A Constraint Programming model for fast optimal stowage of container vessel bays
► We study the container stowage problem within subsections of container vessel bays. ► A representative model of the problem is introduced. ► Integer and Constraint Programming approaches to solve these problems are compared. ► We do extensive testing with instances derived from real stowage plans....
Uloženo v:
| Vydáno v: | European journal of operational research Ročník 220; číslo 1; s. 251 - 261 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.07.2012
Elsevier Elsevier Sequoia S.A |
| Témata: | |
| ISSN: | 0377-2217, 1872-6860 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | ► We study the container stowage problem within subsections of container vessel bays. ► A representative model of the problem is introduced. ► Integer and Constraint Programming approaches to solve these problems are compared. ► We do extensive testing with instances derived from real stowage plans. ► Our test instances are solved as required for application by the industry.
Container vessel stowage planning is a hard combinatorial optimization problem with both high economic and environmental impact. We have developed an approach that often is able to generate near-optimal plans for large container vessels within a few minutes. It decomposes the problem into a master planning phase that distributes the containers to bay sections and a slot planning phase that assigns containers of each bay section to slots. In this paper, we focus on the slot planning phase of this approach and present a Constraint Programming and Integer Programming model for stowing a set of containers in a single bay section. This so-called slot planning problem is NP-hard and often involves stowing several hundred containers. Using state-of-the-art constraint solvers and modeling techniques, however, we were able to solve 90% of 236 real instances from our industrial collaborator to optimality within 1second. Thus, somewhat to our surprise, it is possible to solve most of these problems optimally within the time required for practical application. |
|---|---|
| AbstractList | Container vessel stowage planning is a hard combinatorial optimization problem with both high economic and environmental impact. We have developed an approach that often is able to generate near-optimal plans for large container vessels within a few minutes. It decomposes the problem into a master planning phase that distributes the containers to bay sections and a slot planning phase that assigns containers of each bay section to slots. In this paper, we focus on the slot planning phase of this approach and present a Constraint Programming and Integer Programming model for stowing a set of containers in a single bay section. This so-called slot planning problem is NP-hard and often involves stowing several hundred containers. Using state-of-the-art constraint solvers and modeling techniques, however, we were able to solve 90% of 236 real instances from our industrial collaborator to optimality within 1 second. Thus, somewhat to our surprise, it is possible to solve most of these problems optimally within the time required for practical application. Container vessel stowage planning is a hard combinatorial optimization problem with both high economic and environmental impact. We have developed an approach that often is able to generate near-optimal plans for large container vessels within a few minutes. It decomposes the problem into a master planning phase that distributes the containers to bay sections and a slot planning phase that assigns containers of each bay section to slots. In this paper, we focus on the slot planning phase of this approach and present a Constraint Programming and Integer Programming model for stowing a set of containers in a single bay section. This so-called slot planning problem is NP-hard and often involves stowing several hundred containers. Using state-of-the-art constraint solvers and modeling techniques, however, we were able to solve 90% of 236 real instances from our industrial collaborator to optimality within 1 second. Thus, somewhat to our surprise, it is possible to solve most of these problems optimally within the time required for practical application. [PUBLICATION ABSTRACT] ► We study the container stowage problem within subsections of container vessel bays. ► A representative model of the problem is introduced. ► Integer and Constraint Programming approaches to solve these problems are compared. ► We do extensive testing with instances derived from real stowage plans. ► Our test instances are solved as required for application by the industry. Container vessel stowage planning is a hard combinatorial optimization problem with both high economic and environmental impact. We have developed an approach that often is able to generate near-optimal plans for large container vessels within a few minutes. It decomposes the problem into a master planning phase that distributes the containers to bay sections and a slot planning phase that assigns containers of each bay section to slots. In this paper, we focus on the slot planning phase of this approach and present a Constraint Programming and Integer Programming model for stowing a set of containers in a single bay section. This so-called slot planning problem is NP-hard and often involves stowing several hundred containers. Using state-of-the-art constraint solvers and modeling techniques, however, we were able to solve 90% of 236 real instances from our industrial collaborator to optimality within 1second. Thus, somewhat to our surprise, it is possible to solve most of these problems optimally within the time required for practical application. |
| Author | Delgado, Alberto Jensen, Rune Møller Rose, Trine Høyer Janstrup, Kira Andersen, Kent Høj |
| Author_xml | – sequence: 1 givenname: Alberto surname: Delgado fullname: Delgado, Alberto email: alde@itu.dk organization: IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark – sequence: 2 givenname: Rune Møller surname: Jensen fullname: Jensen, Rune Møller email: rmj@itu.dk organization: IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark – sequence: 3 givenname: Kira surname: Janstrup fullname: Janstrup, Kira email: kj@transport.dtu.dk organization: Copenhagen University, Universitetspark 5, 2100 Copenhagen Ø, Denmark – sequence: 4 givenname: Trine Høyer surname: Rose fullname: Rose, Trine Høyer email: m01thr@math.ku.dk organization: Copenhagen University, Universitetspark 5, 2100 Copenhagen Ø, Denmark – sequence: 5 givenname: Kent Høj surname: Andersen fullname: Andersen, Kent Høj email: kent@imf.au.dk organization: Århus University, Ny Munkegade 118, 8000 Århus C, Denmark |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25652324$$DView record in Pascal Francis |
| BookMark | eNp9kcFq3DAQhkVJoZu0L9CTKBR6sSPJlmRDL2FJ20CgObRnoZVHi4wtbTXalLx9tWx6ySGnuXzfjPT_l-QipgiEfOSs5Yyr67mFOeVWMC5axlsmhjdkwwctGjUodkE2rNO6EYLrd-QScWaMccnlhjzc0G2KWLINsdCHnPbZrmuIe7qmCRbqU6beYqHpUMJqF4ol_bV7oMlTl2KpGmT6CIgV3tknfE_eersgfHieV-T3t9tf2x_N_c_vd9ub-8b1Spaml9zJcZBej7vJO6hTgnVacNBWaKG42ykHgx26Xk2DnLRXO9dbCXLspXTdFfly3nvI6c8RsJg1oINlsRHSEU2NZVT1itYV_fQCndMxx_o6M3ZSCa7EWKHPz5BFZxefbXQBzSHXX-cnI6SSohN95YYz53JCzOCNC8WWULOoGS717um0MrM5NWJOjRjGTW2kquKF-n_7q9LXswQ1zMcA2aALEB1MIYMrZkrhNf0f426mqw |
| CODEN | EJORDT |
| CitedBy_id | crossref_primary_10_1080_23302674_2025_2468345 crossref_primary_10_1016_j_ejor_2023_12_018 crossref_primary_10_1155_2019_9029267 crossref_primary_10_1016_j_tre_2024_103420 crossref_primary_10_1057_s41278_021_00208_4 crossref_primary_10_1109_TSMC_2015_2504104 crossref_primary_10_1109_ACCESS_2020_3003557 crossref_primary_10_1109_ACCESS_2021_3052945 crossref_primary_10_1515_pomr_2016_0060 crossref_primary_10_1080_01605682_2018_1561162 crossref_primary_10_1007_s00500_015_1879_y crossref_primary_10_1016_j_tre_2019_09_008 crossref_primary_10_1111_coin_12051 crossref_primary_10_1109_ACCESS_2020_3037675 crossref_primary_10_1016_j_eswa_2015_09_005 crossref_primary_10_3390_jmse10040517 crossref_primary_10_1109_TITS_2021_3083598 crossref_primary_10_1007_s00500_022_07222_5 crossref_primary_10_1007_s10479_018_3023_8 crossref_primary_10_1016_j_tre_2018_10_010 crossref_primary_10_1016_j_trpro_2015_09_026 crossref_primary_10_1016_j_tre_2016_10_005 crossref_primary_10_1155_2018_3450726 crossref_primary_10_1007_s10696_015_9228_0 crossref_primary_10_1016_j_ejor_2015_03_044 crossref_primary_10_1007_s10288_017_0342_6 crossref_primary_10_1016_j_asoc_2018_01_006 crossref_primary_10_1016_j_ejor_2015_09_036 crossref_primary_10_1057_mel_2015_3 crossref_primary_10_3390_logistics5040067 crossref_primary_10_1155_2020_4382745 crossref_primary_10_1007_s10696_013_9185_4 crossref_primary_10_1016_j_cie_2015_02_006 crossref_primary_10_1016_j_eswa_2024_124408 crossref_primary_10_1057_s41278_018_0113_0 crossref_primary_10_1057_s41278_023_00254_0 crossref_primary_10_1016_j_ejor_2019_09_042 crossref_primary_10_1016_j_cor_2020_105142 crossref_primary_10_1016_j_ejor_2014_03_011 crossref_primary_10_1016_j_oceaneng_2021_109964 crossref_primary_10_1016_j_tre_2016_07_011 crossref_primary_10_1287_trsc_2017_0795 crossref_primary_10_1057_s41278_018_0106_z crossref_primary_10_1016_j_ejor_2016_02_019 crossref_primary_10_1080_03088839_2020_1821109 crossref_primary_10_1088_1757_899X_337_1_012002 crossref_primary_10_1057_s41278_020_00172_5 crossref_primary_10_1016_j_ejor_2019_08_005 crossref_primary_10_1016_j_tre_2025_104224 crossref_primary_10_1016_j_ejor_2014_05_030 crossref_primary_10_1016_j_ejor_2020_12_005 crossref_primary_10_3390_en12234448 crossref_primary_10_1109_ACCESS_2018_2878308 crossref_primary_10_1016_j_cor_2022_105796 crossref_primary_10_1080_01605682_2024_2426189 crossref_primary_10_2112_SI83_090_1 |
| Cites_doi | 10.1023/A:1020373709350 10.1093/imaman/14.3.251 10.1057/mel.2008.19 10.1016/S0166-218X(99)00245-0 10.1007/978-3-642-13193-6_27 10.1057/palgrave.jors.2601022 10.1023/A:1018956823693 10.1057/palgrave.jors.2601322 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier B.V. 2015 INIST-CNRS Copyright Elsevier Sequoia S.A. Jul 1, 2012 |
| Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Copyright Elsevier Sequoia S.A. Jul 1, 2012 |
| DBID | AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D 7TA JG9 |
| DOI | 10.1016/j.ejor.2012.01.028 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Materials Business File Materials Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Materials Research Database Materials Business File |
| DatabaseTitleList | Materials Research Database Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business Applied Sciences |
| EISSN | 1872-6860 |
| EndPage | 261 |
| ExternalDocumentID | 2616534121 25652324 10_1016_j_ejor_2012_01_028 S0377221712000483 |
| Genre | Feature |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HZ~ IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ RXW SCC SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ 9DU AAAKG AALRI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADIYS ADJOM ADNMO ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HVGLF R2- SEW VH1 WUQ ~HD AAYOK BNPGV IQODW SSH 7SC 7TB 8FD AFXIZ AGCQF AGRNS FR3 JQ2 L7M L~C L~D 7TA JG9 |
| ID | FETCH-LOGICAL-c465t-451c5985f79bdfcef795eac721e7a27261cb6ce8a8346d85d7f6bc4a5e59455c3 |
| ISICitedReferencesCount | 80 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302448100025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Thu Oct 02 11:02:24 EDT 2025 Sun Jul 13 05:19:21 EDT 2025 Wed Apr 02 08:12:31 EDT 2025 Sat Nov 29 01:41:04 EST 2025 Tue Nov 18 22:51:10 EST 2025 Fri Feb 23 02:32:28 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Slot planning Container vessel stowage planning Constraint Programming Integer Programming Constraint satisfaction Combinatorial optimization Modeling Constrained optimization Integer programming Production management Container Container ship NP hard problem Economic impact Medium term Planning Maritime transportation Stowage State constraint |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c465t-451c5985f79bdfcef795eac721e7a27261cb6ce8a8346d85d7f6bc4a5e59455c3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| OpenAccessLink | https://pure.itu.dk/portal/da/publications/d8cf7762-5543-4dc5-8456-d1dfa31db72a |
| PQID | 935621629 |
| PQPubID | 45678 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1019645177 proquest_journals_935621629 pascalfrancis_primary_25652324 crossref_citationtrail_10_1016_j_ejor_2012_01_028 crossref_primary_10_1016_j_ejor_2012_01_028 elsevier_sciencedirect_doi_10_1016_j_ejor_2012_01_028 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-07-01 |
| PublicationDateYYYYMMDD | 2012-07-01 |
| PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2012 |
| Publisher | Elsevier B.V Elsevier Elsevier Sequoia S.A |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: Elsevier Sequoia S.A |
| References | Li, Tian, Cao, Ding (b0075) 2008; vol. 5101 Wilson, Roach (b0105) 2000; 51 Sciomachen, Tanfani (b0090) 2003; 14 A. Delgado, R.M. Jensen, K. Janstrup, T.H. Rose, K.H. Andersen, A constraint programming model for fast optimal stowage of container vessel bays. Tech. Rep. TR-2010-133, IT University of Copenhagen, 2010. Gecode Team, Gecode: Generic constraint development environment, 2006. N. Guilbert, B. Paquin, Container vessel stowage planning, Patent Publication US2010/0145501, 2010. Botter, Brinati (b0035) 1992; vol. VII Pesant (b0085) 2004; vol. 3258 Zhang, Lin, Ji (b0115) 2005; 4 D. Ambrosino, D. Anghinolfi, M. Paolucci, A. Sciomachen, An experimental comparison of different heuristics for the master bay plan problem, in: Proceedings of the 9th International Symposium on Experimental Algorithms, 2010, pp. 314–325. Hentenryck, Carrillon (b0065) 1988 M. Yoke, H. Low, X. Xiao, F. Liu, S.Y. Huang, W.J. Hsu, Z. Li, An automated stowage planning system for large containerships, in: Proceedings of the 4th Virtual International Conference on Intelligent Production Machines and Systems, 2009. . Smith (b0100) 2006 Kang, Kim (b0070) 2002; 53 Avriel, Penn, Shpirer (b0025) 2000; 103 Ambrosino, Sciomachen (b0010) 1998; 36 Dubrovsky, Penn (b0050) 2002; 8 Avriel, Penn, Shpirer, Witteboon (b0030) 1998; 76 Delgado, Jensen, Schulte (b0045) 2009 Pacino, Delgado, Jensen, Bebbington (b0080) 2011 A.H. Aslidis, Optimal container loading. Master’s thesis, Massachusetts Institute of Technology, 1984. Shaw (b0095) 2004; vol. 3258 Ambrosino, Sciomachen, Anghinolfi, Paolucci (b0015) 2009; 11 Delgado (10.1016/j.ejor.2012.01.028_b0045) 2009 10.1016/j.ejor.2012.01.028_b0055 10.1016/j.ejor.2012.01.028_b0110 Wilson (10.1016/j.ejor.2012.01.028_b0105) 2000; 51 10.1016/j.ejor.2012.01.028_b0020 Avriel (10.1016/j.ejor.2012.01.028_b0030) 1998; 76 10.1016/j.ejor.2012.01.028_b0040 Avriel (10.1016/j.ejor.2012.01.028_b0025) 2000; 103 Li (10.1016/j.ejor.2012.01.028_b0075) 2008; vol. 5101 Sciomachen (10.1016/j.ejor.2012.01.028_b0090) 2003; 14 Zhang (10.1016/j.ejor.2012.01.028_b0115) 2005; 4 10.1016/j.ejor.2012.01.028_b0005 Dubrovsky (10.1016/j.ejor.2012.01.028_b0050) 2002; 8 Ambrosino (10.1016/j.ejor.2012.01.028_b0010) 1998; 36 Pacino (10.1016/j.ejor.2012.01.028_b0080) 2011 Botter (10.1016/j.ejor.2012.01.028_b0035) 1992; vol. VII Kang (10.1016/j.ejor.2012.01.028_b0070) 2002; 53 Smith (10.1016/j.ejor.2012.01.028_b0100) 2006 10.1016/j.ejor.2012.01.028_b0060 Hentenryck (10.1016/j.ejor.2012.01.028_b0065) 1988 Pesant (10.1016/j.ejor.2012.01.028_b0085) 2004; vol. 3258 Ambrosino (10.1016/j.ejor.2012.01.028_b0015) 2009; 11 Shaw (10.1016/j.ejor.2012.01.028_b0095) 2004; vol. 3258 |
| References_xml | – reference: D. Ambrosino, D. Anghinolfi, M. Paolucci, A. Sciomachen, An experimental comparison of different heuristics for the master bay plan problem, in: Proceedings of the 9th International Symposium on Experimental Algorithms, 2010, pp. 314–325. – reference: N. Guilbert, B. Paquin, Container vessel stowage planning, Patent Publication US2010/0145501, 2010. – volume: vol. 3258 start-page: 482 year: 2004 end-page: 495 ident: b0085 article-title: A regular language membership constraint for finite sequences of variables publication-title: Proceeding of Principles and Practice of Constraint Programming – volume: vol. VII start-page: 217 year: 1992 end-page: 229 ident: b0035 article-title: Stowage container planning: a model for getting an optimal solution publication-title: Proceedings of the IFIP TC5/WG5.6 Seventh International Conference on Computer Applications in the Automation of Shipyard Operation and Ship Design – reference: A. Delgado, R.M. Jensen, K. Janstrup, T.H. Rose, K.H. Andersen, A constraint programming model for fast optimal stowage of container vessel bays. Tech. Rep. TR-2010-133, IT University of Copenhagen, 2010. – volume: 14 start-page: 251 year: 2003 end-page: 269 ident: b0090 article-title: The master bay plan problem: a solution method based on its connection to the three-dimensional bin packing problem publication-title: IMA Journal of Management Mathematics – volume: 53 start-page: 415 year: 2002 end-page: 426 ident: b0070 article-title: Stowage planning in maritime container transportation publication-title: Journal of the Operations Research Society – volume: vol. 3258 start-page: 648 year: 2004 end-page: 662 ident: b0095 article-title: A constraint for bin packing publication-title: Proceeding of Principles and Practice of Constraint Programming – reference: M. Yoke, H. Low, X. Xiao, F. Liu, S.Y. Huang, W.J. Hsu, Z. Li, An automated stowage planning system for large containerships, in: Proceedings of the 4th Virtual International Conference on Intelligent Production Machines and Systems, 2009. – reference: >. – volume: 4 year: 2005 ident: b0115 article-title: Model and algorithm for container ship stowage planning based on bin-packing problem publication-title: Journal of Marine Science and Application – volume: 103 start-page: 271 year: 2000 end-page: 279 ident: b0025 article-title: Container ship stowage problem: complexity and connection to the coloring of circle graphs publication-title: Discrete Applied Mathematics – volume: 11 start-page: 98 year: 2009 end-page: 120 ident: b0015 article-title: A new three-step heuristic for the master bay plan problem publication-title: Maritime Economics and Logistics – volume: 8 start-page: 585 year: 2002 end-page: 599 ident: b0050 article-title: A genetic algorithm with a compact solution encoding for the container ship stowage problem publication-title: Journal of Heuristics – reference: Gecode Team, Gecode: Generic constraint development environment, 2006. < – volume: 51 start-page: 248 year: 2000 end-page: 255 ident: b0105 article-title: Container stowage planning: a methodology for generating computerised solutions publication-title: Journal of the Operational Research Society – volume: 36 start-page: 175 year: 1998 end-page: 184 ident: b0010 article-title: A constraint satisfaction approach for master bay plans publication-title: Maritime Engineering and Ports – reference: A.H. Aslidis, Optimal container loading. Master’s thesis, Massachusetts Institute of Technology, 1984. – year: 2006 ident: b0100 article-title: Modelling publication-title: Handbook of Constraint Programming – start-page: 660 year: 1988 end-page: 664 ident: b0065 article-title: Generality vs. specificity: an experience with AI and OR techniques publication-title: Proceedings of the National Conference on Artificial Inteligence (AAAI) – start-page: 6 year: 2009 end-page: 20 ident: b0045 article-title: Generating optimal stowage plans for container vessel bays publication-title: Proceedings of the 15th International Conference on Principles and Practise of Constraint Programming (CP-09) – volume: 76 start-page: 55 year: 1998 end-page: 71 ident: b0030 article-title: Stowage planning for container ships to reduce the number of shifts publication-title: Annals of Operations Research – volume: vol. 5101 start-page: 853 year: 2008 end-page: 862 ident: b0075 article-title: An integer programming for container stowage problem publication-title: Proceedings of the International Conference on Computational Science, Part I – start-page: 286 year: 2011 end-page: 301 ident: b0080 article-title: Fast generation of near-optimal plans for eco-efficient stowage of large container vessels publication-title: Proceedings of the Second International Conference on Computational Logistics (ICCL’11) – volume: vol. 3258 start-page: 648 year: 2004 ident: 10.1016/j.ejor.2012.01.028_b0095 article-title: A constraint for bin packing – start-page: 6 year: 2009 ident: 10.1016/j.ejor.2012.01.028_b0045 article-title: Generating optimal stowage plans for container vessel bays – volume: 8 start-page: 585 year: 2002 ident: 10.1016/j.ejor.2012.01.028_b0050 article-title: A genetic algorithm with a compact solution encoding for the container ship stowage problem publication-title: Journal of Heuristics doi: 10.1023/A:1020373709350 – ident: 10.1016/j.ejor.2012.01.028_b0055 – volume: 4 issue: 3 year: 2005 ident: 10.1016/j.ejor.2012.01.028_b0115 article-title: Model and algorithm for container ship stowage planning based on bin-packing problem publication-title: Journal of Marine Science and Application – volume: 14 start-page: 251 year: 2003 ident: 10.1016/j.ejor.2012.01.028_b0090 article-title: The master bay plan problem: a solution method based on its connection to the three-dimensional bin packing problem publication-title: IMA Journal of Management Mathematics doi: 10.1093/imaman/14.3.251 – volume: 11 start-page: 98 issue: 1 year: 2009 ident: 10.1016/j.ejor.2012.01.028_b0015 article-title: A new three-step heuristic for the master bay plan problem publication-title: Maritime Economics and Logistics doi: 10.1057/mel.2008.19 – volume: 103 start-page: 271 year: 2000 ident: 10.1016/j.ejor.2012.01.028_b0025 article-title: Container ship stowage problem: complexity and connection to the coloring of circle graphs publication-title: Discrete Applied Mathematics doi: 10.1016/S0166-218X(99)00245-0 – start-page: 286 year: 2011 ident: 10.1016/j.ejor.2012.01.028_b0080 article-title: Fast generation of near-optimal plans for eco-efficient stowage of large container vessels – start-page: 660 year: 1988 ident: 10.1016/j.ejor.2012.01.028_b0065 article-title: Generality vs. specificity: an experience with AI and OR techniques – volume: vol. 5101 start-page: 853 year: 2008 ident: 10.1016/j.ejor.2012.01.028_b0075 article-title: An integer programming for container stowage problem – ident: 10.1016/j.ejor.2012.01.028_b0110 – ident: 10.1016/j.ejor.2012.01.028_b0005 doi: 10.1007/978-3-642-13193-6_27 – volume: 36 start-page: 175 year: 1998 ident: 10.1016/j.ejor.2012.01.028_b0010 article-title: A constraint satisfaction approach for master bay plans publication-title: Maritime Engineering and Ports – volume: 51 start-page: 248 issue: 11 year: 2000 ident: 10.1016/j.ejor.2012.01.028_b0105 article-title: Container stowage planning: a methodology for generating computerised solutions publication-title: Journal of the Operational Research Society doi: 10.1057/palgrave.jors.2601022 – ident: 10.1016/j.ejor.2012.01.028_b0020 – ident: 10.1016/j.ejor.2012.01.028_b0040 – volume: vol. 3258 start-page: 482 year: 2004 ident: 10.1016/j.ejor.2012.01.028_b0085 article-title: A regular language membership constraint for finite sequences of variables – volume: 76 start-page: 55 year: 1998 ident: 10.1016/j.ejor.2012.01.028_b0030 article-title: Stowage planning for container ships to reduce the number of shifts publication-title: Annals of Operations Research doi: 10.1023/A:1018956823693 – volume: vol. VII start-page: 217 year: 1992 ident: 10.1016/j.ejor.2012.01.028_b0035 article-title: Stowage container planning: a model for getting an optimal solution – ident: 10.1016/j.ejor.2012.01.028_b0060 – volume: 53 start-page: 415 issue: 4 year: 2002 ident: 10.1016/j.ejor.2012.01.028_b0070 article-title: Stowage planning in maritime container transportation publication-title: Journal of the Operations Research Society doi: 10.1057/palgrave.jors.2601322 – year: 2006 ident: 10.1016/j.ejor.2012.01.028_b0100 article-title: Modelling |
| SSID | ssj0001515 |
| Score | 2.3951464 |
| Snippet | ► We study the container stowage problem within subsections of container vessel bays. ► A representative model of the problem is introduced. ► Integer and... Container vessel stowage planning is a hard combinatorial optimization problem with both high economic and environmental impact. We have developed an approach... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 251 |
| SubjectTerms | Applied sciences Assignment problem Combinatorial analysis Constraint Programming Container ships Container vessel stowage planning Containers Exact sciences and technology Flows in networks. Combinatorial problems Ground, air and sea transportation, marine construction Integer Programming Inventory control, production control. Distribution Marine and water way transportation and traffic Mathematical programming Operational research and scientific management Operational research. Management science Optimization Optimization techniques Planning Programming Scheduling, sequencing Slot planning Solvers Stowing Studies Vessels |
| Title | A Constraint Programming model for fast optimal stowage of container vessel bays |
| URI | https://dx.doi.org/10.1016/j.ejor.2012.01.028 https://www.proquest.com/docview/935621629 https://www.proquest.com/docview/1019645177 |
| Volume | 220 |
| WOSCitedRecordID | wos000302448100025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKhxAI8VFAlMFkJN6qoMWN4-SxwND4miZUUN8i23HQqi6pmlK2v4l_krvYcceqTuyBl7Rybaf2_ew7n--DkFeRYUXB4yKQTKkgylUcKMV1MDRCKm5CyRud7vfP4ugomUzS407nd-sLs5qJskzOztL5fyU1lAGx0XX2GuT2nUIBfAeiwxPIDs9_IvyoScLZpH5Yoh8Aml-dokKgSXrTmBUWsl4OKtgsThtvkeqXtKoDtFuX6A04WGFI8dlAyfN6q-7eybFQsGg1ii50kFcxvzOzHzJ3njRowl15ix1TOt3PVwxc8gUv7N8k6Jfoa8gmuG2TP-_TycKzjzYX5Bj9FgeHtuG5a-f0F-Ha1tX7bQkRMGY9ONs9mbH9DfC5HdbFp7XMmtlI7ht8wKokpq_NtMKgr6jwxdisyZrrtTf9l5ihN1Fsrd-mGfaRYR_ZfphBHzfIDhM8TbpkZ_ThYPLRM36UDZtLKzcg56NlzQkv_5NtctDduaxhdRY2rcqGhNCIPeMH5J47r9CRxdlD0jFlj9xq3SV65H6bFoQ6LtEjdy7EuHxEjkd0jUd6AY-0wSMFPFLEI3V4pA6PtCqoxyO1eKSIx8fk2_uD8dvDwKXxCHQU82UQ8VDDdPFCpCovtIFPDuxesBD2AyaAhFrF2iQyGUZxnvBcFLHSkeSGpxHneviEdMuqNE8JHQqdRynwDRCsoyQOZRpDRYZhAPJQKdknYTupmXYx7nF8s2w7Oftk4NvMbYSXK2vzllaZk1Gt7JkB9K5st_cXYf2r4MjB8VTTJ7stpTO3hussHcLxJIxZ2icv_a-w_-OlnixN9bPG96UxTLEQz641kF1ye70an5MuLGjzgtzUq-VJvdhz0P4DqF7Vdg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Constraint+Programming+model+for+fast+optimal+stowage+of+container+vessel+bays&rft.jtitle=European+journal+of+operational+research&rft.au=Delgado%2C+Alberto&rft.au=Jensen%2C+Rune+M%C3%B8ller&rft.au=Janstrup%2C+Kira&rft.au=Rose%2C+Trine+H%C3%B8yer&rft.date=2012-07-01&rft.issn=0377-2217&rft.volume=220&rft.issue=1&rft.spage=251&rft.epage=261&rft_id=info:doi/10.1016%2Fj.ejor.2012.01.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2012_01_028 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |