Genetic Algorithms for Optimized Diagnosis of Alzheimer’s Disease and Frontotemporal Dementia Using Fluorodeoxyglucose Positron Emission Tomography Imaging

Genetic algorithms have a proven capability to explore a large space of solutions, and deal with very large numbers of input features. We hypothesized that the application of these algorithms to 18 F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) may help in diagnosis of Alzheimer’s disea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in aging neuroscience Ročník 13; s. 708932
Hlavní autoři: Díaz-Álvarez, Josefa, Matias-Guiu, Jordi A., Cabrera-Martín, María Nieves, Pytel, Vanesa, Segovia-Ríos, Ignacio, García-Gutiérrez, Fernando, Hernández-Lorenzo, Laura, Matias-Guiu, Jorge, Carreras, José Luis, Ayala, José L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Media S.A 03.02.2022
Témata:
ISSN:1663-4365, 1663-4365
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Genetic algorithms have a proven capability to explore a large space of solutions, and deal with very large numbers of input features. We hypothesized that the application of these algorithms to 18 F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) may help in diagnosis of Alzheimer’s disease (AD) and Frontotemporal Dementia (FTD) by selecting the most meaningful features and automating diagnosis. We aimed to develop algorithms for the three main issues in the diagnosis: discrimination between patients with AD or FTD and healthy controls (HC), differential diagnosis between behavioral FTD (bvFTD) and AD, and differential diagnosis between primary progressive aphasia (PPA) variants. Genetic algorithms, customized with K-Nearest Neighbor and BayesNet Naives as the fitness function, were developed and compared with Principal Component Analysis (PCA). K-fold cross validation within the same sample and external validation with ADNI-3 samples were performed. External validation was performed for the algorithms distinguishing AD and HC. Our study supports the use of FDG-PET imaging, which allowed a very high accuracy rate for the diagnosis of AD, FTD, and related disorders. Genetic algorithms identified the most meaningful features with the minimum set of features, which may be relevant for automated assessment of brain FDG-PET images. Overall, our study contributes to the development of an automated, and optimized diagnosis of neurodegenerative disorders using brain metabolism.
AbstractList Genetic algorithms have a proven capability to explore a large space of solutions, and deal with very large numbers of input features. We hypothesized that the application of these algorithms to 18F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) may help in diagnosis of Alzheimer’s disease (AD) and Frontotemporal Dementia (FTD) by selecting the most meaningful features and automating diagnosis. We aimed to develop algorithms for the three main issues in the diagnosis: discrimination between patients with AD or FTD and healthy controls (HC), differential diagnosis between behavioral FTD (bvFTD) and AD, and differential diagnosis between primary progressive aphasia (PPA) variants. Genetic algorithms, customized with K-Nearest Neighbor and BayesNet Naives as the fitness function, were developed and compared with Principal Component Analysis (PCA). K-fold cross validation within the same sample and external validation with ADNI-3 samples were performed. External validation was performed for the algorithms distinguishing AD and HC. Our study supports the use of FDG-PET imaging, which allowed a very high accuracy rate for the diagnosis of AD, FTD, and related disorders. Genetic algorithms identified the most meaningful features with the minimum set of features, which may be relevant for automated assessment of brain FDG-PET images. Overall, our study contributes to the development of an automated, and optimized diagnosis of neurodegenerative disorders using brain metabolism.
Genetic algorithms have a proven capability to explore a large space of solutions, and deal with very large numbers of input features. We hypothesized that the application of these algorithms to 18F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) may help in diagnosis of Alzheimer's disease (AD) and Frontotemporal Dementia (FTD) by selecting the most meaningful features and automating diagnosis. We aimed to develop algorithms for the three main issues in the diagnosis: discrimination between patients with AD or FTD and healthy controls (HC), differential diagnosis between behavioral FTD (bvFTD) and AD, and differential diagnosis between primary progressive aphasia (PPA) variants. Genetic algorithms, customized with K-Nearest Neighbor and BayesNet Naives as the fitness function, were developed and compared with Principal Component Analysis (PCA). K-fold cross validation within the same sample and external validation with ADNI-3 samples were performed. External validation was performed for the algorithms distinguishing AD and HC. Our study supports the use of FDG-PET imaging, which allowed a very high accuracy rate for the diagnosis of AD, FTD, and related disorders. Genetic algorithms identified the most meaningful features with the minimum set of features, which may be relevant for automated assessment of brain FDG-PET images. Overall, our study contributes to the development of an automated, and optimized diagnosis of neurodegenerative disorders using brain metabolism.Genetic algorithms have a proven capability to explore a large space of solutions, and deal with very large numbers of input features. We hypothesized that the application of these algorithms to 18F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) may help in diagnosis of Alzheimer's disease (AD) and Frontotemporal Dementia (FTD) by selecting the most meaningful features and automating diagnosis. We aimed to develop algorithms for the three main issues in the diagnosis: discrimination between patients with AD or FTD and healthy controls (HC), differential diagnosis between behavioral FTD (bvFTD) and AD, and differential diagnosis between primary progressive aphasia (PPA) variants. Genetic algorithms, customized with K-Nearest Neighbor and BayesNet Naives as the fitness function, were developed and compared with Principal Component Analysis (PCA). K-fold cross validation within the same sample and external validation with ADNI-3 samples were performed. External validation was performed for the algorithms distinguishing AD and HC. Our study supports the use of FDG-PET imaging, which allowed a very high accuracy rate for the diagnosis of AD, FTD, and related disorders. Genetic algorithms identified the most meaningful features with the minimum set of features, which may be relevant for automated assessment of brain FDG-PET images. Overall, our study contributes to the development of an automated, and optimized diagnosis of neurodegenerative disorders using brain metabolism.
Genetic algorithms have a proven capability to explore a large space of solutions, and deal with very large numbers of input features. We hypothesized that the application of these algorithms to 18 F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) may help in diagnosis of Alzheimer’s disease (AD) and Frontotemporal Dementia (FTD) by selecting the most meaningful features and automating diagnosis. We aimed to develop algorithms for the three main issues in the diagnosis: discrimination between patients with AD or FTD and healthy controls (HC), differential diagnosis between behavioral FTD (bvFTD) and AD, and differential diagnosis between primary progressive aphasia (PPA) variants. Genetic algorithms, customized with K-Nearest Neighbor and BayesNet Naives as the fitness function, were developed and compared with Principal Component Analysis (PCA). K-fold cross validation within the same sample and external validation with ADNI-3 samples were performed. External validation was performed for the algorithms distinguishing AD and HC. Our study supports the use of FDG-PET imaging, which allowed a very high accuracy rate for the diagnosis of AD, FTD, and related disorders. Genetic algorithms identified the most meaningful features with the minimum set of features, which may be relevant for automated assessment of brain FDG-PET images. Overall, our study contributes to the development of an automated, and optimized diagnosis of neurodegenerative disorders using brain metabolism.
Genetic algorithms have a proven capability to explore a large space of solutions, and deal with very large numbers of input features. We hypothesized that the application of these algorithms to F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) may help in diagnosis of Alzheimer's disease (AD) and Frontotemporal Dementia (FTD) by selecting the most meaningful features and automating diagnosis. We aimed to develop algorithms for the three main issues in the diagnosis: discrimination between patients with AD or FTD and healthy controls (HC), differential diagnosis between behavioral FTD (bvFTD) and AD, and differential diagnosis between primary progressive aphasia (PPA) variants. Genetic algorithms, customized with and as the fitness function, were developed and compared with Principal Component Analysis (PCA). K-fold cross validation within the same sample and external validation with ADNI-3 samples were performed. External validation was performed for the algorithms distinguishing AD and HC. Our study supports the use of FDG-PET imaging, which allowed a very high accuracy rate for the diagnosis of AD, FTD, and related disorders. Genetic algorithms identified the most meaningful features with the minimum set of features, which may be relevant for automated assessment of brain FDG-PET images. Overall, our study contributes to the development of an automated, and optimized diagnosis of neurodegenerative disorders using brain metabolism.
Author Carreras, José Luis
Díaz-Álvarez, Josefa
Matias-Guiu, Jordi A.
Matias-Guiu, Jorge
Cabrera-Martín, María Nieves
García-Gutiérrez, Fernando
Pytel, Vanesa
Ayala, José L.
Segovia-Ríos, Ignacio
Hernández-Lorenzo, Laura
AuthorAffiliation 4 Department of Computer Architecture and Automation, Universidad Complutense , Madrid , Spain
2 Department of Neurology, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense , Madrid , Spain
Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research Development, LLC.; Johnson Johnson Pharmaceutical Research Development LLC.; Lumosity; Lundbeck; Merck Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics
3 Department of Nuclear Medicine, Hospital Clinico San
AuthorAffiliation_xml – name: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research Development, LLC.; Johnson Johnson Pharmaceutical Research Development LLC.; Lumosity; Lundbeck; Merck Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics
– name: 1 Department of Computer Architecture and Communications, Centro Universitario de Mérida, Universidad de Extremadura , Badajoz , Spain
– name: 2 Department of Neurology, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense , Madrid , Spain
– name: 4 Department of Computer Architecture and Automation, Universidad Complutense , Madrid , Spain
– name: 3 Department of Nuclear Medicine, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense , Madrid , Spain
Author_xml – sequence: 1
  givenname: Josefa
  surname: Díaz-Álvarez
  fullname: Díaz-Álvarez, Josefa
– sequence: 2
  givenname: Jordi A.
  surname: Matias-Guiu
  fullname: Matias-Guiu, Jordi A.
– sequence: 3
  givenname: María Nieves
  surname: Cabrera-Martín
  fullname: Cabrera-Martín, María Nieves
– sequence: 4
  givenname: Vanesa
  surname: Pytel
  fullname: Pytel, Vanesa
– sequence: 5
  givenname: Ignacio
  surname: Segovia-Ríos
  fullname: Segovia-Ríos, Ignacio
– sequence: 6
  givenname: Fernando
  surname: García-Gutiérrez
  fullname: García-Gutiérrez, Fernando
– sequence: 7
  givenname: Laura
  surname: Hernández-Lorenzo
  fullname: Hernández-Lorenzo, Laura
– sequence: 8
  givenname: Jorge
  surname: Matias-Guiu
  fullname: Matias-Guiu, Jorge
– sequence: 9
  givenname: José Luis
  surname: Carreras
  fullname: Carreras, José Luis
– sequence: 10
  givenname: José L.
  surname: Ayala
  fullname: Ayala, José L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35185510$$D View this record in MEDLINE/PubMed
BookMark eNp1UstOHDEQHEVEgRA-IJfIx1x248fYM3OJhIAlKyGRA5wtr92eNZqxN7YHZTnlN3LIz-VLYliIIFJ8cctdVa0u19tqzwcPVfWe4DljbffJetW7OcWUzBvcdoy-qg6IEGxWM8H3ntX71VFKN7gcxjDm7Ztqn3HSck7wQfXrHDxkp9Hx0Ifo8npMyIaILjfZje4ODDp1qvchuYSCLai7NbgR4u8fP1NpJVAJkPIGLWLwOWQYNyGqAZ3CCD47ha6T8z1aDFOIwUD4vu2HSYdC-lo0cyGhs9Gl5EpxFcbQR7VZb9FyLMv5_l312qohwdHjfVhdL86uTr7MLi7PlyfHFzNdC55nTNcNbyhmdYcpF3hFTGeNMEYIbTC3rTBKlOWpAQW8NU0NjepYwzh0jSCKHVbLna4J6kZuohtV3MqgnHx4CLGXKhaXBpANNIToleVMqNpS2q1MJ7jVwuoVJ7UuWp93WptpNYLRxYZiyAvRlx3v1rIPt7JtOaE1KQIfHwVi-DZByrIYpGEYlIcwJUkFI4LWWNAC_fB81t8hT_9bAM0OoGNIKYKV2mWVi9tltBskwfI-TPIhTPI-THIXpsIk_zCfxP_P-QP0TNMQ
CitedBy_id crossref_primary_10_1016_j_neuroimage_2024_120695
crossref_primary_10_3389_fnagi_2025_1547727
crossref_primary_10_2147_NDT_S496307
crossref_primary_10_3233_JAD_220907
crossref_primary_10_1016_j_procs_2025_04_423
crossref_primary_10_3389_fnagi_2022_1005731
crossref_primary_10_3389_fnagi_2022_961718
crossref_primary_10_3389_fnhum_2025_1526554
crossref_primary_10_3390_sym17071108
crossref_primary_10_1177_19714009251313511
Cites_doi 10.1016/j.biopsych.2020.01.016
10.1007/s00415-014-7608-0
10.1093/brain/awp232
10.1007/s12021-014-9235-4
10.1016/j.jalz.2011.03.005
10.1016/j.dadm.2019.06.002
10.3389/fncom.2019.00072
10.7326/0003-4819-122-6-199503150-00004
10.1016/j.nrl.2013.03.001
10.1016/j.jalz.2013.05.1769
10.1016/j.neuropsychologia.2017.05.018
10.1212/wnl.43.11.2412-a
10.1212/WNL.0b013e31823b9c5e
10.3390/app7070651
10.1007/s00259-015-2994-9
10.1136/jnnp-2019-320774
10.1038/s41598-017-06624-y
10.1007/s00415-018-8762-6
10.1007/s00259-018-4034-z
10.1186/s12859-019-3027-7
10.1111/jon.12214
10.1007/s00259-009-1264-0
10.1016/j.nicl.2019.101811
10.1016/j.neuroimage.2019.116456
10.1016/j.trci.2019.10.006
10.1093/brain/awm319
10.2214/AJR.18.19822
10.1016/j.jalz.2016.10.006
10.1007/s00259-018-4035-y
10.1007/s00259-013-2458-z
10.1093/brain/awr179
10.1212/WNL.0b013e3182574f79
10.3389/fnagi.2018.00230
10.1186/s12883-018-1060-1
10.1212/WNL.0b013e31821103e6
10.3233/JAD-160874
10.1016/S0140-6736(15)00461-4
10.1016/j.jneumeth.2017.11.002
10.1007/BFb0029438
10.1016/j.neuroimage.2018.10.003
10.1016/j.neuroimage.2003.09.027
10.1016/j.cortex.2019.05.007
10.1093/arclin/acp027
10.3174/ajnr.A0620
ContentType Journal Article
Copyright Copyright © 2022 Díaz-Álvarez, Matias-Guiu, Cabrera-Martín, Pytel, Segovia-Ríos, García-Gutiérrez, Hernández-Lorenzo, Matias-Guiu, Carreras, Ayala and Alzheimer’s Disease Neuroimaging Initiative.
Copyright © 2022 Díaz-Álvarez, Matias-Guiu, Cabrera-Martín, Pytel, Segovia-Ríos, García-Gutiérrez, Hernández-Lorenzo, Matias-Guiu, Carreras, Ayala and Alzheimer’s Disease Neuroimaging Initiative. 2022 Díaz-Álvarez, Matias-Guiu, Cabrera-Martín, Pytel, Segovia-Ríos, García-Gutiérrez, Hernández-Lorenzo, Matias-Guiu, Carreras and Ayala
Copyright_xml – notice: Copyright © 2022 Díaz-Álvarez, Matias-Guiu, Cabrera-Martín, Pytel, Segovia-Ríos, García-Gutiérrez, Hernández-Lorenzo, Matias-Guiu, Carreras, Ayala and Alzheimer’s Disease Neuroimaging Initiative.
– notice: Copyright © 2022 Díaz-Álvarez, Matias-Guiu, Cabrera-Martín, Pytel, Segovia-Ríos, García-Gutiérrez, Hernández-Lorenzo, Matias-Guiu, Carreras, Ayala and Alzheimer’s Disease Neuroimaging Initiative. 2022 Díaz-Álvarez, Matias-Guiu, Cabrera-Martín, Pytel, Segovia-Ríos, García-Gutiérrez, Hernández-Lorenzo, Matias-Guiu, Carreras and Ayala
CorporateAuthor Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer’s Disease Neuroimaging Initiative
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fnagi.2021.708932
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1663-4365
ExternalDocumentID oai_doaj_org_article_7e711cbf536a4f229bd965fc6fcb514c
PMC8851241
35185510
10_3389_fnagi_2021_708932
Genre Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: ;
GroupedDBID ---
53G
5VS
7X7
8FE
8FH
8FI
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CITATION
DIK
E3Z
EIHBH
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
PGMZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
UKHRP
88I
8FJ
ACXDI
ALIPV
CCPQU
DWQXO
GNUQQ
HMCUK
IPNFZ
NPM
PHGZM
PHGZT
PQGLB
RIG
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c465t-3c47572034902560b1d9fd6dd66cd05f86da63302deae58d74e7a93735e9761a3
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000759928400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1663-4365
IngestDate Fri Oct 03 12:26:42 EDT 2025
Tue Sep 30 16:52:51 EDT 2025
Wed Oct 01 15:01:59 EDT 2025
Mon Jul 21 05:55:49 EDT 2025
Sat Nov 29 06:11:40 EST 2025
Tue Nov 18 20:51:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords genetic algorithm
Alzheimer’s disease
frontotemporal dementia
unsupervised algorithm
machine learning
positron emission tomography
evolutionary algorithm
primary progressive aphasia
Language English
License Copyright © 2022 Díaz-Álvarez, Matias-Guiu, Cabrera-Martín, Pytel, Segovia-Ríos, García-Gutiérrez, Hernández-Lorenzo, Matias-Guiu, Carreras, Ayala and Alzheimer’s Disease Neuroimaging Initiative.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-3c47572034902560b1d9fd6dd66cd05f86da63302deae58d74e7a93735e9761a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Alzheimer’s Disease and Related Dementias, a section of the journal Frontiers in Aging Neuroscience
Edited by: Fermín Segovia, University of Granada, Spain
Reviewed by: Akira Masuda, Doshisha University, Japan; Elena Rodriguez-Vieitez, Karolinska Institutet (KI), Sweden
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
OpenAccessLink https://doaj.org/article/7e711cbf536a4f229bd965fc6fcb514c
PMID 35185510
PQID 2631624062
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_7e711cbf536a4f229bd965fc6fcb514c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8851241
proquest_miscellaneous_2631624062
pubmed_primary_35185510
crossref_citationtrail_10_3389_fnagi_2021_708932
crossref_primary_10_3389_fnagi_2021_708932
PublicationCentury 2000
PublicationDate 2022-02-03
PublicationDateYYYYMMDD 2022-02-03
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-03
  day: 03
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in aging neuroscience
PublicationTitleAlternate Front Aging Neurosci
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Bachli (B2) 2020; 208
Nanni (B32) 2018; 302
Bouwman (B4) 2018; 45
Gamberger (B16) 2017; 7
Peña-Casanova (B35) 2009; 24
Li (B23) 2007; 28
Arbizu (B1) 2013; 40
Rabinovici (B36) 2011; 77
Shankle (B40) 1997
Ranganathan (B37) 2018
Habes (B19) 2020; 88
Weiner (B43) 2013; 9
Morris (B31) 1993; 43
Bang (B3) 2015; 386
Matias-Guiu (B26); 42
Yang (B46) 2014
Feis (B13) 2019; 90
Díaz-Álvarez (B10) 2019; 20
Gupta (B18) 2019; 13
Matias-Guiu (B28) 2018; 10
Nori (B34) 2019; 5
Weiner (B44) 2017; 13
Lao (B22) 2004; 21
Fernández-Matarrubia (B15) 2014; 29
Whitwell (B45) 2009; 132
McKhann (B30) 2011; 7
Devenney (B9) 2018; 18
Rascovsky (B38) 2011; 134
Callahan (B5) 1995; 122
Nestor (B33) 2018; 45
Gorno-Tempini (B17) 2011; 76
Dyrba (B12) 2015; 25
Kim (B20) 2019; 23
So (B41) 2017; 7
Della Rosa (B8) 2014; 12
Matias-Guiu (B27) 2017; 101
Matias-Guiu (B25); 262
Davies (B7) 1994
Fernández-Matarrubia (B14) 2017; 57
Zukotynski (B47) 2018; 211
Sajjadi (B39) 2012; 78
Davatzikos (B6) 2019; 197
Matias-Guiu (B29) 2019; 119
Donnelly-Kehoe (B11) 2019; 11
Klippel (B21) 2008; 131
Varrone (B42) 2009; 36
Marshall (B24) 2018; 265
References_xml – volume: 88
  start-page: 70
  year: 2020
  ident: B19
  article-title: Disentangling heterogeneity in Alzheimer’s disease and related dementias using data - driven methods.
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2020.01.016
– volume: 262
  start-page: 570
  ident: B25
  article-title: Clinical course of primary progressive aphasia: clinical and FDG-PET patterns.
  publication-title: J. Neurol.
  doi: 10.1007/s00415-014-7608-0
– volume: 132
  start-page: 2932
  year: 2009
  ident: B45
  article-title: Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study.
  publication-title: Brain
  doi: 10.1093/brain/awp232
– volume: 12
  start-page: 575
  year: 2014
  ident: B8
  article-title: A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia.
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-014-9235-4
– volume: 7
  start-page: 263
  year: 2011
  ident: B30
  article-title: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2011.03.005
– start-page: 37
  year: 1994
  ident: B7
  article-title: Np-completeness of searches for smallest possible feature sets
  publication-title: Proceedings of the 1994 AAAI Symposium on Intelligent Relevance
– volume: 11
  start-page: 588
  year: 2019
  ident: B11
  article-title: Robust automated computational approach for classifying frontotemporal neurodegeneration: multimodal/multicenter neuroimaging.
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.dadm.2019.06.002
– volume: 13
  start-page: 72
  year: 2019
  ident: B18
  article-title: Prediction and classification of Alzheimer’s disease based on combined features from Apolipoprotein-E genotype, cerebrospinal fluid, MR, and FDG-PET imaging biomarkers.
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2019.00072
– volume: 122
  start-page: 422
  year: 1995
  ident: B5
  article-title: Documentation and evaluation of cognitive impairment in elderly primary care patients.
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-122-6-199503150-00004
– volume: 29
  start-page: 464
  year: 2014
  ident: B15
  article-title: Behavioural variant frontotemporal dementia: clinical and therapeutic approaches.
  publication-title: Neurologia
  doi: 10.1016/j.nrl.2013.03.001
– volume: 9
  start-page: e111
  year: 2013
  ident: B43
  article-title: The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception.
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2013.05.1769
– volume: 101
  start-page: 132
  year: 2017
  ident: B27
  article-title: Reading difficulties in primary progressive aphasia in a regular language-speaking cohort of patients.
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2017.05.018
– volume: 43
  start-page: 2412
  year: 1993
  ident: B31
  article-title: The Clinical Dementia Rating (CDR): current version and scoring rules.
  publication-title: Neurology
  doi: 10.1212/wnl.43.11.2412-a
– volume: 77
  start-page: 2034
  year: 2011
  ident: B36
  article-title: Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD.
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31823b9c5e
– volume: 7
  start-page: 651
  year: 2017
  ident: B41
  article-title: Early diagnosis of dementia from clinical data by machine learning techniques.
  publication-title: Appl. Sci.
  doi: 10.3390/app7070651
– volume: 42
  start-page: 916
  ident: B26
  article-title: Visual and statistical analysis of 18F-FDG-PET in primary progressive aphasia.
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-015-2994-9
– year: 2014
  ident: B46
  publication-title: Nature-Inspired Optimization Algorithms
– volume: 90
  start-page: 1207
  year: 2019
  ident: B13
  article-title: A multimodal MRI-based classification signature emerges just prior to symptom onset in frontotemporal dementia mutation carriers.
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2019-320774
– year: 2018
  ident: B37
  publication-title: Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics
– volume: 7
  start-page: 6763
  year: 2017
  ident: B16
  article-title: Identification of clusters of rapid and slow decliners among subjects at risk for Alzheimer’s disease.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06624-y
– volume: 265
  start-page: 1474
  year: 2018
  ident: B24
  article-title: Primary progressive aphasia: a clinical approach.
  publication-title: J. Neurol.
  doi: 10.1007/s00415-018-8762-6
– volume: 45
  start-page: 1526
  year: 2018
  ident: B4
  article-title: Diagnostic utility of fdg-pet in the differential diagnosis between different forms of primary progressive aphasia.
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-018-4034-z
– volume: 20
  start-page: 491
  year: 2019
  ident: B10
  article-title: An application of machine learning with feature selection to improve diagnosis and classification of neurodegenerative disorders.
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-3027-7
– volume: 25
  start-page: 738
  year: 2015
  ident: B12
  article-title: Predicting Prodromal Alzheimer’s Disease in Subjects with Mild Cognitive Impairment Using Machine Learning Classification of Multimodal Multicenter Diffusion-Tensor and Magnetic Resonance Imaging Data.
  publication-title: J. Neuroimaging
  doi: 10.1111/jon.12214
– volume: 36
  start-page: 2103
  year: 2009
  ident: B42
  article-title: EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2.
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-009-1264-0
– volume: 23
  start-page: 101811
  year: 2019
  ident: B20
  article-title: Machine learning based hierarchical classification of frontotemporal dementia and Alzheimer’s disease.
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2019.101811
– volume: 208
  start-page: 116456
  year: 2020
  ident: B2
  article-title: Evaluating the reliability of neurocognitive biomarkers of neurodegenerative diseases across countries: a machine learning approach.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116456
– volume: 5
  start-page: 918
  year: 2019
  ident: B34
  article-title: Machine learning models to predict onset of dementia: a label learning approach.
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.trci.2019.10.006
– volume: 131
  start-page: 681
  year: 2008
  ident: B21
  article-title: Automatic classification of MR scans in Alzheimer’s disease.
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 211
  start-page: 246
  year: 2018
  ident: B47
  article-title: PET/CT of Dementia.
  publication-title: AJR Am. J. Roentgenol.
  doi: 10.2214/AJR.18.19822
– volume: 13
  start-page: 561
  year: 2017
  ident: B44
  article-title: The Alzheimer’s disease neuroimaging initiative 3: continued innovation for clinical trial improvement.
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2016.10.006
– volume: 45
  start-page: 1509
  year: 2018
  ident: B33
  article-title: Clinical utility of FDG-PET for the differential diagnosis among the main forms of dementia.
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-018-4035-y
– volume: 40
  start-page: 1394
  year: 2013
  ident: B1
  article-title: Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer’s disease dementia.
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-013-2458-z
– volume: 134
  start-page: 2456
  year: 2011
  ident: B38
  article-title: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia.
  publication-title: Brain
  doi: 10.1093/brain/awr179
– volume: 78
  start-page: 1670
  year: 2012
  ident: B39
  article-title: Primary progressive aphasia: a tale of two syndromes and the rest.
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182574f79
– volume: 10
  start-page: 230
  year: 2018
  ident: B28
  article-title: Clustering analysis of FDG-PET imaging in primary progressive aphasia.
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2018.00230
– volume: 18
  start-page: 56
  year: 2018
  ident: B9
  article-title: The behavioural variant frontotemporal dementia phenocopy syndrome is a distinct entity - evidence from a longitudinal study.
  publication-title: BMC Neurol.
  doi: 10.1186/s12883-018-1060-1
– volume: 76
  start-page: 1006
  year: 2011
  ident: B17
  article-title: Classification of primary progressive aphasia and its variants.
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31821103e6
– volume: 57
  start-page: 1251
  year: 2017
  ident: B14
  article-title: Episodic memory dysfunction in behavioral variant frontotemporal dementia: a clinical And FDG-PET Study.
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-160874
– volume: 386
  start-page: 1672
  year: 2015
  ident: B3
  article-title: Frontotemporal dementia.
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)00461-4
– volume: 302
  start-page: 42
  year: 2018
  ident: B32
  article-title: Ensemble based on static classifier selection for automated diagnosis of Mild Cognitive Impairment.
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.11.002
– start-page: 71
  year: 1997
  ident: B40
  article-title: Detecting very early stages of dementia from normal aging with machine learning methods
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1007/BFb0029438
– volume: 197
  start-page: 652
  year: 2019
  ident: B6
  article-title: Machine learning in neuroimaging: progress and challenges.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.10.003
– volume: 21
  start-page: 46
  year: 2004
  ident: B22
  article-title: Morphological classification of brains via high-dimensional shape transformations and machine learning methods.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.09.027
– volume: 119
  start-page: 312
  year: 2019
  ident: B29
  article-title: Machine learning in the clinical and language characterisation of primary progressive aphasia variants.
  publication-title: Cortex
  doi: 10.1016/j.cortex.2019.05.007
– volume: 24
  start-page: 307
  year: 2009
  ident: B35
  article-title: Spanish Multicenter Normative Studies (NEURONORMA Project): methods and sample characteristics.
  publication-title: Arch. Clin. Neuropsychol.
  doi: 10.1093/arclin/acp027
– volume: 28
  start-page: 1339
  year: 2007
  ident: B23
  article-title: Hippocampal shape analysis of Alzheimer disease based on machine learning methods.
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A0620
SSID ssj0000330058
Score 2.3513088
Snippet Genetic algorithms have a proven capability to explore a large space of solutions, and deal with very large numbers of input features. We hypothesized that the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 708932
SubjectTerms Aging Neuroscience
Alzheimer’s disease
frontotemporal dementia
machine learning
positron emission tomography
primary progressive aphasia
unsupervised algorithm
Title Genetic Algorithms for Optimized Diagnosis of Alzheimer’s Disease and Frontotemporal Dementia Using Fluorodeoxyglucose Positron Emission Tomography Imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/35185510
https://www.proquest.com/docview/2631624062
https://pubmed.ncbi.nlm.nih.gov/PMC8851241
https://doaj.org/article/7e711cbf536a4f229bd965fc6fcb514c
Volume 13
WOSCitedRecordID wos000759928400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZghRAXxJvyWBmJE1LYJn4lx4VtBRK77GFBvUV-jGmkJkFNi2APiL_BgT_HL2HsZKsWIbhwySG2ZcszGX_jmXxDyFNnVAHGQmLUOE-4SE2iReoTDTJLmRKQxzvd92_UyUk-mxWnW6W-Qk5YTw_cb9yBApWm1njBpOY-ywrjCim8ld4aPOxtsL5jVWw5U9EGs0DDnvdhTPTCigMfqv6gP5ilz3FVBct2DqLI1_8nkPl7ruTW4TO9Qa4PqJEe9qu9SS5Bc4tcPR7i4rfJj8AejW30cPGhRXd_XncU0Sh9iwahrs7B0aM-pa7qaOux1_kcqhqWP79977ApxmiobhydRj6Dga9qQY_i5WGlacwsoNPFukWDC-3nL0OqOz0NSV84iE5QYcLNGz1r64EGm76uYw2kO-TddHL28lUyFF5ILJdilTDLlQjxWV5ESGRSV3gnnZPSurHwuXRa4g5nDjSI3CkOSiPOYQIQ3aSa3SV7TdvAfULzgqfcM-eNt9x4Zhy4MQAYbjOvpB2R8YUUSjuwkofiGIsSvZMguDIKrgyCK3vBjcizzZCPPSXH3zq_CKLddAxs2vEF6lg56Fj5Lx0bkScXilHiZoaQim6gXXdlJlkqAyjCie71irKZignEQmjyRkTtqNDOWnZbmmoeGb5zxMEIrR78j8U_JNey8MtGyDRnj8jearmGx-SK_bSquuU-uaxm-X78ePB5_HXyC6ywJw0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Algorithms+for+Optimized+Diagnosis+of+Alzheimer%27s+Disease+and+Frontotemporal+Dementia+Using+Fluorodeoxyglucose+Positron+Emission+Tomography+Imaging&rft.jtitle=Frontiers+in+aging+neuroscience&rft.au=D%C3%ADaz-%C3%81lvarez%2C+Josefa&rft.au=Matias-Guiu%2C+Jordi+A&rft.au=Cabrera-Mart%C3%ADn%2C+Mar%C3%ADa+Nieves&rft.au=Pytel%2C+Vanesa&rft.date=2022-02-03&rft.issn=1663-4365&rft.eissn=1663-4365&rft.volume=13&rft.spage=708932&rft_id=info:doi/10.3389%2Ffnagi.2021.708932&rft_id=info%3Apmid%2F35185510&rft.externalDocID=35185510
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-4365&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-4365&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-4365&client=summon