All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production

Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with experts from renowned research institutes, material suppliers, and automotive manufacturers. Aiming to bridge the gap between materials resear...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources Vol. 382; pp. 160 - 175
Main Authors: Schnell, Joscha, Günther, Till, Knoche, Thomas, Vieider, Christoph, Köhler, Larissa, Just, Alexander, Keller, Marlou, Passerini, Stefano, Reinhart, Gunther
Format: Journal Article
Language:English
Published: Elsevier B.V 01.04.2018
Subjects:
ISSN:0378-7753, 1873-2755
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with experts from renowned research institutes, material suppliers, and automotive manufacturers. Aiming to bridge the gap between materials research and industrial mass production, possible solutions for the production chains of sulfide and oxide based all-solid-state batteries from electrode fabrication to cell assembly and quality control are presented. Based on these findings, a detailed comparison of the production processes for a sulfide based all-solid-state battery with conventional lithium-ion cell production is given, showing that processes for composite electrode fabrication can be adapted with some effort, while the fabrication of the solid electrolyte separator layer and the integration of a lithium metal anode will require completely new processes. This work identifies the major steps towards mass production of all-solid-state batteries, giving insight into promising manufacturing technologies and helping stakeholders, such as machine engineering, cell producers, and original equipment manufacturers, to plan the next steps towards safer batteries with increased storage capacity. [Display omitted] •Requirements for industrial production of solid-state batteries are investigated.•Process chains for electrode fabrication and cell assembly are presented.•A detailed comparison with conventional lithium-ion cell production is given.•Guidelines for stakeholders in the scale-up of fabrication are provided.
AbstractList Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with experts from renowned research institutes, material suppliers, and automotive manufacturers. Aiming to bridge the gap between materials research and industrial mass production, possible solutions for the production chains of sulfide and oxide based all-solid-state batteries from electrode fabrication to cell assembly and quality control are presented. Based on these findings, a detailed comparison of the production processes for a sulfide based all-solid-state battery with conventional lithium-ion cell production is given, showing that processes for composite electrode fabrication can be adapted with some effort, while the fabrication of the solid electrolyte separator layer and the integration of a lithium metal anode will require completely new processes. This work identifies the major steps towards mass production of all-solid-state batteries, giving insight into promising manufacturing technologies and helping stakeholders, such as machine engineering, cell producers, and original equipment manufacturers, to plan the next steps towards safer batteries with increased storage capacity. [Display omitted] •Requirements for industrial production of solid-state batteries are investigated.•Process chains for electrode fabrication and cell assembly are presented.•A detailed comparison with conventional lithium-ion cell production is given.•Guidelines for stakeholders in the scale-up of fabrication are provided.
Author Just, Alexander
Schnell, Joscha
Passerini, Stefano
Reinhart, Gunther
Köhler, Larissa
Keller, Marlou
Günther, Till
Knoche, Thomas
Vieider, Christoph
Author_xml – sequence: 1
  givenname: Joscha
  surname: Schnell
  fullname: Schnell, Joscha
  email: joscha.schnell@iwb.mw.tum.de
  organization: Institute for Machine Tools and Industrial Management, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching, Germany
– sequence: 2
  givenname: Till
  surname: Günther
  fullname: Günther, Till
  organization: Institute for Machine Tools and Industrial Management, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching, Germany
– sequence: 3
  givenname: Thomas
  surname: Knoche
  fullname: Knoche, Thomas
  organization: Institute for Machine Tools and Industrial Management, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching, Germany
– sequence: 4
  givenname: Christoph
  surname: Vieider
  fullname: Vieider, Christoph
  organization: Institute for Machine Tools and Industrial Management, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching, Germany
– sequence: 5
  givenname: Larissa
  surname: Köhler
  fullname: Köhler, Larissa
  organization: Institute for Machine Tools and Industrial Management, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching, Germany
– sequence: 6
  givenname: Alexander
  surname: Just
  fullname: Just, Alexander
  organization: Institute for Machine Tools and Industrial Management, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching, Germany
– sequence: 7
  givenname: Marlou
  surname: Keller
  fullname: Keller, Marlou
  organization: Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany
– sequence: 8
  givenname: Stefano
  orcidid: 0000-0002-6606-5304
  surname: Passerini
  fullname: Passerini, Stefano
  organization: Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany
– sequence: 9
  givenname: Gunther
  surname: Reinhart
  fullname: Reinhart, Gunther
  organization: Institute for Machine Tools and Industrial Management, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching, Germany
BookMark eNqFkMtKxDAUhoMoOF5eQfICqUk7TVtw4SDeYMCNrsNpcjqTkmlKklHc-Q6-oU9iB52NG1eHn8P3c853Qg4HPyAhF4Jnggt52Wf96N-i34Ys56LOeJ5xmR-QmairguVVWR6SGS-qmlVVWRyTkxh7zrkQFZ8Rs3CORe-sYTFBQupsWtvthlk_UBjMPtMNJnC0hZQwWIz06-OTjvBqhxVNa6Rv8E6Tpw7CClnU4JCOwZutTlPRGTnqwEU8_52n5OXu9vnmgS2f7h9vFkum57JMbJ5ji0XbNSVIqCvZQSNkIboGwcgampxjbua7PS-wgropZdsiLxpjRNnVujgl8qdXBx9jwE6NwW4gvCvB1c6V6tXeldq5UjxXk6sJvPoDajvZmE5PAaz7H7_-wXF67tViUFFbHDQaG1AnZbz9r-Ib-_-QgQ
CitedBy_id crossref_primary_10_1002_aenm_201802927
crossref_primary_10_1016_j_jmps_2025_106060
crossref_primary_10_1016_j_jelechem_2020_114156
crossref_primary_10_1007_s40684_023_00519_2
crossref_primary_10_1016_j_jpowsour_2019_05_008
crossref_primary_10_1016_j_jmps_2022_104839
crossref_primary_10_1039_C9NR10338D
crossref_primary_10_1111_jiec_13345
crossref_primary_10_1016_j_procir_2021_11_010
crossref_primary_10_1002_admt_202400745
crossref_primary_10_1016_j_est_2024_114737
crossref_primary_10_1016_j_rser_2023_113515
crossref_primary_10_1002_adsu_202401039
crossref_primary_10_1002_aenm_202203744
crossref_primary_10_3389_fchem_2021_786956
crossref_primary_10_1002_batt_202400667
crossref_primary_10_1088_1757_899X_924_1_012038
crossref_primary_10_1038_s41560_020_00748_8
crossref_primary_10_3390_batteries9090472
crossref_primary_10_1016_j_est_2023_107480
crossref_primary_10_1002_aenm_202401336
crossref_primary_10_1002_chem_202202984
crossref_primary_10_1016_j_cej_2023_144292
crossref_primary_10_1002_chem_202402510
crossref_primary_10_3390_batteries7010018
crossref_primary_10_3390_en16227566
crossref_primary_10_1016_j_jpowsour_2024_234091
crossref_primary_10_3390_batteries9030186
crossref_primary_10_1002_batt_202300487
crossref_primary_10_1016_j_device_2024_100468
crossref_primary_10_1002_cphc_202300835
crossref_primary_10_1016_j_jpowsour_2024_234772
crossref_primary_10_1021_acs_chemrev_4c00980
crossref_primary_10_1002_aenm_202502829
crossref_primary_10_1016_j_jpowsour_2021_229919
crossref_primary_10_1016_j_mattod_2022_04_008
crossref_primary_10_1016_j_jmapro_2023_09_072
crossref_primary_10_1039_D1EE00551K
crossref_primary_10_1002_batt_202100009
crossref_primary_10_1016_j_ssi_2023_116433
crossref_primary_10_1007_s10008_019_04203_x
crossref_primary_10_1016_j_pmatsci_2025_101559
crossref_primary_10_1142_S1793604723500145
crossref_primary_10_1016_j_jpowsour_2021_230220
crossref_primary_10_1016_j_jpowsour_2018_09_091
crossref_primary_10_1002_smll_202507279
crossref_primary_10_3390_batteries11030090
crossref_primary_10_1016_j_powtec_2025_120906
crossref_primary_10_1016_j_procir_2022_08_132
crossref_primary_10_1002_ente_202300098
crossref_primary_10_1007_s10008_023_05739_9
crossref_primary_10_1039_D1QM00071C
crossref_primary_10_1002_ente_201801049
crossref_primary_10_1016_j_rser_2025_116243
crossref_primary_10_1038_s41578_021_00320_0
crossref_primary_10_3390_cryst12091241
crossref_primary_10_1016_j_jpowsour_2019_227579
crossref_primary_10_1016_j_jpowsour_2019_227338
crossref_primary_10_1039_D1EE01530C
crossref_primary_10_1002_cey2_131
crossref_primary_10_1016_j_jpowsour_2019_226923
crossref_primary_10_1002_chem_201804781
crossref_primary_10_1557_mrs_2018_211
crossref_primary_10_1016_j_jpowsour_2022_232257
crossref_primary_10_3390_polym14214568
crossref_primary_10_1002_cssc_201803061
crossref_primary_10_1038_s41563_019_0431_3
crossref_primary_10_1002_aenm_202503593
crossref_primary_10_1557_mrs_2019_229
crossref_primary_10_1002_aenm_202301886
crossref_primary_10_1007_s10800_024_02142_8
crossref_primary_10_1039_D0EE02714F
crossref_primary_10_1002_aesr_202200032
crossref_primary_10_1007_s10854_024_12099_1
crossref_primary_10_1038_s41560_018_0312_z
crossref_primary_10_1002_ente_202000665
crossref_primary_10_1016_j_joule_2022_07_002
crossref_primary_10_1016_j_procir_2024_10_297
crossref_primary_10_1039_D4EE02208D
crossref_primary_10_1039_D5CS00358J
crossref_primary_10_3390_ma17102349
crossref_primary_10_1111_jace_18994
crossref_primary_10_1016_j_joule_2019_11_015
crossref_primary_10_1002_est2_544
crossref_primary_10_1016_j_resconrec_2025_108430
crossref_primary_10_1007_s10008_024_05820_x
crossref_primary_10_1016_j_procir_2025_03_049
crossref_primary_10_3390_en15186599
crossref_primary_10_1002_ente_202300674
crossref_primary_10_1111_jace_18728
crossref_primary_10_3390_modelling4020015
crossref_primary_10_1098_rspa_2024_0230
crossref_primary_10_1007_s43979_024_00096_6
crossref_primary_10_1002_adfm_202416671
crossref_primary_10_3390_batteries10060183
crossref_primary_10_1016_j_jpowsour_2020_227803
crossref_primary_10_1038_s43246_024_00459_7
crossref_primary_10_1002_cssc_202301920
crossref_primary_10_1016_j_est_2023_110294
crossref_primary_10_1016_j_gee_2022_05_004
crossref_primary_10_1002_admi_202500590
crossref_primary_10_3390_polym17172369
crossref_primary_10_1515_znb_2023_0093
crossref_primary_10_1002_adem_201900952
crossref_primary_10_1007_s11367_023_02134_4
crossref_primary_10_1002_marc_202400046
crossref_primary_10_3390_ceramics4030031
crossref_primary_10_3390_batteries9070380
crossref_primary_10_1002_batt_202200057
crossref_primary_10_1002_ente_201901237
crossref_primary_10_1021_acs_jpcc_5c00888
crossref_primary_10_1002_ente_201900026
crossref_primary_10_1002_smtd_202000039
crossref_primary_10_1142_S1793604719300056
crossref_primary_10_1016_j_electacta_2019_134943
crossref_primary_10_1039_C8EE02692K
crossref_primary_10_1002_adma_202301540
crossref_primary_10_3390_ma16176063
crossref_primary_10_1016_j_mtchem_2022_101321
crossref_primary_10_1007_s40242_020_9110_9
crossref_primary_10_1016_j_procir_2020_03_040
crossref_primary_10_3389_fmats_2022_1052617
crossref_primary_10_3390_en16031278
crossref_primary_10_1002_aenm_201900161
crossref_primary_10_1002_tcr_202200116
crossref_primary_10_1002_elt2_8
crossref_primary_10_3390_batteries8070070
crossref_primary_10_1016_j_etran_2023_100306
crossref_primary_10_1016_j_solidstatesciences_2021_106681
crossref_primary_10_1002_adma_202206013
crossref_primary_10_1002_adfm_202006289
crossref_primary_10_1016_j_est_2024_113730
crossref_primary_10_1016_j_jpowsour_2022_231297
crossref_primary_10_1016_j_procir_2024_10_112
crossref_primary_10_1002_aenm_202204098
crossref_primary_10_1142_S179360472240001X
crossref_primary_10_1016_j_cej_2021_133753
crossref_primary_10_1063_5_0151559
crossref_primary_10_1007_s10971_022_05880_3
crossref_primary_10_1142_S1793604722400021
crossref_primary_10_3390_s21155041
crossref_primary_10_1016_j_jpowsour_2020_228437
crossref_primary_10_1080_17518253_2024_2321247
crossref_primary_10_1002_admi_202000450
crossref_primary_10_1002_adma_202209074
crossref_primary_10_1016_j_cej_2024_157391
crossref_primary_10_1016_j_jallcom_2025_181721
crossref_primary_10_1002_admi_202300513
crossref_primary_10_1016_j_cej_2024_157394
crossref_primary_10_1016_j_matchemphys_2022_126644
crossref_primary_10_1007_s41918_023_00204_7
crossref_primary_10_1016_j_spc_2025_01_012
crossref_primary_10_3390_batteries8020013
crossref_primary_10_1002_aenm_202502981
crossref_primary_10_1016_j_cej_2022_139923
crossref_primary_10_1002_celc_202300349
crossref_primary_10_1016_j_joule_2020_07_017
crossref_primary_10_1016_j_cej_2019_02_006
crossref_primary_10_1002_adfm_202313766
crossref_primary_10_1016_j_device_2024_100370
crossref_primary_10_1002_adem_201900737
crossref_primary_10_1002_adma_202105505
crossref_primary_10_1002_smtd_201900592
crossref_primary_10_23939_chcht19_02_270
crossref_primary_10_1002_aenm_202200948
crossref_primary_10_1002_pen_70031
crossref_primary_10_1016_j_procir_2019_03_300
crossref_primary_10_1016_j_jpowsour_2018_05_015
crossref_primary_10_1360_TB_2025_0198
crossref_primary_10_1016_j_energy_2019_07_121
crossref_primary_10_1016_j_nanoen_2025_111232
crossref_primary_10_1038_s41565_020_0657_x
crossref_primary_10_1016_j_jallcom_2025_181297
crossref_primary_10_1016_j_nanoen_2020_105456
crossref_primary_10_1021_acsami_5c09935
crossref_primary_10_1002_batt_202400709
crossref_primary_10_1002_celc_202300452
crossref_primary_10_1016_j_mtcomm_2024_111325
crossref_primary_10_1002_aenm_202102917
crossref_primary_10_3390_batteries9110555
crossref_primary_10_1016_j_jpowsour_2025_237014
crossref_primary_10_1002_batt_202400142
crossref_primary_10_1039_D1EE03032A
crossref_primary_10_1016_j_surfin_2023_103128
crossref_primary_10_1016_j_ssi_2023_116148
crossref_primary_10_1080_07373937_2023_2189943
crossref_primary_10_1002_masy_202100491
crossref_primary_10_1016_j_etran_2022_100220
crossref_primary_10_1002_adma_202203580
crossref_primary_10_1016_j_cej_2024_154426
crossref_primary_10_1016_j_etran_2022_100224
crossref_primary_10_1016_j_jclepro_2022_131689
crossref_primary_10_1016_j_susmat_2021_e00297
crossref_primary_10_1002_aesr_202100142
crossref_primary_10_1016_j_jpowsour_2025_236831
crossref_primary_10_1002_sus2_67
crossref_primary_10_1007_s40820_025_01786_1
crossref_primary_10_1016_j_est_2021_102758
crossref_primary_10_1016_j_jechem_2019_01_013
crossref_primary_10_1002_aenm_202301464
crossref_primary_10_1002_aenm_202303641
crossref_primary_10_1002_smll_202304269
crossref_primary_10_1016_j_jallcom_2022_163908
crossref_primary_10_1002_inf2_12292
crossref_primary_10_1016_j_ceramint_2020_01_170
crossref_primary_10_1016_j_est_2021_103842
crossref_primary_10_1016_j_jpowsour_2020_228803
crossref_primary_10_1016_j_cej_2024_149877
crossref_primary_10_1016_j_nxmate_2024_100371
crossref_primary_10_1039_D1SE00265A
crossref_primary_10_1038_s42004_025_01609_9
crossref_primary_10_1016_j_ceramint_2019_12_229
crossref_primary_10_1021_acs_chemrev_4c00584
crossref_primary_10_1109_ACCESS_2019_2940090
crossref_primary_10_1002_aenm_201803170
crossref_primary_10_1002_adma_202001702
crossref_primary_10_1016_j_jpowsour_2021_230064
crossref_primary_10_1016_j_jpowsour_2023_233579
crossref_primary_10_1016_j_apenergy_2025_125546
crossref_primary_10_1002_aenm_202002360
crossref_primary_10_1002_adem_202100524
crossref_primary_10_3390_app15137120
crossref_primary_10_3389_fenrg_2020_571440
crossref_primary_10_1002_celc_202500180
crossref_primary_10_1016_j_cossms_2022_101003
crossref_primary_10_1016_j_jiec_2018_12_001
crossref_primary_10_1002_macp_202100317
crossref_primary_10_1016_j_cossms_2022_101002
crossref_primary_10_1016_j_electacta_2021_139249
crossref_primary_10_3390_membranes8030055
crossref_primary_10_1016_j_matt_2022_01_011
crossref_primary_10_1088_2515_7655_ad3d0b
crossref_primary_10_1002_advs_202001207
crossref_primary_10_1002_celc_202001291
crossref_primary_10_1080_21693277_2024_2385986
crossref_primary_10_3390_polym12091886
crossref_primary_10_1061_JOEEDU_EEENG_7340
crossref_primary_10_1016_j_coelec_2021_100933
crossref_primary_10_3390_polym15163375
crossref_primary_10_1002_adma_201803075
crossref_primary_10_1016_j_joule_2025_101953
crossref_primary_10_1093_aesa_saz014
crossref_primary_10_1039_D0EE01569E
crossref_primary_10_1039_D4EE04927F
crossref_primary_10_1002_smll_202308849
crossref_primary_10_1039_C9SE00119K
crossref_primary_10_3390_batteries9020066
crossref_primary_10_1038_s41467_025_59363_4
crossref_primary_10_1016_j_electacta_2020_136481
crossref_primary_10_1016_j_jpowsour_2024_234114
crossref_primary_10_3390_en15072670
crossref_primary_10_1088_2053_1591_abcc85
crossref_primary_10_3390_en14051406
crossref_primary_10_1007_s41918_020_00076_1
crossref_primary_10_1016_j_jpowsour_2020_229212
crossref_primary_10_1039_D2RA01856J
crossref_primary_10_1002_advs_202304224
crossref_primary_10_1039_D0EE02241A
crossref_primary_10_1002_ente_202001113
crossref_primary_10_1002_celc_202500286
crossref_primary_10_1021_acs_iecr_5c02727
crossref_primary_10_3390_ma12233892
crossref_primary_10_1039_D1QM00579K
crossref_primary_10_1016_j_actamat_2024_120135
crossref_primary_10_1016_j_nxener_2024_100221
crossref_primary_10_1002_adma_202313572
crossref_primary_10_1016_j_electacta_2023_142585
crossref_primary_10_1016_j_mser_2025_100941
crossref_primary_10_1002_ente_202500042
crossref_primary_10_1021_acsaem_5c02274
crossref_primary_10_1038_s41560_024_01463_4
crossref_primary_10_1016_j_apt_2022_103705
crossref_primary_10_1039_D0EE01435D
crossref_primary_10_1039_D1RA05897E
crossref_primary_10_1016_j_cej_2022_136346
crossref_primary_10_1002_slct_201803388
crossref_primary_10_1016_j_procir_2024_07_004
crossref_primary_10_1039_C9ME00050J
crossref_primary_10_1016_j_joule_2020_12_001
crossref_primary_10_1016_j_cej_2025_168098
crossref_primary_10_1007_s40820_022_00996_1
crossref_primary_10_1016_j_elecom_2020_106807
crossref_primary_10_1016_j_jpowsour_2023_233917
crossref_primary_10_3390_batteries11060212
crossref_primary_10_1002_batt_202500321
crossref_primary_10_1002_gch2_202200049
crossref_primary_10_1007_s41918_023_00196_4
crossref_primary_10_1016_j_mattod_2021_01_026
crossref_primary_10_1007_s10853_020_04434_8
crossref_primary_10_1016_j_apt_2022_103470
crossref_primary_10_1002_aenm_202301018
crossref_primary_10_1002_batt_202300578
crossref_primary_10_1016_j_mattod_2023_11_016
crossref_primary_10_1016_j_jpowsour_2025_237212
crossref_primary_10_1002_adfm_202106608
crossref_primary_10_1002_batt_202200328
crossref_primary_10_1002_eom2_12193
crossref_primary_10_1016_j_surfcoat_2025_132397
crossref_primary_10_1002_aenm_202202854
crossref_primary_10_2351_7_0001213
crossref_primary_10_1021_acsenergylett_5c00117
crossref_primary_10_59761_RCR5126
crossref_primary_10_1002_pssa_202400823
crossref_primary_10_1002_cssc_202400281
crossref_primary_10_1007_s42354_021_0335_7
crossref_primary_10_1002_er_4285
crossref_primary_10_1063_5_0086130
crossref_primary_10_1002_aenm_202100785
crossref_primary_10_1016_j_mtnano_2019_100048
crossref_primary_10_3389_fmtec_2024_1360076
crossref_primary_10_1002_aenm_202203153
crossref_primary_10_1016_j_nanoen_2024_109848
crossref_primary_10_1002_aenm_202301142
crossref_primary_10_1016_j_memsci_2019_117800
crossref_primary_10_1016_j_matpr_2021_08_003
crossref_primary_10_1002_aenm_202003766
crossref_primary_10_1002_aenm_202300310
crossref_primary_10_1002_batt_202000045
crossref_primary_10_1002_app_53690
crossref_primary_10_1002_aenm_202000017
crossref_primary_10_1016_j_energy_2021_121929
crossref_primary_10_1038_s41560_023_01208_9
crossref_primary_10_1088_2752_5724_ac66f5
crossref_primary_10_1016_j_cej_2023_142469
crossref_primary_10_1002_celc_201900736
crossref_primary_10_1016_j_jmps_2024_106013
crossref_primary_10_4218_etrij_2019_0176
crossref_primary_10_1016_j_est_2024_112368
crossref_primary_10_1038_s42004_023_00901_w
crossref_primary_10_1016_j_est_2023_108123
crossref_primary_10_1016_j_jpowsour_2024_234685
crossref_primary_10_1016_j_procir_2019_01_099
crossref_primary_10_1016_j_mattod_2021_01_006
crossref_primary_10_1016_j_procir_2023_02_072
crossref_primary_10_1016_j_jpowsour_2021_230425
crossref_primary_10_1007_s10008_023_05634_3
crossref_primary_10_1016_j_mtener_2022_101118
crossref_primary_10_3390_nano13152210
crossref_primary_10_1002_aenm_202404790
crossref_primary_10_3390_wevj15060245
crossref_primary_10_3390_nano13020327
crossref_primary_10_1002_aenm_202405405
crossref_primary_10_1002_aenm_202000804
crossref_primary_10_1002_smll_202407882
crossref_primary_10_1002_adma_202206402
crossref_primary_10_1111_ijac_14184
crossref_primary_10_3389_fenrg_2019_00168
crossref_primary_10_1016_j_mtcomm_2022_103189
crossref_primary_10_1016_j_jpowsour_2019_02_090
crossref_primary_10_1016_j_electacta_2021_137855
crossref_primary_10_1002_aenm_202003520
crossref_primary_10_1016_j_procir_2019_04_051
crossref_primary_10_1002_adfm_202100891
crossref_primary_10_1002_adma_202406386
crossref_primary_10_3390_batteries11040153
crossref_primary_10_1002_aenm_202301600
crossref_primary_10_1016_j_jpowsour_2018_04_054
crossref_primary_10_3390_molecules28248029
crossref_primary_10_1016_j_cej_2019_123528
crossref_primary_10_1002_cssc_201902152
crossref_primary_10_1016_j_ssi_2021_115640
crossref_primary_10_1021_acsenergylett_5c00923
crossref_primary_10_1002_ente_202201291
crossref_primary_10_1002_admt_202101107
crossref_primary_10_1016_j_est_2024_111974
crossref_primary_10_3389_fchem_2019_00268
crossref_primary_10_1016_j_electacta_2021_139104
crossref_primary_10_1016_j_jpowsour_2024_235512
crossref_primary_10_1007_s11367_024_02355_1
crossref_primary_10_1002_cssc_202100213
crossref_primary_10_1002_batt_202200245
crossref_primary_10_1007_s41918_023_00198_2
crossref_primary_10_1002_est2_506
Cites_doi 10.1149/2.0411501jes
10.1039/c2jm31413d
10.1016/j.jpowsour.2014.11.019
10.1016/j.jpowsour.2013.03.155
10.1016/j.phpro.2012.10.032
10.1016/j.jpowsour.2016.06.068
10.1016/j.elecom.2017.03.016
10.1016/j.jpowsour.2017.04.018
10.1021/cm901452z
10.1039/C5TA00361J
10.1016/j.jpowsour.2017.11.031
10.1016/j.jpowsour.2017.04.014
10.1016/S1388-2481(03)00167-X
10.1038/nmat4821
10.1002/aenm.201602011
10.1021/acs.chemmater.7b00931
10.1039/C7TA06873E
10.1149/2.0121502jes
10.1016/j.jpowsour.2014.03.148
10.1016/j.jpowsour.2017.03.126
10.1016/j.jpowsour.2011.04.047
10.1016/j.jpowsour.2014.04.065
10.1021/acsami.5b07517
10.1016/j.jpowsour.2010.01.076
10.1016/j.materresbull.2007.08.031
10.1016/j.ssi.2011.11.026
10.1016/S0378-7753(97)02646-3
10.1111/jace.13844
10.1149/2.1571707jes
10.1016/j.jpowsour.2008.12.048
10.1016/j.jpowsour.2013.02.073
10.1149/1.1393226
10.1007/s10853-010-4279-9
10.2109/jcersj2.16321
10.1073/pnas.1518188113
10.1016/j.ensm.2016.07.003
10.1007/s10008-017-3610-7
10.1016/j.elecom.2015.05.001
10.1002/aenm.201401408
10.1039/c4cs00020j
10.1016/j.ssi.2015.06.001
10.1039/c3cp51059j
10.1039/C6TA05439K
10.1038/nenergy.2016.42
10.1039/C6TA07384K
10.1021/cm901819c
10.1149/1.1619988
10.1016/j.ceramint.2017.10.072
10.1016/j.procir.2016.11.098
10.1038/nmat3066
10.1016/j.jpowsour.2008.08.015
10.1021/jp4051275
10.1016/j.cirp.2012.03.101
10.1016/j.jpowsour.2013.10.005
10.1021/jacs.6b05341
10.1088/1674-1056/25/1/018802
10.1016/j.polymer.2006.05.069
10.1111/j.1551-2916.2011.04551.x
10.1039/C3EE41655K
10.1038/nenergy.2016.30
10.1111/j.1551-2916.2009.03442.x
10.1149/2.1341709jes
10.1002/adma.200502604
10.1021/acs.jpclett.5b02352
10.1016/j.jpowsour.2015.07.100
10.1016/j.ssi.2010.10.013
10.1016/j.jpowsour.2009.06.100
10.1016/j.ssi.2017.08.016
10.1016/j.apenergy.2016.02.064
10.1038/nenergy.2016.141
10.1038/srep19892
10.1038/srep02261
10.1016/S0378-7753(01)00608-5
10.1016/S0167-2738(02)00889-5
10.1021/acs.chemmater.7b00944
10.1073/pnas.1600422113
10.1016/j.jpowsour.2016.09.037
10.1021/acs.nanolett.7b00330
10.1002/anie.200701144
10.1111/jace.13997
10.1038/nclimate2564
10.1149/1.2086597
10.1021/acs.nanolett.5b00538
10.1016/j.ssi.2015.11.034
10.1016/j.jpowsour.2014.02.065
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2018.02.062
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
EndPage 175
ExternalDocumentID 10_1016_j_jpowsour_2018_02_062
S0378775318301836
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
T9H
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c465t-42ebe3bf95a6a876fa91631f9ead68a920e2d4bf9503e7a8956bbe039dd15f8c3
ISICitedReferencesCount 517
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430622700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7753
IngestDate Sat Nov 29 02:55:45 EST 2025
Tue Nov 18 21:09:48 EST 2025
Fri Feb 23 02:28:10 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Process chain
Solid-state battery production
Oxide solid electrolyte
Hybrid solid electrolyte
Industrial fabrication
Sulfide solid electrolyte
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c465t-42ebe3bf95a6a876fa91631f9ead68a920e2d4bf9503e7a8956bbe039dd15f8c3
ORCID 0000-0002-6606-5304
OpenAccessLink http://mediatum.ub.tum.de/node?id=1436834
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_jpowsour_2018_02_062
crossref_citationtrail_10_1016_j_jpowsour_2018_02_062
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2018_02_062
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of power sources
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Popovici, Nagai, Fujishima, Akedo (bib92) 2011; 94
Nam (bib18) 2015; 15
Hanft (bib91) 2015; 6
Ma (bib44) 2016; 99
Liang (bib97) 2016; 113
Ahn (bib87) 2014; 162
Available at
Nam, Oh, Jung, Jung (bib75) 2018; 375
Tanaka (bib111) 2011
Goodenough, Kim (bib31) 2010; 22
Sakuda, Hayashi, Tatsumisago (bib57) 2010; 22
Inada (bib73) 2009; 194
Ren (bib32) 2015; 98
Lavoie, Laliberté, Dubé, Gagnon (bib80) 2010
Yao (bib85) 2016; 25
Satou (bib106) 2017
Günther (bib1) 2016; 1140
Troy (bib19) 2016; 169
Westermeier, Reinhart, Zeilinger (bib69) 2013
Hess, Wohlfahrt-Mehrens, Wachtler (bib2) 2014; 162
Yue (bib35) 2016; 5
Janek, Zeier (bib7) 2016; 1
Kariatsumari (bib11) 2010
(bib72) 2011
Zhu, He, Mo (bib53) 2015; 7
Ohta (bib60) 2006; 18
Nykvist, Nilsson (bib21) 2015; 5
Hovsepian (bib95) 1973
Liu (bib66) 2017; 79
Zhang, Xu, Henderson (bib64) 2017
Belanger, Gauthier, Robitaille (bib96) 1993
Kotobuki, Kanamura, Sato, Yoshida (bib78) 2011; 196
(bib68) 2007
Varzi, Raccichini, Passerini, Scrosati (bib6) 2016; 4
Nagao (bib26) 2013; 15
Kronthaler (bib108) 2012; 39
Kobayashi (bib9) 2003; 150
Li, Ma, Chi, Liang, Dudney (bib10) 2015; 5
Hu (bib13) 2016; 1
Zhou (bib58) 2016; 138
Knoche (bib4) 2016; 331
Ohta (bib62) 2014; 265
(2014) (accessed 14 December 2017).
Kamaya (bib43) 2011; 10
Luntz, Voss, Reuter (bib50) 2015; 6
Schnell, Hofer, Singer, Günther, Reinhart (bib23) 2017; vol. 1
Neudecker, Dudney, Bates (bib98) 2000; 147
Hendricks, Williard, Mathew, Pecht (bib3) 2015; 297
Yang (bib107) 2018; 44
Liu, Ma, Wang (bib77) 2014; 260
Yamamoto (bib101) 2017; 125
McGrogan (bib48) 2017; 7
Wu (bib51) 2016; 4
Muramatsu, Hayashi, Ohtomo, Hama, Tatsumisago (bib45) 2011; 182
Reinhart (bib110) 2011
Kerman, Luntz, Viswanathan, Chiang, Chen (bib20) 2017; 164
Johnson, Johnson (bib84) 2017
Murugan, Thangadurai, Weppner (bib40) 2007; 46
Hartmann (bib54) 2013; 117
Kurfer, Westermeier, Tammer, Reinhart (bib105) 2012; 61
Kazyak (bib89) 2017; 29
Inada (bib15) 2003; 158
Grape (bib14) 2015
Machida, Kashiwagi, Naito, Shigematsu (bib61) 2012; 225
Kato (bib37) 2016; 1
Fu (bib42) 2016; 113
Thangadurai, Narayanan, Pinzaru (bib39) 2014; 43
Kugai, Ota (bib90) 2003
Ohta (bib17) 2013; 238
Zhang, Chen, Tu, Shen, Zhang (bib79) 2014; 268
Kato (bib63) 2016; 325
Baudry, Lascaud, Majastre, Bloch (bib81) 1997; 68
(bib70) 2014
Seino, Ota, Takada, Hayashi, Tatsumisago (bib36) 2014; 7
Ren, Shen, Lin, Nan (bib27) 2015; 57
Reinhart (bib109) 2013
Aono (bib38) 1990; 137
Hara (bib103) 2009; 189
Xie (bib59) 2009; 189
Lee (bib100) 2017; 164
Han (bib52) 2017; 16
Hayashi, Ohtomo, Mizuno, Tadanaga, Tatsumisago (bib8) 2003; 5
Patil (bib88) 2008; 43
Livshits (bib67) 2001; 97–98
Meyer, Booker (bib71) 2001
Andre (bib24) 2015; 3
Sakuda, Hayashi, Hama, Tatsumisago (bib86) 2010; 93
Oh (bib102) 2017; 5
Wachsman, Hu, Thangadurai (bib30) 2014
Wenzel, Leichtweiss, Krüger, Sann, Janek (bib55) 2015; 278
Li, Han, Wang, Xie, Goodenough (bib41) 2012; 22
Mauger, Armand, Julien, Zaghib (bib99) 2017; 353
Bouchard, Guerin, St-Amant, Laroche (bib94) 1996
Schnell, Reinhart (bib22) 2016; 57
Meyer (bib93) Jan. 1957
Jin, McGinn (bib46) 2013; 239
Sakuda, Hayashi, Tatsumisago (bib47) 2013; 3
Keller (bib76) 2017; 353
Feng, Li, Zhang, Peng, Zou (bib74) 2017; 310
Bae, Rao, Shrader (bib82) 2018
Manuel Stephan, Nahm (bib34) 2006; 47
Porcarelli, Gerbaldi, Bella, Nair (bib83) 2016; 6
Fergus (bib12) 2010; 195
Wolfenstine, Allen, Sakamoto, Siegel, Choe (bib49) 2017; 180
Ito (bib16) 2014; 248
Yi, Wang, Kieffer, Laine (bib28) 2017; 352
Wenzel (bib56) 2016; 286
Koerver (bib65) 2017; 29
Placke, Kloepsch, Dühnen, Winter (bib25) 2017; 21
Wood, Li, Daniel (bib5) 2015; 275
Kim (bib104) 2017; 17
Menzler, Tietz, Uhlenbruck, Buchkremer, Stöver (bib29) 2010; 45
Günther (10.1016/j.jpowsour.2018.02.062_bib1) 2016; 1140
Kerman (10.1016/j.jpowsour.2018.02.062_bib20) 2017; 164
Li (10.1016/j.jpowsour.2018.02.062_bib10) 2015; 5
Tanaka (10.1016/j.jpowsour.2018.02.062_bib111) 2011
Kurfer (10.1016/j.jpowsour.2018.02.062_bib105) 2012; 61
Fergus (10.1016/j.jpowsour.2018.02.062_bib12) 2010; 195
Thangadurai (10.1016/j.jpowsour.2018.02.062_bib39) 2014; 43
Ren (10.1016/j.jpowsour.2018.02.062_bib27) 2015; 57
Popovici (10.1016/j.jpowsour.2018.02.062_bib92) 2011; 94
Hess (10.1016/j.jpowsour.2018.02.062_bib2) 2014; 162
Yi (10.1016/j.jpowsour.2018.02.062_bib28) 2017; 352
Kugai (10.1016/j.jpowsour.2018.02.062_bib90) 2003
Schnell (10.1016/j.jpowsour.2018.02.062_bib23) 2017; vol. 1
Johnson (10.1016/j.jpowsour.2018.02.062_bib84) 2017
Keller (10.1016/j.jpowsour.2018.02.062_bib76) 2017; 353
Sakuda (10.1016/j.jpowsour.2018.02.062_bib47) 2013; 3
Ito (10.1016/j.jpowsour.2018.02.062_bib16) 2014; 248
McGrogan (10.1016/j.jpowsour.2018.02.062_bib48) 2017; 7
Wachsman (10.1016/j.jpowsour.2018.02.062_bib30) 2014
Wenzel (10.1016/j.jpowsour.2018.02.062_bib56) 2016; 286
Livshits (10.1016/j.jpowsour.2018.02.062_bib67) 2001; 97–98
Han (10.1016/j.jpowsour.2018.02.062_bib52) 2017; 16
Wenzel (10.1016/j.jpowsour.2018.02.062_bib55) 2015; 278
Janek (10.1016/j.jpowsour.2018.02.062_bib7) 2016; 1
Reinhart (10.1016/j.jpowsour.2018.02.062_bib110) 2011
Hu (10.1016/j.jpowsour.2018.02.062_bib13) 2016; 1
Wood (10.1016/j.jpowsour.2018.02.062_bib5) 2015; 275
Hara (10.1016/j.jpowsour.2018.02.062_bib103) 2009; 189
Menzler (10.1016/j.jpowsour.2018.02.062_bib29) 2010; 45
Kotobuki (10.1016/j.jpowsour.2018.02.062_bib78) 2011; 196
Ahn (10.1016/j.jpowsour.2018.02.062_bib87) 2014; 162
Kariatsumari (10.1016/j.jpowsour.2018.02.062_bib11) 2010
Hartmann (10.1016/j.jpowsour.2018.02.062_bib54) 2013; 117
Yang (10.1016/j.jpowsour.2018.02.062_bib107) 2018; 44
Kato (10.1016/j.jpowsour.2018.02.062_bib37) 2016; 1
Yamamoto (10.1016/j.jpowsour.2018.02.062_bib101) 2017; 125
Liu (10.1016/j.jpowsour.2018.02.062_bib77) 2014; 260
Liang (10.1016/j.jpowsour.2018.02.062_bib97) 2016; 113
Lavoie (10.1016/j.jpowsour.2018.02.062_bib80) 2010
Meyer (10.1016/j.jpowsour.2018.02.062_bib93) 1957
Wolfenstine (10.1016/j.jpowsour.2018.02.062_bib49) 2017; 180
Hayashi (10.1016/j.jpowsour.2018.02.062_bib8) 2003; 5
Zhang (10.1016/j.jpowsour.2018.02.062_bib64) 2017
Lee (10.1016/j.jpowsour.2018.02.062_bib100) 2017; 164
Zhu (10.1016/j.jpowsour.2018.02.062_bib53) 2015; 7
Hanft (10.1016/j.jpowsour.2018.02.062_bib91) 2015; 6
Andre (10.1016/j.jpowsour.2018.02.062_bib24) 2015; 3
Inada (10.1016/j.jpowsour.2018.02.062_bib15) 2003; 158
Li (10.1016/j.jpowsour.2018.02.062_bib41) 2012; 22
Troy (10.1016/j.jpowsour.2018.02.062_bib19) 2016; 169
Machida (10.1016/j.jpowsour.2018.02.062_bib61) 2012; 225
Murugan (10.1016/j.jpowsour.2018.02.062_bib40) 2007; 46
Nam (10.1016/j.jpowsour.2018.02.062_bib75) 2018; 375
Nykvist (10.1016/j.jpowsour.2018.02.062_bib21) 2015; 5
Kato (10.1016/j.jpowsour.2018.02.062_bib63) 2016; 325
(10.1016/j.jpowsour.2018.02.062_bib72) 2011
Ohta (10.1016/j.jpowsour.2018.02.062_bib17) 2013; 238
Nagao (10.1016/j.jpowsour.2018.02.062_bib26) 2013; 15
Goodenough (10.1016/j.jpowsour.2018.02.062_bib31) 2010; 22
Knoche (10.1016/j.jpowsour.2018.02.062_bib4) 2016; 331
Nam (10.1016/j.jpowsour.2018.02.062_bib18) 2015; 15
Porcarelli (10.1016/j.jpowsour.2018.02.062_bib83) 2016; 6
Manuel Stephan (10.1016/j.jpowsour.2018.02.062_bib34) 2006; 47
10.1016/j.jpowsour.2018.02.062_bib33
Kim (10.1016/j.jpowsour.2018.02.062_bib104) 2017; 17
Hendricks (10.1016/j.jpowsour.2018.02.062_bib3) 2015; 297
Feng (10.1016/j.jpowsour.2018.02.062_bib74) 2017; 310
Mauger (10.1016/j.jpowsour.2018.02.062_bib99) 2017; 353
Kazyak (10.1016/j.jpowsour.2018.02.062_bib89) 2017; 29
Varzi (10.1016/j.jpowsour.2018.02.062_bib6) 2016; 4
Yao (10.1016/j.jpowsour.2018.02.062_bib85) 2016; 25
(10.1016/j.jpowsour.2018.02.062_bib68) 2007
Satou (10.1016/j.jpowsour.2018.02.062_bib106) 2017
Reinhart (10.1016/j.jpowsour.2018.02.062_bib109) 2013
Inada (10.1016/j.jpowsour.2018.02.062_bib73) 2009; 194
Kobayashi (10.1016/j.jpowsour.2018.02.062_bib9) 2003; 150
Sakuda (10.1016/j.jpowsour.2018.02.062_bib57) 2010; 22
Westermeier (10.1016/j.jpowsour.2018.02.062_bib69) 2013
Fu (10.1016/j.jpowsour.2018.02.062_bib42) 2016; 113
Sakuda (10.1016/j.jpowsour.2018.02.062_bib86) 2010; 93
Meyer (10.1016/j.jpowsour.2018.02.062_bib71) 2001
Zhang (10.1016/j.jpowsour.2018.02.062_bib79) 2014; 268
Placke (10.1016/j.jpowsour.2018.02.062_bib25) 2017; 21
Wu (10.1016/j.jpowsour.2018.02.062_bib51) 2016; 4
Ohta (10.1016/j.jpowsour.2018.02.062_bib60) 2006; 18
(10.1016/j.jpowsour.2018.02.062_bib70) 2014
Neudecker (10.1016/j.jpowsour.2018.02.062_bib98) 2000; 147
Schnell (10.1016/j.jpowsour.2018.02.062_bib22) 2016; 57
Aono (10.1016/j.jpowsour.2018.02.062_bib38) 1990; 137
Baudry (10.1016/j.jpowsour.2018.02.062_bib81) 1997; 68
Kronthaler (10.1016/j.jpowsour.2018.02.062_bib108) 2012; 39
Ren (10.1016/j.jpowsour.2018.02.062_bib32) 2015; 98
Oh (10.1016/j.jpowsour.2018.02.062_bib102) 2017; 5
Kamaya (10.1016/j.jpowsour.2018.02.062_bib43) 2011; 10
Belanger (10.1016/j.jpowsour.2018.02.062_bib96) 1993
Xie (10.1016/j.jpowsour.2018.02.062_bib59) 2009; 189
Zhou (10.1016/j.jpowsour.2018.02.062_bib58) 2016; 138
Koerver (10.1016/j.jpowsour.2018.02.062_bib65) 2017; 29
Grape (10.1016/j.jpowsour.2018.02.062_bib14) 2015
Ma (10.1016/j.jpowsour.2018.02.062_bib44) 2016; 99
Luntz (10.1016/j.jpowsour.2018.02.062_bib50) 2015; 6
Bouchard (10.1016/j.jpowsour.2018.02.062_bib94) 1996
Bae (10.1016/j.jpowsour.2018.02.062_bib82) 2018
Hovsepian (10.1016/j.jpowsour.2018.02.062_bib95) 1973
Seino (10.1016/j.jpowsour.2018.02.062_bib36) 2014; 7
Ohta (10.1016/j.jpowsour.2018.02.062_bib62) 2014; 265
Yue (10.1016/j.jpowsour.2018.02.062_bib35) 2016; 5
Jin (10.1016/j.jpowsour.2018.02.062_bib46) 2013; 239
Liu (10.1016/j.jpowsour.2018.02.062_bib66) 2017; 79
Muramatsu (10.1016/j.jpowsour.2018.02.062_bib45) 2011; 182
Patil (10.1016/j.jpowsour.2018.02.062_bib88) 2008; 43
References_xml – volume: 68
  start-page: 432
  year: 1997
  end-page: 435
  ident: bib81
  article-title: Lithium polymer battery development for electric vehicle application
  publication-title: J. Power Sources
– volume: 239
  start-page: 326
  year: 2013
  end-page: 331
  ident: bib46
  article-title: Li
  publication-title: J. Power Sources
– volume: 7
  start-page: 1602011
  year: 2017
  ident: bib48
  article-title: Compliant yet brittle mechanical behavior of Li
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 16042
  year: 2016
  ident: bib13
  article-title: Batteries. Getting solid
  publication-title: Nat. Energy
– volume: 10
  start-page: 682
  year: 2011
  end-page: 686
  ident: bib43
  article-title: A lithium superionic conductor
  publication-title: Nat. Mater.
– volume: 94
  start-page: 3847
  year: 2011
  end-page: 3850
  ident: bib92
  article-title: Preparation of lithium aluminum titanium phosphate electrolytes thick films by aerosol deposition method
  publication-title: J. Am. Ceram. Soc.
– volume: 7
  start-page: 627
  year: 2014
  end-page: 631
  ident: bib36
  article-title: A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 6709
  year: 2015
  end-page: 6732
  ident: bib24
  article-title: Future generations of cathode materials: an automotive industry perspective
  publication-title: J. Mater. Chem.
– volume: 117
  start-page: 21064
  year: 2013
  end-page: 21074
  ident: bib54
  article-title: Degradation of NASICON-type materials in contact with lithium metal. Formation of mixed conducting interphases (MCI) on solid electrolytes
  publication-title: J. Phys. Chem. C
– volume: 164
  start-page: A1731
  year: 2017
  end-page: A1744
  ident: bib20
  article-title: Review—practical challenges hindering the development of solid state Li ion batteries
  publication-title: J. Electrochem. Soc.
– year: 2010
  ident: bib80
  article-title: Co-extrusion Manufacturing Process of Thin Film Electrochemical Cell for Lithium Polymer Batteries and Apparatus Therefor
– volume: 196
  start-page: 7750
  year: 2011
  end-page: 7754
  ident: bib78
  article-title: Fabrication of all-solid-state lithium battery with lithium metal anode using Al
  publication-title: J. Power Sources
– volume: 150
  start-page: A1577
  year: 2003
  ident: bib9
  article-title: 5 V class all-solid-state composite lithium battery with Li
  publication-title: J. Electrochem. Soc.
– year: 2014
  ident: bib70
  publication-title: Deutsches Institut für Normung e.V. Value Management - Vocabulary - Terms and definitions
– volume: 25
  start-page: 18802
  year: 2016
  ident: bib85
  article-title: All-solid-state lithium batteries with inorganic solid electrolytes. Review of fundamental science
  publication-title: Chin. Phys. B
– volume: 297
  start-page: 113
  year: 2015
  end-page: 120
  ident: bib3
  article-title: A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries
  publication-title: J. Power Sources
– volume: 22
  start-page: 587
  year: 2010
  end-page: 603
  ident: bib31
  article-title: Challenges for rechargeable Li batteries
  publication-title: Chem. Mater.
– volume: 29
  start-page: 5574
  year: 2017
  end-page: 5582
  ident: bib65
  article-title: Capacity fade in solid-state batteries. Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes
  publication-title: Chem. Mater.
– start-page: 9
  year: Jan. 1957
  end-page: 15
  ident: bib93
  article-title: Some practical aspects of handling lithium metal
  publication-title: Handling and Uses of Alkali Metals
– volume: 1
  start-page: 16141
  year: 2016
  ident: bib7
  article-title: A solid future for battery development
  publication-title: Nat. Energy
– volume: 57
  start-page: 568
  year: 2016
  end-page: 573
  ident: bib22
  article-title: Quality management for battery production. A quality gate concept
  publication-title: Procedia CIRP
– volume: 275
  start-page: 234
  year: 2015
  end-page: 242
  ident: bib5
  article-title: Prospects for reducing the processing cost of lithium ion batteries
  publication-title: J. Power Sources
– volume: 6
  start-page: 4599
  year: 2015
  end-page: 4604
  ident: bib50
  article-title: Interfacial challenges in solid-state Li ion batteries
  publication-title: J. Phys. Chem. Lett.
– volume: 93
  start-page: 765
  year: 2010
  end-page: 768
  ident: bib86
  article-title: Preparation of highly lithium-ion conductive 80Li
  publication-title: J. Am. Ceram. Soc.
– volume: vol. 1
  start-page: 295
  year: 2017
  end-page: 302
  ident: bib23
  article-title: Evaluation of technology chains for the production of all-solid-state batteries
  publication-title: 7. WGP-Jahreskongress Aachen
– volume: 265
  start-page: 40
  year: 2014
  end-page: 44
  ident: bib62
  article-title: Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery
  publication-title: J. Power Sources
– volume: 189
  start-page: 485
  year: 2009
  end-page: 489
  ident: bib103
  article-title: Fabrication of all solid-state lithium-ion batteries with three-dimensionally ordered composite electrode consisting of Li
  publication-title: J. Power Sources
– volume: 61
  start-page: 1
  year: 2012
  end-page: 4
  ident: bib105
  article-title: Production of large-area lithium-ion cells – preconditioning, cell stacking and quality assurance
  publication-title: CIRP Ann. - Manuf. Technol.
– year: 1973
  ident: bib95
  article-title: Rolling of Lithium
– volume: 44
  start-page: 1538
  year: 2018
  end-page: 1544
  ident: bib107
  article-title: The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li
  publication-title: Ceram. Int.
– start-page: 1
  year: 2013
  end-page: 10
  ident: bib69
  article-title: Method for quality parameter identification and classification in battery cell production quality planning of complex production chains for battery cells
  publication-title: 2013 3rd International Electric Drives Production Conference (EDPC)
– volume: 39
  start-page: 213
  year: 2012
  end-page: 224
  ident: bib108
  article-title: Laser cutting in the production of lithium ion cells
  publication-title: Physics Procedia
– year: 1993
  ident: bib96
  article-title: Process for the Production of a Thin Electrode Supported by a Sheet
– volume: 125
  start-page: 391
  year: 2017
  end-page: 395
  ident: bib101
  article-title: Fabrication of composite positive electrode sheet with high active material content and effect of fabrication pressure for all-solid-state battery
  publication-title: J. Ceram. Soc. Japan
– volume: 46
  start-page: 7778
  year: 2007
  end-page: 7781
  ident: bib40
  article-title: Fast lithium ion conduction in garnet-type Li
  publication-title: Angew. Chem.
– volume: 15
  start-page: 3317
  year: 2015
  end-page: 3323
  ident: bib18
  article-title: Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries
  publication-title: Nano Lett.
– volume: 5
  start-page: 20771
  year: 2017
  end-page: 20779
  ident: bib102
  article-title: Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries
  publication-title: J. Mater. Chem.
– volume: 45
  start-page: 3109
  year: 2010
  end-page: 3135
  ident: bib29
  article-title: Materials and manufacturing technologies for solid oxide fuel cells
  publication-title: J. Mater. Sci.
– volume: 98
  start-page: 3603
  year: 2015
  end-page: 3623
  ident: bib32
  article-title: Oxide electrolytes for lithium batteries
  publication-title: J. Am. Ceram. Soc.
– year: 2010
  ident: bib11
  article-title: Toyota Announces 4-layer All-solid-state Battery
– volume: 278
  start-page: 98
  year: 2015
  end-page: 105
  ident: bib55
  article-title: Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy
  publication-title: Solid State Ionics
– volume: 22
  start-page: 949
  year: 2010
  end-page: 956
  ident: bib57
  article-title: Interfacial observation between LiCoO
  publication-title: Chem. Mater.
– volume: 248
  start-page: 943
  year: 2014
  end-page: 950
  ident: bib16
  article-title: A rocking chair type all-solid-state lithium ion battery adopting Li
  publication-title: J. Power Sources
– volume: 375
  start-page: 93
  year: 2018
  end-page: 101
  ident: bib75
  article-title: Toward practical all-solid-state lithium-ion batteries with high energy density and safety. Comparative study for electrodes fabricated by dry- and slurry-mixing processes
  publication-title: J. Power Sources
– volume: 18
  start-page: 2226
  year: 2006
  end-page: 2229
  ident: bib60
  article-title: Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification
  publication-title: Adv. Mater.
– volume: 352
  start-page: 156
  year: 2017
  end-page: 164
  ident: bib28
  article-title: Key parameters governing the densification of cubic-Li
  publication-title: J. Power Sources
– year: 2015
  ident: bib14
  article-title: SEEO Final Technical Report
– year: 1996
  ident: bib94
  article-title: Process for Laminating a Thin Film of Lihium by Controlled Detachment
– volume: 43
  start-page: 1913
  year: 2008
  end-page: 1942
  ident: bib88
  article-title: Issue and challenges facing rechargeable thin film lithium batteries
  publication-title: Mater. Res. Bull.
– volume: 16
  start-page: 572
  year: 2017
  end-page: 579
  ident: bib52
  article-title: Negating interfacial impedance in garnet-based solid-state Li metal batteries
  publication-title: Nat. Mater.
– volume: 113
  start-page: 2862
  year: 2016
  end-page: 2867
  ident: bib97
  article-title: Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 225
  start-page: 354
  year: 2012
  end-page: 358
  ident: bib61
  article-title: Electrochemical properties of all-solid-state batteries with ZrO
  publication-title: Solid State Ionics
– volume: 268
  start-page: 960
  year: 2014
  end-page: 964
  ident: bib79
  article-title: Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes
  publication-title: J. Power Sources
– year: 2017
  ident: bib106
  article-title: Bipolar Laminated All-solid-state Lithium-ion Rechargeable Battery and Method for Manufacturing Same
– volume: 47
  start-page: 5952
  year: 2006
  end-page: 5964
  ident: bib34
  article-title: Review on composite polymer electrolytes for lithium batteries
  publication-title: Polymer
– year: 2018
  ident: bib82
  article-title: High Performance All Solid Lithium Sulfur Battery with Fast Lithium Ion Conduction
– volume: 43
  start-page: 4714
  year: 2014
  end-page: 4727
  ident: bib39
  article-title: Garnet-type solid-state fast Li ion conductors for Li batteries: critical review
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 16030
  year: 2016
  ident: bib37
  article-title: High-power all-solid-state batteries using sulfide superionic conductors
  publication-title: Nat. Energy
– volume: 5
  start-page: 139
  year: 2016
  end-page: 164
  ident: bib35
  article-title: All solid-state polymer electrolytes for high-performance lithium ion batteries
  publication-title: Energy Storage Materials
– volume: 29
  start-page: 3785
  year: 2017
  end-page: 3792
  ident: bib89
  article-title: Atomic layer deposition of the solid electrolyte garnet Li
  publication-title: Chem. Mater.
– volume: 21
  start-page: 1939
  year: 2017
  end-page: 1964
  ident: bib25
  article-title: Lithium ion, lithium metal, and alternative rechargeable battery technologies. The odyssey for high energy density
  publication-title: J. Solid State Electrochem.
– volume: 137
  start-page: 1023
  year: 1990
  ident: bib38
  article-title: Ionic conductivity of solid electrolytes based on lithium titanium phosphate
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 17251
  year: 2016
  end-page: 17259
  ident: bib6
  article-title: Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries
  publication-title: J. Mater. Chem.
– volume: 113
  start-page: 7094
  year: 2016
  end-page: 7099
  ident: bib42
  article-title: Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– year: 2001
  ident: bib71
  article-title: Eliciting and Analysing Expert Judgment
– volume: 97–98
  start-page: 782
  year: 2001
  end-page: 785
  ident: bib67
  article-title: Development of a bipolar Li/composite polymer electrolyte/pyrite battery for electric vehicles
  publication-title: J. Power Sources
– volume: 353
  start-page: 333
  year: 2017
  end-page: 342
  ident: bib99
  article-title: Challenges and issues facing lithium metal for solid-state rechargeable batteries
  publication-title: J. Power Sources
– volume: 7
  start-page: 23685
  year: 2015
  end-page: 23693
  ident: bib53
  article-title: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations
  publication-title: ACS Appl. Mater. Interfaces
– year: 2017
  ident: bib84
  article-title: Solid-state Batteries and Methods of Fabrication Thereof
– year: 2011
  ident: bib72
  publication-title: Linden's Handbook of Batteries
– volume: 194
  start-page: 1085
  year: 2009
  end-page: 1088
  ident: bib73
  article-title: All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON
  publication-title: J. Power Sources
– volume: 6
  start-page: 147
  year: 2015
  end-page: 182
  ident: bib91
  article-title: An overview of the aerosol deposition method: process fundamentals and new trends in materials applications
  publication-title: J. Ceram. Sci. Technol
– volume: 286
  start-page: 24
  year: 2016
  end-page: 33
  ident: bib56
  article-title: Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li
  publication-title: Solid State Ionics
– reference: . Available at:
– volume: 5
  start-page: 1401408
  year: 2015
  ident: bib10
  article-title: Solid electrolyte. The key for high-voltage lithium batteries
  publication-title: Adv. Energy Mater.
– volume: 331
  start-page: 267
  year: 2016
  end-page: 276
  ident: bib4
  article-title: In situ visualization of the electrolyte solvent filling process by neutron radiography
  publication-title: J. Power Sources
– year: 2003
  ident: bib90
  article-title: Method of Forming Thin Film of Inorganic Solid Electrolyte
– volume: 310
  start-page: 129
  year: 2017
  end-page: 133
  ident: bib74
  article-title: Low temperature synthesis and ion conductivity of Li
  publication-title: Solid State Ionics
– reference: (2014) (accessed 14 December 2017).
– volume: 15
  start-page: 18600
  year: 2013
  end-page: 18606
  ident: bib26
  article-title: In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li
  publication-title: Phys. Chem. Chem. Phys. : Phys. Chem. Chem. Phys.
– volume: 138
  start-page: 9385
  year: 2016
  end-page: 9388
  ident: bib58
  article-title: Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte
  publication-title: J. Am. Chem. Soc.
– volume: 79
  start-page: 1
  year: 2017
  end-page: 4
  ident: bib66
  article-title: Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact
  publication-title: Electrochem. Commun.
– volume: 57
  start-page: 27
  year: 2015
  end-page: 30
  ident: bib27
  article-title: Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte
  publication-title: Electrochem. Commun.
– volume: 182
  start-page: 116
  year: 2011
  end-page: 119
  ident: bib45
  article-title: Structural change of Li
  publication-title: Solid State Ionics
– volume: 162
  start-page: A3084
  year: 2014
  end-page: A3097
  ident: bib2
  article-title: Flammability of Li-Ion battery electrolytes. Flash point and self-extinguishing time measurements
  publication-title: J. Electrochem. Soc.
– volume: 99
  start-page: 410
  year: 2016
  end-page: 414
  ident: bib44
  article-title: A novel sol-gel method for large-scale production of nanopowders. Preparation of Li
  publication-title: J. Am. Ceram. Soc.
– volume: 325
  start-page: 584
  year: 2016
  end-page: 590
  ident: bib63
  article-title: Effects of sintering temperature on interfacial structure and interfacial resistance for all-solid-state rechargeable lithium batteries
  publication-title: J. Power Sources
– year: 2007
  ident: bib68
  publication-title: Designing Qualitative Research
– start-page: 3
  year: 2013
  end-page: 12
  ident: bib109
  article-title: Research and demonstration center for the production of large-area lithium-ion cells
  publication-title: Future Trends in Production Engineering
– volume: 169
  start-page: 757
  year: 2016
  end-page: 767
  ident: bib19
  article-title: Life Cycle Assessment and resource analysis of all-solid-state batteries
  publication-title: Appl. Energy
– volume: 195
  start-page: 4554
  year: 2010
  end-page: 4569
  ident: bib12
  article-title: Ceramic and polymeric solid electrolytes for lithium-ion batteries
  publication-title: J. Power Sources
– volume: 6
  start-page: 19892
  year: 2016
  ident: bib83
  article-title: Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries
  publication-title: Sci. Rep.
– volume: 147
  start-page: 517
  year: 2000
  ident: bib98
  article-title: “Lithium-Free” thin-film battery with in situ plated Li anode
  publication-title: J. Electrochem. Soc.
– start-page: 1
  year: 2011
  end-page: 6
  ident: bib110
  article-title: Non-contact handling and transportation for substrates and microassembly using ultrasound-air-film-technology
  publication-title: Advanced Semiconductor Manufacturing Conference (ASMC), 2011 22nd Annual IEEE/SEMI
– volume: 189
  start-page: 365
  year: 2009
  end-page: 370
  ident: bib59
  article-title: Li-ion transport in all-solid-state lithium batteries with LiCoO2 using NASICON-type glass ceramic electrolytes
  publication-title: J. Power Sources
– volume: 17
  start-page: 3013
  year: 2017
  end-page: 3020
  ident: bib104
  article-title: Infiltration of solution-processable solid electrolytes into conventional Li-Ion-Battery electrodes for all-solid-state Li-Ion batteries
  publication-title: Nano Lett.
– year: 2011
  ident: bib111
  article-title: Bipolar All-solid-state Battery
– volume: 180
  start-page: 911
  year: 2017
  ident: bib49
  article-title: Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes. A brief review
  publication-title: Ionics
– volume: 5
  start-page: 701
  year: 2003
  end-page: 705
  ident: bib8
  article-title: All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes
  publication-title: Electrochem. Commun.
– year: 2014
  ident: bib30
  publication-title: Ion Conducting Batteries with Solid State Electrolyte Materials
– start-page: 45
  year: 2017
  end-page: 152
  ident: bib64
  article-title: High coulombic efficiency of lithium plating/stripping and lithium dendrite prevention
  publication-title: Lithium Metal Anodes and Rechargeable Lithium Metal Batteries
– volume: 5
  start-page: 329
  year: 2015
  end-page: 332
  ident: bib21
  article-title: Rapidly falling costs of battery packs for electric vehicles
  publication-title: Nat. Clim. Change
– volume: 353
  start-page: 287
  year: 2017
  end-page: 297
  ident: bib76
  article-title: Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li
  publication-title: J. Power Sources
– volume: 1140
  start-page: 304
  year: 2016
  end-page: 311
  ident: bib1
  article-title: The manufacturing of electrodes. Key process for the future success of lithium-ion batteries
  publication-title: AMR (Adv. Mater. Res.)
– volume: 260
  start-page: 109
  year: 2014
  end-page: 114
  ident: bib77
  article-title: Excess lithium salt functions more than compensating for lithium loss when synthesizing Li
  publication-title: J. Power Sources
– volume: 4
  start-page: 15266
  year: 2016
  end-page: 15280
  ident: bib51
  article-title: Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems
  publication-title: J. Mater. Chem.
– volume: 238
  start-page: 53
  year: 2013
  end-page: 56
  ident: bib17
  article-title: All-solid-state lithium ion battery using garnet-type oxide and Li
  publication-title: J. Power Sources
– volume: 164
  start-page: A2075
  year: 2017
  end-page: A2081
  ident: bib100
  article-title: Selection of binder and solvent for solution-processed all-solid-state battery
  publication-title: J. Electrochem. Soc.
– volume: 158
  start-page: 275
  year: 2003
  end-page: 280
  ident: bib15
  article-title: Fabrications and properties of composite solid-state electrolytes
  publication-title: Solid State Ionics
– volume: 3
  start-page: 2261
  year: 2013
  ident: bib47
  article-title: Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery
  publication-title: Sci. Rep.
– volume: 22
  start-page: 15357
  year: 2012
  ident: bib41
  article-title: Optimizing Li+ conductivity in a garnet framework
  publication-title: J. Mater. Chem.
– volume: 162
  start-page: A60
  year: 2014
  end-page: A63
  ident: bib87
  article-title: Microstructure and ionic conductivity in Li
  publication-title: J. Electrochem. Soc.
– volume: 162
  start-page: A60
  year: 2014
  ident: 10.1016/j.jpowsour.2018.02.062_bib87
  article-title: Microstructure and ionic conductivity in Li7La3Zr2O12 film prepared by aerosol deposition method
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0411501jes
– volume: 22
  start-page: 15357
  year: 2012
  ident: 10.1016/j.jpowsour.2018.02.062_bib41
  article-title: Optimizing Li+ conductivity in a garnet framework
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31413d
– volume: 275
  start-page: 234
  year: 2015
  ident: 10.1016/j.jpowsour.2018.02.062_bib5
  article-title: Prospects for reducing the processing cost of lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.11.019
– volume: 239
  start-page: 326
  year: 2013
  ident: 10.1016/j.jpowsour.2018.02.062_bib46
  article-title: Li7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.03.155
– year: 2010
  ident: 10.1016/j.jpowsour.2018.02.062_bib80
– year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib84
– ident: 10.1016/j.jpowsour.2018.02.062_bib33
– volume: 39
  start-page: 213
  year: 2012
  ident: 10.1016/j.jpowsour.2018.02.062_bib108
  article-title: Laser cutting in the production of lithium ion cells
  publication-title: Physics Procedia
  doi: 10.1016/j.phpro.2012.10.032
– volume: 325
  start-page: 584
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib63
  article-title: Effects of sintering temperature on interfacial structure and interfacial resistance for all-solid-state rechargeable lithium batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.06.068
– volume: 79
  start-page: 1
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib66
  article-title: Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2017.03.016
– volume: 353
  start-page: 333
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib99
  article-title: Challenges and issues facing lithium metal for solid-state rechargeable batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.04.018
– volume: 22
  start-page: 587
  year: 2010
  ident: 10.1016/j.jpowsour.2018.02.062_bib31
  article-title: Challenges for rechargeable Li batteries
  publication-title: Chem. Mater.
  doi: 10.1021/cm901452z
– volume: 3
  start-page: 6709
  year: 2015
  ident: 10.1016/j.jpowsour.2018.02.062_bib24
  article-title: Future generations of cathode materials: an automotive industry perspective
  publication-title: J. Mater. Chem.
  doi: 10.1039/C5TA00361J
– volume: 1140
  start-page: 304
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib1
  article-title: The manufacturing of electrodes. Key process for the future success of lithium-ion batteries
  publication-title: AMR (Adv. Mater. Res.)
– volume: 375
  start-page: 93
  year: 2018
  ident: 10.1016/j.jpowsour.2018.02.062_bib75
  article-title: Toward practical all-solid-state lithium-ion batteries with high energy density and safety. Comparative study for electrodes fabricated by dry- and slurry-mixing processes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.11.031
– volume: 353
  start-page: 287
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib76
  article-title: Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15 LiTFSI
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.04.014
– volume: vol. 1
  start-page: 295
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib23
  article-title: Evaluation of technology chains for the production of all-solid-state batteries
– volume: 5
  start-page: 701
  year: 2003
  ident: 10.1016/j.jpowsour.2018.02.062_bib8
  article-title: All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes
  publication-title: Electrochem. Commun.
  doi: 10.1016/S1388-2481(03)00167-X
– volume: 16
  start-page: 572
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib52
  article-title: Negating interfacial impedance in garnet-based solid-state Li metal batteries
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4821
– volume: 7
  start-page: 1602011
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib48
  article-title: Compliant yet brittle mechanical behavior of Li2S-P2S 5 lithium-ion-conducting solid electrolyte
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602011
– volume: 29
  start-page: 5574
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib65
  article-title: Capacity fade in solid-state batteries. Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00931
– start-page: 9
  year: 1957
  ident: 10.1016/j.jpowsour.2018.02.062_bib93
  article-title: Some practical aspects of handling lithium metal
– start-page: 3
  year: 2013
  ident: 10.1016/j.jpowsour.2018.02.062_bib109
  article-title: Research and demonstration center for the production of large-area lithium-ion cells
– volume: 5
  start-page: 20771
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib102
  article-title: Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA06873E
– year: 2010
  ident: 10.1016/j.jpowsour.2018.02.062_bib11
– volume: 162
  start-page: A3084
  year: 2014
  ident: 10.1016/j.jpowsour.2018.02.062_bib2
  article-title: Flammability of Li-Ion battery electrolytes. Flash point and self-extinguishing time measurements
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0121502jes
– volume: 268
  start-page: 960
  year: 2014
  ident: 10.1016/j.jpowsour.2018.02.062_bib79
  article-title: Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.03.148
– volume: 352
  start-page: 156
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib28
  article-title: Key parameters governing the densification of cubic-Li7La3Zr2O12 Li + conductors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.126
– volume: 196
  start-page: 7750
  year: 2011
  ident: 10.1016/j.jpowsour.2018.02.062_bib78
  article-title: Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.04.047
– volume: 265
  start-page: 40
  year: 2014
  ident: 10.1016/j.jpowsour.2018.02.062_bib62
  article-title: Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.04.065
– volume: 7
  start-page: 23685
  year: 2015
  ident: 10.1016/j.jpowsour.2018.02.062_bib53
  article-title: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07517
– volume: 195
  start-page: 4554
  year: 2010
  ident: 10.1016/j.jpowsour.2018.02.062_bib12
  article-title: Ceramic and polymeric solid electrolytes for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.01.076
– volume: 43
  start-page: 1913
  year: 2008
  ident: 10.1016/j.jpowsour.2018.02.062_bib88
  article-title: Issue and challenges facing rechargeable thin film lithium batteries
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2007.08.031
– year: 1996
  ident: 10.1016/j.jpowsour.2018.02.062_bib94
– volume: 180
  start-page: 911
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib49
  article-title: Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes. A brief review
  publication-title: Ionics
– volume: 225
  start-page: 354
  year: 2012
  ident: 10.1016/j.jpowsour.2018.02.062_bib61
  article-title: Electrochemical properties of all-solid-state batteries with ZrO2-coated LiNi1/3Mn1/3Co1/3O2 as cathode materials
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2011.11.026
– volume: 68
  start-page: 432
  year: 1997
  ident: 10.1016/j.jpowsour.2018.02.062_bib81
  article-title: Lithium polymer battery development for electric vehicle application
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(97)02646-3
– volume: 98
  start-page: 3603
  year: 2015
  ident: 10.1016/j.jpowsour.2018.02.062_bib32
  article-title: Oxide electrolytes for lithium batteries
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13844
– volume: 164
  start-page: A1731
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib20
  article-title: Review—practical challenges hindering the development of solid state Li ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1571707jes
– volume: 189
  start-page: 485
  year: 2009
  ident: 10.1016/j.jpowsour.2018.02.062_bib103
  article-title: Fabrication of all solid-state lithium-ion batteries with three-dimensionally ordered composite electrode consisting of Li0.35La0.55TiO3 and LiMn2O4
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.12.048
– volume: 238
  start-page: 53
  year: 2013
  ident: 10.1016/j.jpowsour.2018.02.062_bib17
  article-title: All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.02.073
– volume: 147
  start-page: 517
  year: 2000
  ident: 10.1016/j.jpowsour.2018.02.062_bib98
  article-title: “Lithium-Free” thin-film battery with in situ plated Li anode
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393226
– year: 2011
  ident: 10.1016/j.jpowsour.2018.02.062_bib111
– volume: 45
  start-page: 3109
  year: 2010
  ident: 10.1016/j.jpowsour.2018.02.062_bib29
  article-title: Materials and manufacturing technologies for solid oxide fuel cells
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-010-4279-9
– volume: 125
  start-page: 391
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib101
  article-title: Fabrication of composite positive electrode sheet with high active material content and effect of fabrication pressure for all-solid-state battery
  publication-title: J. Ceram. Soc. Japan
  doi: 10.2109/jcersj2.16321
– volume: 113
  start-page: 2862
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib97
  article-title: Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1518188113
– volume: 5
  start-page: 139
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib35
  article-title: All solid-state polymer electrolytes for high-performance lithium ion batteries
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2016.07.003
– volume: 21
  start-page: 1939
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib25
  article-title: Lithium ion, lithium metal, and alternative rechargeable battery technologies. The odyssey for high energy density
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-017-3610-7
– volume: 57
  start-page: 27
  year: 2015
  ident: 10.1016/j.jpowsour.2018.02.062_bib27
  article-title: Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.05.001
– volume: 5
  start-page: 1401408
  year: 2015
  ident: 10.1016/j.jpowsour.2018.02.062_bib10
  article-title: Solid electrolyte. The key for high-voltage lithium batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401408
– year: 2018
  ident: 10.1016/j.jpowsour.2018.02.062_bib82
– start-page: 1
  year: 2011
  ident: 10.1016/j.jpowsour.2018.02.062_bib110
  article-title: Non-contact handling and transportation for substrates and microassembly using ultrasound-air-film-technology
– volume: 43
  start-page: 4714
  year: 2014
  ident: 10.1016/j.jpowsour.2018.02.062_bib39
  article-title: Garnet-type solid-state fast Li ion conductors for Li batteries: critical review
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c4cs00020j
– volume: 278
  start-page: 98
  year: 2015
  ident: 10.1016/j.jpowsour.2018.02.062_bib55
  article-title: Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2015.06.001
– volume: 15
  start-page: 18600
  year: 2013
  ident: 10.1016/j.jpowsour.2018.02.062_bib26
  article-title: In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte
  publication-title: Phys. Chem. Chem. Phys. : Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51059j
– volume: 4
  start-page: 15266
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib51
  article-title: Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems
  publication-title: J. Mater. Chem.
  doi: 10.1039/C6TA05439K
– volume: 1
  start-page: 16042
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib13
  article-title: Batteries. Getting solid
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.42
– volume: 4
  start-page: 17251
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib6
  article-title: Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries
  publication-title: J. Mater. Chem.
  doi: 10.1039/C6TA07384K
– volume: 22
  start-page: 949
  year: 2010
  ident: 10.1016/j.jpowsour.2018.02.062_bib57
  article-title: Interfacial observation between LiCoO2 electrode and Li2S−P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy
  publication-title: Chem. Mater.
  doi: 10.1021/cm901819c
– year: 2003
  ident: 10.1016/j.jpowsour.2018.02.062_bib90
– year: 1973
  ident: 10.1016/j.jpowsour.2018.02.062_bib95
– volume: 150
  start-page: A1577
  year: 2003
  ident: 10.1016/j.jpowsour.2018.02.062_bib9
  article-title: 5 V class all-solid-state composite lithium battery with Li3PO4 coated LiNi0.5Mn1.5O4
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1619988
– start-page: 1
  year: 2013
  ident: 10.1016/j.jpowsour.2018.02.062_bib69
  article-title: Method for quality parameter identification and classification in battery cell production quality planning of complex production chains for battery cells
– year: 2014
  ident: 10.1016/j.jpowsour.2018.02.062_bib30
– volume: 44
  start-page: 1538
  year: 2018
  ident: 10.1016/j.jpowsour.2018.02.062_bib107
  article-title: The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li7La3Zr2O12 ceramic
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.10.072
– year: 2001
  ident: 10.1016/j.jpowsour.2018.02.062_bib71
– volume: 57
  start-page: 568
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib22
  article-title: Quality management for battery production. A quality gate concept
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2016.11.098
– volume: 10
  start-page: 682
  year: 2011
  ident: 10.1016/j.jpowsour.2018.02.062_bib43
  article-title: A lithium superionic conductor
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3066
– volume: 189
  start-page: 365
  year: 2009
  ident: 10.1016/j.jpowsour.2018.02.062_bib59
  article-title: Li-ion transport in all-solid-state lithium batteries with LiCoO2 using NASICON-type glass ceramic electrolytes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.08.015
– volume: 117
  start-page: 21064
  year: 2013
  ident: 10.1016/j.jpowsour.2018.02.062_bib54
  article-title: Degradation of NASICON-type materials in contact with lithium metal. Formation of mixed conducting interphases (MCI) on solid electrolytes
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4051275
– volume: 61
  start-page: 1
  year: 2012
  ident: 10.1016/j.jpowsour.2018.02.062_bib105
  article-title: Production of large-area lithium-ion cells – preconditioning, cell stacking and quality assurance
  publication-title: CIRP Ann. - Manuf. Technol.
  doi: 10.1016/j.cirp.2012.03.101
– volume: 248
  start-page: 943
  year: 2014
  ident: 10.1016/j.jpowsour.2018.02.062_bib16
  article-title: A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.10.005
– volume: 138
  start-page: 9385
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib58
  article-title: Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05341
– year: 1993
  ident: 10.1016/j.jpowsour.2018.02.062_bib96
– year: 2007
  ident: 10.1016/j.jpowsour.2018.02.062_bib68
– volume: 25
  start-page: 18802
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib85
  article-title: All-solid-state lithium batteries with inorganic solid electrolytes. Review of fundamental science
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/25/1/018802
– year: 2014
  ident: 10.1016/j.jpowsour.2018.02.062_bib70
– volume: 47
  start-page: 5952
  year: 2006
  ident: 10.1016/j.jpowsour.2018.02.062_bib34
  article-title: Review on composite polymer electrolytes for lithium batteries
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.05.069
– volume: 94
  start-page: 3847
  year: 2011
  ident: 10.1016/j.jpowsour.2018.02.062_bib92
  article-title: Preparation of lithium aluminum titanium phosphate electrolytes thick films by aerosol deposition method
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2011.04551.x
– volume: 7
  start-page: 627
  year: 2014
  ident: 10.1016/j.jpowsour.2018.02.062_bib36
  article-title: A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE41655K
– volume: 1
  start-page: 16030
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib37
  article-title: High-power all-solid-state batteries using sulfide superionic conductors
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.30
– volume: 93
  start-page: 765
  year: 2010
  ident: 10.1016/j.jpowsour.2018.02.062_bib86
  article-title: Preparation of highly lithium-ion conductive 80Li2S·20P2S5 thin-film electrolytes using pulsed laser deposition
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.03442.x
– volume: 164
  start-page: A2075
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib100
  article-title: Selection of binder and solvent for solution-processed all-solid-state battery
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1341709jes
– volume: 18
  start-page: 2226
  year: 2006
  ident: 10.1016/j.jpowsour.2018.02.062_bib60
  article-title: Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200502604
– volume: 6
  start-page: 4599
  year: 2015
  ident: 10.1016/j.jpowsour.2018.02.062_bib50
  article-title: Interfacial challenges in solid-state Li ion batteries
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02352
– volume: 297
  start-page: 113
  year: 2015
  ident: 10.1016/j.jpowsour.2018.02.062_bib3
  article-title: A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.07.100
– year: 2015
  ident: 10.1016/j.jpowsour.2018.02.062_bib14
– volume: 182
  start-page: 116
  year: 2011
  ident: 10.1016/j.jpowsour.2018.02.062_bib45
  article-title: Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2010.10.013
– volume: 194
  start-page: 1085
  year: 2009
  ident: 10.1016/j.jpowsour.2018.02.062_bib73
  article-title: All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.06.100
– volume: 310
  start-page: 129
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib74
  article-title: Low temperature synthesis and ion conductivity of Li7La3Zr2O12 garnets for solid state Li ion batteries
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2017.08.016
– volume: 169
  start-page: 757
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib19
  article-title: Life Cycle Assessment and resource analysis of all-solid-state batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.02.064
– volume: 1
  start-page: 16141
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib7
  article-title: A solid future for battery development
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.141
– volume: 6
  start-page: 19892
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib83
  article-title: Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries
  publication-title: Sci. Rep.
  doi: 10.1038/srep19892
– year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib106
– volume: 3
  start-page: 2261
  year: 2013
  ident: 10.1016/j.jpowsour.2018.02.062_bib47
  article-title: Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery
  publication-title: Sci. Rep.
  doi: 10.1038/srep02261
– volume: 97–98
  start-page: 782
  year: 2001
  ident: 10.1016/j.jpowsour.2018.02.062_bib67
  article-title: Development of a bipolar Li/composite polymer electrolyte/pyrite battery for electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00608-5
– volume: 6
  start-page: 147
  year: 2015
  ident: 10.1016/j.jpowsour.2018.02.062_bib91
  article-title: An overview of the aerosol deposition method: process fundamentals and new trends in materials applications
  publication-title: J. Ceram. Sci. Technol
– year: 2011
  ident: 10.1016/j.jpowsour.2018.02.062_bib72
– volume: 158
  start-page: 275
  year: 2003
  ident: 10.1016/j.jpowsour.2018.02.062_bib15
  article-title: Fabrications and properties of composite solid-state electrolytes
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(02)00889-5
– volume: 29
  start-page: 3785
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib89
  article-title: Atomic layer deposition of the solid electrolyte garnet Li7La3Zr2O12
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00944
– volume: 113
  start-page: 7094
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib42
  article-title: Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1600422113
– volume: 331
  start-page: 267
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib4
  article-title: In situ visualization of the electrolyte solvent filling process by neutron radiography
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.09.037
– volume: 17
  start-page: 3013
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib104
  article-title: Infiltration of solution-processable solid electrolytes into conventional Li-Ion-Battery electrodes for all-solid-state Li-Ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00330
– start-page: 45
  year: 2017
  ident: 10.1016/j.jpowsour.2018.02.062_bib64
  article-title: High coulombic efficiency of lithium plating/stripping and lithium dendrite prevention
– volume: 46
  start-page: 7778
  year: 2007
  ident: 10.1016/j.jpowsour.2018.02.062_bib40
  article-title: Fast lithium ion conduction in garnet-type Li7La3Zr2O12
  publication-title: Angew. Chem.
  doi: 10.1002/anie.200701144
– volume: 99
  start-page: 410
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib44
  article-title: A novel sol-gel method for large-scale production of nanopowders. Preparation of Li1.5Al0.5Ti1.5(PO4)3 as an example
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13997
– volume: 5
  start-page: 329
  year: 2015
  ident: 10.1016/j.jpowsour.2018.02.062_bib21
  article-title: Rapidly falling costs of battery packs for electric vehicles
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2564
– volume: 137
  start-page: 1023
  year: 1990
  ident: 10.1016/j.jpowsour.2018.02.062_bib38
  article-title: Ionic conductivity of solid electrolytes based on lithium titanium phosphate
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2086597
– volume: 15
  start-page: 3317
  year: 2015
  ident: 10.1016/j.jpowsour.2018.02.062_bib18
  article-title: Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00538
– volume: 286
  start-page: 24
  year: 2016
  ident: 10.1016/j.jpowsour.2018.02.062_bib56
  article-title: Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2015.11.034
– volume: 260
  start-page: 109
  year: 2014
  ident: 10.1016/j.jpowsour.2018.02.062_bib77
  article-title: Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Ta0.5Zr1.5O12 in alumina crucible
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.02.065
SSID ssj0001170
Score 2.6865726
Snippet Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 160
SubjectTerms Hybrid solid electrolyte
Industrial fabrication
Oxide solid electrolyte
Process chain
Solid-state battery production
Sulfide solid electrolyte
Title All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production
URI https://dx.doi.org/10.1016/j.jpowsour.2018.02.062
Volume 382
WOSCitedRecordID wos000430622700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001170
  issn: 0378-7753
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa20EN7QH2q9CUfekOmSZzE8XGLKLSVUCWotLfIzkNkFbKrJWw58h_4Gf1X_JLOxHYILBKtql6iTXadWPN9OzN25kHIBzBqQRmKnGkVZSwEk8y0LjXjutCIsifKvGs2IQ4OkslEfh-NfrlcmGUtmiY5P5fz_wo1XAOwMXX2L-DubwoX4DOADkeAHY5_BPy4rhk8ocpZlyyEScbH1dkJc3HH9hx7RwM8uquvWeHmqw174FtztXRJVD9V553WGC_OTgFPzKvqasQ6PFcd2zk2XtsybwV6j_0wO-4Damawou6twR6-qv-007Q9eeo-6ONbg_28bsUxYXewCqtzLW4URxhuX_jJIOql21NbyasxuVywthXClBHeLoxqTgRngTBFfZ3u5qZzkdW-vmlNYA25b1qyrNgIs10x3Z6COFAWGN-XdIVbrV24WX_7ECeDcwHlBz_k8QOyDtOQYAXWx192J197w49NfLqXVnbyg4T0u592ty808G-OnpANix8dG0I9JaOieUYeD8pVPif5LWrRAbUoUMud045atKcWvbq4pIZUFGCmQCrazuiAVPSaVC_Ij8-7Rzv7zHbpYFkYRy0LA9ADXJcyUrEC21oqWHFwv5Sgo-JEycArgjzE7z1eCJXAglzrwuMyz_2oTDL-kqw1s6Z4RWhUKK79PPM9kcFCotRCy0zGeYw1hjzlbZLIySvNbAl77KRSpy5WcZo6Oaco59QLUpDzJvnYj5ubIi73jpAOjtS6osbFTIFF94x9_Q9j35BH13-St2StXZwV78jDbNlWp4v3lnC_AdzxtkE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=All-solid-state+lithium-ion+and+lithium+metal+batteries+%E2%80%93+paving+the+way+to+large-scale+production&rft.jtitle=Journal+of+power+sources&rft.au=Schnell%2C+Joscha&rft.au=G%C3%BCnther%2C+Till&rft.au=Knoche%2C+Thomas&rft.au=Vieider%2C+Christoph&rft.date=2018-04-01&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=382&rft.spage=160&rft.epage=175&rft_id=info:doi/10.1016%2Fj.jpowsour.2018.02.062&rft.externalDocID=S0378775318301836
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon