Stokes posets and serpent nests

30 pages, 12 figures We study two different objects attached to an arbitrary quadrangulation of a regular polygon. The first one is a poset, closely related to the Stokes polytopes introduced by Baryshnikov. The second one is a set of some paths configurations inside the quadrangulation, satisfying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Mathematics and Theoretical Computer Science Jg. 18 no. 3; H. Combinatorics; S. Q1
1. Verfasser: Chapoton, Frédéric
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Nancy DMTCS 02.12.2016
Discrete Mathematics & Theoretical Computer Science
Schlagworte:
ISSN:1365-8050, 1462-7264, 1365-8050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:30 pages, 12 figures We study two different objects attached to an arbitrary quadrangulation of a regular polygon. The first one is a poset, closely related to the Stokes polytopes introduced by Baryshnikov. The second one is a set of some paths configurations inside the quadrangulation, satisfying some specific constraints. These objects provide a generalisation of the existing combinatorics of cluster algebras and nonnesting partitions of type A. On étudie deux objets attachés à une quadrangulation quelconque d'un polygone régulier. Le premier objet est un ensemble partiellement ordonné, fortement lié aux polytopes de Stokes introduits par Barysknikov. Le second est un ensemble de configurations de chemins dans la quadrangulation. Ces deux objets généralisent respectivement les aspects combinatoires des algèbres amassées et des partitions non-emboitées de type A.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.1382