A Constraint Programming model for fast optimal stowage of container vessel bays

► We study the container stowage problem within subsections of container vessel bays. ► A representative model of the problem is introduced. ► Integer and Constraint Programming approaches to solve these problems are compared. ► We do extensive testing with instances derived from real stowage plans....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 220; číslo 1; s. 251 - 261
Hlavní autoři: Delgado, Alberto, Jensen, Rune Møller, Janstrup, Kira, Rose, Trine Høyer, Andersen, Kent Høj
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.07.2012
Elsevier
Elsevier Sequoia S.A
Témata:
ISSN:0377-2217, 1872-6860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ► We study the container stowage problem within subsections of container vessel bays. ► A representative model of the problem is introduced. ► Integer and Constraint Programming approaches to solve these problems are compared. ► We do extensive testing with instances derived from real stowage plans. ► Our test instances are solved as required for application by the industry. Container vessel stowage planning is a hard combinatorial optimization problem with both high economic and environmental impact. We have developed an approach that often is able to generate near-optimal plans for large container vessels within a few minutes. It decomposes the problem into a master planning phase that distributes the containers to bay sections and a slot planning phase that assigns containers of each bay section to slots. In this paper, we focus on the slot planning phase of this approach and present a Constraint Programming and Integer Programming model for stowing a set of containers in a single bay section. This so-called slot planning problem is NP-hard and often involves stowing several hundred containers. Using state-of-the-art constraint solvers and modeling techniques, however, we were able to solve 90% of 236 real instances from our industrial collaborator to optimality within 1second. Thus, somewhat to our surprise, it is possible to solve most of these problems optimally within the time required for practical application.
AbstractList Container vessel stowage planning is a hard combinatorial optimization problem with both high economic and environmental impact. We have developed an approach that often is able to generate near-optimal plans for large container vessels within a few minutes. It decomposes the problem into a master planning phase that distributes the containers to bay sections and a slot planning phase that assigns containers of each bay section to slots. In this paper, we focus on the slot planning phase of this approach and present a Constraint Programming and Integer Programming model for stowing a set of containers in a single bay section. This so-called slot planning problem is NP-hard and often involves stowing several hundred containers. Using state-of-the-art constraint solvers and modeling techniques, however, we were able to solve 90% of 236 real instances from our industrial collaborator to optimality within 1 second. Thus, somewhat to our surprise, it is possible to solve most of these problems optimally within the time required for practical application.
Container vessel stowage planning is a hard combinatorial optimization problem with both high economic and environmental impact. We have developed an approach that often is able to generate near-optimal plans for large container vessels within a few minutes. It decomposes the problem into a master planning phase that distributes the containers to bay sections and a slot planning phase that assigns containers of each bay section to slots. In this paper, we focus on the slot planning phase of this approach and present a Constraint Programming and Integer Programming model for stowing a set of containers in a single bay section. This so-called slot planning problem is NP-hard and often involves stowing several hundred containers. Using state-of-the-art constraint solvers and modeling techniques, however, we were able to solve 90% of 236 real instances from our industrial collaborator to optimality within 1 second. Thus, somewhat to our surprise, it is possible to solve most of these problems optimally within the time required for practical application. [PUBLICATION ABSTRACT]
► We study the container stowage problem within subsections of container vessel bays. ► A representative model of the problem is introduced. ► Integer and Constraint Programming approaches to solve these problems are compared. ► We do extensive testing with instances derived from real stowage plans. ► Our test instances are solved as required for application by the industry. Container vessel stowage planning is a hard combinatorial optimization problem with both high economic and environmental impact. We have developed an approach that often is able to generate near-optimal plans for large container vessels within a few minutes. It decomposes the problem into a master planning phase that distributes the containers to bay sections and a slot planning phase that assigns containers of each bay section to slots. In this paper, we focus on the slot planning phase of this approach and present a Constraint Programming and Integer Programming model for stowing a set of containers in a single bay section. This so-called slot planning problem is NP-hard and often involves stowing several hundred containers. Using state-of-the-art constraint solvers and modeling techniques, however, we were able to solve 90% of 236 real instances from our industrial collaborator to optimality within 1second. Thus, somewhat to our surprise, it is possible to solve most of these problems optimally within the time required for practical application.
Author Delgado, Alberto
Jensen, Rune Møller
Rose, Trine Høyer
Janstrup, Kira
Andersen, Kent Høj
Author_xml – sequence: 1
  givenname: Alberto
  surname: Delgado
  fullname: Delgado, Alberto
  email: alde@itu.dk
  organization: IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark
– sequence: 2
  givenname: Rune Møller
  surname: Jensen
  fullname: Jensen, Rune Møller
  email: rmj@itu.dk
  organization: IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark
– sequence: 3
  givenname: Kira
  surname: Janstrup
  fullname: Janstrup, Kira
  email: kj@transport.dtu.dk
  organization: Copenhagen University, Universitetspark 5, 2100 Copenhagen Ø, Denmark
– sequence: 4
  givenname: Trine Høyer
  surname: Rose
  fullname: Rose, Trine Høyer
  email: m01thr@math.ku.dk
  organization: Copenhagen University, Universitetspark 5, 2100 Copenhagen Ø, Denmark
– sequence: 5
  givenname: Kent Høj
  surname: Andersen
  fullname: Andersen, Kent Høj
  email: kent@imf.au.dk
  organization: Århus University, Ny Munkegade 118, 8000 Århus C, Denmark
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25652324$$DView record in Pascal Francis
BookMark eNp9kcFq3DAQhkVJoZu0L9CTKBR6sSPJlmRDL2FJ20CgObRnoZVHi4wtbTXalLx9tWx6ySGnuXzfjPT_l-QipgiEfOSs5Yyr67mFOeVWMC5axlsmhjdkwwctGjUodkE2rNO6EYLrd-QScWaMccnlhjzc0G2KWLINsdCHnPbZrmuIe7qmCRbqU6beYqHpUMJqF4ol_bV7oMlTl2KpGmT6CIgV3tknfE_eersgfHieV-T3t9tf2x_N_c_vd9ub-8b1Spaml9zJcZBej7vJO6hTgnVacNBWaKG42ykHgx26Xk2DnLRXO9dbCXLspXTdFfly3nvI6c8RsJg1oINlsRHSEU2NZVT1itYV_fQCndMxx_o6M3ZSCa7EWKHPz5BFZxefbXQBzSHXX-cnI6SSohN95YYz53JCzOCNC8WWULOoGS717um0MrM5NWJOjRjGTW2kquKF-n_7q9LXswQ1zMcA2aALEB1MIYMrZkrhNf0f426mqw
CODEN EJORDT
CitedBy_id crossref_primary_10_1080_23302674_2025_2468345
crossref_primary_10_1016_j_ejor_2023_12_018
crossref_primary_10_1155_2019_9029267
crossref_primary_10_1016_j_tre_2024_103420
crossref_primary_10_1057_s41278_021_00208_4
crossref_primary_10_1109_TSMC_2015_2504104
crossref_primary_10_1109_ACCESS_2020_3003557
crossref_primary_10_1109_ACCESS_2021_3052945
crossref_primary_10_1515_pomr_2016_0060
crossref_primary_10_1080_01605682_2018_1561162
crossref_primary_10_1007_s00500_015_1879_y
crossref_primary_10_1016_j_tre_2019_09_008
crossref_primary_10_1111_coin_12051
crossref_primary_10_1109_ACCESS_2020_3037675
crossref_primary_10_1016_j_eswa_2015_09_005
crossref_primary_10_3390_jmse10040517
crossref_primary_10_1109_TITS_2021_3083598
crossref_primary_10_1007_s00500_022_07222_5
crossref_primary_10_1007_s10479_018_3023_8
crossref_primary_10_1016_j_tre_2018_10_010
crossref_primary_10_1016_j_trpro_2015_09_026
crossref_primary_10_1016_j_tre_2016_10_005
crossref_primary_10_1155_2018_3450726
crossref_primary_10_1007_s10696_015_9228_0
crossref_primary_10_1016_j_ejor_2015_03_044
crossref_primary_10_1007_s10288_017_0342_6
crossref_primary_10_1016_j_asoc_2018_01_006
crossref_primary_10_1016_j_ejor_2015_09_036
crossref_primary_10_1057_mel_2015_3
crossref_primary_10_3390_logistics5040067
crossref_primary_10_1155_2020_4382745
crossref_primary_10_1007_s10696_013_9185_4
crossref_primary_10_1016_j_cie_2015_02_006
crossref_primary_10_1016_j_eswa_2024_124408
crossref_primary_10_1057_s41278_018_0113_0
crossref_primary_10_1057_s41278_023_00254_0
crossref_primary_10_1016_j_ejor_2019_09_042
crossref_primary_10_1016_j_cor_2020_105142
crossref_primary_10_1016_j_ejor_2014_03_011
crossref_primary_10_1016_j_oceaneng_2021_109964
crossref_primary_10_1016_j_tre_2016_07_011
crossref_primary_10_1287_trsc_2017_0795
crossref_primary_10_1057_s41278_018_0106_z
crossref_primary_10_1016_j_ejor_2016_02_019
crossref_primary_10_1080_03088839_2020_1821109
crossref_primary_10_1088_1757_899X_337_1_012002
crossref_primary_10_1057_s41278_020_00172_5
crossref_primary_10_1016_j_ejor_2019_08_005
crossref_primary_10_1016_j_tre_2025_104224
crossref_primary_10_1016_j_ejor_2014_05_030
crossref_primary_10_1016_j_ejor_2020_12_005
crossref_primary_10_3390_en12234448
crossref_primary_10_1109_ACCESS_2018_2878308
crossref_primary_10_1016_j_cor_2022_105796
crossref_primary_10_1080_01605682_2024_2426189
crossref_primary_10_2112_SI83_090_1
Cites_doi 10.1023/A:1020373709350
10.1093/imaman/14.3.251
10.1057/mel.2008.19
10.1016/S0166-218X(99)00245-0
10.1007/978-3-642-13193-6_27
10.1057/palgrave.jors.2601022
10.1023/A:1018956823693
10.1057/palgrave.jors.2601322
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2015 INIST-CNRS
Copyright Elsevier Sequoia S.A. Jul 1, 2012
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright Elsevier Sequoia S.A. Jul 1, 2012
DBID AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7TA
JG9
DOI 10.1016/j.ejor.2012.01.028
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Materials Business File
Materials Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Materials Research Database
Materials Business File
DatabaseTitleList Materials Research Database
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Applied Sciences
EISSN 1872-6860
EndPage 261
ExternalDocumentID 2616534121
25652324
10_1016_j_ejor_2012_01_028
S0377221712000483
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HZ~
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HVGLF
R2-
SEW
VH1
WUQ
~HD
AAYOK
BNPGV
IQODW
SSH
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
JQ2
L7M
L~C
L~D
7TA
JG9
ID FETCH-LOGICAL-c465t-451c5985f79bdfcef795eac721e7a27261cb6ce8a8346d85d7f6bc4a5e59455c3
ISICitedReferencesCount 80
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302448100025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Thu Oct 02 11:02:24 EDT 2025
Sun Jul 13 05:19:21 EDT 2025
Wed Apr 02 08:12:31 EDT 2025
Sat Nov 29 01:41:04 EST 2025
Tue Nov 18 22:51:10 EST 2025
Fri Feb 23 02:32:28 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Slot planning
Container vessel stowage planning
Constraint Programming
Integer Programming
Constraint satisfaction
Combinatorial optimization
Modeling
Constrained optimization
Integer programming
Production management
Container
Container ship
NP hard problem
Economic impact
Medium term
Planning
Maritime transportation
Stowage
State constraint
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c465t-451c5985f79bdfcef795eac721e7a27261cb6ce8a8346d85d7f6bc4a5e59455c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://pure.itu.dk/portal/da/publications/d8cf7762-5543-4dc5-8456-d1dfa31db72a
PQID 935621629
PQPubID 45678
PageCount 11
ParticipantIDs proquest_miscellaneous_1019645177
proquest_journals_935621629
pascalfrancis_primary_25652324
crossref_citationtrail_10_1016_j_ejor_2012_01_028
crossref_primary_10_1016_j_ejor_2012_01_028
elsevier_sciencedirect_doi_10_1016_j_ejor_2012_01_028
PublicationCentury 2000
PublicationDate 2012-07-01
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle European journal of operational research
PublicationYear 2012
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Li, Tian, Cao, Ding (b0075) 2008; vol. 5101
Wilson, Roach (b0105) 2000; 51
Sciomachen, Tanfani (b0090) 2003; 14
A. Delgado, R.M. Jensen, K. Janstrup, T.H. Rose, K.H. Andersen, A constraint programming model for fast optimal stowage of container vessel bays. Tech. Rep. TR-2010-133, IT University of Copenhagen, 2010.
Gecode Team, Gecode: Generic constraint development environment, 2006.
N. Guilbert, B. Paquin, Container vessel stowage planning, Patent Publication US2010/0145501, 2010.
Botter, Brinati (b0035) 1992; vol. VII
Pesant (b0085) 2004; vol. 3258
Zhang, Lin, Ji (b0115) 2005; 4
D. Ambrosino, D. Anghinolfi, M. Paolucci, A. Sciomachen, An experimental comparison of different heuristics for the master bay plan problem, in: Proceedings of the 9th International Symposium on Experimental Algorithms, 2010, pp. 314–325.
Hentenryck, Carrillon (b0065) 1988
M. Yoke, H. Low, X. Xiao, F. Liu, S.Y. Huang, W.J. Hsu, Z. Li, An automated stowage planning system for large containerships, in: Proceedings of the 4th Virtual International Conference on Intelligent Production Machines and Systems, 2009.
.
Smith (b0100) 2006
Kang, Kim (b0070) 2002; 53
Avriel, Penn, Shpirer (b0025) 2000; 103
Ambrosino, Sciomachen (b0010) 1998; 36
Dubrovsky, Penn (b0050) 2002; 8
Avriel, Penn, Shpirer, Witteboon (b0030) 1998; 76
Delgado, Jensen, Schulte (b0045) 2009
Pacino, Delgado, Jensen, Bebbington (b0080) 2011
A.H. Aslidis, Optimal container loading. Master’s thesis, Massachusetts Institute of Technology, 1984.
Shaw (b0095) 2004; vol. 3258
Ambrosino, Sciomachen, Anghinolfi, Paolucci (b0015) 2009; 11
Delgado (10.1016/j.ejor.2012.01.028_b0045) 2009
10.1016/j.ejor.2012.01.028_b0055
10.1016/j.ejor.2012.01.028_b0110
Wilson (10.1016/j.ejor.2012.01.028_b0105) 2000; 51
10.1016/j.ejor.2012.01.028_b0020
Avriel (10.1016/j.ejor.2012.01.028_b0030) 1998; 76
10.1016/j.ejor.2012.01.028_b0040
Avriel (10.1016/j.ejor.2012.01.028_b0025) 2000; 103
Li (10.1016/j.ejor.2012.01.028_b0075) 2008; vol. 5101
Sciomachen (10.1016/j.ejor.2012.01.028_b0090) 2003; 14
Zhang (10.1016/j.ejor.2012.01.028_b0115) 2005; 4
10.1016/j.ejor.2012.01.028_b0005
Dubrovsky (10.1016/j.ejor.2012.01.028_b0050) 2002; 8
Ambrosino (10.1016/j.ejor.2012.01.028_b0010) 1998; 36
Pacino (10.1016/j.ejor.2012.01.028_b0080) 2011
Botter (10.1016/j.ejor.2012.01.028_b0035) 1992; vol. VII
Kang (10.1016/j.ejor.2012.01.028_b0070) 2002; 53
Smith (10.1016/j.ejor.2012.01.028_b0100) 2006
10.1016/j.ejor.2012.01.028_b0060
Hentenryck (10.1016/j.ejor.2012.01.028_b0065) 1988
Pesant (10.1016/j.ejor.2012.01.028_b0085) 2004; vol. 3258
Ambrosino (10.1016/j.ejor.2012.01.028_b0015) 2009; 11
Shaw (10.1016/j.ejor.2012.01.028_b0095) 2004; vol. 3258
References_xml – reference: D. Ambrosino, D. Anghinolfi, M. Paolucci, A. Sciomachen, An experimental comparison of different heuristics for the master bay plan problem, in: Proceedings of the 9th International Symposium on Experimental Algorithms, 2010, pp. 314–325.
– reference: N. Guilbert, B. Paquin, Container vessel stowage planning, Patent Publication US2010/0145501, 2010.
– volume: vol. 3258
  start-page: 482
  year: 2004
  end-page: 495
  ident: b0085
  article-title: A regular language membership constraint for finite sequences of variables
  publication-title: Proceeding of Principles and Practice of Constraint Programming
– volume: vol. VII
  start-page: 217
  year: 1992
  end-page: 229
  ident: b0035
  article-title: Stowage container planning: a model for getting an optimal solution
  publication-title: Proceedings of the IFIP TC5/WG5.6 Seventh International Conference on Computer Applications in the Automation of Shipyard Operation and Ship Design
– reference: A. Delgado, R.M. Jensen, K. Janstrup, T.H. Rose, K.H. Andersen, A constraint programming model for fast optimal stowage of container vessel bays. Tech. Rep. TR-2010-133, IT University of Copenhagen, 2010.
– volume: 14
  start-page: 251
  year: 2003
  end-page: 269
  ident: b0090
  article-title: The master bay plan problem: a solution method based on its connection to the three-dimensional bin packing problem
  publication-title: IMA Journal of Management Mathematics
– volume: 53
  start-page: 415
  year: 2002
  end-page: 426
  ident: b0070
  article-title: Stowage planning in maritime container transportation
  publication-title: Journal of the Operations Research Society
– volume: vol. 3258
  start-page: 648
  year: 2004
  end-page: 662
  ident: b0095
  article-title: A constraint for bin packing
  publication-title: Proceeding of Principles and Practice of Constraint Programming
– reference: M. Yoke, H. Low, X. Xiao, F. Liu, S.Y. Huang, W.J. Hsu, Z. Li, An automated stowage planning system for large containerships, in: Proceedings of the 4th Virtual International Conference on Intelligent Production Machines and Systems, 2009.
– reference: >.
– volume: 4
  year: 2005
  ident: b0115
  article-title: Model and algorithm for container ship stowage planning based on bin-packing problem
  publication-title: Journal of Marine Science and Application
– volume: 103
  start-page: 271
  year: 2000
  end-page: 279
  ident: b0025
  article-title: Container ship stowage problem: complexity and connection to the coloring of circle graphs
  publication-title: Discrete Applied Mathematics
– volume: 11
  start-page: 98
  year: 2009
  end-page: 120
  ident: b0015
  article-title: A new three-step heuristic for the master bay plan problem
  publication-title: Maritime Economics and Logistics
– volume: 8
  start-page: 585
  year: 2002
  end-page: 599
  ident: b0050
  article-title: A genetic algorithm with a compact solution encoding for the container ship stowage problem
  publication-title: Journal of Heuristics
– reference: Gecode Team, Gecode: Generic constraint development environment, 2006. <
– volume: 51
  start-page: 248
  year: 2000
  end-page: 255
  ident: b0105
  article-title: Container stowage planning: a methodology for generating computerised solutions
  publication-title: Journal of the Operational Research Society
– volume: 36
  start-page: 175
  year: 1998
  end-page: 184
  ident: b0010
  article-title: A constraint satisfaction approach for master bay plans
  publication-title: Maritime Engineering and Ports
– reference: A.H. Aslidis, Optimal container loading. Master’s thesis, Massachusetts Institute of Technology, 1984.
– year: 2006
  ident: b0100
  article-title: Modelling
  publication-title: Handbook of Constraint Programming
– start-page: 660
  year: 1988
  end-page: 664
  ident: b0065
  article-title: Generality vs. specificity: an experience with AI and OR techniques
  publication-title: Proceedings of the National Conference on Artificial Inteligence (AAAI)
– start-page: 6
  year: 2009
  end-page: 20
  ident: b0045
  article-title: Generating optimal stowage plans for container vessel bays
  publication-title: Proceedings of the 15th International Conference on Principles and Practise of Constraint Programming (CP-09)
– volume: 76
  start-page: 55
  year: 1998
  end-page: 71
  ident: b0030
  article-title: Stowage planning for container ships to reduce the number of shifts
  publication-title: Annals of Operations Research
– volume: vol. 5101
  start-page: 853
  year: 2008
  end-page: 862
  ident: b0075
  article-title: An integer programming for container stowage problem
  publication-title: Proceedings of the International Conference on Computational Science, Part I
– start-page: 286
  year: 2011
  end-page: 301
  ident: b0080
  article-title: Fast generation of near-optimal plans for eco-efficient stowage of large container vessels
  publication-title: Proceedings of the Second International Conference on Computational Logistics (ICCL’11)
– volume: vol. 3258
  start-page: 648
  year: 2004
  ident: 10.1016/j.ejor.2012.01.028_b0095
  article-title: A constraint for bin packing
– start-page: 6
  year: 2009
  ident: 10.1016/j.ejor.2012.01.028_b0045
  article-title: Generating optimal stowage plans for container vessel bays
– volume: 8
  start-page: 585
  year: 2002
  ident: 10.1016/j.ejor.2012.01.028_b0050
  article-title: A genetic algorithm with a compact solution encoding for the container ship stowage problem
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1020373709350
– ident: 10.1016/j.ejor.2012.01.028_b0055
– volume: 4
  issue: 3
  year: 2005
  ident: 10.1016/j.ejor.2012.01.028_b0115
  article-title: Model and algorithm for container ship stowage planning based on bin-packing problem
  publication-title: Journal of Marine Science and Application
– volume: 14
  start-page: 251
  year: 2003
  ident: 10.1016/j.ejor.2012.01.028_b0090
  article-title: The master bay plan problem: a solution method based on its connection to the three-dimensional bin packing problem
  publication-title: IMA Journal of Management Mathematics
  doi: 10.1093/imaman/14.3.251
– volume: 11
  start-page: 98
  issue: 1
  year: 2009
  ident: 10.1016/j.ejor.2012.01.028_b0015
  article-title: A new three-step heuristic for the master bay plan problem
  publication-title: Maritime Economics and Logistics
  doi: 10.1057/mel.2008.19
– volume: 103
  start-page: 271
  year: 2000
  ident: 10.1016/j.ejor.2012.01.028_b0025
  article-title: Container ship stowage problem: complexity and connection to the coloring of circle graphs
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/S0166-218X(99)00245-0
– start-page: 286
  year: 2011
  ident: 10.1016/j.ejor.2012.01.028_b0080
  article-title: Fast generation of near-optimal plans for eco-efficient stowage of large container vessels
– start-page: 660
  year: 1988
  ident: 10.1016/j.ejor.2012.01.028_b0065
  article-title: Generality vs. specificity: an experience with AI and OR techniques
– volume: vol. 5101
  start-page: 853
  year: 2008
  ident: 10.1016/j.ejor.2012.01.028_b0075
  article-title: An integer programming for container stowage problem
– ident: 10.1016/j.ejor.2012.01.028_b0110
– ident: 10.1016/j.ejor.2012.01.028_b0005
  doi: 10.1007/978-3-642-13193-6_27
– volume: 36
  start-page: 175
  year: 1998
  ident: 10.1016/j.ejor.2012.01.028_b0010
  article-title: A constraint satisfaction approach for master bay plans
  publication-title: Maritime Engineering and Ports
– volume: 51
  start-page: 248
  issue: 11
  year: 2000
  ident: 10.1016/j.ejor.2012.01.028_b0105
  article-title: Container stowage planning: a methodology for generating computerised solutions
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/palgrave.jors.2601022
– ident: 10.1016/j.ejor.2012.01.028_b0020
– ident: 10.1016/j.ejor.2012.01.028_b0040
– volume: vol. 3258
  start-page: 482
  year: 2004
  ident: 10.1016/j.ejor.2012.01.028_b0085
  article-title: A regular language membership constraint for finite sequences of variables
– volume: 76
  start-page: 55
  year: 1998
  ident: 10.1016/j.ejor.2012.01.028_b0030
  article-title: Stowage planning for container ships to reduce the number of shifts
  publication-title: Annals of Operations Research
  doi: 10.1023/A:1018956823693
– volume: vol. VII
  start-page: 217
  year: 1992
  ident: 10.1016/j.ejor.2012.01.028_b0035
  article-title: Stowage container planning: a model for getting an optimal solution
– ident: 10.1016/j.ejor.2012.01.028_b0060
– volume: 53
  start-page: 415
  issue: 4
  year: 2002
  ident: 10.1016/j.ejor.2012.01.028_b0070
  article-title: Stowage planning in maritime container transportation
  publication-title: Journal of the Operations Research Society
  doi: 10.1057/palgrave.jors.2601322
– year: 2006
  ident: 10.1016/j.ejor.2012.01.028_b0100
  article-title: Modelling
SSID ssj0001515
Score 2.3951464
Snippet ► We study the container stowage problem within subsections of container vessel bays. ► A representative model of the problem is introduced. ► Integer and...
Container vessel stowage planning is a hard combinatorial optimization problem with both high economic and environmental impact. We have developed an approach...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 251
SubjectTerms Applied sciences
Assignment problem
Combinatorial analysis
Constraint Programming
Container ships
Container vessel stowage planning
Containers
Exact sciences and technology
Flows in networks. Combinatorial problems
Ground, air and sea transportation, marine construction
Integer Programming
Inventory control, production control. Distribution
Marine and water way transportation and traffic
Mathematical programming
Operational research and scientific management
Operational research. Management science
Optimization
Optimization techniques
Planning
Programming
Scheduling, sequencing
Slot planning
Solvers
Stowing
Studies
Vessels
Title A Constraint Programming model for fast optimal stowage of container vessel bays
URI https://dx.doi.org/10.1016/j.ejor.2012.01.028
https://www.proquest.com/docview/935621629
https://www.proquest.com/docview/1019645177
Volume 220
WOSCitedRecordID wos000302448100025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKhxAI8VFAlMFkJN6qoMWN4-SxwND4miZUUN8i23HQqi6pmlK2v4l_krvYcceqTuyBl7Rybaf2_ew7n--DkFeRYUXB4yKQTKkgylUcKMV1MDRCKm5CyRud7vfP4ugomUzS407nd-sLs5qJskzOztL5fyU1lAGx0XX2GuT2nUIBfAeiwxPIDs9_IvyoScLZpH5Yoh8Aml-dokKgSXrTmBUWsl4OKtgsThtvkeqXtKoDtFuX6A04WGFI8dlAyfN6q-7eybFQsGg1ii50kFcxvzOzHzJ3njRowl15ix1TOt3PVwxc8gUv7N8k6Jfoa8gmuG2TP-_TycKzjzYX5Bj9FgeHtuG5a-f0F-Ha1tX7bQkRMGY9ONs9mbH9DfC5HdbFp7XMmtlI7ht8wKokpq_NtMKgr6jwxdisyZrrtTf9l5ihN1Fsrd-mGfaRYR_ZfphBHzfIDhM8TbpkZ_ThYPLRM36UDZtLKzcg56NlzQkv_5NtctDduaxhdRY2rcqGhNCIPeMH5J47r9CRxdlD0jFlj9xq3SV65H6bFoQ6LtEjdy7EuHxEjkd0jUd6AY-0wSMFPFLEI3V4pA6PtCqoxyO1eKSIx8fk2_uD8dvDwKXxCHQU82UQ8VDDdPFCpCovtIFPDuxesBD2AyaAhFrF2iQyGUZxnvBcFLHSkeSGpxHneviEdMuqNE8JHQqdRynwDRCsoyQOZRpDRYZhAPJQKdknYTupmXYx7nF8s2w7Oftk4NvMbYSXK2vzllaZk1Gt7JkB9K5st_cXYf2r4MjB8VTTJ7stpTO3hussHcLxJIxZ2icv_a-w_-OlnixN9bPG96UxTLEQz641kF1ye70an5MuLGjzgtzUq-VJvdhz0P4DqF7Vdg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Constraint+Programming+model+for+fast+optimal+stowage+of+container+vessel+bays&rft.jtitle=European+journal+of+operational+research&rft.au=Delgado%2C+Alberto&rft.au=Jensen%2C+Rune+M%C3%B8ller&rft.au=Janstrup%2C+Kira&rft.au=Rose%2C+Trine+H%C3%B8yer&rft.date=2012-07-01&rft.issn=0377-2217&rft.volume=220&rft.issue=1&rft.spage=251&rft.epage=261&rft_id=info:doi/10.1016%2Fj.ejor.2012.01.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2012_01_028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon