All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production
Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with experts from renowned research institutes, material suppliers, and automotive manufacturers. Aiming to bridge the gap between materials resear...
Saved in:
| Published in: | Journal of power sources Vol. 382; pp. 160 - 175 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.04.2018
|
| Subjects: | |
| ISSN: | 0378-7753, 1873-2755 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with experts from renowned research institutes, material suppliers, and automotive manufacturers. Aiming to bridge the gap between materials research and industrial mass production, possible solutions for the production chains of sulfide and oxide based all-solid-state batteries from electrode fabrication to cell assembly and quality control are presented. Based on these findings, a detailed comparison of the production processes for a sulfide based all-solid-state battery with conventional lithium-ion cell production is given, showing that processes for composite electrode fabrication can be adapted with some effort, while the fabrication of the solid electrolyte separator layer and the integration of a lithium metal anode will require completely new processes. This work identifies the major steps towards mass production of all-solid-state batteries, giving insight into promising manufacturing technologies and helping stakeholders, such as machine engineering, cell producers, and original equipment manufacturers, to plan the next steps towards safer batteries with increased storage capacity.
[Display omitted]
•Requirements for industrial production of solid-state batteries are investigated.•Process chains for electrode fabrication and cell assembly are presented.•A detailed comparison with conventional lithium-ion cell production is given.•Guidelines for stakeholders in the scale-up of fabrication are provided. |
|---|---|
| AbstractList | Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with experts from renowned research institutes, material suppliers, and automotive manufacturers. Aiming to bridge the gap between materials research and industrial mass production, possible solutions for the production chains of sulfide and oxide based all-solid-state batteries from electrode fabrication to cell assembly and quality control are presented. Based on these findings, a detailed comparison of the production processes for a sulfide based all-solid-state battery with conventional lithium-ion cell production is given, showing that processes for composite electrode fabrication can be adapted with some effort, while the fabrication of the solid electrolyte separator layer and the integration of a lithium metal anode will require completely new processes. This work identifies the major steps towards mass production of all-solid-state batteries, giving insight into promising manufacturing technologies and helping stakeholders, such as machine engineering, cell producers, and original equipment manufacturers, to plan the next steps towards safer batteries with increased storage capacity.
[Display omitted]
•Requirements for industrial production of solid-state batteries are investigated.•Process chains for electrode fabrication and cell assembly are presented.•A detailed comparison with conventional lithium-ion cell production is given.•Guidelines for stakeholders in the scale-up of fabrication are provided. |
| Author | Just, Alexander Schnell, Joscha Passerini, Stefano Reinhart, Gunther Köhler, Larissa Keller, Marlou Günther, Till Knoche, Thomas Vieider, Christoph |
| Author_xml | – sequence: 1 givenname: Joscha surname: Schnell fullname: Schnell, Joscha email: joscha.schnell@iwb.mw.tum.de organization: Institute for Machine Tools and Industrial Management, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching, Germany – sequence: 2 givenname: Till surname: Günther fullname: Günther, Till organization: Institute for Machine Tools and Industrial Management, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching, Germany – sequence: 3 givenname: Thomas surname: Knoche fullname: Knoche, Thomas organization: Institute for Machine Tools and Industrial Management, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching, Germany – sequence: 4 givenname: Christoph surname: Vieider fullname: Vieider, Christoph organization: Institute for Machine Tools and Industrial Management, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching, Germany – sequence: 5 givenname: Larissa surname: Köhler fullname: Köhler, Larissa organization: Institute for Machine Tools and Industrial Management, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching, Germany – sequence: 6 givenname: Alexander surname: Just fullname: Just, Alexander organization: Institute for Machine Tools and Industrial Management, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching, Germany – sequence: 7 givenname: Marlou surname: Keller fullname: Keller, Marlou organization: Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany – sequence: 8 givenname: Stefano orcidid: 0000-0002-6606-5304 surname: Passerini fullname: Passerini, Stefano organization: Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany – sequence: 9 givenname: Gunther surname: Reinhart fullname: Reinhart, Gunther organization: Institute for Machine Tools and Industrial Management, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching, Germany |
| BookMark | eNqFkMtKxDAUhoMoOF5eQfICqUk7TVtw4SDeYMCNrsNpcjqTkmlKklHc-Q6-oU9iB52NG1eHn8P3c853Qg4HPyAhF4Jnggt52Wf96N-i34Ys56LOeJ5xmR-QmairguVVWR6SGS-qmlVVWRyTkxh7zrkQFZ8Rs3CORe-sYTFBQupsWtvthlk_UBjMPtMNJnC0hZQwWIz06-OTjvBqhxVNa6Rv8E6Tpw7CClnU4JCOwZutTlPRGTnqwEU8_52n5OXu9vnmgS2f7h9vFkum57JMbJ5ji0XbNSVIqCvZQSNkIboGwcgampxjbua7PS-wgropZdsiLxpjRNnVujgl8qdXBx9jwE6NwW4gvCvB1c6V6tXeldq5UjxXk6sJvPoDajvZmE5PAaz7H7_-wXF67tViUFFbHDQaG1AnZbz9r-Ib-_-QgQ |
| CitedBy_id | crossref_primary_10_1002_aenm_201802927 crossref_primary_10_1016_j_jmps_2025_106060 crossref_primary_10_1016_j_jelechem_2020_114156 crossref_primary_10_1007_s40684_023_00519_2 crossref_primary_10_1016_j_jpowsour_2019_05_008 crossref_primary_10_1016_j_jmps_2022_104839 crossref_primary_10_1039_C9NR10338D crossref_primary_10_1111_jiec_13345 crossref_primary_10_1016_j_procir_2021_11_010 crossref_primary_10_1002_admt_202400745 crossref_primary_10_1016_j_est_2024_114737 crossref_primary_10_1016_j_rser_2023_113515 crossref_primary_10_1002_adsu_202401039 crossref_primary_10_1002_aenm_202203744 crossref_primary_10_3389_fchem_2021_786956 crossref_primary_10_1002_batt_202400667 crossref_primary_10_1088_1757_899X_924_1_012038 crossref_primary_10_1038_s41560_020_00748_8 crossref_primary_10_3390_batteries9090472 crossref_primary_10_1016_j_est_2023_107480 crossref_primary_10_1002_aenm_202401336 crossref_primary_10_1002_chem_202202984 crossref_primary_10_1016_j_cej_2023_144292 crossref_primary_10_1002_chem_202402510 crossref_primary_10_3390_batteries7010018 crossref_primary_10_3390_en16227566 crossref_primary_10_1016_j_jpowsour_2024_234091 crossref_primary_10_3390_batteries9030186 crossref_primary_10_1002_batt_202300487 crossref_primary_10_1016_j_device_2024_100468 crossref_primary_10_1002_cphc_202300835 crossref_primary_10_1016_j_jpowsour_2024_234772 crossref_primary_10_1021_acs_chemrev_4c00980 crossref_primary_10_1002_aenm_202502829 crossref_primary_10_1016_j_jpowsour_2021_229919 crossref_primary_10_1016_j_mattod_2022_04_008 crossref_primary_10_1016_j_jmapro_2023_09_072 crossref_primary_10_1039_D1EE00551K crossref_primary_10_1002_batt_202100009 crossref_primary_10_1016_j_ssi_2023_116433 crossref_primary_10_1007_s10008_019_04203_x crossref_primary_10_1016_j_pmatsci_2025_101559 crossref_primary_10_1142_S1793604723500145 crossref_primary_10_1016_j_jpowsour_2021_230220 crossref_primary_10_1016_j_jpowsour_2018_09_091 crossref_primary_10_1002_smll_202507279 crossref_primary_10_3390_batteries11030090 crossref_primary_10_1016_j_powtec_2025_120906 crossref_primary_10_1016_j_procir_2022_08_132 crossref_primary_10_1002_ente_202300098 crossref_primary_10_1007_s10008_023_05739_9 crossref_primary_10_1039_D1QM00071C crossref_primary_10_1002_ente_201801049 crossref_primary_10_1016_j_rser_2025_116243 crossref_primary_10_1038_s41578_021_00320_0 crossref_primary_10_3390_cryst12091241 crossref_primary_10_1016_j_jpowsour_2019_227579 crossref_primary_10_1016_j_jpowsour_2019_227338 crossref_primary_10_1039_D1EE01530C crossref_primary_10_1002_cey2_131 crossref_primary_10_1016_j_jpowsour_2019_226923 crossref_primary_10_1002_chem_201804781 crossref_primary_10_1557_mrs_2018_211 crossref_primary_10_1016_j_jpowsour_2022_232257 crossref_primary_10_3390_polym14214568 crossref_primary_10_1002_cssc_201803061 crossref_primary_10_1038_s41563_019_0431_3 crossref_primary_10_1002_aenm_202503593 crossref_primary_10_1557_mrs_2019_229 crossref_primary_10_1002_aenm_202301886 crossref_primary_10_1007_s10800_024_02142_8 crossref_primary_10_1039_D0EE02714F crossref_primary_10_1002_aesr_202200032 crossref_primary_10_1007_s10854_024_12099_1 crossref_primary_10_1038_s41560_018_0312_z crossref_primary_10_1002_ente_202000665 crossref_primary_10_1016_j_joule_2022_07_002 crossref_primary_10_1016_j_procir_2024_10_297 crossref_primary_10_1039_D4EE02208D crossref_primary_10_1039_D5CS00358J crossref_primary_10_3390_ma17102349 crossref_primary_10_1111_jace_18994 crossref_primary_10_1016_j_joule_2019_11_015 crossref_primary_10_1002_est2_544 crossref_primary_10_1016_j_resconrec_2025_108430 crossref_primary_10_1007_s10008_024_05820_x crossref_primary_10_1016_j_procir_2025_03_049 crossref_primary_10_3390_en15186599 crossref_primary_10_1002_ente_202300674 crossref_primary_10_1111_jace_18728 crossref_primary_10_3390_modelling4020015 crossref_primary_10_1098_rspa_2024_0230 crossref_primary_10_1007_s43979_024_00096_6 crossref_primary_10_1002_adfm_202416671 crossref_primary_10_3390_batteries10060183 crossref_primary_10_1016_j_jpowsour_2020_227803 crossref_primary_10_1038_s43246_024_00459_7 crossref_primary_10_1002_cssc_202301920 crossref_primary_10_1016_j_est_2023_110294 crossref_primary_10_1016_j_gee_2022_05_004 crossref_primary_10_1002_admi_202500590 crossref_primary_10_3390_polym17172369 crossref_primary_10_1515_znb_2023_0093 crossref_primary_10_1002_adem_201900952 crossref_primary_10_1007_s11367_023_02134_4 crossref_primary_10_1002_marc_202400046 crossref_primary_10_3390_ceramics4030031 crossref_primary_10_3390_batteries9070380 crossref_primary_10_1002_batt_202200057 crossref_primary_10_1002_ente_201901237 crossref_primary_10_1021_acs_jpcc_5c00888 crossref_primary_10_1002_ente_201900026 crossref_primary_10_1002_smtd_202000039 crossref_primary_10_1142_S1793604719300056 crossref_primary_10_1016_j_electacta_2019_134943 crossref_primary_10_1039_C8EE02692K crossref_primary_10_1002_adma_202301540 crossref_primary_10_3390_ma16176063 crossref_primary_10_1016_j_mtchem_2022_101321 crossref_primary_10_1007_s40242_020_9110_9 crossref_primary_10_1016_j_procir_2020_03_040 crossref_primary_10_3389_fmats_2022_1052617 crossref_primary_10_3390_en16031278 crossref_primary_10_1002_aenm_201900161 crossref_primary_10_1002_tcr_202200116 crossref_primary_10_1002_elt2_8 crossref_primary_10_3390_batteries8070070 crossref_primary_10_1016_j_etran_2023_100306 crossref_primary_10_1016_j_solidstatesciences_2021_106681 crossref_primary_10_1002_adma_202206013 crossref_primary_10_1002_adfm_202006289 crossref_primary_10_1016_j_est_2024_113730 crossref_primary_10_1016_j_jpowsour_2022_231297 crossref_primary_10_1016_j_procir_2024_10_112 crossref_primary_10_1002_aenm_202204098 crossref_primary_10_1142_S179360472240001X crossref_primary_10_1016_j_cej_2021_133753 crossref_primary_10_1063_5_0151559 crossref_primary_10_1007_s10971_022_05880_3 crossref_primary_10_1142_S1793604722400021 crossref_primary_10_3390_s21155041 crossref_primary_10_1016_j_jpowsour_2020_228437 crossref_primary_10_1080_17518253_2024_2321247 crossref_primary_10_1002_admi_202000450 crossref_primary_10_1002_adma_202209074 crossref_primary_10_1016_j_cej_2024_157391 crossref_primary_10_1016_j_jallcom_2025_181721 crossref_primary_10_1002_admi_202300513 crossref_primary_10_1016_j_cej_2024_157394 crossref_primary_10_1016_j_matchemphys_2022_126644 crossref_primary_10_1007_s41918_023_00204_7 crossref_primary_10_1016_j_spc_2025_01_012 crossref_primary_10_3390_batteries8020013 crossref_primary_10_1002_aenm_202502981 crossref_primary_10_1016_j_cej_2022_139923 crossref_primary_10_1002_celc_202300349 crossref_primary_10_1016_j_joule_2020_07_017 crossref_primary_10_1016_j_cej_2019_02_006 crossref_primary_10_1002_adfm_202313766 crossref_primary_10_1016_j_device_2024_100370 crossref_primary_10_1002_adem_201900737 crossref_primary_10_1002_adma_202105505 crossref_primary_10_1002_smtd_201900592 crossref_primary_10_23939_chcht19_02_270 crossref_primary_10_1002_aenm_202200948 crossref_primary_10_1002_pen_70031 crossref_primary_10_1016_j_procir_2019_03_300 crossref_primary_10_1016_j_jpowsour_2018_05_015 crossref_primary_10_1360_TB_2025_0198 crossref_primary_10_1016_j_energy_2019_07_121 crossref_primary_10_1016_j_nanoen_2025_111232 crossref_primary_10_1038_s41565_020_0657_x crossref_primary_10_1016_j_jallcom_2025_181297 crossref_primary_10_1016_j_nanoen_2020_105456 crossref_primary_10_1021_acsami_5c09935 crossref_primary_10_1002_batt_202400709 crossref_primary_10_1002_celc_202300452 crossref_primary_10_1016_j_mtcomm_2024_111325 crossref_primary_10_1002_aenm_202102917 crossref_primary_10_3390_batteries9110555 crossref_primary_10_1016_j_jpowsour_2025_237014 crossref_primary_10_1002_batt_202400142 crossref_primary_10_1039_D1EE03032A crossref_primary_10_1016_j_surfin_2023_103128 crossref_primary_10_1016_j_ssi_2023_116148 crossref_primary_10_1080_07373937_2023_2189943 crossref_primary_10_1002_masy_202100491 crossref_primary_10_1016_j_etran_2022_100220 crossref_primary_10_1002_adma_202203580 crossref_primary_10_1016_j_cej_2024_154426 crossref_primary_10_1016_j_etran_2022_100224 crossref_primary_10_1016_j_jclepro_2022_131689 crossref_primary_10_1016_j_susmat_2021_e00297 crossref_primary_10_1002_aesr_202100142 crossref_primary_10_1016_j_jpowsour_2025_236831 crossref_primary_10_1002_sus2_67 crossref_primary_10_1007_s40820_025_01786_1 crossref_primary_10_1016_j_est_2021_102758 crossref_primary_10_1016_j_jechem_2019_01_013 crossref_primary_10_1002_aenm_202301464 crossref_primary_10_1002_aenm_202303641 crossref_primary_10_1002_smll_202304269 crossref_primary_10_1016_j_jallcom_2022_163908 crossref_primary_10_1002_inf2_12292 crossref_primary_10_1016_j_ceramint_2020_01_170 crossref_primary_10_1016_j_est_2021_103842 crossref_primary_10_1016_j_jpowsour_2020_228803 crossref_primary_10_1016_j_cej_2024_149877 crossref_primary_10_1016_j_nxmate_2024_100371 crossref_primary_10_1039_D1SE00265A crossref_primary_10_1038_s42004_025_01609_9 crossref_primary_10_1016_j_ceramint_2019_12_229 crossref_primary_10_1021_acs_chemrev_4c00584 crossref_primary_10_1109_ACCESS_2019_2940090 crossref_primary_10_1002_aenm_201803170 crossref_primary_10_1002_adma_202001702 crossref_primary_10_1016_j_jpowsour_2021_230064 crossref_primary_10_1016_j_jpowsour_2023_233579 crossref_primary_10_1016_j_apenergy_2025_125546 crossref_primary_10_1002_aenm_202002360 crossref_primary_10_1002_adem_202100524 crossref_primary_10_3390_app15137120 crossref_primary_10_3389_fenrg_2020_571440 crossref_primary_10_1002_celc_202500180 crossref_primary_10_1016_j_cossms_2022_101003 crossref_primary_10_1016_j_jiec_2018_12_001 crossref_primary_10_1002_macp_202100317 crossref_primary_10_1016_j_cossms_2022_101002 crossref_primary_10_1016_j_electacta_2021_139249 crossref_primary_10_3390_membranes8030055 crossref_primary_10_1016_j_matt_2022_01_011 crossref_primary_10_1088_2515_7655_ad3d0b crossref_primary_10_1002_advs_202001207 crossref_primary_10_1002_celc_202001291 crossref_primary_10_1080_21693277_2024_2385986 crossref_primary_10_3390_polym12091886 crossref_primary_10_1061_JOEEDU_EEENG_7340 crossref_primary_10_1016_j_coelec_2021_100933 crossref_primary_10_3390_polym15163375 crossref_primary_10_1002_adma_201803075 crossref_primary_10_1016_j_joule_2025_101953 crossref_primary_10_1093_aesa_saz014 crossref_primary_10_1039_D0EE01569E crossref_primary_10_1039_D4EE04927F crossref_primary_10_1002_smll_202308849 crossref_primary_10_1039_C9SE00119K crossref_primary_10_3390_batteries9020066 crossref_primary_10_1038_s41467_025_59363_4 crossref_primary_10_1016_j_electacta_2020_136481 crossref_primary_10_1016_j_jpowsour_2024_234114 crossref_primary_10_3390_en15072670 crossref_primary_10_1088_2053_1591_abcc85 crossref_primary_10_3390_en14051406 crossref_primary_10_1007_s41918_020_00076_1 crossref_primary_10_1016_j_jpowsour_2020_229212 crossref_primary_10_1039_D2RA01856J crossref_primary_10_1002_advs_202304224 crossref_primary_10_1039_D0EE02241A crossref_primary_10_1002_ente_202001113 crossref_primary_10_1002_celc_202500286 crossref_primary_10_1021_acs_iecr_5c02727 crossref_primary_10_3390_ma12233892 crossref_primary_10_1039_D1QM00579K crossref_primary_10_1016_j_actamat_2024_120135 crossref_primary_10_1016_j_nxener_2024_100221 crossref_primary_10_1002_adma_202313572 crossref_primary_10_1016_j_electacta_2023_142585 crossref_primary_10_1016_j_mser_2025_100941 crossref_primary_10_1002_ente_202500042 crossref_primary_10_1021_acsaem_5c02274 crossref_primary_10_1038_s41560_024_01463_4 crossref_primary_10_1016_j_apt_2022_103705 crossref_primary_10_1039_D0EE01435D crossref_primary_10_1039_D1RA05897E crossref_primary_10_1016_j_cej_2022_136346 crossref_primary_10_1002_slct_201803388 crossref_primary_10_1016_j_procir_2024_07_004 crossref_primary_10_1039_C9ME00050J crossref_primary_10_1016_j_joule_2020_12_001 crossref_primary_10_1016_j_cej_2025_168098 crossref_primary_10_1007_s40820_022_00996_1 crossref_primary_10_1016_j_elecom_2020_106807 crossref_primary_10_1016_j_jpowsour_2023_233917 crossref_primary_10_3390_batteries11060212 crossref_primary_10_1002_batt_202500321 crossref_primary_10_1002_gch2_202200049 crossref_primary_10_1007_s41918_023_00196_4 crossref_primary_10_1016_j_mattod_2021_01_026 crossref_primary_10_1007_s10853_020_04434_8 crossref_primary_10_1016_j_apt_2022_103470 crossref_primary_10_1002_aenm_202301018 crossref_primary_10_1002_batt_202300578 crossref_primary_10_1016_j_mattod_2023_11_016 crossref_primary_10_1016_j_jpowsour_2025_237212 crossref_primary_10_1002_adfm_202106608 crossref_primary_10_1002_batt_202200328 crossref_primary_10_1002_eom2_12193 crossref_primary_10_1016_j_surfcoat_2025_132397 crossref_primary_10_1002_aenm_202202854 crossref_primary_10_2351_7_0001213 crossref_primary_10_1021_acsenergylett_5c00117 crossref_primary_10_59761_RCR5126 crossref_primary_10_1002_pssa_202400823 crossref_primary_10_1002_cssc_202400281 crossref_primary_10_1007_s42354_021_0335_7 crossref_primary_10_1002_er_4285 crossref_primary_10_1063_5_0086130 crossref_primary_10_1002_aenm_202100785 crossref_primary_10_1016_j_mtnano_2019_100048 crossref_primary_10_3389_fmtec_2024_1360076 crossref_primary_10_1002_aenm_202203153 crossref_primary_10_1016_j_nanoen_2024_109848 crossref_primary_10_1002_aenm_202301142 crossref_primary_10_1016_j_memsci_2019_117800 crossref_primary_10_1016_j_matpr_2021_08_003 crossref_primary_10_1002_aenm_202003766 crossref_primary_10_1002_aenm_202300310 crossref_primary_10_1002_batt_202000045 crossref_primary_10_1002_app_53690 crossref_primary_10_1002_aenm_202000017 crossref_primary_10_1016_j_energy_2021_121929 crossref_primary_10_1038_s41560_023_01208_9 crossref_primary_10_1088_2752_5724_ac66f5 crossref_primary_10_1016_j_cej_2023_142469 crossref_primary_10_1002_celc_201900736 crossref_primary_10_1016_j_jmps_2024_106013 crossref_primary_10_4218_etrij_2019_0176 crossref_primary_10_1016_j_est_2024_112368 crossref_primary_10_1038_s42004_023_00901_w crossref_primary_10_1016_j_est_2023_108123 crossref_primary_10_1016_j_jpowsour_2024_234685 crossref_primary_10_1016_j_procir_2019_01_099 crossref_primary_10_1016_j_mattod_2021_01_006 crossref_primary_10_1016_j_procir_2023_02_072 crossref_primary_10_1016_j_jpowsour_2021_230425 crossref_primary_10_1007_s10008_023_05634_3 crossref_primary_10_1016_j_mtener_2022_101118 crossref_primary_10_3390_nano13152210 crossref_primary_10_1002_aenm_202404790 crossref_primary_10_3390_wevj15060245 crossref_primary_10_3390_nano13020327 crossref_primary_10_1002_aenm_202405405 crossref_primary_10_1002_aenm_202000804 crossref_primary_10_1002_smll_202407882 crossref_primary_10_1002_adma_202206402 crossref_primary_10_1111_ijac_14184 crossref_primary_10_3389_fenrg_2019_00168 crossref_primary_10_1016_j_mtcomm_2022_103189 crossref_primary_10_1016_j_jpowsour_2019_02_090 crossref_primary_10_1016_j_electacta_2021_137855 crossref_primary_10_1002_aenm_202003520 crossref_primary_10_1016_j_procir_2019_04_051 crossref_primary_10_1002_adfm_202100891 crossref_primary_10_1002_adma_202406386 crossref_primary_10_3390_batteries11040153 crossref_primary_10_1002_aenm_202301600 crossref_primary_10_1016_j_jpowsour_2018_04_054 crossref_primary_10_3390_molecules28248029 crossref_primary_10_1016_j_cej_2019_123528 crossref_primary_10_1002_cssc_201902152 crossref_primary_10_1016_j_ssi_2021_115640 crossref_primary_10_1021_acsenergylett_5c00923 crossref_primary_10_1002_ente_202201291 crossref_primary_10_1002_admt_202101107 crossref_primary_10_1016_j_est_2024_111974 crossref_primary_10_3389_fchem_2019_00268 crossref_primary_10_1016_j_electacta_2021_139104 crossref_primary_10_1016_j_jpowsour_2024_235512 crossref_primary_10_1007_s11367_024_02355_1 crossref_primary_10_1002_cssc_202100213 crossref_primary_10_1002_batt_202200245 crossref_primary_10_1007_s41918_023_00198_2 crossref_primary_10_1002_est2_506 |
| Cites_doi | 10.1149/2.0411501jes 10.1039/c2jm31413d 10.1016/j.jpowsour.2014.11.019 10.1016/j.jpowsour.2013.03.155 10.1016/j.phpro.2012.10.032 10.1016/j.jpowsour.2016.06.068 10.1016/j.elecom.2017.03.016 10.1016/j.jpowsour.2017.04.018 10.1021/cm901452z 10.1039/C5TA00361J 10.1016/j.jpowsour.2017.11.031 10.1016/j.jpowsour.2017.04.014 10.1016/S1388-2481(03)00167-X 10.1038/nmat4821 10.1002/aenm.201602011 10.1021/acs.chemmater.7b00931 10.1039/C7TA06873E 10.1149/2.0121502jes 10.1016/j.jpowsour.2014.03.148 10.1016/j.jpowsour.2017.03.126 10.1016/j.jpowsour.2011.04.047 10.1016/j.jpowsour.2014.04.065 10.1021/acsami.5b07517 10.1016/j.jpowsour.2010.01.076 10.1016/j.materresbull.2007.08.031 10.1016/j.ssi.2011.11.026 10.1016/S0378-7753(97)02646-3 10.1111/jace.13844 10.1149/2.1571707jes 10.1016/j.jpowsour.2008.12.048 10.1016/j.jpowsour.2013.02.073 10.1149/1.1393226 10.1007/s10853-010-4279-9 10.2109/jcersj2.16321 10.1073/pnas.1518188113 10.1016/j.ensm.2016.07.003 10.1007/s10008-017-3610-7 10.1016/j.elecom.2015.05.001 10.1002/aenm.201401408 10.1039/c4cs00020j 10.1016/j.ssi.2015.06.001 10.1039/c3cp51059j 10.1039/C6TA05439K 10.1038/nenergy.2016.42 10.1039/C6TA07384K 10.1021/cm901819c 10.1149/1.1619988 10.1016/j.ceramint.2017.10.072 10.1016/j.procir.2016.11.098 10.1038/nmat3066 10.1016/j.jpowsour.2008.08.015 10.1021/jp4051275 10.1016/j.cirp.2012.03.101 10.1016/j.jpowsour.2013.10.005 10.1021/jacs.6b05341 10.1088/1674-1056/25/1/018802 10.1016/j.polymer.2006.05.069 10.1111/j.1551-2916.2011.04551.x 10.1039/C3EE41655K 10.1038/nenergy.2016.30 10.1111/j.1551-2916.2009.03442.x 10.1149/2.1341709jes 10.1002/adma.200502604 10.1021/acs.jpclett.5b02352 10.1016/j.jpowsour.2015.07.100 10.1016/j.ssi.2010.10.013 10.1016/j.jpowsour.2009.06.100 10.1016/j.ssi.2017.08.016 10.1016/j.apenergy.2016.02.064 10.1038/nenergy.2016.141 10.1038/srep19892 10.1038/srep02261 10.1016/S0378-7753(01)00608-5 10.1016/S0167-2738(02)00889-5 10.1021/acs.chemmater.7b00944 10.1073/pnas.1600422113 10.1016/j.jpowsour.2016.09.037 10.1021/acs.nanolett.7b00330 10.1002/anie.200701144 10.1111/jace.13997 10.1038/nclimate2564 10.1149/1.2086597 10.1021/acs.nanolett.5b00538 10.1016/j.ssi.2015.11.034 10.1016/j.jpowsour.2014.02.065 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. |
| Copyright_xml | – notice: 2018 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jpowsour.2018.02.062 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2755 |
| EndPage | 175 |
| ExternalDocumentID | 10_1016_j_jpowsour_2018_02_062 S0378775318301836 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW T9H VH1 VOH WUQ ~HD |
| ID | FETCH-LOGICAL-c465t-42ebe3bf95a6a876fa91631f9ead68a920e2d4bf9503e7a8956bbe039dd15f8c3 |
| ISICitedReferencesCount | 517 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430622700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7753 |
| IngestDate | Sat Nov 29 02:55:45 EST 2025 Tue Nov 18 21:09:48 EST 2025 Fri Feb 23 02:28:10 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Process chain Solid-state battery production Oxide solid electrolyte Hybrid solid electrolyte Industrial fabrication Sulfide solid electrolyte |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c465t-42ebe3bf95a6a876fa91631f9ead68a920e2d4bf9503e7a8956bbe039dd15f8c3 |
| ORCID | 0000-0002-6606-5304 |
| OpenAccessLink | http://mediatum.ub.tum.de/node?id=1436834 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1016_j_jpowsour_2018_02_062 crossref_citationtrail_10_1016_j_jpowsour_2018_02_062 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2018_02_062 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-01 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of power sources |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Popovici, Nagai, Fujishima, Akedo (bib92) 2011; 94 Nam (bib18) 2015; 15 Hanft (bib91) 2015; 6 Ma (bib44) 2016; 99 Liang (bib97) 2016; 113 Ahn (bib87) 2014; 162 Available at Nam, Oh, Jung, Jung (bib75) 2018; 375 Tanaka (bib111) 2011 Goodenough, Kim (bib31) 2010; 22 Sakuda, Hayashi, Tatsumisago (bib57) 2010; 22 Inada (bib73) 2009; 194 Ren (bib32) 2015; 98 Lavoie, Laliberté, Dubé, Gagnon (bib80) 2010 Yao (bib85) 2016; 25 Satou (bib106) 2017 Günther (bib1) 2016; 1140 Troy (bib19) 2016; 169 Westermeier, Reinhart, Zeilinger (bib69) 2013 Hess, Wohlfahrt-Mehrens, Wachtler (bib2) 2014; 162 Yue (bib35) 2016; 5 Janek, Zeier (bib7) 2016; 1 Kariatsumari (bib11) 2010 (bib72) 2011 Zhu, He, Mo (bib53) 2015; 7 Ohta (bib60) 2006; 18 Nykvist, Nilsson (bib21) 2015; 5 Hovsepian (bib95) 1973 Liu (bib66) 2017; 79 Zhang, Xu, Henderson (bib64) 2017 Belanger, Gauthier, Robitaille (bib96) 1993 Kotobuki, Kanamura, Sato, Yoshida (bib78) 2011; 196 (bib68) 2007 Varzi, Raccichini, Passerini, Scrosati (bib6) 2016; 4 Nagao (bib26) 2013; 15 Kronthaler (bib108) 2012; 39 Kobayashi (bib9) 2003; 150 Li, Ma, Chi, Liang, Dudney (bib10) 2015; 5 Hu (bib13) 2016; 1 Zhou (bib58) 2016; 138 Knoche (bib4) 2016; 331 Ohta (bib62) 2014; 265 (2014) (accessed 14 December 2017). Kamaya (bib43) 2011; 10 Luntz, Voss, Reuter (bib50) 2015; 6 Schnell, Hofer, Singer, Günther, Reinhart (bib23) 2017; vol. 1 Neudecker, Dudney, Bates (bib98) 2000; 147 Hendricks, Williard, Mathew, Pecht (bib3) 2015; 297 Yang (bib107) 2018; 44 Liu, Ma, Wang (bib77) 2014; 260 Yamamoto (bib101) 2017; 125 McGrogan (bib48) 2017; 7 Wu (bib51) 2016; 4 Muramatsu, Hayashi, Ohtomo, Hama, Tatsumisago (bib45) 2011; 182 Reinhart (bib110) 2011 Kerman, Luntz, Viswanathan, Chiang, Chen (bib20) 2017; 164 Johnson, Johnson (bib84) 2017 Murugan, Thangadurai, Weppner (bib40) 2007; 46 Hartmann (bib54) 2013; 117 Kurfer, Westermeier, Tammer, Reinhart (bib105) 2012; 61 Kazyak (bib89) 2017; 29 Inada (bib15) 2003; 158 Grape (bib14) 2015 Machida, Kashiwagi, Naito, Shigematsu (bib61) 2012; 225 Kato (bib37) 2016; 1 Fu (bib42) 2016; 113 Thangadurai, Narayanan, Pinzaru (bib39) 2014; 43 Kugai, Ota (bib90) 2003 Ohta (bib17) 2013; 238 Zhang, Chen, Tu, Shen, Zhang (bib79) 2014; 268 Kato (bib63) 2016; 325 Baudry, Lascaud, Majastre, Bloch (bib81) 1997; 68 (bib70) 2014 Seino, Ota, Takada, Hayashi, Tatsumisago (bib36) 2014; 7 Ren, Shen, Lin, Nan (bib27) 2015; 57 Reinhart (bib109) 2013 Aono (bib38) 1990; 137 Hara (bib103) 2009; 189 Xie (bib59) 2009; 189 Lee (bib100) 2017; 164 Han (bib52) 2017; 16 Hayashi, Ohtomo, Mizuno, Tadanaga, Tatsumisago (bib8) 2003; 5 Patil (bib88) 2008; 43 Livshits (bib67) 2001; 97–98 Meyer, Booker (bib71) 2001 Andre (bib24) 2015; 3 Sakuda, Hayashi, Hama, Tatsumisago (bib86) 2010; 93 Oh (bib102) 2017; 5 Wachsman, Hu, Thangadurai (bib30) 2014 Wenzel, Leichtweiss, Krüger, Sann, Janek (bib55) 2015; 278 Li, Han, Wang, Xie, Goodenough (bib41) 2012; 22 Mauger, Armand, Julien, Zaghib (bib99) 2017; 353 Bouchard, Guerin, St-Amant, Laroche (bib94) 1996 Schnell, Reinhart (bib22) 2016; 57 Meyer (bib93) Jan. 1957 Jin, McGinn (bib46) 2013; 239 Sakuda, Hayashi, Tatsumisago (bib47) 2013; 3 Keller (bib76) 2017; 353 Feng, Li, Zhang, Peng, Zou (bib74) 2017; 310 Bae, Rao, Shrader (bib82) 2018 Manuel Stephan, Nahm (bib34) 2006; 47 Porcarelli, Gerbaldi, Bella, Nair (bib83) 2016; 6 Fergus (bib12) 2010; 195 Wolfenstine, Allen, Sakamoto, Siegel, Choe (bib49) 2017; 180 Ito (bib16) 2014; 248 Yi, Wang, Kieffer, Laine (bib28) 2017; 352 Wenzel (bib56) 2016; 286 Koerver (bib65) 2017; 29 Placke, Kloepsch, Dühnen, Winter (bib25) 2017; 21 Wood, Li, Daniel (bib5) 2015; 275 Kim (bib104) 2017; 17 Menzler, Tietz, Uhlenbruck, Buchkremer, Stöver (bib29) 2010; 45 Günther (10.1016/j.jpowsour.2018.02.062_bib1) 2016; 1140 Kerman (10.1016/j.jpowsour.2018.02.062_bib20) 2017; 164 Li (10.1016/j.jpowsour.2018.02.062_bib10) 2015; 5 Tanaka (10.1016/j.jpowsour.2018.02.062_bib111) 2011 Kurfer (10.1016/j.jpowsour.2018.02.062_bib105) 2012; 61 Fergus (10.1016/j.jpowsour.2018.02.062_bib12) 2010; 195 Thangadurai (10.1016/j.jpowsour.2018.02.062_bib39) 2014; 43 Ren (10.1016/j.jpowsour.2018.02.062_bib27) 2015; 57 Popovici (10.1016/j.jpowsour.2018.02.062_bib92) 2011; 94 Hess (10.1016/j.jpowsour.2018.02.062_bib2) 2014; 162 Yi (10.1016/j.jpowsour.2018.02.062_bib28) 2017; 352 Kugai (10.1016/j.jpowsour.2018.02.062_bib90) 2003 Schnell (10.1016/j.jpowsour.2018.02.062_bib23) 2017; vol. 1 Johnson (10.1016/j.jpowsour.2018.02.062_bib84) 2017 Keller (10.1016/j.jpowsour.2018.02.062_bib76) 2017; 353 Sakuda (10.1016/j.jpowsour.2018.02.062_bib47) 2013; 3 Ito (10.1016/j.jpowsour.2018.02.062_bib16) 2014; 248 McGrogan (10.1016/j.jpowsour.2018.02.062_bib48) 2017; 7 Wachsman (10.1016/j.jpowsour.2018.02.062_bib30) 2014 Wenzel (10.1016/j.jpowsour.2018.02.062_bib56) 2016; 286 Livshits (10.1016/j.jpowsour.2018.02.062_bib67) 2001; 97–98 Han (10.1016/j.jpowsour.2018.02.062_bib52) 2017; 16 Wenzel (10.1016/j.jpowsour.2018.02.062_bib55) 2015; 278 Janek (10.1016/j.jpowsour.2018.02.062_bib7) 2016; 1 Reinhart (10.1016/j.jpowsour.2018.02.062_bib110) 2011 Hu (10.1016/j.jpowsour.2018.02.062_bib13) 2016; 1 Wood (10.1016/j.jpowsour.2018.02.062_bib5) 2015; 275 Hara (10.1016/j.jpowsour.2018.02.062_bib103) 2009; 189 Menzler (10.1016/j.jpowsour.2018.02.062_bib29) 2010; 45 Kotobuki (10.1016/j.jpowsour.2018.02.062_bib78) 2011; 196 Ahn (10.1016/j.jpowsour.2018.02.062_bib87) 2014; 162 Kariatsumari (10.1016/j.jpowsour.2018.02.062_bib11) 2010 Hartmann (10.1016/j.jpowsour.2018.02.062_bib54) 2013; 117 Yang (10.1016/j.jpowsour.2018.02.062_bib107) 2018; 44 Kato (10.1016/j.jpowsour.2018.02.062_bib37) 2016; 1 Yamamoto (10.1016/j.jpowsour.2018.02.062_bib101) 2017; 125 Liu (10.1016/j.jpowsour.2018.02.062_bib77) 2014; 260 Liang (10.1016/j.jpowsour.2018.02.062_bib97) 2016; 113 Lavoie (10.1016/j.jpowsour.2018.02.062_bib80) 2010 Meyer (10.1016/j.jpowsour.2018.02.062_bib93) 1957 Wolfenstine (10.1016/j.jpowsour.2018.02.062_bib49) 2017; 180 Hayashi (10.1016/j.jpowsour.2018.02.062_bib8) 2003; 5 Zhang (10.1016/j.jpowsour.2018.02.062_bib64) 2017 Lee (10.1016/j.jpowsour.2018.02.062_bib100) 2017; 164 Zhu (10.1016/j.jpowsour.2018.02.062_bib53) 2015; 7 Hanft (10.1016/j.jpowsour.2018.02.062_bib91) 2015; 6 Andre (10.1016/j.jpowsour.2018.02.062_bib24) 2015; 3 Inada (10.1016/j.jpowsour.2018.02.062_bib15) 2003; 158 Li (10.1016/j.jpowsour.2018.02.062_bib41) 2012; 22 Troy (10.1016/j.jpowsour.2018.02.062_bib19) 2016; 169 Machida (10.1016/j.jpowsour.2018.02.062_bib61) 2012; 225 Murugan (10.1016/j.jpowsour.2018.02.062_bib40) 2007; 46 Nam (10.1016/j.jpowsour.2018.02.062_bib75) 2018; 375 Nykvist (10.1016/j.jpowsour.2018.02.062_bib21) 2015; 5 Kato (10.1016/j.jpowsour.2018.02.062_bib63) 2016; 325 (10.1016/j.jpowsour.2018.02.062_bib72) 2011 Ohta (10.1016/j.jpowsour.2018.02.062_bib17) 2013; 238 Nagao (10.1016/j.jpowsour.2018.02.062_bib26) 2013; 15 Goodenough (10.1016/j.jpowsour.2018.02.062_bib31) 2010; 22 Knoche (10.1016/j.jpowsour.2018.02.062_bib4) 2016; 331 Nam (10.1016/j.jpowsour.2018.02.062_bib18) 2015; 15 Porcarelli (10.1016/j.jpowsour.2018.02.062_bib83) 2016; 6 Manuel Stephan (10.1016/j.jpowsour.2018.02.062_bib34) 2006; 47 10.1016/j.jpowsour.2018.02.062_bib33 Kim (10.1016/j.jpowsour.2018.02.062_bib104) 2017; 17 Hendricks (10.1016/j.jpowsour.2018.02.062_bib3) 2015; 297 Feng (10.1016/j.jpowsour.2018.02.062_bib74) 2017; 310 Mauger (10.1016/j.jpowsour.2018.02.062_bib99) 2017; 353 Kazyak (10.1016/j.jpowsour.2018.02.062_bib89) 2017; 29 Varzi (10.1016/j.jpowsour.2018.02.062_bib6) 2016; 4 Yao (10.1016/j.jpowsour.2018.02.062_bib85) 2016; 25 (10.1016/j.jpowsour.2018.02.062_bib68) 2007 Satou (10.1016/j.jpowsour.2018.02.062_bib106) 2017 Reinhart (10.1016/j.jpowsour.2018.02.062_bib109) 2013 Inada (10.1016/j.jpowsour.2018.02.062_bib73) 2009; 194 Kobayashi (10.1016/j.jpowsour.2018.02.062_bib9) 2003; 150 Sakuda (10.1016/j.jpowsour.2018.02.062_bib57) 2010; 22 Westermeier (10.1016/j.jpowsour.2018.02.062_bib69) 2013 Fu (10.1016/j.jpowsour.2018.02.062_bib42) 2016; 113 Sakuda (10.1016/j.jpowsour.2018.02.062_bib86) 2010; 93 Meyer (10.1016/j.jpowsour.2018.02.062_bib71) 2001 Zhang (10.1016/j.jpowsour.2018.02.062_bib79) 2014; 268 Placke (10.1016/j.jpowsour.2018.02.062_bib25) 2017; 21 Wu (10.1016/j.jpowsour.2018.02.062_bib51) 2016; 4 Ohta (10.1016/j.jpowsour.2018.02.062_bib60) 2006; 18 (10.1016/j.jpowsour.2018.02.062_bib70) 2014 Neudecker (10.1016/j.jpowsour.2018.02.062_bib98) 2000; 147 Schnell (10.1016/j.jpowsour.2018.02.062_bib22) 2016; 57 Aono (10.1016/j.jpowsour.2018.02.062_bib38) 1990; 137 Baudry (10.1016/j.jpowsour.2018.02.062_bib81) 1997; 68 Kronthaler (10.1016/j.jpowsour.2018.02.062_bib108) 2012; 39 Ren (10.1016/j.jpowsour.2018.02.062_bib32) 2015; 98 Oh (10.1016/j.jpowsour.2018.02.062_bib102) 2017; 5 Kamaya (10.1016/j.jpowsour.2018.02.062_bib43) 2011; 10 Belanger (10.1016/j.jpowsour.2018.02.062_bib96) 1993 Xie (10.1016/j.jpowsour.2018.02.062_bib59) 2009; 189 Zhou (10.1016/j.jpowsour.2018.02.062_bib58) 2016; 138 Koerver (10.1016/j.jpowsour.2018.02.062_bib65) 2017; 29 Grape (10.1016/j.jpowsour.2018.02.062_bib14) 2015 Ma (10.1016/j.jpowsour.2018.02.062_bib44) 2016; 99 Luntz (10.1016/j.jpowsour.2018.02.062_bib50) 2015; 6 Bouchard (10.1016/j.jpowsour.2018.02.062_bib94) 1996 Bae (10.1016/j.jpowsour.2018.02.062_bib82) 2018 Hovsepian (10.1016/j.jpowsour.2018.02.062_bib95) 1973 Seino (10.1016/j.jpowsour.2018.02.062_bib36) 2014; 7 Ohta (10.1016/j.jpowsour.2018.02.062_bib62) 2014; 265 Yue (10.1016/j.jpowsour.2018.02.062_bib35) 2016; 5 Jin (10.1016/j.jpowsour.2018.02.062_bib46) 2013; 239 Liu (10.1016/j.jpowsour.2018.02.062_bib66) 2017; 79 Muramatsu (10.1016/j.jpowsour.2018.02.062_bib45) 2011; 182 Patil (10.1016/j.jpowsour.2018.02.062_bib88) 2008; 43 |
| References_xml | – volume: 68 start-page: 432 year: 1997 end-page: 435 ident: bib81 article-title: Lithium polymer battery development for electric vehicle application publication-title: J. Power Sources – volume: 239 start-page: 326 year: 2013 end-page: 331 ident: bib46 article-title: Li publication-title: J. Power Sources – volume: 7 start-page: 1602011 year: 2017 ident: bib48 article-title: Compliant yet brittle mechanical behavior of Li publication-title: Adv. Energy Mater. – volume: 1 start-page: 16042 year: 2016 ident: bib13 article-title: Batteries. Getting solid publication-title: Nat. Energy – volume: 10 start-page: 682 year: 2011 end-page: 686 ident: bib43 article-title: A lithium superionic conductor publication-title: Nat. Mater. – volume: 94 start-page: 3847 year: 2011 end-page: 3850 ident: bib92 article-title: Preparation of lithium aluminum titanium phosphate electrolytes thick films by aerosol deposition method publication-title: J. Am. Ceram. Soc. – volume: 7 start-page: 627 year: 2014 end-page: 631 ident: bib36 article-title: A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries publication-title: Energy Environ. Sci. – volume: 3 start-page: 6709 year: 2015 end-page: 6732 ident: bib24 article-title: Future generations of cathode materials: an automotive industry perspective publication-title: J. Mater. Chem. – volume: 117 start-page: 21064 year: 2013 end-page: 21074 ident: bib54 article-title: Degradation of NASICON-type materials in contact with lithium metal. Formation of mixed conducting interphases (MCI) on solid electrolytes publication-title: J. Phys. Chem. C – volume: 164 start-page: A1731 year: 2017 end-page: A1744 ident: bib20 article-title: Review—practical challenges hindering the development of solid state Li ion batteries publication-title: J. Electrochem. Soc. – year: 2010 ident: bib80 article-title: Co-extrusion Manufacturing Process of Thin Film Electrochemical Cell for Lithium Polymer Batteries and Apparatus Therefor – volume: 196 start-page: 7750 year: 2011 end-page: 7754 ident: bib78 article-title: Fabrication of all-solid-state lithium battery with lithium metal anode using Al publication-title: J. Power Sources – volume: 150 start-page: A1577 year: 2003 ident: bib9 article-title: 5 V class all-solid-state composite lithium battery with Li publication-title: J. Electrochem. Soc. – year: 2014 ident: bib70 publication-title: Deutsches Institut für Normung e.V. Value Management - Vocabulary - Terms and definitions – volume: 25 start-page: 18802 year: 2016 ident: bib85 article-title: All-solid-state lithium batteries with inorganic solid electrolytes. Review of fundamental science publication-title: Chin. Phys. B – volume: 297 start-page: 113 year: 2015 end-page: 120 ident: bib3 article-title: A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries publication-title: J. Power Sources – volume: 22 start-page: 587 year: 2010 end-page: 603 ident: bib31 article-title: Challenges for rechargeable Li batteries publication-title: Chem. Mater. – volume: 29 start-page: 5574 year: 2017 end-page: 5582 ident: bib65 article-title: Capacity fade in solid-state batteries. Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes publication-title: Chem. Mater. – start-page: 9 year: Jan. 1957 end-page: 15 ident: bib93 article-title: Some practical aspects of handling lithium metal publication-title: Handling and Uses of Alkali Metals – volume: 1 start-page: 16141 year: 2016 ident: bib7 article-title: A solid future for battery development publication-title: Nat. Energy – volume: 57 start-page: 568 year: 2016 end-page: 573 ident: bib22 article-title: Quality management for battery production. A quality gate concept publication-title: Procedia CIRP – volume: 275 start-page: 234 year: 2015 end-page: 242 ident: bib5 article-title: Prospects for reducing the processing cost of lithium ion batteries publication-title: J. Power Sources – volume: 6 start-page: 4599 year: 2015 end-page: 4604 ident: bib50 article-title: Interfacial challenges in solid-state Li ion batteries publication-title: J. Phys. Chem. Lett. – volume: 93 start-page: 765 year: 2010 end-page: 768 ident: bib86 article-title: Preparation of highly lithium-ion conductive 80Li publication-title: J. Am. Ceram. Soc. – volume: vol. 1 start-page: 295 year: 2017 end-page: 302 ident: bib23 article-title: Evaluation of technology chains for the production of all-solid-state batteries publication-title: 7. WGP-Jahreskongress Aachen – volume: 265 start-page: 40 year: 2014 end-page: 44 ident: bib62 article-title: Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery publication-title: J. Power Sources – volume: 189 start-page: 485 year: 2009 end-page: 489 ident: bib103 article-title: Fabrication of all solid-state lithium-ion batteries with three-dimensionally ordered composite electrode consisting of Li publication-title: J. Power Sources – volume: 61 start-page: 1 year: 2012 end-page: 4 ident: bib105 article-title: Production of large-area lithium-ion cells – preconditioning, cell stacking and quality assurance publication-title: CIRP Ann. - Manuf. Technol. – year: 1973 ident: bib95 article-title: Rolling of Lithium – volume: 44 start-page: 1538 year: 2018 end-page: 1544 ident: bib107 article-title: The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li publication-title: Ceram. Int. – start-page: 1 year: 2013 end-page: 10 ident: bib69 article-title: Method for quality parameter identification and classification in battery cell production quality planning of complex production chains for battery cells publication-title: 2013 3rd International Electric Drives Production Conference (EDPC) – volume: 39 start-page: 213 year: 2012 end-page: 224 ident: bib108 article-title: Laser cutting in the production of lithium ion cells publication-title: Physics Procedia – year: 1993 ident: bib96 article-title: Process for the Production of a Thin Electrode Supported by a Sheet – volume: 125 start-page: 391 year: 2017 end-page: 395 ident: bib101 article-title: Fabrication of composite positive electrode sheet with high active material content and effect of fabrication pressure for all-solid-state battery publication-title: J. Ceram. Soc. Japan – volume: 46 start-page: 7778 year: 2007 end-page: 7781 ident: bib40 article-title: Fast lithium ion conduction in garnet-type Li publication-title: Angew. Chem. – volume: 15 start-page: 3317 year: 2015 end-page: 3323 ident: bib18 article-title: Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries publication-title: Nano Lett. – volume: 5 start-page: 20771 year: 2017 end-page: 20779 ident: bib102 article-title: Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries publication-title: J. Mater. Chem. – volume: 45 start-page: 3109 year: 2010 end-page: 3135 ident: bib29 article-title: Materials and manufacturing technologies for solid oxide fuel cells publication-title: J. Mater. Sci. – volume: 98 start-page: 3603 year: 2015 end-page: 3623 ident: bib32 article-title: Oxide electrolytes for lithium batteries publication-title: J. Am. Ceram. Soc. – year: 2010 ident: bib11 article-title: Toyota Announces 4-layer All-solid-state Battery – volume: 278 start-page: 98 year: 2015 end-page: 105 ident: bib55 article-title: Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy publication-title: Solid State Ionics – volume: 22 start-page: 949 year: 2010 end-page: 956 ident: bib57 article-title: Interfacial observation between LiCoO publication-title: Chem. Mater. – volume: 248 start-page: 943 year: 2014 end-page: 950 ident: bib16 article-title: A rocking chair type all-solid-state lithium ion battery adopting Li publication-title: J. Power Sources – volume: 375 start-page: 93 year: 2018 end-page: 101 ident: bib75 article-title: Toward practical all-solid-state lithium-ion batteries with high energy density and safety. Comparative study for electrodes fabricated by dry- and slurry-mixing processes publication-title: J. Power Sources – volume: 18 start-page: 2226 year: 2006 end-page: 2229 ident: bib60 article-title: Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification publication-title: Adv. Mater. – volume: 352 start-page: 156 year: 2017 end-page: 164 ident: bib28 article-title: Key parameters governing the densification of cubic-Li publication-title: J. Power Sources – year: 2015 ident: bib14 article-title: SEEO Final Technical Report – year: 1996 ident: bib94 article-title: Process for Laminating a Thin Film of Lihium by Controlled Detachment – volume: 43 start-page: 1913 year: 2008 end-page: 1942 ident: bib88 article-title: Issue and challenges facing rechargeable thin film lithium batteries publication-title: Mater. Res. Bull. – volume: 16 start-page: 572 year: 2017 end-page: 579 ident: bib52 article-title: Negating interfacial impedance in garnet-based solid-state Li metal batteries publication-title: Nat. Mater. – volume: 113 start-page: 2862 year: 2016 end-page: 2867 ident: bib97 article-title: Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 225 start-page: 354 year: 2012 end-page: 358 ident: bib61 article-title: Electrochemical properties of all-solid-state batteries with ZrO publication-title: Solid State Ionics – volume: 268 start-page: 960 year: 2014 end-page: 964 ident: bib79 article-title: Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes publication-title: J. Power Sources – year: 2017 ident: bib106 article-title: Bipolar Laminated All-solid-state Lithium-ion Rechargeable Battery and Method for Manufacturing Same – volume: 47 start-page: 5952 year: 2006 end-page: 5964 ident: bib34 article-title: Review on composite polymer electrolytes for lithium batteries publication-title: Polymer – year: 2018 ident: bib82 article-title: High Performance All Solid Lithium Sulfur Battery with Fast Lithium Ion Conduction – volume: 43 start-page: 4714 year: 2014 end-page: 4727 ident: bib39 article-title: Garnet-type solid-state fast Li ion conductors for Li batteries: critical review publication-title: Chem. Soc. Rev. – volume: 1 start-page: 16030 year: 2016 ident: bib37 article-title: High-power all-solid-state batteries using sulfide superionic conductors publication-title: Nat. Energy – volume: 5 start-page: 139 year: 2016 end-page: 164 ident: bib35 article-title: All solid-state polymer electrolytes for high-performance lithium ion batteries publication-title: Energy Storage Materials – volume: 29 start-page: 3785 year: 2017 end-page: 3792 ident: bib89 article-title: Atomic layer deposition of the solid electrolyte garnet Li publication-title: Chem. Mater. – volume: 21 start-page: 1939 year: 2017 end-page: 1964 ident: bib25 article-title: Lithium ion, lithium metal, and alternative rechargeable battery technologies. The odyssey for high energy density publication-title: J. Solid State Electrochem. – volume: 137 start-page: 1023 year: 1990 ident: bib38 article-title: Ionic conductivity of solid electrolytes based on lithium titanium phosphate publication-title: J. Electrochem. Soc. – volume: 4 start-page: 17251 year: 2016 end-page: 17259 ident: bib6 article-title: Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries publication-title: J. Mater. Chem. – volume: 113 start-page: 7094 year: 2016 end-page: 7099 ident: bib42 article-title: Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries publication-title: Proc. Natl. Acad. Sci. U.S.A. – year: 2001 ident: bib71 article-title: Eliciting and Analysing Expert Judgment – volume: 97–98 start-page: 782 year: 2001 end-page: 785 ident: bib67 article-title: Development of a bipolar Li/composite polymer electrolyte/pyrite battery for electric vehicles publication-title: J. Power Sources – volume: 353 start-page: 333 year: 2017 end-page: 342 ident: bib99 article-title: Challenges and issues facing lithium metal for solid-state rechargeable batteries publication-title: J. Power Sources – volume: 7 start-page: 23685 year: 2015 end-page: 23693 ident: bib53 article-title: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations publication-title: ACS Appl. Mater. Interfaces – year: 2017 ident: bib84 article-title: Solid-state Batteries and Methods of Fabrication Thereof – year: 2011 ident: bib72 publication-title: Linden's Handbook of Batteries – volume: 194 start-page: 1085 year: 2009 end-page: 1088 ident: bib73 article-title: All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON publication-title: J. Power Sources – volume: 6 start-page: 147 year: 2015 end-page: 182 ident: bib91 article-title: An overview of the aerosol deposition method: process fundamentals and new trends in materials applications publication-title: J. Ceram. Sci. Technol – volume: 286 start-page: 24 year: 2016 end-page: 33 ident: bib56 article-title: Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li publication-title: Solid State Ionics – reference: . Available at: – volume: 5 start-page: 1401408 year: 2015 ident: bib10 article-title: Solid electrolyte. The key for high-voltage lithium batteries publication-title: Adv. Energy Mater. – volume: 331 start-page: 267 year: 2016 end-page: 276 ident: bib4 article-title: In situ visualization of the electrolyte solvent filling process by neutron radiography publication-title: J. Power Sources – year: 2003 ident: bib90 article-title: Method of Forming Thin Film of Inorganic Solid Electrolyte – volume: 310 start-page: 129 year: 2017 end-page: 133 ident: bib74 article-title: Low temperature synthesis and ion conductivity of Li publication-title: Solid State Ionics – reference: (2014) (accessed 14 December 2017). – volume: 15 start-page: 18600 year: 2013 end-page: 18606 ident: bib26 article-title: In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li publication-title: Phys. Chem. Chem. Phys. : Phys. Chem. Chem. Phys. – volume: 138 start-page: 9385 year: 2016 end-page: 9388 ident: bib58 article-title: Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte publication-title: J. Am. Chem. Soc. – volume: 79 start-page: 1 year: 2017 end-page: 4 ident: bib66 article-title: Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact publication-title: Electrochem. Commun. – volume: 57 start-page: 27 year: 2015 end-page: 30 ident: bib27 article-title: Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte publication-title: Electrochem. Commun. – volume: 182 start-page: 116 year: 2011 end-page: 119 ident: bib45 article-title: Structural change of Li publication-title: Solid State Ionics – volume: 162 start-page: A3084 year: 2014 end-page: A3097 ident: bib2 article-title: Flammability of Li-Ion battery electrolytes. Flash point and self-extinguishing time measurements publication-title: J. Electrochem. Soc. – volume: 99 start-page: 410 year: 2016 end-page: 414 ident: bib44 article-title: A novel sol-gel method for large-scale production of nanopowders. Preparation of Li publication-title: J. Am. Ceram. Soc. – volume: 325 start-page: 584 year: 2016 end-page: 590 ident: bib63 article-title: Effects of sintering temperature on interfacial structure and interfacial resistance for all-solid-state rechargeable lithium batteries publication-title: J. Power Sources – year: 2007 ident: bib68 publication-title: Designing Qualitative Research – start-page: 3 year: 2013 end-page: 12 ident: bib109 article-title: Research and demonstration center for the production of large-area lithium-ion cells publication-title: Future Trends in Production Engineering – volume: 169 start-page: 757 year: 2016 end-page: 767 ident: bib19 article-title: Life Cycle Assessment and resource analysis of all-solid-state batteries publication-title: Appl. Energy – volume: 195 start-page: 4554 year: 2010 end-page: 4569 ident: bib12 article-title: Ceramic and polymeric solid electrolytes for lithium-ion batteries publication-title: J. Power Sources – volume: 6 start-page: 19892 year: 2016 ident: bib83 article-title: Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries publication-title: Sci. Rep. – volume: 147 start-page: 517 year: 2000 ident: bib98 article-title: “Lithium-Free” thin-film battery with in situ plated Li anode publication-title: J. Electrochem. Soc. – start-page: 1 year: 2011 end-page: 6 ident: bib110 article-title: Non-contact handling and transportation for substrates and microassembly using ultrasound-air-film-technology publication-title: Advanced Semiconductor Manufacturing Conference (ASMC), 2011 22nd Annual IEEE/SEMI – volume: 189 start-page: 365 year: 2009 end-page: 370 ident: bib59 article-title: Li-ion transport in all-solid-state lithium batteries with LiCoO2 using NASICON-type glass ceramic electrolytes publication-title: J. Power Sources – volume: 17 start-page: 3013 year: 2017 end-page: 3020 ident: bib104 article-title: Infiltration of solution-processable solid electrolytes into conventional Li-Ion-Battery electrodes for all-solid-state Li-Ion batteries publication-title: Nano Lett. – year: 2011 ident: bib111 article-title: Bipolar All-solid-state Battery – volume: 180 start-page: 911 year: 2017 ident: bib49 article-title: Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes. A brief review publication-title: Ionics – volume: 5 start-page: 701 year: 2003 end-page: 705 ident: bib8 article-title: All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes publication-title: Electrochem. Commun. – year: 2014 ident: bib30 publication-title: Ion Conducting Batteries with Solid State Electrolyte Materials – start-page: 45 year: 2017 end-page: 152 ident: bib64 article-title: High coulombic efficiency of lithium plating/stripping and lithium dendrite prevention publication-title: Lithium Metal Anodes and Rechargeable Lithium Metal Batteries – volume: 5 start-page: 329 year: 2015 end-page: 332 ident: bib21 article-title: Rapidly falling costs of battery packs for electric vehicles publication-title: Nat. Clim. Change – volume: 353 start-page: 287 year: 2017 end-page: 297 ident: bib76 article-title: Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li publication-title: J. Power Sources – volume: 1140 start-page: 304 year: 2016 end-page: 311 ident: bib1 article-title: The manufacturing of electrodes. Key process for the future success of lithium-ion batteries publication-title: AMR (Adv. Mater. Res.) – volume: 260 start-page: 109 year: 2014 end-page: 114 ident: bib77 article-title: Excess lithium salt functions more than compensating for lithium loss when synthesizing Li publication-title: J. Power Sources – volume: 4 start-page: 15266 year: 2016 end-page: 15280 ident: bib51 article-title: Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems publication-title: J. Mater. Chem. – volume: 238 start-page: 53 year: 2013 end-page: 56 ident: bib17 article-title: All-solid-state lithium ion battery using garnet-type oxide and Li publication-title: J. Power Sources – volume: 164 start-page: A2075 year: 2017 end-page: A2081 ident: bib100 article-title: Selection of binder and solvent for solution-processed all-solid-state battery publication-title: J. Electrochem. Soc. – volume: 158 start-page: 275 year: 2003 end-page: 280 ident: bib15 article-title: Fabrications and properties of composite solid-state electrolytes publication-title: Solid State Ionics – volume: 3 start-page: 2261 year: 2013 ident: bib47 article-title: Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery publication-title: Sci. Rep. – volume: 22 start-page: 15357 year: 2012 ident: bib41 article-title: Optimizing Li+ conductivity in a garnet framework publication-title: J. Mater. Chem. – volume: 162 start-page: A60 year: 2014 end-page: A63 ident: bib87 article-title: Microstructure and ionic conductivity in Li publication-title: J. Electrochem. Soc. – volume: 162 start-page: A60 year: 2014 ident: 10.1016/j.jpowsour.2018.02.062_bib87 article-title: Microstructure and ionic conductivity in Li7La3Zr2O12 film prepared by aerosol deposition method publication-title: J. Electrochem. Soc. doi: 10.1149/2.0411501jes – volume: 22 start-page: 15357 year: 2012 ident: 10.1016/j.jpowsour.2018.02.062_bib41 article-title: Optimizing Li+ conductivity in a garnet framework publication-title: J. Mater. Chem. doi: 10.1039/c2jm31413d – volume: 275 start-page: 234 year: 2015 ident: 10.1016/j.jpowsour.2018.02.062_bib5 article-title: Prospects for reducing the processing cost of lithium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.11.019 – volume: 239 start-page: 326 year: 2013 ident: 10.1016/j.jpowsour.2018.02.062_bib46 article-title: Li7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.03.155 – year: 2010 ident: 10.1016/j.jpowsour.2018.02.062_bib80 – year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib84 – ident: 10.1016/j.jpowsour.2018.02.062_bib33 – volume: 39 start-page: 213 year: 2012 ident: 10.1016/j.jpowsour.2018.02.062_bib108 article-title: Laser cutting in the production of lithium ion cells publication-title: Physics Procedia doi: 10.1016/j.phpro.2012.10.032 – volume: 325 start-page: 584 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib63 article-title: Effects of sintering temperature on interfacial structure and interfacial resistance for all-solid-state rechargeable lithium batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.06.068 – volume: 79 start-page: 1 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib66 article-title: Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2017.03.016 – volume: 353 start-page: 333 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib99 article-title: Challenges and issues facing lithium metal for solid-state rechargeable batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.04.018 – volume: 22 start-page: 587 year: 2010 ident: 10.1016/j.jpowsour.2018.02.062_bib31 article-title: Challenges for rechargeable Li batteries publication-title: Chem. Mater. doi: 10.1021/cm901452z – volume: 3 start-page: 6709 year: 2015 ident: 10.1016/j.jpowsour.2018.02.062_bib24 article-title: Future generations of cathode materials: an automotive industry perspective publication-title: J. Mater. Chem. doi: 10.1039/C5TA00361J – volume: 1140 start-page: 304 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib1 article-title: The manufacturing of electrodes. Key process for the future success of lithium-ion batteries publication-title: AMR (Adv. Mater. Res.) – volume: 375 start-page: 93 year: 2018 ident: 10.1016/j.jpowsour.2018.02.062_bib75 article-title: Toward practical all-solid-state lithium-ion batteries with high energy density and safety. Comparative study for electrodes fabricated by dry- and slurry-mixing processes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.11.031 – volume: 353 start-page: 287 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib76 article-title: Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15 LiTFSI publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.04.014 – volume: vol. 1 start-page: 295 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib23 article-title: Evaluation of technology chains for the production of all-solid-state batteries – volume: 5 start-page: 701 year: 2003 ident: 10.1016/j.jpowsour.2018.02.062_bib8 article-title: All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes publication-title: Electrochem. Commun. doi: 10.1016/S1388-2481(03)00167-X – volume: 16 start-page: 572 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib52 article-title: Negating interfacial impedance in garnet-based solid-state Li metal batteries publication-title: Nat. Mater. doi: 10.1038/nmat4821 – volume: 7 start-page: 1602011 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib48 article-title: Compliant yet brittle mechanical behavior of Li2S-P2S 5 lithium-ion-conducting solid electrolyte publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602011 – volume: 29 start-page: 5574 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib65 article-title: Capacity fade in solid-state batteries. Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00931 – start-page: 9 year: 1957 ident: 10.1016/j.jpowsour.2018.02.062_bib93 article-title: Some practical aspects of handling lithium metal – start-page: 3 year: 2013 ident: 10.1016/j.jpowsour.2018.02.062_bib109 article-title: Research and demonstration center for the production of large-area lithium-ion cells – volume: 5 start-page: 20771 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib102 article-title: Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries publication-title: J. Mater. Chem. doi: 10.1039/C7TA06873E – year: 2010 ident: 10.1016/j.jpowsour.2018.02.062_bib11 – volume: 162 start-page: A3084 year: 2014 ident: 10.1016/j.jpowsour.2018.02.062_bib2 article-title: Flammability of Li-Ion battery electrolytes. Flash point and self-extinguishing time measurements publication-title: J. Electrochem. Soc. doi: 10.1149/2.0121502jes – volume: 268 start-page: 960 year: 2014 ident: 10.1016/j.jpowsour.2018.02.062_bib79 article-title: Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.03.148 – volume: 352 start-page: 156 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib28 article-title: Key parameters governing the densification of cubic-Li7La3Zr2O12 Li + conductors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.126 – volume: 196 start-page: 7750 year: 2011 ident: 10.1016/j.jpowsour.2018.02.062_bib78 article-title: Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.04.047 – volume: 265 start-page: 40 year: 2014 ident: 10.1016/j.jpowsour.2018.02.062_bib62 article-title: Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.04.065 – volume: 7 start-page: 23685 year: 2015 ident: 10.1016/j.jpowsour.2018.02.062_bib53 article-title: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07517 – volume: 195 start-page: 4554 year: 2010 ident: 10.1016/j.jpowsour.2018.02.062_bib12 article-title: Ceramic and polymeric solid electrolytes for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.01.076 – volume: 43 start-page: 1913 year: 2008 ident: 10.1016/j.jpowsour.2018.02.062_bib88 article-title: Issue and challenges facing rechargeable thin film lithium batteries publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2007.08.031 – year: 1996 ident: 10.1016/j.jpowsour.2018.02.062_bib94 – volume: 180 start-page: 911 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib49 article-title: Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes. A brief review publication-title: Ionics – volume: 225 start-page: 354 year: 2012 ident: 10.1016/j.jpowsour.2018.02.062_bib61 article-title: Electrochemical properties of all-solid-state batteries with ZrO2-coated LiNi1/3Mn1/3Co1/3O2 as cathode materials publication-title: Solid State Ionics doi: 10.1016/j.ssi.2011.11.026 – volume: 68 start-page: 432 year: 1997 ident: 10.1016/j.jpowsour.2018.02.062_bib81 article-title: Lithium polymer battery development for electric vehicle application publication-title: J. Power Sources doi: 10.1016/S0378-7753(97)02646-3 – volume: 98 start-page: 3603 year: 2015 ident: 10.1016/j.jpowsour.2018.02.062_bib32 article-title: Oxide electrolytes for lithium batteries publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13844 – volume: 164 start-page: A1731 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib20 article-title: Review—practical challenges hindering the development of solid state Li ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.1571707jes – volume: 189 start-page: 485 year: 2009 ident: 10.1016/j.jpowsour.2018.02.062_bib103 article-title: Fabrication of all solid-state lithium-ion batteries with three-dimensionally ordered composite electrode consisting of Li0.35La0.55TiO3 and LiMn2O4 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.12.048 – volume: 238 start-page: 53 year: 2013 ident: 10.1016/j.jpowsour.2018.02.062_bib17 article-title: All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.02.073 – volume: 147 start-page: 517 year: 2000 ident: 10.1016/j.jpowsour.2018.02.062_bib98 article-title: “Lithium-Free” thin-film battery with in situ plated Li anode publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393226 – year: 2011 ident: 10.1016/j.jpowsour.2018.02.062_bib111 – volume: 45 start-page: 3109 year: 2010 ident: 10.1016/j.jpowsour.2018.02.062_bib29 article-title: Materials and manufacturing technologies for solid oxide fuel cells publication-title: J. Mater. Sci. doi: 10.1007/s10853-010-4279-9 – volume: 125 start-page: 391 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib101 article-title: Fabrication of composite positive electrode sheet with high active material content and effect of fabrication pressure for all-solid-state battery publication-title: J. Ceram. Soc. Japan doi: 10.2109/jcersj2.16321 – volume: 113 start-page: 2862 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib97 article-title: Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1518188113 – volume: 5 start-page: 139 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib35 article-title: All solid-state polymer electrolytes for high-performance lithium ion batteries publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2016.07.003 – volume: 21 start-page: 1939 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib25 article-title: Lithium ion, lithium metal, and alternative rechargeable battery technologies. The odyssey for high energy density publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-017-3610-7 – volume: 57 start-page: 27 year: 2015 ident: 10.1016/j.jpowsour.2018.02.062_bib27 article-title: Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.05.001 – volume: 5 start-page: 1401408 year: 2015 ident: 10.1016/j.jpowsour.2018.02.062_bib10 article-title: Solid electrolyte. The key for high-voltage lithium batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401408 – year: 2018 ident: 10.1016/j.jpowsour.2018.02.062_bib82 – start-page: 1 year: 2011 ident: 10.1016/j.jpowsour.2018.02.062_bib110 article-title: Non-contact handling and transportation for substrates and microassembly using ultrasound-air-film-technology – volume: 43 start-page: 4714 year: 2014 ident: 10.1016/j.jpowsour.2018.02.062_bib39 article-title: Garnet-type solid-state fast Li ion conductors for Li batteries: critical review publication-title: Chem. Soc. Rev. doi: 10.1039/c4cs00020j – volume: 278 start-page: 98 year: 2015 ident: 10.1016/j.jpowsour.2018.02.062_bib55 article-title: Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy publication-title: Solid State Ionics doi: 10.1016/j.ssi.2015.06.001 – volume: 15 start-page: 18600 year: 2013 ident: 10.1016/j.jpowsour.2018.02.062_bib26 article-title: In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte publication-title: Phys. Chem. Chem. Phys. : Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51059j – volume: 4 start-page: 15266 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib51 article-title: Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems publication-title: J. Mater. Chem. doi: 10.1039/C6TA05439K – volume: 1 start-page: 16042 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib13 article-title: Batteries. Getting solid publication-title: Nat. Energy doi: 10.1038/nenergy.2016.42 – volume: 4 start-page: 17251 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib6 article-title: Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries publication-title: J. Mater. Chem. doi: 10.1039/C6TA07384K – volume: 22 start-page: 949 year: 2010 ident: 10.1016/j.jpowsour.2018.02.062_bib57 article-title: Interfacial observation between LiCoO2 electrode and Li2S−P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy publication-title: Chem. Mater. doi: 10.1021/cm901819c – year: 2003 ident: 10.1016/j.jpowsour.2018.02.062_bib90 – year: 1973 ident: 10.1016/j.jpowsour.2018.02.062_bib95 – volume: 150 start-page: A1577 year: 2003 ident: 10.1016/j.jpowsour.2018.02.062_bib9 article-title: 5 V class all-solid-state composite lithium battery with Li3PO4 coated LiNi0.5Mn1.5O4 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1619988 – start-page: 1 year: 2013 ident: 10.1016/j.jpowsour.2018.02.062_bib69 article-title: Method for quality parameter identification and classification in battery cell production quality planning of complex production chains for battery cells – year: 2014 ident: 10.1016/j.jpowsour.2018.02.062_bib30 – volume: 44 start-page: 1538 year: 2018 ident: 10.1016/j.jpowsour.2018.02.062_bib107 article-title: The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li7La3Zr2O12 ceramic publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.10.072 – year: 2001 ident: 10.1016/j.jpowsour.2018.02.062_bib71 – volume: 57 start-page: 568 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib22 article-title: Quality management for battery production. A quality gate concept publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.11.098 – volume: 10 start-page: 682 year: 2011 ident: 10.1016/j.jpowsour.2018.02.062_bib43 article-title: A lithium superionic conductor publication-title: Nat. Mater. doi: 10.1038/nmat3066 – volume: 189 start-page: 365 year: 2009 ident: 10.1016/j.jpowsour.2018.02.062_bib59 article-title: Li-ion transport in all-solid-state lithium batteries with LiCoO2 using NASICON-type glass ceramic electrolytes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.08.015 – volume: 117 start-page: 21064 year: 2013 ident: 10.1016/j.jpowsour.2018.02.062_bib54 article-title: Degradation of NASICON-type materials in contact with lithium metal. Formation of mixed conducting interphases (MCI) on solid electrolytes publication-title: J. Phys. Chem. C doi: 10.1021/jp4051275 – volume: 61 start-page: 1 year: 2012 ident: 10.1016/j.jpowsour.2018.02.062_bib105 article-title: Production of large-area lithium-ion cells – preconditioning, cell stacking and quality assurance publication-title: CIRP Ann. - Manuf. Technol. doi: 10.1016/j.cirp.2012.03.101 – volume: 248 start-page: 943 year: 2014 ident: 10.1016/j.jpowsour.2018.02.062_bib16 article-title: A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.10.005 – volume: 138 start-page: 9385 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib58 article-title: Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05341 – year: 1993 ident: 10.1016/j.jpowsour.2018.02.062_bib96 – year: 2007 ident: 10.1016/j.jpowsour.2018.02.062_bib68 – volume: 25 start-page: 18802 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib85 article-title: All-solid-state lithium batteries with inorganic solid electrolytes. Review of fundamental science publication-title: Chin. Phys. B doi: 10.1088/1674-1056/25/1/018802 – year: 2014 ident: 10.1016/j.jpowsour.2018.02.062_bib70 – volume: 47 start-page: 5952 year: 2006 ident: 10.1016/j.jpowsour.2018.02.062_bib34 article-title: Review on composite polymer electrolytes for lithium batteries publication-title: Polymer doi: 10.1016/j.polymer.2006.05.069 – volume: 94 start-page: 3847 year: 2011 ident: 10.1016/j.jpowsour.2018.02.062_bib92 article-title: Preparation of lithium aluminum titanium phosphate electrolytes thick films by aerosol deposition method publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2011.04551.x – volume: 7 start-page: 627 year: 2014 ident: 10.1016/j.jpowsour.2018.02.062_bib36 article-title: A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries publication-title: Energy Environ. Sci. doi: 10.1039/C3EE41655K – volume: 1 start-page: 16030 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib37 article-title: High-power all-solid-state batteries using sulfide superionic conductors publication-title: Nat. Energy doi: 10.1038/nenergy.2016.30 – volume: 93 start-page: 765 year: 2010 ident: 10.1016/j.jpowsour.2018.02.062_bib86 article-title: Preparation of highly lithium-ion conductive 80Li2S·20P2S5 thin-film electrolytes using pulsed laser deposition publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.03442.x – volume: 164 start-page: A2075 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib100 article-title: Selection of binder and solvent for solution-processed all-solid-state battery publication-title: J. Electrochem. Soc. doi: 10.1149/2.1341709jes – volume: 18 start-page: 2226 year: 2006 ident: 10.1016/j.jpowsour.2018.02.062_bib60 article-title: Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification publication-title: Adv. Mater. doi: 10.1002/adma.200502604 – volume: 6 start-page: 4599 year: 2015 ident: 10.1016/j.jpowsour.2018.02.062_bib50 article-title: Interfacial challenges in solid-state Li ion batteries publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02352 – volume: 297 start-page: 113 year: 2015 ident: 10.1016/j.jpowsour.2018.02.062_bib3 article-title: A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.07.100 – year: 2015 ident: 10.1016/j.jpowsour.2018.02.062_bib14 – volume: 182 start-page: 116 year: 2011 ident: 10.1016/j.jpowsour.2018.02.062_bib45 article-title: Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere publication-title: Solid State Ionics doi: 10.1016/j.ssi.2010.10.013 – volume: 194 start-page: 1085 year: 2009 ident: 10.1016/j.jpowsour.2018.02.062_bib73 article-title: All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.06.100 – volume: 310 start-page: 129 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib74 article-title: Low temperature synthesis and ion conductivity of Li7La3Zr2O12 garnets for solid state Li ion batteries publication-title: Solid State Ionics doi: 10.1016/j.ssi.2017.08.016 – volume: 169 start-page: 757 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib19 article-title: Life Cycle Assessment and resource analysis of all-solid-state batteries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.02.064 – volume: 1 start-page: 16141 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib7 article-title: A solid future for battery development publication-title: Nat. Energy doi: 10.1038/nenergy.2016.141 – volume: 6 start-page: 19892 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib83 article-title: Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries publication-title: Sci. Rep. doi: 10.1038/srep19892 – year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib106 – volume: 3 start-page: 2261 year: 2013 ident: 10.1016/j.jpowsour.2018.02.062_bib47 article-title: Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery publication-title: Sci. Rep. doi: 10.1038/srep02261 – volume: 97–98 start-page: 782 year: 2001 ident: 10.1016/j.jpowsour.2018.02.062_bib67 article-title: Development of a bipolar Li/composite polymer electrolyte/pyrite battery for electric vehicles publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00608-5 – volume: 6 start-page: 147 year: 2015 ident: 10.1016/j.jpowsour.2018.02.062_bib91 article-title: An overview of the aerosol deposition method: process fundamentals and new trends in materials applications publication-title: J. Ceram. Sci. Technol – year: 2011 ident: 10.1016/j.jpowsour.2018.02.062_bib72 – volume: 158 start-page: 275 year: 2003 ident: 10.1016/j.jpowsour.2018.02.062_bib15 article-title: Fabrications and properties of composite solid-state electrolytes publication-title: Solid State Ionics doi: 10.1016/S0167-2738(02)00889-5 – volume: 29 start-page: 3785 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib89 article-title: Atomic layer deposition of the solid electrolyte garnet Li7La3Zr2O12 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00944 – volume: 113 start-page: 7094 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib42 article-title: Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1600422113 – volume: 331 start-page: 267 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib4 article-title: In situ visualization of the electrolyte solvent filling process by neutron radiography publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.09.037 – volume: 17 start-page: 3013 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib104 article-title: Infiltration of solution-processable solid electrolytes into conventional Li-Ion-Battery electrodes for all-solid-state Li-Ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00330 – start-page: 45 year: 2017 ident: 10.1016/j.jpowsour.2018.02.062_bib64 article-title: High coulombic efficiency of lithium plating/stripping and lithium dendrite prevention – volume: 46 start-page: 7778 year: 2007 ident: 10.1016/j.jpowsour.2018.02.062_bib40 article-title: Fast lithium ion conduction in garnet-type Li7La3Zr2O12 publication-title: Angew. Chem. doi: 10.1002/anie.200701144 – volume: 99 start-page: 410 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib44 article-title: A novel sol-gel method for large-scale production of nanopowders. Preparation of Li1.5Al0.5Ti1.5(PO4)3 as an example publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13997 – volume: 5 start-page: 329 year: 2015 ident: 10.1016/j.jpowsour.2018.02.062_bib21 article-title: Rapidly falling costs of battery packs for electric vehicles publication-title: Nat. Clim. Change doi: 10.1038/nclimate2564 – volume: 137 start-page: 1023 year: 1990 ident: 10.1016/j.jpowsour.2018.02.062_bib38 article-title: Ionic conductivity of solid electrolytes based on lithium titanium phosphate publication-title: J. Electrochem. Soc. doi: 10.1149/1.2086597 – volume: 15 start-page: 3317 year: 2015 ident: 10.1016/j.jpowsour.2018.02.062_bib18 article-title: Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00538 – volume: 286 start-page: 24 year: 2016 ident: 10.1016/j.jpowsour.2018.02.062_bib56 article-title: Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte publication-title: Solid State Ionics doi: 10.1016/j.ssi.2015.11.034 – volume: 260 start-page: 109 year: 2014 ident: 10.1016/j.jpowsour.2018.02.062_bib77 article-title: Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Ta0.5Zr1.5O12 in alumina crucible publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.02.065 |
| SSID | ssj0001170 |
| Score | 2.6865726 |
| Snippet | Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 160 |
| SubjectTerms | Hybrid solid electrolyte Industrial fabrication Oxide solid electrolyte Process chain Solid-state battery production Sulfide solid electrolyte |
| Title | All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production |
| URI | https://dx.doi.org/10.1016/j.jpowsour.2018.02.062 |
| Volume | 382 |
| WOSCitedRecordID | wos000430622700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2755 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001170 issn: 0378-7753 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa20EN7QH2q9CUfekOmSZzE8XGLKLSVUCWotLfIzkNkFbKrJWw58h_4Gf1X_JLOxHYILBKtql6iTXadWPN9OzN25kHIBzBqQRmKnGkVZSwEk8y0LjXjutCIsifKvGs2IQ4OkslEfh-NfrlcmGUtmiY5P5fz_wo1XAOwMXX2L-DubwoX4DOADkeAHY5_BPy4rhk8ocpZlyyEScbH1dkJc3HH9hx7RwM8uquvWeHmqw174FtztXRJVD9V553WGC_OTgFPzKvqasQ6PFcd2zk2XtsybwV6j_0wO-4Damawou6twR6-qv-007Q9eeo-6ONbg_28bsUxYXewCqtzLW4URxhuX_jJIOql21NbyasxuVywthXClBHeLoxqTgRngTBFfZ3u5qZzkdW-vmlNYA25b1qyrNgIs10x3Z6COFAWGN-XdIVbrV24WX_7ECeDcwHlBz_k8QOyDtOQYAXWx192J197w49NfLqXVnbyg4T0u592ty808G-OnpANix8dG0I9JaOieUYeD8pVPif5LWrRAbUoUMud045atKcWvbq4pIZUFGCmQCrazuiAVPSaVC_Ij8-7Rzv7zHbpYFkYRy0LA9ADXJcyUrEC21oqWHFwv5Sgo-JEycArgjzE7z1eCJXAglzrwuMyz_2oTDL-kqw1s6Z4RWhUKK79PPM9kcFCotRCy0zGeYw1hjzlbZLIySvNbAl77KRSpy5WcZo6Oaco59QLUpDzJvnYj5ubIi73jpAOjtS6osbFTIFF94x9_Q9j35BH13-St2StXZwV78jDbNlWp4v3lnC_AdzxtkE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=All-solid-state+lithium-ion+and+lithium+metal+batteries+%E2%80%93+paving+the+way+to+large-scale+production&rft.jtitle=Journal+of+power+sources&rft.au=Schnell%2C+Joscha&rft.au=G%C3%BCnther%2C+Till&rft.au=Knoche%2C+Thomas&rft.au=Vieider%2C+Christoph&rft.date=2018-04-01&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=382&rft.spage=160&rft.epage=175&rft_id=info:doi/10.1016%2Fj.jpowsour.2018.02.062&rft.externalDocID=S0378775318301836 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |