FPGA Implementation of Orthogonal Matching Pursuit for Compressive Sensing Reconstruction

In this paper, we present a novel architecture based on field-programmable gate arrays (FPGAs) for the reconstruction of compressively sensed signal using the orthogonal matching pursuit (OMP) algorithm. We have analyzed the computational complexities and data dependence between different stages of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems Jg. 23; H. 10; S. 2209 - 2220
Hauptverfasser: Hassan Rabah, Amira, Abbes, Mohanty, Basant Kumar, Almaadeed, Somaya, Meher, Pramod Kumar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1063-8210, 1557-9999
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we present a novel architecture based on field-programmable gate arrays (FPGAs) for the reconstruction of compressively sensed signal using the orthogonal matching pursuit (OMP) algorithm. We have analyzed the computational complexities and data dependence between different stages of OMP algorithm to design its architecture that provides higher throughput with less area consumption. Since the solution of least square problem involves a large part of the overall computation time, we have suggested a parallel low-complexity architecture for the solution of the linear system. We have further modeled the proposed design using Simulink and carried out the implementation on FPGA using Xilinx system generator tool. We have presented here a methodology to optimize both area and execution time in Simulink environment. The execution time of the proposed design is reduced by maximizing parallelism by appropriate level of unfolding, while the FPGA resources are reduced by sharing the hardware for matrix-vector multiplication across the data-dependent sections of the algorithm. The hardware implementation on the Virtex6 FPGA provides significantly superior performance in terms of resource utilization measured in the number of occupied slices, and maximum usable frequency compared with the existing implementations. Compared with the existing similar design, the proposed structure involves 328 more DSP48s, but it involves 25802 less slices and 1.85 times less computation time for signal reconstruction with N = 1024, K = 256, and m = 36, where N is the number of samples, K is the size of the measurement vector, and m is the sparsity. It also provides a higher peak signal-to-noise ratio value of 38.9 dB with a reconstruction time of 0.34 μs, which is twice faster than the existing design. In addition, we have presented a performance metric to implement the OMP algorithm in resource constrained FPGA for the better quality of signal reconstruction.
AbstractList In this paper, we present a novel architecture based on field-programmable gate arrays (FPGAs) for the reconstruction of compressively sensed signal using the orthogonal matching pursuit (OMP) algorithm. We have analyzed the computational complexities and data dependence between different stages of OMP algorithm to design its architecture that provides higher throughput with less area consumption. Since the solution of least square problem involves a large part of the overall computation time, we have suggested a parallel low-complexity architecture for the solution of the linear system. We have further modeled the proposed design using Simulink and carried out the implementation on FPGA using Xilinx system generator tool. We have presented here a methodology to optimize both area and execution time in Simulink environment. The execution time of the proposed design is reduced by maximizing parallelism by appropriate level of unfolding, while the FPGA resources are reduced by sharing the hardware for matrix-vector multiplication across the data-dependent sections of the algorithm. The hardware implementation on the Virtex6 FPGA provides significantly superior performance in terms of resource utilization measured in the number of occupied slices, and maximum usable frequency compared with the existing implementations. Compared with the existing similar design, the proposed structure involves 328 more DSP48s, but it involves 25 802 less slices and 1.85 times less computation time for signal reconstruction with N = 1024, K = 256, and m = 36, where N is the number of samples, K is the size of the measurement vector, and m is the sparsity. It also provides a higher peak signal-to-noise ratio value of 38.9 dB with a reconstruction time of 0.34 mu s, which is twice faster than the existing design. In addition, we have presented a performance metric to implement the OMP algorithm in resource constrained FPGA for the better quality of signal reconstruction.
In this paper, we present a novel architecture based on field-programmable gate arrays (FPGAs) for the reconstruction of compressively sensed signal using the orthogonal matching pursuit (OMP) algorithm. We have analyzed the computational complexities and data dependence between different stages of OMP algorithm to design its architecture that provides higher throughput with less area consumption. Since the solution of least square problem involves a large part of the overall computation time, we have suggested a parallel low-complexity architecture for the solution of the linear system. We have further modeled the proposed design using Simulink and carried out the implementation on FPGA using Xilinx system generator tool. We have presented here a methodology to optimize both area and execution time in Simulink environment. The execution time of the proposed design is reduced by maximizing parallelism by appropriate level of unfolding, while the FPGA resources are reduced by sharing the hardware for matrix-vector multiplication across the data-dependent sections of the algorithm. The hardware implementation on the Virtex6 FPGA provides significantly superior performance in terms of resource utilization measured in the number of occupied slices, and maximum usable frequency compared with the existing implementations. Compared with the existing similar design, the proposed structure involves 328 more DSP48s, but it involves 25802 less slices and 1.85 times less computation time for signal reconstruction with N = 1024, K = 256, and m = 36, where N is the number of samples, K is the size of the measurement vector, and m is the sparsity. It also provides a higher peak signal-to-noise ratio value of 38.9 dB with a reconstruction time of 0.34 μs, which is twice faster than the existing design. In addition, we have presented a performance metric to implement the OMP algorithm in resource constrained FPGA for the better quality of signal reconstruction.
In this paper, we present a novel architecture based on field-programmable gate arrays (FPGAs) for the reconstruction of compressively sensed signal using the orthogonal matching pursuit (OMP) algorithm. We have analyzed the computational complexities and data dependence between different stages of OMP algorithm to design its architecture that provides higher throughput with less area consumption. Since the solution of least square problem involves a large part of the overall computation time, we have suggested a parallel low-complexity architecture for the solution of the linear system. We have further modeled the proposed design using Simulink and carried out the implementation on FPGA using Xilinx system generator tool. We have presented here a methodology to optimize both area and execution time in Simulink environment. The execution time of the proposed design is reduced by maximizing parallelism by appropriate level of unfolding, while the FPGA resources are reduced by sharing the hardware for matrix-vector multiplication across the data-dependent sections of the algorithm. The hardware implementation on the Virtex6 FPGA provides significantly superior performance in terms of resource utilization measured in the number of occupied slices, and maximum usable frequency compared with the existing implementations. Compared with the existing similar design, the proposed structure involves 328 more DSP48s, but it involves [Formula Omitted] less slices and 1.85 times less computation time for signal reconstruction with [Formula Omitted], [Formula Omitted], and [Formula Omitted], where [Formula Omitted] is the number of samples, [Formula Omitted] is the size of the measurement vector, and [Formula Omitted] is the sparsity. It also provides a higher peak signal-to-noise ratio value of 38.9 dB with a reconstruction time of [Formula Omitted]s, which is twice faster than the existing design. In addition, we have presented a performance metric to implement the OMP algorithm in resource constrained FPGA for the better quality of signal reconstruction.
Author Almaadeed, Somaya
Amira, Abbes
Hassan Rabah
Mohanty, Basant Kumar
Meher, Pramod Kumar
Author_xml – sequence: 1
  surname: Hassan Rabah
  fullname: Hassan Rabah
  email: hassan.rabah@univlorraine.fr
  organization: Inst. Jean Lamour, Univ. of Lorraine, Nancy, France
– sequence: 2
  givenname: Abbes
  surname: Amira
  fullname: Amira, Abbes
  email: abbes.amira@uws.ac.uk
  organization: Dept. of Comput. Sci. & Eng., Qatar Univ., Doha, Qatar
– sequence: 3
  givenname: Basant Kumar
  surname: Mohanty
  fullname: Mohanty, Basant Kumar
  email: bk.mohanti@juet.ac.in
  organization: Dept. of Electron. & Commun. Eng., Jaypee Univ. of Eng. & Technol., Guna, India
– sequence: 4
  givenname: Somaya
  surname: Almaadeed
  fullname: Almaadeed, Somaya
  email: s_alali@qu.edu.qa
  organization: Dept. of Comput. Sci. & Eng., Qatar Univ., Doha, Qatar
– sequence: 5
  givenname: Pramod Kumar
  surname: Meher
  fullname: Meher, Pramod Kumar
  email: aspkmeher@ntu.edu.sg
  organization: Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore
BackLink https://hal.science/hal-01293457$$DView record in HAL
BookMark eNp9kM1LwzAchoMoOD_-Ab0UPHnozEeTtMcx3AdMFKeCp5B2v26RrplJOvC_t7XqwYO5JCTP8_LLe4IOa1sDQhcEDwnB2c3Ty2I5H1JMkiFlPJVEHKAB4VzGWbsO2zMWLE4pwcfoxPs33JJJhgfodfIwHUXz7a6CLdRBB2PryJbRvQsbu7a1rqI7HYqNqdfRQ-N8Y0JUWheN7XbnwHuzh2gJte_eH6GwtQ-uKbqUM3RU6srD-fd-ip4nt0_jWby4n87Ho0VcJIKHmImcAEkhyWVGEyrSXFCOhYYVyTHnCWYsbwlKJfBVIUCmnAEumViVUkCJ2Sm67nM3ulI7Z7bafSirjZqNFqq7w4RmLOFyT1r2qmd3zr434IN6s41rP-kVkTQjknPWJaY9VTjrvYNSFaZvJjhtKkWw6kpXX6WrrnT1XXqr0j_qz0T_Spe9ZADgVxAZ4ZJj9glMdI8k
CODEN IEVSE9
CitedBy_id crossref_primary_10_3390_electronics12132978
crossref_primary_10_1080_17499518_2024_2395555
crossref_primary_10_1186_s13638_020_01796_0
crossref_primary_10_1109_TIM_2018_2813820
crossref_primary_10_1109_TCSI_2023_3345537
crossref_primary_10_1109_TVLSI_2020_3030906
crossref_primary_10_1007_s11220_022_00389_z
crossref_primary_10_1109_TVLSI_2017_2765677
crossref_primary_10_1109_TVLSI_2024_3462467
crossref_primary_10_3390_app9245443
crossref_primary_10_1049_cds2_12047
crossref_primary_10_1109_JSEN_2019_2906264
crossref_primary_10_3390_electronics9091507
crossref_primary_10_1109_TCSVT_2019_2943363
crossref_primary_10_1109_TBCAS_2018_2828031
crossref_primary_10_1109_TVLSI_2019_2909754
crossref_primary_10_1109_TVLSI_2020_2967477
crossref_primary_10_3390_electronics7090206
crossref_primary_10_1109_JIOT_2021_3051014
crossref_primary_10_1016_j_aeue_2022_154138
crossref_primary_10_3103_S0735272718080010
crossref_primary_10_1109_ACCESS_2025_3562291
crossref_primary_10_1109_TVLSI_2018_2791351
crossref_primary_10_1016_j_micpro_2018_09_005
crossref_primary_10_1109_ACCESS_2018_2886471
crossref_primary_10_1016_j_micpro_2019_03_007
crossref_primary_10_1109_TCSII_2022_3223400
crossref_primary_10_1109_TCSI_2018_2803627
crossref_primary_10_1109_TCSI_2021_3136222
crossref_primary_10_1109_TVLSI_2023_3268667
crossref_primary_10_1109_TCSI_2016_2582782
crossref_primary_10_1109_TVLSI_2016_2554401
crossref_primary_10_1016_j_compeleceng_2018_07_017
crossref_primary_10_1109_TVLSI_2018_2879884
crossref_primary_10_1109_TVLSI_2019_2936867
crossref_primary_10_1007_s10776_019_00459_2
crossref_primary_10_1109_TBC_2016_2617286
crossref_primary_10_1109_TCSI_2021_3139164
crossref_primary_10_1007_s11071_018_4689_9
crossref_primary_10_1016_j_sigpro_2020_107508
crossref_primary_10_1109_TVLSI_2025_3529954
crossref_primary_10_1007_s00034_017_0661_z
crossref_primary_10_1109_TCAD_2022_3143476
crossref_primary_10_1109_TCSI_2017_2648854
crossref_primary_10_1109_TIM_2019_2947118
crossref_primary_10_3390_jsan7040045
crossref_primary_10_1109_TSP_2016_2620105
crossref_primary_10_1155_2023_1434736
crossref_primary_10_3390_s18041106
crossref_primary_10_1016_j_optlaseng_2020_106056
crossref_primary_10_1016_j_dsp_2018_04_006
crossref_primary_10_1109_ACCESS_2024_3396494
crossref_primary_10_1109_TCSI_2017_2707481
Cites_doi 10.1007/BF01585529
10.1109/ISSPA.2012.6310501
10.1109/JETCAS.2012.2214636
10.1109/TIT.2007.909108
10.1109/TSP.2011.2173682
10.1109/ISCAS.2012.6271921
10.1109/CISS.2009.5054716
10.1109/ISCAS.2011.5937688
10.1109/ICCNC.2013.6504167
10.1109/78.258082
10.1109/ISCAS.2010.5537976
10.1109/MSP.2007.914731
10.1186/1687-6180-2011-34
10.1109/ICECS.2012.6463559
10.1007/978-3-540-68111-3_15
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
1XC
DOI 10.1109/TVLSI.2014.2358716
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9999
EndPage 2220
ExternalDocumentID oai:HAL:hal-01293457v1
3855254691
10_1109_TVLSI_2014_2358716
6915750
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
1XC
ID FETCH-LOGICAL-c465t-36b1e18e4b7924268b62506aed1b0554033bb1e227e5dc6e7853e0f36df76ef03
IEDL.DBID RIE
ISICitedReferencesCount 81
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000364208500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-8210
IngestDate Wed Nov 05 07:48:33 EST 2025
Sun Nov 09 08:16:54 EST 2025
Tue Nov 18 21:09:03 EST 2025
Sat Nov 29 03:36:08 EST 2025
Tue Aug 26 16:39:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords orthogonal matching pursuit (OMP) algorithm
field-programmable gate array (FPGA) implementation
hardware reconstruction
Compressive sensing
low-complexity architecture
system-level modeling
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-36b1e18e4b7924268b62506aed1b0554033bb1e227e5dc6e7853e0f36df76ef03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6334-3084
PQID 1729175530
PQPubID 85424
PageCount 12
ParticipantIDs proquest_journals_1729175530
crossref_citationtrail_10_1109_TVLSI_2014_2358716
hal_primary_oai_HAL_hal_01293457v1
crossref_primary_10_1109_TVLSI_2014_2358716
ieee_primary_6915750
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on very large scale integration (VLSI) systems
PublicationTitleAbbrev TVLSI
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
andrecut (ref9) 2009; 17
ref15
ref14
yang (ref12) 2009
ref22
ref10
ref2
braun (ref8) 2010; 7697
ref1
ref17
(ref19) 2012
ref16
(ref20) 2013
ref18
ref7
ref4
(ref21) 2012
ref3
ref6
ref5
happonen (ref11) 2004; 3
References_xml – ident: ref18
  doi: 10.1007/BF01585529
– ident: ref16
  doi: 10.1109/ISSPA.2012.6310501
– ident: ref6
  doi: 10.1109/JETCAS.2012.2214636
– ident: ref7
  doi: 10.1109/TIT.2007.909108
– ident: ref22
  doi: 10.1109/TSP.2011.2173682
– year: 2012
  ident: ref21
  publication-title: System Generator for DSP
– ident: ref14
  doi: 10.1109/ISCAS.2012.6271921
– year: 2013
  ident: ref20
  publication-title: Division Algorithm
– volume: 3
  start-page: 114
  year: 2004
  ident: ref11
  article-title: A reconfigurable processing element implementation for matrix inversion using Cholesky decomposition
  publication-title: World Acad Sci Eng Technol
– year: 2009
  ident: ref12
  article-title: High performance reconfigurable computing for Cholesky decomposition
  publication-title: Proc Symp Appl Accel High Perform Comput (UIUC)
– volume: 17
  start-page: 151
  year: 2009
  ident: ref9
  article-title: Fast GPU implementation of sparse signal recovery from random projections
  publication-title: Eng Lett
– year: 2012
  ident: ref19
  publication-title: Virtex-5 FPGA XtremeDSP design considerations
– ident: ref3
  doi: 10.1109/CISS.2009.5054716
– ident: ref2
  doi: 10.1109/ISCAS.2011.5937688
– ident: ref15
  doi: 10.1109/ICCNC.2013.6504167
– ident: ref4
  doi: 10.1109/78.258082
– ident: ref13
  doi: 10.1109/ISCAS.2010.5537976
– volume: 7697
  start-page: 769715-1
  year: 2010
  ident: ref8
  article-title: An evaluation of GPU acceleration for sparse reconstruction
  publication-title: Proc SPIE Signal Process Sensor Fusion Target Recognit XIX
– ident: ref1
  doi: 10.1109/MSP.2007.914731
– ident: ref5
  doi: 10.1186/1687-6180-2011-34
– ident: ref17
  doi: 10.1109/ICECS.2012.6463559
– ident: ref10
  doi: 10.1007/978-3-540-68111-3_15
SSID ssj0014490
Score 2.4485302
Snippet In this paper, we present a novel architecture based on field-programmable gate arrays (FPGAs) for the reconstruction of compressively sensed signal using the...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2209
SubjectTerms Algorithm design and analysis
Algorithms
Compressive sensing
Computer architecture
Engineering Sciences
Field programmable gate arrays
field-programmable gate array (FPGA) implementation
hardware reconstruction
low-complexity architecture
Matching pursuit algorithms
Matrix decomposition
Micro and nanotechnologies
Microelectronics
Optimization
orthogonal matching pursuit (OMP) algorithm
Signal and Image processing
Symmetric matrices
system-level modeling
Vectors
Title FPGA Implementation of Orthogonal Matching Pursuit for Compressive Sensing Reconstruction
URI https://ieeexplore.ieee.org/document/6915750
https://www.proquest.com/docview/1729175530
https://hal.science/hal-01293457
Volume 23
WOSCitedRecordID wos000364208500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9999
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014490
  issn: 1063-8210
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0tqAd6gBaouoUiC3ErATt27OS4qrpQaQsr8SE4RbEzKUiwi_br99fjZFMkEBK3KBlLVl7imbFn3gM4qKxKuC1clBlXRCp2aVSUaCNrVGlKWSWiSIPYhDk7S29usmEHDtteGEQMxWd4RJfhLL8cuzltlR3rTPjowifoK8aYulerPTFQKquZB7SMUp_HLBtkeHZ8eT24-E1VXOqIGkMNaZs_c0Ird1QCGbRVXizIwcv0N943v0-w3kSTrFfD_xk6ONqEj884Brfgtj886bFAAvzY9BmN2Lhi55PZ3fgvxeHsj1-OaSOKDeeT6fx-xnwgy2ihCDWyC2QXVOXun1Ou-p9xdhuu-r8uf55GjZ5C5JROZpHUVqBIUVmTkWdOrU9-uC6wFJb7sIJLab1FHBtMSqfReFeOvJK6rIzGissvsDoaj_ArsDR2cWGtNBQfoMgKpUUlSLMsjjlK3gWxfMG5a8jGSfPiIQ9JB8_yAEpOoOQNKF340Y55qqk23rTe97i1hsSSfdob5HSP9takSsxCdGGLUGqtGoC6sLuEOW9-2WnuIzmfupKK0rfXR-3Amp9AUlfy7cKqf9v4HT64xex-OtkLX-M_fD_bbA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgQQ88LVNFAZYiDfIZseOnTxWE6UTXam0gsaTFTuXbRK0qF9_Pz4nzSaBkHiLkrNk-efch333O4B3tVMZd6VPCuPLRKU-T8oKXeKMqkwl60yUeWw2Ycbj_OKimOzAh64WBhFj8hke0WO8y6_mfk1HZce6EMG7CAH63UypVDTVWt2dgVJFwz2gZZKHSGZbIsOL4-m30fkp5XGpIyoNNdTd_JYZunNFSZCxu8ofKjnamcHj_5vhE3jU-pOs32yAp7CDs2fw8BbL4B58H0w-9VmkAf7ZVhrN2LxmXxarq_kleeLsLChkOopik_Viub5eseDKMlIVMUt2g-yc8tzDd4pWbzhn9-Hr4OP0ZJi0HRUSr3S2SqR2AkWOypmCbHPuQvjDdYmVcDw4FlxKFyTS1GBWeY0mGHPktdRVbTTWXB7A7mw-w-fA8tSnpXPSkIeAoiiVFrWgrmVpylHyHojtAlvf0o1T14sfNoYdvLARFEug2BaUHrzvxvxqyDb-Kf024NYJEk_2sD-y9I5O16TKzEb0YI9Q6qRagHpwuIXZtj_t0gZfLgSv1Efpxd9HvYH7w-nZyI5Ox59fwoMwmazJ6zuE3bDy-Aru-c3qerl4HXfmbw_V3rM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FPGA+Implementation+of+Orthogonal+Matching+Pursuit+for+Compressive+Sensing+Reconstruction&rft.jtitle=IEEE+transactions+on+very+large+scale+integration+%28VLSI%29+systems&rft.au=Rabah%2C+Hassan&rft.au=Amira%2C+Abbes&rft.au=Mohanty%2C+Basant+Kumar&rft.au=Almaadeed%2C+Somaya&rft.date=2015-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-8210&rft.eissn=1557-9999&rft.volume=23&rft.issue=10&rft.spage=2209&rft_id=info:doi/10.1109%2FTVLSI.2014.2358716&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3855254691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8210&client=summon