory and Application1987Orlando, FLAcademic Press231275 – reference: CombettesPLPesquetJ-CStochastic quasi-Fejér block-coordinate fixed point iterations with random sweepingSIAM J. Optim.2015251221124833614441317.6513510.1137/140971233 – reference: SaxtonWOComputer Techniques for Image Processing in Electron Microscopy1978New YorkAcademic Press – ident: 405_CR17 doi: 10.1088/0266-5611/23/4/008 – ident: 405_CR61 – volume: 4 start-page: 1168 issue: 4 year: 2005 ident: 405_CR23 publication-title: Multiscale Model. Simul. doi: 10.1137/050626090 – volume: 18 start-page: 556 issue: 2 year: 2007 ident: 405_CR11 publication-title: SIAM J. Optim. doi: 10.1137/060670080 – ident: 405_CR50 doi: 10.1109/ICIP.2014.7025351 – volume: 35 start-page: 237 year: 1972 ident: 405_CR28 publication-title: Optik – volume: 73 start-page: 427 issue: 3 year: 1992 ident: 405_CR5 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00940050 – volume: 4 start-page: 928 issue: 62 year: 2014 ident: 405_CR55 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2297687 – volume: 362 start-page: 3319 issue: 6 year: 2010 ident: 405_CR12 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-09-05048-X – ident: 405_CR57 doi: 10.1007/s10957-016-0867-4 – ident: 405_CR49 doi: 10.1109/ICASSP.2014.6853847 – volume: 137 start-page: 91 year: 2011 ident: 405_CR4 publication-title: Math. Program. doi: 10.1007/s10107-011-0484-9 – volume-title: Computer Techniques for Image Processing in Electron Microscopy year: 1978 ident: 405_CR54 – ident: 405_CR18 doi: 10.1007/s10957-013-0465-7 – volume-title: Convex Analysis and Minimization Algorithms year: 1993 ident: 405_CR31 doi: 10.1007/978-3-662-02796-7 – volume: 146 start-page: 459 issue: 1 year: 2014 ident: 405_CR13 publication-title: Math. Program. doi: 10.1007/s10107-013-0701-9 – volume: 144 start-page: 1 issue: 1 year: 2014 ident: 405_CR51 publication-title: Math. Program. doi: 10.1007/s10107-012-0614-z – volume: 6 start-page: 688 year: 1965 ident: 405_CR14 publication-title: Soviet Math. Dokl. – volume-title: Nonlinear Programming year: 1999 ident: 405_CR9 – volume: 16 start-page: 2411 issue: 10 year: 2007 ident: 405_CR32 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.904387 – volume: 318 start-page: 129 issue: 2 year: 1994 ident: 405_CR33 publication-title: Série 1, Mathématique – volume: 149 start-page: 47 issue: 1 year: 2015 ident: 405_CR59 publication-title: Math. Program. doi: 10.1007/s10107-013-0738-9 – ident: 405_CR46 – volume-title: Matrix Computations year: 1996 ident: 405_CR29 – volume: 2 start-page: 401 issue: 3 year: 2006 ident: 405_CR8 publication-title: Pac. J. Optim. – volume: 6 start-page: 1758 issue: 3 year: 2013 ident: 405_CR60 publication-title: SIAM J. Imaging Sci. doi: 10.1137/120887795 – volume-title: Variational Analysis year: 1997 ident: 405_CR52 – volume: 35 start-page: 438 issue: 2 year: 2010 ident: 405_CR3 publication-title: Math. Oper. Res. doi: 10.1287/moor.1100.0449 – volume: 25 start-page: 1221 year: 2015 ident: 405_CR20 publication-title: SIAM J. Optim. doi: 10.1137/140971233 – volume: 4 start-page: 193 year: 1973 ident: 405_CR45 publication-title: Math. Program. doi: 10.1007/BF01584660 – ident: 405_CR7 doi: 10.1109/ICASSP.2005.1415952 – volume: 16 start-page: 166 issue: 2 year: 1997 ident: 405_CR25 publication-title: IEEE Trans. Med. Imag. doi: 10.1109/42.563662 – ident: 405_CR34 – volume-title: Nonlinear Programming year: 1969 ident: 405_CR62 – ident: 405_CR30 – volume-title: Variational Analysis and Generalized Differentiation. Vol. I: Basic theory, Series of Comprehensive Studies in Mathematics, vol. 330 year: 2006 ident: 405_CR39 doi: 10.1007/3-540-31247-1 – volume: 116 start-page: 5 year: 2009 ident: 405_CR2 publication-title: Math. Program. doi: 10.1007/s10107-007-0133-5 – ident: 405_CR48 doi: 10.1109/LSP.2014.2362861 – volume: 17 start-page: 1205 year: 2006 ident: 405_CR10 publication-title: SIAM J. Optim. doi: 10.1137/050644641 – volume-title: Linear and Nonlinear Programming year: 1973 ident: 405_CR35 – volume: 19 start-page: 1334 issue: 7 year: 2002 ident: 405_CR6 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.19.001334 – volume: 30 start-page: 408 issue: 2 year: 1992 ident: 405_CR37 publication-title: SIAM J. Control Optim. doi: 10.1137/0330025 – volume: 11 start-page: 306 issue: 3 year: 2002 ident: 405_CR56 publication-title: IEEE Trans. Signal Process. – volume-title: Iterative Solution of Nonlinear Equations in Several Variables year: 1970 ident: 405_CR43 – volume: 72 start-page: 7 issue: 1 year: 1992 ident: 405_CR36 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00939948 – volume: 93 start-page: 273 year: 1965 ident: 405_CR40 publication-title: Bull. Soc. Math. France doi: 10.24033/bsmf.1625 – volume: 78 start-page: 17 year: 2013 ident: 405_CR21 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2012.09.008 – volume: 165 start-page: 874 issue: 3 year: 2015 ident: 405_CR27 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-014-0642-3 – volume: 25 start-page: 921 issue: 4 year: 1987 ident: 405_CR16 publication-title: SIAM J. Control Optim. doi: 10.1137/0325050 – volume: 109 start-page: 475 issue: 3 year: 2001 ident: 405_CR58 publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1017501703105 – volume-title: A Wavelet Tour of Signal Processing year: 2009 ident: 405_CR38 – volume: 7 start-page: 1388 issue: 2 year: 2014 ident: 405_CR42 publication-title: SIAM J. Imaging Sci. doi: 10.1137/130942954 – volume: 6 start-page: 199 issue: 1 year: 2013 ident: 405_CR15 publication-title: SIAM J. Imaging Sci. doi: 10.1137/110848074 – volume: 23 start-page: 1126 issue: 2 year: 2013 ident: 405_CR47 publication-title: SIAM J. Optim. doi: 10.1137/120891009 – ident: 405_CR19 doi: 10.1007/978-1-4419-9569-8_10 – ident: 405_CR53 doi: 10.1109/ICIP.1995.537422 – volume: 21 start-page: 2758 issue: 15 year: 1982 ident: 405_CR26 publication-title: Appl. Opt. doi: 10.1364/AO.21.002758 – ident: 405_CR44 doi: 10.1109/ICASSP.2015.7178120 – ident: 405_CR1 – volume: 63 start-page: 1289 issue: 9 year: 2014 ident: 405_CR22 publication-title: Optimization doi: 10.1080/02331934.2012.733883 – ident: 405_CR41 doi: 10.1109/ICASSP.2012.6287939 – start-page: 231 volume-title: Image Recovery: Theory and Application year: 1987 ident: 405_CR24 |
| SSID | ssj0009852 |
| Score | 2.5205982 |
| Snippet | A number of recent works have emphasized the prominent role played by the Kurdyka-Łojasiewicz inequality for proving the convergence of iterative algorithms... A number of recent works have emphasized the prominent role played by the Kurdyka-Lojasiewicz inequality for proving the convergence of iterative algorithms... A number of recent works have emphasized the prominent role played by the Kurdyka-ojasiewicz inequality for proving the convergence of iterative algorithms... A number of recent works have emphasized the prominent role played by the Kurdyka-Aaojasiewicz inequality for proving the convergence of iterative algorithms... |
| SourceID | hal proquest gale crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 457 |
| SubjectTerms | Algorithms Computer Science Convergence Convex analysis Efficiency Engineering Sciences Inequalities Mathematical analysis Mathematics Mathematics and Statistics Minimization Operations Research/Decision Theory Optimization Real Functions Signal and Image processing Strategy Studies |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfY4IE9MDZA6zZQQEh8TBFtmrTNA0InxLQHmPYA0t6qfLKJrbftbvf3Y_fSuwOJvfBWtWlq1XFsx_bPAK-rhkDKrOHOe8dlLCtuvHAcHTGKe5WhiXnfbKI-Pm5OT_VJOnCbpLTKYU_sN2o_dnRG_qGgiF8u0Vr-dHXNqWsURVdTC401uI-WTUEpXd_EyRJ0t-k77uRaKK5wPx6imvPSuYaKywr0p9Fm4foPvZR257UzSo5csTz_Cpb2Ouhw83-pfwyPkvXJRvPlsgX3QrcNGyuYhNuwlaR9wt4mSOp3T-DjiFnUer-YG6Ozet6hgcpm6GVT3RW7pKZcjqH122fgWjoRxAtmLn4iCdOzy6fw4_DL989HPDVe4E5WasorEa0zymmFbmrwNijhS4HialGCjfbR1FHa0gcVo7A66FCJ0Pg6lMFo6Vz5DNa7cRd2gOWxtjLaaKSrpa61jV4b9BmVDV4EVWeQD7-9dQmVnJpjXLRLPGXiVEuZaMSpVmfwfvHK1RyS467Bb4iXLYkrzutMqjpA6gj4qh2hbkY9rhqk5BWyezEjwW4fjb62dI_SL5UumlmRwf7A3zYJ-6RdMjeDl4vHKKYUezFdGN_SGIWqpZC1yuBgWEUrU_yL_t27P7gHDwWt4b44ch_Wpze34Tk8cLPp-eTmRS8NvwGeyQ3d priority: 102 providerName: ProQuest |
| Title | A block coordinate variable metric forward–backward algorithm |
| URI | https://link.springer.com/article/10.1007/s10898-016-0405-9 https://www.proquest.com/docview/1829004428 https://www.proquest.com/docview/1855381475 https://hal.science/hal-00945918 |
| Volume | 66 |
| WOSCitedRecordID | wos000386373700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-2916 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: M0C dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-2916 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-2916 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-2916 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest ABI/INFORM Collection customDbUrl: eissn: 1573-2916 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: 7WY dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-2916 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Research Library customDbUrl: eissn: 1573-2916 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: M2O dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1573-2916 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xLQc4ULqACJSVQUi8FCkvx_EJLVWrStBl1fIoXCLbsemKNos22z3zH_iH_BJmUme7IECCyygPx7KSGc9MZuYbgId5QSBlWoWmqkyYuTQPVZWYEB0xinultnBR22xCjEbF0ZEc-zrupst270KS7U69UuxWUDlYjB4wWhmh7ME6aruC-jUcHL67QNot2jY7kUx4yHET7kKZv5viJ2Xkt-TeMWVErpibv0RIW8Wzu_FfS74O17ydyYbnjLEJl2zdh42uhwPzIt2HqyuAhHi2v0Rxbfqw6Uc17LFHp35yA54PmUYF-JmZKfqtkxptVbZAh5tKsNgp9ecyDA1hSsb9_vWbpt-DeMjUyafpbDI_Pr0Jb3d33mzvhb4LQ2iynM_DPHHaKG4kR5_VVtrypEoTlF2N4qxk5ZRwmU4ry51LtLTS5oktKmFTq2RmTHoL1uppbW8Di5zQmdNOZUZkUkjtKqnQgeTaVonlIoCo-xyl8RDl1CnjpLwAV6Y3WlJaGr3RUgbwdPnIl3N8jr8NfkTfuCTZxXmN8iUIuDpCwSqHqKhRqfMCV_IA2WA5I2Fw7w1flXSNcjG5jItFHMBWxyWll_ymjCkyHWXo1QVwf3kbZZYCMaq20zMaw1HPxJngATzrOGdlij-t_84_jb4LVxJivbZwcgvW5rMzew8um8V80swG0BPvPwxg_cXOaHyAZy9FiHQ_2iaavG7pmKg4RDrmHwetmP0AALAYOQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BQk4AC0gAgUMAlFAK-z1ru09VCgCqlQNUQ9F6s3sk1akTmnSIP4Uv5EZx04CEr31wM3yY722v52HZ-YbgOdZQSRlRjPrnGUipBnTjluGjhjFvVJfhLhuNpEPBsXhodpfgV9tLQylVbYysRbUbmTpH_nbhCJ-sUBr-d3pd0Zdoyi62rbQmMFiz__8gS7beHv3A37fF5zvfDx432NNVwFmRSYnLOPBWC2tkuiDeWe85C7liEWD8NTKBZ0HYVLnZQjcKK98xn3hcp96rYS1KY67ClcEMYtRqiDfX5D8FnWHn1hxySTK_zaKOivVK6iYLUH_HW0kpv7Qg402WD2iZMwlS_ev4Gyt83Zu_W9v6zbcbKzrqDtbDuuw4qsNuLHEubgB6400G0dbDeX2qzuw3Y0MavVvkR3hXI8rNMCjqca1aYY-OqGmYzZC677OMDb0xxM3Ij38io88OTq5C58v5aHuwVo1qvx9iOKQGxFM0MLmQuXKBKc0-sTSeMe9zDsQt5-5tA3rOjX_GJYLvmhCRkmZdoSMUnXg9fyS0xnlyEUnvyTslCSOcFyrm6oKnB0Re5VdtD3QTpEFzuQZwms-ItGK97r9kvZReqlUSTFNOrDZ4qlshNm4XICpA0_nh1EMUWxJV350TudIVJ2JyGUH3rSoXRriX_N_cPENn8C13sGnftnfHew9hOuc1k9dCLoJa5Ozc_8Irtrp5Hh89rheiRF8uWww_wYAG25_ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BSE4AC0gDAUWBOIlq_baa3sPFYooUatWUQ4gVVyWfdKKNClNGsRf49cx49hJQKK3HrhZfqzX9rfz8Mx8A_C8qIikzOjYOmfjPGRFrB23MTpiFPfKfBWSutlE2etVh4eyvwK_2loYSqtsZWItqN3I0j_yrZQifkmO1vJWaNIi-jvdd6ffY-ogRZHWtp3GDCL7_ucPdN_G23s7-K1fcN798PH9btx0GIhtXohJXPBgrBZWCvTHvDNecJdxxKVBqGrpgi5DbjLnRQjcSC99wX3lSp95LXNrMxx3Fa6U6GNSOmFffF4Q_lZ1t59EchEL1AVtRHVWtldRYVuKvjzaS7H8Qyc2mmH1iBIzl6zevwK1tf7r3vqf39xtuNlY3awzWybrsOKHG3BjiYtxA9YbKTdmrxoq7td3YLvDDGr7b8yOcK7HQzTM2VTjmjUDz06oGZllaPXXmceG_oTiBtODr_jIk6OTu_DpUh7qHqwNR0N_H1gSSpMHE3Ruy1yW0gQnNfrKwnjHvSgjSNpPrmzDxk5NQQZqwSNNKFGUgUcoUTKCN_NLTmdUJBed_JJwpEhM4bhWN9UWODsi_FIdtEnQfhEVzuQZQm0-ItGN73YOFO2jtFMh02qaRrDZYks1Qm6sFsCK4On8MIonijnpoR-d0zkCVWqalyKCty2Cl4b41_wfXHzDJ3ANMawO9nr7D-E6p6VU14duwtrk7Nw_gqt2Ojkenz2uFyWDL5eN5d9oOndr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+block+coordinate+variable+metric+forward-backward+algorithm&rft.jtitle=Journal+of+global+optimization&rft.au=Chouzenoux%2C+Emilie&rft.au=Pesquet%2C+Jean-Christophe&rft.au=Repetti%2C+Audrey&rft.date=2016-11-01&rft.pub=Springer&rft.issn=0925-5001&rft.volume=66&rft.issue=3&rft.spage=457&rft_id=info:doi/10.1007%2Fs10898-016-0405-9&rft.externalDocID=A718413587 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |