Uncovering Molecular Heterogeneity in the Kidney With Spatially Targeted Mass Spectrometry
The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular ident...
Uložené v:
| Vydané v: | Frontiers in physiology Ročník 13; s. 837773 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
Frontiers Media S.A
11.02.2022
|
| Predmet: | |
| ISSN: | 1664-042X, 1664-042X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining
in situ
cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease. |
|---|---|
| AbstractList | The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining in situ cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease.The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining in situ cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease. The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease. The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining in situ cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease. The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining in situ cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease. |
| Author | Kruse, Angela R. S. Spraggins, Jeffrey M. |
| AuthorAffiliation | 2 Mass Spectrometry Research Center, Vanderbilt University , Nashville, TN , United States 3 Department of Cell and Developmental Biology, Vanderbilt University , Nashville, TN , United States 1 Department of Biochemistry, Vanderbilt University , Nashville, TN , United States 4 Department of Chemistry, Vanderbilt University , Nashville, TN , United States |
| AuthorAffiliation_xml | – name: 4 Department of Chemistry, Vanderbilt University , Nashville, TN , United States – name: 2 Mass Spectrometry Research Center, Vanderbilt University , Nashville, TN , United States – name: 1 Department of Biochemistry, Vanderbilt University , Nashville, TN , United States – name: 3 Department of Cell and Developmental Biology, Vanderbilt University , Nashville, TN , United States |
| Author_xml | – sequence: 1 givenname: Angela R. S. surname: Kruse fullname: Kruse, Angela R. S. – sequence: 2 givenname: Jeffrey M. surname: Spraggins fullname: Spraggins, Jeffrey M. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35222094$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktvGyEUhVGVqknT_IBsoll2Y5fhMQObSlWUl5qoiyZq1Q3CzGVMhMEFHGn-fXGcRkkXZQO6nPudK93zHu2FGACh4xbPKRXyk10vpzwnmJC5oH3f0zfooO06NsOM_Nx78d5HRznf43oYJhi379A-5YQQLNkB-nUXTHyA5MLY3EQPZuN1ai6hQIojBHBlalxoyhKar24IMDU_XFk239e6OO391NzqNFb10NzonGsdTElxBSVNH9Bbq32Go6f7EN2dn92eXs6uv11cnX65nhnW8TKjeKENp1JaEG2HYQDQjFkqOEiJrcWcYdxbK4hkAxjSGik5572mTAwYD_QQXe24Q9T3ap3cSqdJRe3UYyGmUelUnPGgrAbDDGF0kISB6XX1FXRBiV3YVva8sj7vWOvNYgWDgVCS9q-gr3-CW6oxPighelYJFfDxCZDi7w3kolYuG_BeB4ibrEhHGWdSUlmlJy-9nk3-LqcK2p3ApJhzAvssabHaZkA9ZkBtM6B2Gag9_T89xpW6q7gd1_n_dP4BJtC5Zw |
| CitedBy_id | crossref_primary_10_1162_qss_a_00299 crossref_primary_10_1152_ajprenal_00426_2023 crossref_primary_10_1097_MNH_0000000000000988 crossref_primary_10_1016_j_kint_2024_11_008 crossref_primary_10_1038_s41598_023_33442_2 crossref_primary_10_1038_s41467_022_34824_2 crossref_primary_10_3390_molecules27082411 |
| Cites_doi | 10.1194/jlr.M040014 10.1021/jasms.0c00256 10.1371/journal.pone.0152191 10.1038/nrneph.2014.216 10.1152/physrev.00028.2012 10.1093/ndt/gfv364 10.1021/acs.analchem.9b05055 10.1016/j.semnephrol.2018.01.002 10.1021/acs.analchem.7b01256 10.1016/j.jprot.2018.03.001 10.1016/j.semnephrol.2018.01.005 10.1172/jci.insight.129477 10.1097/01.mol.0000169350.45944.d4 10.1152/ajprenal.00100.2016 10.1152/physiol.00045.2004 10.2991/ahsr.k.201001.037 10.1038/nmeth.2834 10.1073/pnas.0908351106 10.1002/mas.21360 10.1016/j.kint.2021.08.033 10.1126/science.abl4381 10.1681/ASN.2005121320 10.1016/j.bbamem.2012.04.008 10.1007/s00216-018-1493-9 10.1093/ndt/gfs489 10.1007/s00216-015-8689-z 10.1038/s41586-019-1629-x 10.1038/s41467-018-03367-w 10.1007/s40620-020-00850-w 10.3390/metabo9020034 10.1038/s41467-019-13858-z 10.1016/S1387-3806(00)00300-6 10.1016/j.cell.2020.03.053 10.1021/pr060346u 10.1364/BOE.6.005055 10.1007/s00216-019-01721-5 10.1021/ac504543v 10.1021/acs.analchem.8b05889 10.1016/j.cmet.2017.03.015 10.14670/HH-11-622 10.1111/j.1523-1755.2004.00443.x 10.1016/j.kint.2017.03.052 10.1021/acs.analchem.1c00649 10.1021/acs.analchem.0c02051 10.1021/acs.analchem.9b03612 10.1039/c2an36337b 10.1038/455028a 10.1159/000101790 10.1021/ac970888i 10.1007/s00216-011-4990-7 10.1007/s11306-020-1637-8 10.1681/ASN.2019030312 10.1021/ac034802z 10.15252/msb.20145625 10.1007/s00592-005-0188-9 10.1021/acs.jproteome.7b00913 10.1016/j.aca.2021.338522 10.1021/jasms.1c00213 10.1021/acs.analchem.8b02885 10.1021/cr3004295 10.1556/EuJMI.2.2012.2.3 10.1074/mcp.M500399-MCP200 10.1021/acs.analchem.8b05521 10.1186/1471-2164-10-365 10.1021/acs.analchem.0c02520 10.1016/j.kint.2018.08.037 10.1186/s12953-016-0096-7 10.1016/j.ebiom.2016.03.033 10.1074/mcp.R120.002234 10.1038/nmeth.3296 10.1093/ndt/gft008 10.1002/pmic.201300434 10.1002/jms.914 10.1001/jama.2017.5640 10.1194/jlr.M049189 10.1002/prca.201800137 10.1007/s11051-021-05251-z 10.1002/jms.4384 10.1016/j.xpro.2021.100747 10.1038/nature19949 10.1016/j.apsusc.2006.02.134 10.1016/j.jasms.2006.05.003 10.1021/ac950717i 10.1038/nmeth.4072 10.1111/apha.13479 10.1073/pnas.1913991116 10.1152/ajpendo.00515.2011 10.1016/j.kint.2017.12.012 10.1016/j.kint.2021.06.030 10.1186/s13073-016-0388-7 10.1021/acsinfecdis.0c00647 10.1038/s41467-021-23461-w 10.1007/s00216-014-8293-7 10.1021/acs.analchem.9b05639 10.3389/fmed.2020.00499 10.1074/mcp.M800141-MCP200 10.1016/j.bbalip.2011.05.006 10.1152/physiolgenomics.00104.2020 10.1021/ac051495j 10.1016/j.kint.2016.09.044 10.1021/ac504734s 10.1021/acs.analchem.0c03262 10.1021/acs.analchem.8b02004 10.1039/c0an00312c |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Kruse and Spraggins. Copyright © 2022 Kruse and Spraggins. 2022 Kruse and Spraggins |
| Copyright_xml | – notice: Copyright © 2022 Kruse and Spraggins. – notice: Copyright © 2022 Kruse and Spraggins. 2022 Kruse and Spraggins |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3389/fphys.2022.837773 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1664-042X |
| ExternalDocumentID | oai_doaj_org_article_faec4c243d924ec7a53983b32fbf1975 PMC8874197 35222094 10_3389_fphys_2022_837773 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: NIH HHS grantid: OT2 OD026675 – fundername: NIDDK NIH HHS grantid: T32 DK101003 – fundername: NEI NIH HHS grantid: U54 EY032442 – fundername: ; grantid: U54EY032442 – fundername: ; grantid: 3OT2 OD026675-01S5 – fundername: ; grantid: U54DK120058; T32DK101003 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION DIK EMOBN F5P GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM ACXDI IAO IEA IHR IHW IPNFZ ISR NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c465t-30bac5399fe8160edeea44f385e990ff054007ff8294dec21c995557a348d00d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000761132000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-042X |
| IngestDate | Fri Oct 03 12:41:28 EDT 2025 Tue Sep 30 16:23:06 EDT 2025 Wed Oct 01 13:05:18 EDT 2025 Thu Jan 02 22:56:44 EST 2025 Sat Nov 29 04:02:11 EST 2025 Tue Nov 18 22:00:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | kidney proteomics metabolomics mass spectrometry HuBMAP KPMP multimodal imaging lipidomics |
| Language | English |
| License | Copyright © 2022 Kruse and Spraggins. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c465t-30bac5399fe8160edeea44f385e990ff054007ff8294dec21c995557a348d00d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Bruce Molitoris, Indiana University, United States Reviewed by: Christoph Kuppe, RWTH Aachen University, Germany This article was submitted to Renal and Epithelial Physiology, a section of the journal Frontiers in Physiology |
| OpenAccessLink | https://doaj.org/article/faec4c243d924ec7a53983b32fbf1975 |
| PMID | 35222094 |
| PQID | 2634549939 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_faec4c243d924ec7a53983b32fbf1975 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8874197 proquest_miscellaneous_2634549939 pubmed_primary_35222094 crossref_primary_10_3389_fphys_2022_837773 crossref_citationtrail_10_3389_fphys_2022_837773 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-11 |
| PublicationDateYYYYMMDD | 2022-02-11 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in physiology |
| PublicationTitleAlternate | Front Physiol |
| PublicationYear | 2022 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Fogo (B23) 2015; 11 Brinkerhoff (B13) 2021; 374 Heeren (B34) 2006; 252 Patterson (B69) 2018; 90 Spengler (B85) 2015; 87 Koehler (B47) 2020; 31 Perry (B70) 2019; 116 Betsholtz (B11) 2007; 106 Van de Plas (B92) 2015; 12 Xiang (B100) 2020; 92 Franz (B24) 2000; 200 Aguayo-Mazzucato (B4) 2017; 25 Kulak (B48) 2014; 11 Ferraro (B22) 2021; 34 Hoyer (B37) 2019; 193 Bergman (B10) 2019; 411 Djambazova (B19) 2020; 92 Balla (B6) 2013; 93 Eberlin (B20) 2011; 1811 Gustafsson (B33) 2015; 407 Piehowski (B71) 2020; 11 Sugimoto (B88) 2016; 11 Grove (B28) 2014; 55 Luft (B50) 2021; 231 Kinnunen (B45) 2012; 1818 Moestrup (B59) 2005; 16 El-Achkar (B21) 2021; 53 Knittelfelder (B46) 2018; 90 Abbasi (B1) 2017; 318 Norris (B65) 2013; 113 Trevisan (B90) 2006; 17 Kafarov (B42) 2020 van Smaalen (B93) 2019; 91 Rao (B75) 2016; 310 Norris (B67) 2003; 75 Guiberson (B31) 2021; 7 Norris (B66) 2005; 40 Kelly (B44) 2020; 19 Neumann (B61) 2020; 92 Zhu (B105) 2018; 9 Bijlsma (B12) 2006; 78 Höhne (B36) 2018; 93 Spraggins (B86) 2019; 91 Abbiss (B2) 2019; 9 Beckmann (B9) 2016; 8 Xu (B101) 2019; 411 Lynch (B52) 2008; 455 Römpp (B78) 2011; 401 Banki (B8) 2021; 100 Kang (B43) 2005; 42 McMillen (B56) 2021; 32 Vollnhals (B94) 2017; 89 Srinivasu (B87) 2021; 23 Prentice (B73) 2017; 92 Guo (B32) 2021; 12 Rozenblatt-Rosen (B79) 2020; 181 Miyamoto (B58) 2016; 7 Gry (B29) 2009; 10 Moggridge (B60) 2018; 17 Sigdel (B82) 2020; 7 Lukowski (B51) 2020; 31 Späth (B84) 2019; 95 Caprioli (B14) 1997; 69 Waanders (B95) 2008; 7 Martín-Saiz (B53) 2021; 93 Jones (B40) 2014; 14 Cisek (B17) 2016; 31 Zhang (B103) 2018; 38 Tryggvason (B91) 2005; 20 Casadonte (B15) 2015; 407 Neumann (B63); 101 Datta (B18) 2015; 30 Autengruber (B5) 2012; 2 Waanders (B96) 2009; 106 Judd (B41) 2019; 54 Grobe (B27) 2012; 302 Nilsson (B64) 2015; 87 McDonnell (B55) 2006; 17 Aebersold (B3) 2016; 537 Hughes (B39) 2014; 10 Meistermann (B57) 2006; 5 Greguš (B26) 2020; 92 Mayer (B54) 2012; 27 Balluff (B7) 2019; 13 Ryan (B81) 2019; 91 Yassine (B102) 2016; 14 Hu (B38) 2019; 574 Singh (B83) 2019; 4 Wu (B98) 2013; 32 Postnov (B72) 2015; 6 Gode (B25) 2013; 138 Grzeskowiak (B30) 2016 Weening (B97) 2004; 65 Palmer (B68) 2017; 14 Zhang (B104) 2020; 16 Lalowski (B49) 2013; 28 Race (B74) 2020; 92 Chaurand (B16) 2006; 5 Neumann (B62); 2 Rhee (B76) 2018; 38 Hobeika (B35) 2017; 91 Tideman (B89) 2021; 1177 Roach (B77) 2010; 135 Wu (B99) 1996; 68 Ruh (B80) 2013; 54 |
| References_xml | – volume: 54 start-page: 2785 year: 2013 ident: B80 article-title: MALDI imaging MS reveals candidate lipid markers of polycystic kidney disease. publication-title: J. Lipid Res. doi: 10.1194/jlr.M040014 – volume: 31 start-page: 2538 year: 2020 ident: B51 article-title: Storage conditions of human kidney tissue sections affect spatial lipidomics analysis reproducibility. publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1021/jasms.0c00256 – volume: 11 year: 2016 ident: B88 article-title: Imaging mass spectrometry reveals Acyl-chain- and region-specific sphingolipid metabolism in the kidneys of sphingomyelin synthase 2-deficient mice. publication-title: PLoS One doi: 10.1371/journal.pone.0152191 – volume: 11 start-page: 76 year: 2015 ident: B23 article-title: Causes and pathogenesis of focal segmental glomerulosclerosis. publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2014.216 – year: 2016 ident: B30 publication-title: Comparative Analysis of Protein Recovery Rates in Eppendorf LoBind® and Other “Low Binding” Tubes. AG Application Note.2016: No, 382. – volume: 93 start-page: 1019 year: 2013 ident: B6 article-title: Phosphoinositides: tiny lipids with giant impact on cell regulation. publication-title: Physiol. Rev. doi: 10.1152/physrev.00028.2012 – volume: 31 start-page: 2003 year: 2016 ident: B17 article-title: The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. publication-title: Nephrol. Dial Transplant doi: 10.1093/ndt/gfv364 – volume: 92 start-page: 10979 year: 2020 ident: B74 article-title: Correlative hyperspectral imaging using a dimensionality-reduction-based image fusion method. publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b05055 – volume: 38 start-page: 111 year: 2018 ident: B103 article-title: The warburg effect in diabetic kidney disease. publication-title: Semin. Nephrol. doi: 10.1016/j.semnephrol.2018.01.002 – volume: 89 start-page: 10702 year: 2017 ident: B94 article-title: Correlative microscopy combining secondary ion mass spectrometry and electron microscopy: comparison of intensity-hue-saturation and laplacian pyramid methods for image fusion. publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b01256 – volume: 193 start-page: 85 year: 2019 ident: B37 article-title: Quantification of molecular heterogeneity in kidney tissue by targeted proteomics. publication-title: J. Proteomics doi: 10.1016/j.jprot.2018.03.001 – volume: 38 start-page: 142 year: 2018 ident: B76 article-title: A systems-level view of renal metabolomics. publication-title: Semin. Nephrol. doi: 10.1016/j.semnephrol.2018.01.005 – volume: 4 year: 2019 ident: B83 article-title: Development of a 2-dimensional atlas of the human kidney with imaging mass cytometry. publication-title: JCI Insight doi: 10.1172/jci.insight.129477 – volume: 16 start-page: 301 year: 2005 ident: B59 article-title: The role of the kidney in lipid metabolism. publication-title: Curr. Opin. Lipidol. doi: 10.1097/01.mol.0000169350.45944.d4 – volume: 310 start-page: F1136 year: 2016 ident: B75 article-title: Early lipid changes in acute kidney injury using SWATH lipidomics coupled with MALDI tissue imaging. publication-title: Am. J. Physiol. Renal. Physiol. doi: 10.1152/ajprenal.00100.2016 – volume: 20 start-page: 96 year: 2005 ident: B91 article-title: How does the kidney filter plasma? publication-title: Physiology doi: 10.1152/physiol.00045.2004 – year: 2020 ident: B42 article-title: Variant anatomy of renal vein and its intra-organ branches publication-title: Proceedings of International Conference “Health and Wellbeing in Modern Society”(ICHW 2020) doi: 10.2991/ahsr.k.201001.037 – volume: 11 start-page: 319 year: 2014 ident: B48 article-title: Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. publication-title: Nat. Methods doi: 10.1038/nmeth.2834 – volume: 106 start-page: 18902 year: 2009 ident: B96 article-title: Quantitative proteomic analysis of single pancreatic islets. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0908351106 – volume: 32 start-page: 218 year: 2013 ident: B98 article-title: Mass spectrometry imaging under ambient conditions. publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.21360 – volume: 101 start-page: 137 ident: B63 article-title: Highly multiplexed immunofluorescence of the human kidney using co-detection by indexing. publication-title: Kidney Int. doi: 10.1016/j.kint.2021.08.033 – volume: 374 year: 2021 ident: B13 article-title: Multiple rereads of single proteins at single-amino acid resolution using nanopores. publication-title: Science doi: 10.1126/science.abl4381 – volume: 17 start-page: S145 year: 2006 ident: B90 article-title: Lipids and renal disease. publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2005121320 – volume: 1818 start-page: 2446 year: 2012 ident: B45 article-title: Protein-oxidized phospholipid interactions in cellular signaling for cell death: from biophysics to clinical correlations. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2012.04.008 – volume: 411 start-page: 4587 year: 2019 ident: B101 article-title: Benchtop-compatible sample processing workflow for proteome profiling of <100 mammalian cells. publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-018-1493-9 – volume: 27 start-page: 3995 year: 2012 ident: B54 article-title: Systems biology: building a useful model from multiple markers and profiles. publication-title: Nephrol. Dial Transplant doi: 10.1093/ndt/gfs489 – volume: 407 start-page: 5323 year: 2015 ident: B15 article-title: Imaging mass spectrometry analysis of renal amyloidosis biopsies reveals protein co-localization with amyloid deposits. publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-015-8689-z – volume: 574 start-page: 187 year: 2019 ident: B38 article-title: The human body at cellular resolution: the NIH Human biomolecular atlas program. publication-title: Nature doi: 10.1038/s41586-019-1629-x – volume: 9 year: 2018 ident: B105 article-title: Nanodroplet processing platform for deep and quantitative proteome profiling of 10-100 mammalian cells. publication-title: Nat. Commun. doi: 10.1038/s41467-018-03367-w – volume: 34 start-page: 29 year: 2021 ident: B22 article-title: Clinical physiology of the kidney, electrolytes and lithiasis. the “old” meets the “new”. publication-title: J. Nephrol. doi: 10.1007/s40620-020-00850-w – volume: 9 year: 2019 ident: B2 article-title: Metabolomics approaches for the diagnosis and understanding of kidney diseases. publication-title: Metabolites doi: 10.3390/metabo9020034 – volume: 11 year: 2020 ident: B71 article-title: Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution. publication-title: Nat. Commun. doi: 10.1038/s41467-019-13858-z – volume: 200 start-page: 71 year: 2000 ident: B24 article-title: Matrix-assisted laser desorption/ionisation, an experience. publication-title: Int. J. Mass Spectrom. doi: 10.1016/S1387-3806(00)00300-6 – volume: 181 start-page: 236 year: 2020 ident: B79 article-title: The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution. publication-title: Cell doi: 10.1016/j.cell.2020.03.053 – volume: 5 start-page: 2889 year: 2006 ident: B16 article-title: New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. publication-title: J. Proteome Res. doi: 10.1021/pr060346u – volume: 6 start-page: 5055 year: 2015 ident: B72 article-title: Laser speckle imaging of intra organ drug distribution. publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.005055 – volume: 411 start-page: 2809 year: 2019 ident: B10 article-title: Metabolite aberrations in early diabetes detected in rat kidney using mass spectrometry imaging. publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-019-01721-5 – volume: 87 start-page: 64 year: 2015 ident: B85 article-title: Mass spectrometry imaging of biomolecular information. publication-title: Anal. Chem. doi: 10.1021/ac504543v – volume: 91 start-page: 7578 year: 2019 ident: B81 article-title: MicroLESA: integrating autofluorescence microscopy, in situ micro-digestions, and liquid extraction surface analysis for high spatial resolution targeted proteomic studies. publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b05889 – volume: 25 start-page: 898 year: 2017 ident: B4 article-title: β Cell aging markers have heterogeneous distribution and are induced by insulin resistance. publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.03.015 – volume: 30 start-page: 1255 year: 2015 ident: B18 article-title: Laser capture microdissection: big data from small samples. publication-title: Histol. Histopathol. doi: 10.14670/HH-11-622 – volume: 65 start-page: 521 year: 2004 ident: B97 article-title: The classification of glomerulonephritis in systemic lupus erythematosus revisited. publication-title: Kidney Int. doi: 10.1111/j.1523-1755.2004.00443.x – volume: 92 start-page: 580 year: 2017 ident: B73 article-title: Label-free molecular imaging of the kidney. publication-title: Kidney Int. doi: 10.1016/j.kint.2017.03.052 – volume: 93 start-page: 9364 year: 2021 ident: B53 article-title: High-resolution human kidney molecular histology by imaging mass spectrometry of lipids. publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c00649 – volume: 92 start-page: 13084 year: 2020 ident: B61 article-title: Spatial metabolomics of the human kidney using MALDI trapped ion mobility imaging mass spectrometry. publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c02051 – volume: 91 start-page: 14552 year: 2019 ident: B86 article-title: High-performance molecular imaging with MALDI Trapped Ion-Mobility Time-of-Flight (timsTOF) mass spectrometry. publication-title: Analyt. Chem. doi: 10.1021/acs.analchem.9b03612 – volume: 138 start-page: 1289 year: 2013 ident: B25 article-title: Lipid imaging by mass spectrometry - a review. publication-title: Analyst doi: 10.1039/c2an36337b – volume: 455 start-page: 28 year: 2008 ident: B52 article-title: Big data: how do your data grow? publication-title: Nature doi: 10.1038/455028a – volume: 106 start-page: e32 year: 2007 ident: B11 article-title: The glomerular transcriptome and proteome. publication-title: Nephron Exp. Nephrol. doi: 10.1159/000101790 – volume: 69 start-page: 4751 year: 1997 ident: B14 article-title: Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. publication-title: Anal. Chem. doi: 10.1021/ac970888i – volume: 401 start-page: 65 year: 2011 ident: B78 article-title: Mass spectrometry imaging with high resolution in mass and space (HR(2) MSI) for reliable investigation of drug compound distributions on the cellular level. publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-011-4990-7 – volume: 16 year: 2020 ident: B104 article-title: DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules. publication-title: Metabolomics doi: 10.1007/s11306-020-1637-8 – volume: 31 start-page: 544 year: 2020 ident: B47 article-title: Proteome analysis of isolated podocytes reveals stress responses in glomerular sclerosis. publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2019030312 – volume: 75 start-page: 6642 year: 2003 ident: B67 article-title: Mass spectrometry of intracellular and membrane proteins using cleavable detergents. publication-title: Anal. Chem. doi: 10.1021/ac034802z – volume: 10 year: 2014 ident: B39 article-title: Ultrasensitive proteome analysis using paramagnetic bead technology. publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20145625 – volume: 42 start-page: 110 year: 2005 ident: B43 article-title: Glycogen accumulation in renal tubules, a key morphological change in the diabetic rat kidney. publication-title: Acta Diabetol. doi: 10.1007/s00592-005-0188-9 – volume: 17 start-page: 1730 year: 2018 ident: B60 article-title: Extending the compatibility of the SP3 paramagnetic bead processing approach for proteomics. publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.7b00913 – volume: 1177 year: 2021 ident: B89 article-title: Automated biomarker candidate discovery in imaging mass spectrometry data through spatially localized Shapley additive explanations. publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2021.338522 – volume: 32 start-page: 2583 year: 2021 ident: B56 article-title: Enhancement of tryptic peptide signals from tissue sections using MALDI IMS postionization (MALDI-2). publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1021/jasms.1c00213 – volume: 90 start-page: 12404 year: 2018 ident: B69 article-title: Next generation histology-directed imaging mass spectrometry driven by autofluorescence microscopy. publication-title: Analyt. Chem. doi: 10.1021/acs.analchem.8b02885 – volume: 113 start-page: 2309 year: 2013 ident: B65 article-title: Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. publication-title: Chem. Rev. doi: 10.1021/cr3004295 – volume: 2 start-page: 112 year: 2012 ident: B5 article-title: Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function. publication-title: Eur. J. Microbiol. Immunol. doi: 10.1556/EuJMI.2.2012.2.3 – volume: 5 start-page: 1876 year: 2006 ident: B57 article-title: Biomarker discovery by imaging mass spectrometry: transthyretin is a biomarker for gentamicin-induced nephrotoxicity in rat. publication-title: Mol. Cell Proteomics doi: 10.1074/mcp.M500399-MCP200 – volume: 91 start-page: 3575 year: 2019 ident: B93 article-title: Rapid identification of ischemic injury in renal tissue by mass-spectrometry imaging. publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b05521 – volume: 10 year: 2009 ident: B29 article-title: Correlations between RNA and protein expression profiles in 23 human cell lines. publication-title: BMC Genomics doi: 10.1186/1471-2164-10-365 – volume: 92 start-page: 13290 year: 2020 ident: B19 article-title: Resolving the complexity of spatial lipidomics using MALDI TIMS imaging mass spectrometry. publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c02520 – volume: 95 start-page: 333 year: 2019 ident: B84 article-title: The proteome microenvironment determines the protective effect of preconditioning in cisplatin-induced acute kidney injury. publication-title: Kidney Int. doi: 10.1016/j.kint.2018.08.037 – volume: 14 year: 2016 ident: B102 article-title: The association of plasma cystatin C proteoforms with diabetic chronic kidney disease. publication-title: Proteome Sci. doi: 10.1186/s12953-016-0096-7 – volume: 7 start-page: 121 year: 2016 ident: B58 article-title: Mass spectrometry imaging reveals elevated glomerular ATP/AMP in diabetes/obesity and identifies sphingomyelin as a possible mediator. publication-title: EBioMedicine doi: 10.1016/j.ebiom.2016.03.033 – volume: 19 start-page: 1739 year: 2020 ident: B44 article-title: Single-cell proteomics: progress and prospects. publication-title: Mol. Cell Proteomics doi: 10.1074/mcp.R120.002234 – volume: 12 start-page: 366 year: 2015 ident: B92 article-title: Image fusion of mass spectrometry and microscopy: a multimodality paradigm for molecular tissue mapping. publication-title: Nat. Methods doi: 10.1038/nmeth.3296 – volume: 28 start-page: 1648 year: 2013 ident: B49 article-title: Imaging mass spectrometry: a new tool for kidney disease investigations. publication-title: Nephrol. Dial Transplant doi: 10.1093/ndt/gft008 – volume: 14 start-page: 924 year: 2014 ident: B40 article-title: MALDI imaging mass spectrometry profiling of proteins and lipids in clear cell renal cell carcinoma. publication-title: Proteomics doi: 10.1002/pmic.201300434 – volume: 40 start-page: 1319 year: 2005 ident: B66 article-title: Nonacid cleavable detergents applied to MALDI mass spectrometry profiling of whole cells. publication-title: J. Mass Spectrom. doi: 10.1002/jms.914 – volume: 318 start-page: 685 year: 2017 ident: B1 article-title: An international human cell atlas consortium takes shape. publication-title: JAMA doi: 10.1001/jama.2017.5640 – volume: 55 start-page: 1375 year: 2014 ident: B28 article-title: Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles. publication-title: J. Lipid Res. doi: 10.1194/jlr.M049189 – volume: 13 year: 2019 ident: B7 article-title: Integrative clustering in mass spectrometry imaging for enhanced patient stratification. publication-title: Proteomics Clin. Appl. doi: 10.1002/prca.201800137 – volume: 23 year: 2021 ident: B87 article-title: Effect of nanoparticle exposure in a living system: probed by quantification of Fetuin-B in plasma proteome and kidney tissue imaging using MALDI imaging mass spectrometry in a rat model. publication-title: J. Nanopart. Res. doi: 10.1007/s11051-021-05251-z – volume: 54 start-page: 716 year: 2019 ident: B41 article-title: A recommended and verified procedure for in situ tryptic digestion of formalin-fixed paraffin-embedded tissues for analysis by matrix-assisted laser desorption/ionization imaging mass spectrometry. publication-title: J. Mass Spectrom. doi: 10.1002/jms.4384 – volume: 2 ident: B62 article-title: Protocol for multimodal analysis of human kidney tissue by imaging mass spectrometry and CODEX multiplexed immunofluorescence. publication-title: STAR Protoc. doi: 10.1016/j.xpro.2021.100747 – volume: 537 start-page: 347 year: 2016 ident: B3 article-title: Mass-spectrometric exploration of proteome structure and function. publication-title: Nature doi: 10.1038/nature19949 – volume: 252 start-page: 6827 year: 2006 ident: B34 article-title: Why don’t biologists use SIMS?: a critical evaluation of imaging MS. publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2006.02.134 – volume: 17 start-page: 1195 year: 2006 ident: B55 article-title: Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging. publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/j.jasms.2006.05.003 – volume: 68 start-page: 873 year: 1996 ident: B99 article-title: Matrix-enhanced secondary ion mass spectrometry:? a method for molecular analysis of solid surfaces. publication-title: Anal. Chem. doi: 10.1021/ac950717i – volume: 14 start-page: 57 year: 2017 ident: B68 article-title: FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. publication-title: Nat. Methods doi: 10.1038/nmeth.4072 – volume: 231 year: 2021 ident: B50 article-title: Biomarkers and predicting acute kidney injury. publication-title: Acta Physiol. doi: 10.1111/apha.13479 – volume: 116 start-page: 21980 year: 2019 ident: B70 article-title: Staphylococcus aureus exhibits heterogeneous siderophore production within the vertebrate host. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1913991116 – volume: 302 start-page: E1016 year: 2012 ident: B27 article-title: Mass spectrometry for the molecular imaging of angiotensin metabolism in kidney. publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00515.2011 – volume: 93 start-page: 1308 year: 2018 ident: B36 article-title: Single-nephron proteomes connect morphology and function in proteinuric kidney disease. publication-title: Kidney Int. doi: 10.1016/j.kint.2017.12.012 – volume: 100 start-page: 850 year: 2021 ident: B8 article-title: Specific disruption of calcineurin-signaling in the distal convoluted tubule impacts the transcriptome and proteome, and causes hypomagnesemia and metabolic acidosis. publication-title: Kidney Int. doi: 10.1016/j.kint.2021.06.030 – volume: 8 year: 2016 ident: B9 article-title: Reconciling evidence-based medicine and precision medicine in the era of big data: challenges and opportunities. publication-title: Genome Med. doi: 10.1186/s13073-016-0388-7 – volume: 7 start-page: 101 year: 2021 ident: B31 article-title: Spatially targeted proteomics of the host-pathogen interface during staphylococcal abscess formation. publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.0c00647 – volume: 12 year: 2021 ident: B32 article-title: Automated annotation and visualisation of high-resolution spatial proteomic mass spectrometry imaging data using HIT-MAP. publication-title: Nat. Commun. doi: 10.1038/s41467-021-23461-w – volume: 407 start-page: 2127 year: 2015 ident: B33 article-title: MALDI imaging mass spectrometry of N-linked glycans on formalin-fixed paraffin-embedded murine kidney. publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-014-8293-7 – volume: 92 start-page: 4711 year: 2020 ident: B100 article-title: Picoflow liquid chromatography-mass spectrometry for ultrasensitive bottom-up proteomics using 2-μm-i.d. open tubular columns. publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b05639 – volume: 7 year: 2020 ident: B82 article-title: Near-single-cell proteomics profiling of the proximal tubular and glomerulus of the normal human kidney. publication-title: Front. Med. doi: 10.3389/fmed.2020.00499 – volume: 7 start-page: 1452 year: 2008 ident: B95 article-title: A novel chromatographic method allows on-line reanalysis of the proteome. publication-title: Mol. Cell Proteomics doi: 10.1074/mcp.M800141-MCP200 – volume: 1811 start-page: 946 year: 2011 ident: B20 article-title: Desorption electrospray ionization mass spectrometry for lipid characterization and biological tissue imaging. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2011.05.006 – volume: 53 start-page: 1 year: 2021 ident: B21 article-title: A multimodal and integrated approach to interrogate human kidney biopsies with rigor and reproducibility: guidelines from the kidney precision medicine project. publication-title: Physiol. Genomics doi: 10.1152/physiolgenomics.00104.2020 – volume: 78 start-page: 567 year: 2006 ident: B12 article-title: Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. publication-title: Anal. Chem. doi: 10.1021/ac051495j – volume: 91 start-page: 501 year: 2017 ident: B35 article-title: Characterization of glomerular extracellular matrix by proteomic analysis of laser-captured microdissected glomeruli. publication-title: Kidney Int. doi: 10.1016/j.kint.2016.09.044 – volume: 87 start-page: 1437 year: 2015 ident: B64 article-title: Mass spectrometry imaging in drug development. publication-title: Anal. Chem. doi: 10.1021/ac504734s – volume: 92 start-page: 14702 year: 2020 ident: B26 article-title: Improved sensitivity of ultralow flow LC-MS-based proteomic profiling of limited samples using monolithic capillary columns and FAIMS technology. publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c03262 – volume: 90 start-page: 9868 year: 2018 ident: B46 article-title: Shotgun lipidomics combined with laser capture microdissection: a tool to analyze histological zones in cryosections of tissues. publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b02004 – volume: 135 start-page: 2233 year: 2010 ident: B77 article-title: Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. publication-title: Analyst doi: 10.1039/c0an00312c |
| SSID | ssj0000402001 |
| Score | 2.3652427 |
| SecondaryResourceType | review_article |
| Snippet | The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 837773 |
| SubjectTerms | kidney lipidomics mass spectrometry metabolomics multimodal imaging Physiology proteomics |
| Title | Uncovering Molecular Heterogeneity in the Kidney With Spatially Targeted Mass Spectrometry |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35222094 https://www.proquest.com/docview/2634549939 https://pubmed.ncbi.nlm.nih.gov/PMC8874197 https://doaj.org/article/faec4c243d924ec7a53983b32fbf1975 |
| Volume | 13 |
| WOSCitedRecordID | wos000761132000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-042X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402001 issn: 1664-042X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-042X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402001 issn: 1664-042X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sAFFcojhVZGQhyQQuNHYvtYqlaV0FYcWrHiEjl-qJGKF23TSnvhtzPj7K52EYILlxwSR3b8jTPz2aNvCHnHjey4MrH00vJS6sDLjpmu5BbYhO1UqKXPxSbUxYWeTs2XjVJfmBM2ygOPE3cUbXDScSk8MIXglK2F0aITPHaRGZXVSyHq2SBT-R-MtKhi4zEmsDBzFHGnAPgg5x-BkyklthxR1uv_U5D5e67khvM52yVPllEjPR5H-5Q8COkZ2TtOwJi_L-h7mvM48wb5Hvl2lRzmZYJPopNV8Vt6jmkvM7CWAGE37ROFwI9-7n0KC_q1H64p1iYGW7xZ0MucHB48nUBgTbFA_YCaBsN88ZxcnZ1enpyXywoKpZNNPZSi6qxD7dkYNGuq4EOwUkah6wBeKEaM1yoVowbIfHCcOWPqulZWSO2ryosXZCfNUnhFqGfadJKprLgXRaODNZUzjWWOxYbzglSr6WzdUl4cq1zctEAzEIE2I9AiAu2IQEE-rF_5MWpr_K3xJ8Ro3RBlsfMNMJZ2aSztv4ylIG9XCLewjPBsxKYwu4OeGiGRKgtTkJcj4uuuMEbl8NUFUVu2sDWW7Sepv85S3fALl9Dx_v8Y_GvyGOcDU8YZe0N2hvldOCCP3P3Q384PyUM11Yd5FcB18vP0F2nqDxs |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+Molecular+Heterogeneity+in+the+Kidney+With+Spatially+Targeted+Mass+Spectrometry&rft.jtitle=Frontiers+in+physiology&rft.au=Angela+R.+S.+Kruse&rft.au=Angela+R.+S.+Kruse&rft.au=Jeffrey+M.+Spraggins&rft.au=Jeffrey+M.+Spraggins&rft.date=2022-02-11&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-042X&rft.volume=13&rft_id=info:doi/10.3389%2Ffphys.2022.837773&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_faec4c243d924ec7a53983b32fbf1975 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon |