Uncovering Molecular Heterogeneity in the Kidney With Spatially Targeted Mass Spectrometry

The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular ident...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in physiology Ročník 13; s. 837773
Hlavní autori: Kruse, Angela R. S., Spraggins, Jeffrey M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland Frontiers Media S.A 11.02.2022
Predmet:
ISSN:1664-042X, 1664-042X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining in situ cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease.
AbstractList The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining in situ cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease.The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining in situ cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease.
The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease.
The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining in situ cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease.
The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining in situ cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease.
Author Kruse, Angela R. S.
Spraggins, Jeffrey M.
AuthorAffiliation 2 Mass Spectrometry Research Center, Vanderbilt University , Nashville, TN , United States
3 Department of Cell and Developmental Biology, Vanderbilt University , Nashville, TN , United States
1 Department of Biochemistry, Vanderbilt University , Nashville, TN , United States
4 Department of Chemistry, Vanderbilt University , Nashville, TN , United States
AuthorAffiliation_xml – name: 4 Department of Chemistry, Vanderbilt University , Nashville, TN , United States
– name: 2 Mass Spectrometry Research Center, Vanderbilt University , Nashville, TN , United States
– name: 1 Department of Biochemistry, Vanderbilt University , Nashville, TN , United States
– name: 3 Department of Cell and Developmental Biology, Vanderbilt University , Nashville, TN , United States
Author_xml – sequence: 1
  givenname: Angela R. S.
  surname: Kruse
  fullname: Kruse, Angela R. S.
– sequence: 2
  givenname: Jeffrey M.
  surname: Spraggins
  fullname: Spraggins, Jeffrey M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35222094$$D View this record in MEDLINE/PubMed
BookMark eNp9kktvGyEUhVGVqknT_IBsoll2Y5fhMQObSlWUl5qoiyZq1Q3CzGVMhMEFHGn-fXGcRkkXZQO6nPudK93zHu2FGACh4xbPKRXyk10vpzwnmJC5oH3f0zfooO06NsOM_Nx78d5HRznf43oYJhi379A-5YQQLNkB-nUXTHyA5MLY3EQPZuN1ai6hQIojBHBlalxoyhKar24IMDU_XFk239e6OO391NzqNFb10NzonGsdTElxBSVNH9Bbq32Go6f7EN2dn92eXs6uv11cnX65nhnW8TKjeKENp1JaEG2HYQDQjFkqOEiJrcWcYdxbK4hkAxjSGik5572mTAwYD_QQXe24Q9T3ap3cSqdJRe3UYyGmUelUnPGgrAbDDGF0kISB6XX1FXRBiV3YVva8sj7vWOvNYgWDgVCS9q-gr3-CW6oxPighelYJFfDxCZDi7w3kolYuG_BeB4ibrEhHGWdSUlmlJy-9nk3-LqcK2p3ApJhzAvssabHaZkA9ZkBtM6B2Gag9_T89xpW6q7gd1_n_dP4BJtC5Zw
CitedBy_id crossref_primary_10_1162_qss_a_00299
crossref_primary_10_1152_ajprenal_00426_2023
crossref_primary_10_1097_MNH_0000000000000988
crossref_primary_10_1016_j_kint_2024_11_008
crossref_primary_10_1038_s41598_023_33442_2
crossref_primary_10_1038_s41467_022_34824_2
crossref_primary_10_3390_molecules27082411
Cites_doi 10.1194/jlr.M040014
10.1021/jasms.0c00256
10.1371/journal.pone.0152191
10.1038/nrneph.2014.216
10.1152/physrev.00028.2012
10.1093/ndt/gfv364
10.1021/acs.analchem.9b05055
10.1016/j.semnephrol.2018.01.002
10.1021/acs.analchem.7b01256
10.1016/j.jprot.2018.03.001
10.1016/j.semnephrol.2018.01.005
10.1172/jci.insight.129477
10.1097/01.mol.0000169350.45944.d4
10.1152/ajprenal.00100.2016
10.1152/physiol.00045.2004
10.2991/ahsr.k.201001.037
10.1038/nmeth.2834
10.1073/pnas.0908351106
10.1002/mas.21360
10.1016/j.kint.2021.08.033
10.1126/science.abl4381
10.1681/ASN.2005121320
10.1016/j.bbamem.2012.04.008
10.1007/s00216-018-1493-9
10.1093/ndt/gfs489
10.1007/s00216-015-8689-z
10.1038/s41586-019-1629-x
10.1038/s41467-018-03367-w
10.1007/s40620-020-00850-w
10.3390/metabo9020034
10.1038/s41467-019-13858-z
10.1016/S1387-3806(00)00300-6
10.1016/j.cell.2020.03.053
10.1021/pr060346u
10.1364/BOE.6.005055
10.1007/s00216-019-01721-5
10.1021/ac504543v
10.1021/acs.analchem.8b05889
10.1016/j.cmet.2017.03.015
10.14670/HH-11-622
10.1111/j.1523-1755.2004.00443.x
10.1016/j.kint.2017.03.052
10.1021/acs.analchem.1c00649
10.1021/acs.analchem.0c02051
10.1021/acs.analchem.9b03612
10.1039/c2an36337b
10.1038/455028a
10.1159/000101790
10.1021/ac970888i
10.1007/s00216-011-4990-7
10.1007/s11306-020-1637-8
10.1681/ASN.2019030312
10.1021/ac034802z
10.15252/msb.20145625
10.1007/s00592-005-0188-9
10.1021/acs.jproteome.7b00913
10.1016/j.aca.2021.338522
10.1021/jasms.1c00213
10.1021/acs.analchem.8b02885
10.1021/cr3004295
10.1556/EuJMI.2.2012.2.3
10.1074/mcp.M500399-MCP200
10.1021/acs.analchem.8b05521
10.1186/1471-2164-10-365
10.1021/acs.analchem.0c02520
10.1016/j.kint.2018.08.037
10.1186/s12953-016-0096-7
10.1016/j.ebiom.2016.03.033
10.1074/mcp.R120.002234
10.1038/nmeth.3296
10.1093/ndt/gft008
10.1002/pmic.201300434
10.1002/jms.914
10.1001/jama.2017.5640
10.1194/jlr.M049189
10.1002/prca.201800137
10.1007/s11051-021-05251-z
10.1002/jms.4384
10.1016/j.xpro.2021.100747
10.1038/nature19949
10.1016/j.apsusc.2006.02.134
10.1016/j.jasms.2006.05.003
10.1021/ac950717i
10.1038/nmeth.4072
10.1111/apha.13479
10.1073/pnas.1913991116
10.1152/ajpendo.00515.2011
10.1016/j.kint.2017.12.012
10.1016/j.kint.2021.06.030
10.1186/s13073-016-0388-7
10.1021/acsinfecdis.0c00647
10.1038/s41467-021-23461-w
10.1007/s00216-014-8293-7
10.1021/acs.analchem.9b05639
10.3389/fmed.2020.00499
10.1074/mcp.M800141-MCP200
10.1016/j.bbalip.2011.05.006
10.1152/physiolgenomics.00104.2020
10.1021/ac051495j
10.1016/j.kint.2016.09.044
10.1021/ac504734s
10.1021/acs.analchem.0c03262
10.1021/acs.analchem.8b02004
10.1039/c0an00312c
ContentType Journal Article
Copyright Copyright © 2022 Kruse and Spraggins.
Copyright © 2022 Kruse and Spraggins. 2022 Kruse and Spraggins
Copyright_xml – notice: Copyright © 2022 Kruse and Spraggins.
– notice: Copyright © 2022 Kruse and Spraggins. 2022 Kruse and Spraggins
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fphys.2022.837773
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1664-042X
ExternalDocumentID oai_doaj_org_article_faec4c243d924ec7a53983b32fbf1975
PMC8874197
35222094
10_3389_fphys_2022_837773
Genre Journal Article
Review
GrantInformation_xml – fundername: NIH HHS
  grantid: OT2 OD026675
– fundername: NIDDK NIH HHS
  grantid: T32 DK101003
– fundername: NEI NIH HHS
  grantid: U54 EY032442
– fundername: ;
  grantid: U54EY032442
– fundername: ;
  grantid: 3OT2 OD026675-01S5
– fundername: ;
  grantid: U54DK120058; T32DK101003
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
DIK
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
ACXDI
IAO
IEA
IHR
IHW
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c465t-30bac5399fe8160edeea44f385e990ff054007ff8294dec21c995557a348d00d3
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000761132000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-042X
IngestDate Fri Oct 03 12:41:28 EDT 2025
Tue Sep 30 16:23:06 EDT 2025
Wed Oct 01 13:05:18 EDT 2025
Thu Jan 02 22:56:44 EST 2025
Sat Nov 29 04:02:11 EST 2025
Tue Nov 18 22:00:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords kidney
proteomics
metabolomics
mass spectrometry
HuBMAP
KPMP
multimodal imaging
lipidomics
Language English
License Copyright © 2022 Kruse and Spraggins.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-30bac5399fe8160edeea44f385e990ff054007ff8294dec21c995557a348d00d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Bruce Molitoris, Indiana University, United States
Reviewed by: Christoph Kuppe, RWTH Aachen University, Germany
This article was submitted to Renal and Epithelial Physiology, a section of the journal Frontiers in Physiology
OpenAccessLink https://doaj.org/article/faec4c243d924ec7a53983b32fbf1975
PMID 35222094
PQID 2634549939
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_faec4c243d924ec7a53983b32fbf1975
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8874197
proquest_miscellaneous_2634549939
pubmed_primary_35222094
crossref_primary_10_3389_fphys_2022_837773
crossref_citationtrail_10_3389_fphys_2022_837773
PublicationCentury 2000
PublicationDate 2022-02-11
PublicationDateYYYYMMDD 2022-02-11
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-11
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in physiology
PublicationTitleAlternate Front Physiol
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Fogo (B23) 2015; 11
Brinkerhoff (B13) 2021; 374
Heeren (B34) 2006; 252
Patterson (B69) 2018; 90
Spengler (B85) 2015; 87
Koehler (B47) 2020; 31
Perry (B70) 2019; 116
Betsholtz (B11) 2007; 106
Van de Plas (B92) 2015; 12
Xiang (B100) 2020; 92
Franz (B24) 2000; 200
Aguayo-Mazzucato (B4) 2017; 25
Kulak (B48) 2014; 11
Ferraro (B22) 2021; 34
Hoyer (B37) 2019; 193
Bergman (B10) 2019; 411
Djambazova (B19) 2020; 92
Balla (B6) 2013; 93
Eberlin (B20) 2011; 1811
Gustafsson (B33) 2015; 407
Piehowski (B71) 2020; 11
Sugimoto (B88) 2016; 11
Grove (B28) 2014; 55
Luft (B50) 2021; 231
Kinnunen (B45) 2012; 1818
Moestrup (B59) 2005; 16
El-Achkar (B21) 2021; 53
Knittelfelder (B46) 2018; 90
Abbasi (B1) 2017; 318
Norris (B65) 2013; 113
Trevisan (B90) 2006; 17
Kafarov (B42) 2020
van Smaalen (B93) 2019; 91
Rao (B75) 2016; 310
Norris (B67) 2003; 75
Guiberson (B31) 2021; 7
Norris (B66) 2005; 40
Kelly (B44) 2020; 19
Neumann (B61) 2020; 92
Zhu (B105) 2018; 9
Bijlsma (B12) 2006; 78
Höhne (B36) 2018; 93
Spraggins (B86) 2019; 91
Abbiss (B2) 2019; 9
Beckmann (B9) 2016; 8
Xu (B101) 2019; 411
Lynch (B52) 2008; 455
Römpp (B78) 2011; 401
Banki (B8) 2021; 100
Kang (B43) 2005; 42
McMillen (B56) 2021; 32
Vollnhals (B94) 2017; 89
Srinivasu (B87) 2021; 23
Prentice (B73) 2017; 92
Guo (B32) 2021; 12
Rozenblatt-Rosen (B79) 2020; 181
Miyamoto (B58) 2016; 7
Gry (B29) 2009; 10
Moggridge (B60) 2018; 17
Sigdel (B82) 2020; 7
Lukowski (B51) 2020; 31
Späth (B84) 2019; 95
Caprioli (B14) 1997; 69
Waanders (B95) 2008; 7
Martín-Saiz (B53) 2021; 93
Jones (B40) 2014; 14
Cisek (B17) 2016; 31
Zhang (B103) 2018; 38
Tryggvason (B91) 2005; 20
Casadonte (B15) 2015; 407
Neumann (B63); 101
Datta (B18) 2015; 30
Autengruber (B5) 2012; 2
Waanders (B96) 2009; 106
Judd (B41) 2019; 54
Grobe (B27) 2012; 302
Nilsson (B64) 2015; 87
McDonnell (B55) 2006; 17
Aebersold (B3) 2016; 537
Hughes (B39) 2014; 10
Meistermann (B57) 2006; 5
Greguš (B26) 2020; 92
Mayer (B54) 2012; 27
Balluff (B7) 2019; 13
Ryan (B81) 2019; 91
Yassine (B102) 2016; 14
Hu (B38) 2019; 574
Singh (B83) 2019; 4
Wu (B98) 2013; 32
Postnov (B72) 2015; 6
Gode (B25) 2013; 138
Grzeskowiak (B30) 2016
Weening (B97) 2004; 65
Palmer (B68) 2017; 14
Zhang (B104) 2020; 16
Lalowski (B49) 2013; 28
Race (B74) 2020; 92
Chaurand (B16) 2006; 5
Neumann (B62); 2
Rhee (B76) 2018; 38
Hobeika (B35) 2017; 91
Tideman (B89) 2021; 1177
Roach (B77) 2010; 135
Wu (B99) 1996; 68
Ruh (B80) 2013; 54
References_xml – volume: 54
  start-page: 2785
  year: 2013
  ident: B80
  article-title: MALDI imaging MS reveals candidate lipid markers of polycystic kidney disease.
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M040014
– volume: 31
  start-page: 2538
  year: 2020
  ident: B51
  article-title: Storage conditions of human kidney tissue sections affect spatial lipidomics analysis reproducibility.
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1021/jasms.0c00256
– volume: 11
  year: 2016
  ident: B88
  article-title: Imaging mass spectrometry reveals Acyl-chain- and region-specific sphingolipid metabolism in the kidneys of sphingomyelin synthase 2-deficient mice.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0152191
– volume: 11
  start-page: 76
  year: 2015
  ident: B23
  article-title: Causes and pathogenesis of focal segmental glomerulosclerosis.
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2014.216
– year: 2016
  ident: B30
  publication-title: Comparative Analysis of Protein Recovery Rates in Eppendorf LoBind® and Other “Low Binding” Tubes. AG Application Note.2016: No, 382.
– volume: 93
  start-page: 1019
  year: 2013
  ident: B6
  article-title: Phosphoinositides: tiny lipids with giant impact on cell regulation.
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00028.2012
– volume: 31
  start-page: 2003
  year: 2016
  ident: B17
  article-title: The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease.
  publication-title: Nephrol. Dial Transplant
  doi: 10.1093/ndt/gfv364
– volume: 92
  start-page: 10979
  year: 2020
  ident: B74
  article-title: Correlative hyperspectral imaging using a dimensionality-reduction-based image fusion method.
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b05055
– volume: 38
  start-page: 111
  year: 2018
  ident: B103
  article-title: The warburg effect in diabetic kidney disease.
  publication-title: Semin. Nephrol.
  doi: 10.1016/j.semnephrol.2018.01.002
– volume: 89
  start-page: 10702
  year: 2017
  ident: B94
  article-title: Correlative microscopy combining secondary ion mass spectrometry and electron microscopy: comparison of intensity-hue-saturation and laplacian pyramid methods for image fusion.
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b01256
– volume: 193
  start-page: 85
  year: 2019
  ident: B37
  article-title: Quantification of molecular heterogeneity in kidney tissue by targeted proteomics.
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2018.03.001
– volume: 38
  start-page: 142
  year: 2018
  ident: B76
  article-title: A systems-level view of renal metabolomics.
  publication-title: Semin. Nephrol.
  doi: 10.1016/j.semnephrol.2018.01.005
– volume: 4
  year: 2019
  ident: B83
  article-title: Development of a 2-dimensional atlas of the human kidney with imaging mass cytometry.
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.129477
– volume: 16
  start-page: 301
  year: 2005
  ident: B59
  article-title: The role of the kidney in lipid metabolism.
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/01.mol.0000169350.45944.d4
– volume: 310
  start-page: F1136
  year: 2016
  ident: B75
  article-title: Early lipid changes in acute kidney injury using SWATH lipidomics coupled with MALDI tissue imaging.
  publication-title: Am. J. Physiol. Renal. Physiol.
  doi: 10.1152/ajprenal.00100.2016
– volume: 20
  start-page: 96
  year: 2005
  ident: B91
  article-title: How does the kidney filter plasma?
  publication-title: Physiology
  doi: 10.1152/physiol.00045.2004
– year: 2020
  ident: B42
  article-title: Variant anatomy of renal vein and its intra-organ branches
  publication-title: Proceedings of International Conference “Health and Wellbeing in Modern Society”(ICHW 2020)
  doi: 10.2991/ahsr.k.201001.037
– volume: 11
  start-page: 319
  year: 2014
  ident: B48
  article-title: Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2834
– volume: 106
  start-page: 18902
  year: 2009
  ident: B96
  article-title: Quantitative proteomic analysis of single pancreatic islets.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0908351106
– volume: 32
  start-page: 218
  year: 2013
  ident: B98
  article-title: Mass spectrometry imaging under ambient conditions.
  publication-title: Mass Spectrom. Rev.
  doi: 10.1002/mas.21360
– volume: 101
  start-page: 137
  ident: B63
  article-title: Highly multiplexed immunofluorescence of the human kidney using co-detection by indexing.
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2021.08.033
– volume: 374
  year: 2021
  ident: B13
  article-title: Multiple rereads of single proteins at single-amino acid resolution using nanopores.
  publication-title: Science
  doi: 10.1126/science.abl4381
– volume: 17
  start-page: S145
  year: 2006
  ident: B90
  article-title: Lipids and renal disease.
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2005121320
– volume: 1818
  start-page: 2446
  year: 2012
  ident: B45
  article-title: Protein-oxidized phospholipid interactions in cellular signaling for cell death: from biophysics to clinical correlations.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2012.04.008
– volume: 411
  start-page: 4587
  year: 2019
  ident: B101
  article-title: Benchtop-compatible sample processing workflow for proteome profiling of <100 mammalian cells.
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-018-1493-9
– volume: 27
  start-page: 3995
  year: 2012
  ident: B54
  article-title: Systems biology: building a useful model from multiple markers and profiles.
  publication-title: Nephrol. Dial Transplant
  doi: 10.1093/ndt/gfs489
– volume: 407
  start-page: 5323
  year: 2015
  ident: B15
  article-title: Imaging mass spectrometry analysis of renal amyloidosis biopsies reveals protein co-localization with amyloid deposits.
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-015-8689-z
– volume: 574
  start-page: 187
  year: 2019
  ident: B38
  article-title: The human body at cellular resolution: the NIH Human biomolecular atlas program.
  publication-title: Nature
  doi: 10.1038/s41586-019-1629-x
– volume: 9
  year: 2018
  ident: B105
  article-title: Nanodroplet processing platform for deep and quantitative proteome profiling of 10-100 mammalian cells.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03367-w
– volume: 34
  start-page: 29
  year: 2021
  ident: B22
  article-title: Clinical physiology of the kidney, electrolytes and lithiasis. the “old” meets the “new”.
  publication-title: J. Nephrol.
  doi: 10.1007/s40620-020-00850-w
– volume: 9
  year: 2019
  ident: B2
  article-title: Metabolomics approaches for the diagnosis and understanding of kidney diseases.
  publication-title: Metabolites
  doi: 10.3390/metabo9020034
– volume: 11
  year: 2020
  ident: B71
  article-title: Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13858-z
– volume: 200
  start-page: 71
  year: 2000
  ident: B24
  article-title: Matrix-assisted laser desorption/ionisation, an experience.
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/S1387-3806(00)00300-6
– volume: 181
  start-page: 236
  year: 2020
  ident: B79
  article-title: The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution.
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.053
– volume: 5
  start-page: 2889
  year: 2006
  ident: B16
  article-title: New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry.
  publication-title: J. Proteome Res.
  doi: 10.1021/pr060346u
– volume: 6
  start-page: 5055
  year: 2015
  ident: B72
  article-title: Laser speckle imaging of intra organ drug distribution.
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.6.005055
– volume: 411
  start-page: 2809
  year: 2019
  ident: B10
  article-title: Metabolite aberrations in early diabetes detected in rat kidney using mass spectrometry imaging.
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-019-01721-5
– volume: 87
  start-page: 64
  year: 2015
  ident: B85
  article-title: Mass spectrometry imaging of biomolecular information.
  publication-title: Anal. Chem.
  doi: 10.1021/ac504543v
– volume: 91
  start-page: 7578
  year: 2019
  ident: B81
  article-title: MicroLESA: integrating autofluorescence microscopy, in situ micro-digestions, and liquid extraction surface analysis for high spatial resolution targeted proteomic studies.
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b05889
– volume: 25
  start-page: 898
  year: 2017
  ident: B4
  article-title: β Cell aging markers have heterogeneous distribution and are induced by insulin resistance.
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.03.015
– volume: 30
  start-page: 1255
  year: 2015
  ident: B18
  article-title: Laser capture microdissection: big data from small samples.
  publication-title: Histol. Histopathol.
  doi: 10.14670/HH-11-622
– volume: 65
  start-page: 521
  year: 2004
  ident: B97
  article-title: The classification of glomerulonephritis in systemic lupus erythematosus revisited.
  publication-title: Kidney Int.
  doi: 10.1111/j.1523-1755.2004.00443.x
– volume: 92
  start-page: 580
  year: 2017
  ident: B73
  article-title: Label-free molecular imaging of the kidney.
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2017.03.052
– volume: 93
  start-page: 9364
  year: 2021
  ident: B53
  article-title: High-resolution human kidney molecular histology by imaging mass spectrometry of lipids.
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c00649
– volume: 92
  start-page: 13084
  year: 2020
  ident: B61
  article-title: Spatial metabolomics of the human kidney using MALDI trapped ion mobility imaging mass spectrometry.
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c02051
– volume: 91
  start-page: 14552
  year: 2019
  ident: B86
  article-title: High-performance molecular imaging with MALDI Trapped Ion-Mobility Time-of-Flight (timsTOF) mass spectrometry.
  publication-title: Analyt. Chem.
  doi: 10.1021/acs.analchem.9b03612
– volume: 138
  start-page: 1289
  year: 2013
  ident: B25
  article-title: Lipid imaging by mass spectrometry - a review.
  publication-title: Analyst
  doi: 10.1039/c2an36337b
– volume: 455
  start-page: 28
  year: 2008
  ident: B52
  article-title: Big data: how do your data grow?
  publication-title: Nature
  doi: 10.1038/455028a
– volume: 106
  start-page: e32
  year: 2007
  ident: B11
  article-title: The glomerular transcriptome and proteome.
  publication-title: Nephron Exp. Nephrol.
  doi: 10.1159/000101790
– volume: 69
  start-page: 4751
  year: 1997
  ident: B14
  article-title: Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS.
  publication-title: Anal. Chem.
  doi: 10.1021/ac970888i
– volume: 401
  start-page: 65
  year: 2011
  ident: B78
  article-title: Mass spectrometry imaging with high resolution in mass and space (HR(2) MSI) for reliable investigation of drug compound distributions on the cellular level.
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-011-4990-7
– volume: 16
  year: 2020
  ident: B104
  article-title: DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules.
  publication-title: Metabolomics
  doi: 10.1007/s11306-020-1637-8
– volume: 31
  start-page: 544
  year: 2020
  ident: B47
  article-title: Proteome analysis of isolated podocytes reveals stress responses in glomerular sclerosis.
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2019030312
– volume: 75
  start-page: 6642
  year: 2003
  ident: B67
  article-title: Mass spectrometry of intracellular and membrane proteins using cleavable detergents.
  publication-title: Anal. Chem.
  doi: 10.1021/ac034802z
– volume: 10
  year: 2014
  ident: B39
  article-title: Ultrasensitive proteome analysis using paramagnetic bead technology.
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20145625
– volume: 42
  start-page: 110
  year: 2005
  ident: B43
  article-title: Glycogen accumulation in renal tubules, a key morphological change in the diabetic rat kidney.
  publication-title: Acta Diabetol.
  doi: 10.1007/s00592-005-0188-9
– volume: 17
  start-page: 1730
  year: 2018
  ident: B60
  article-title: Extending the compatibility of the SP3 paramagnetic bead processing approach for proteomics.
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.7b00913
– volume: 1177
  year: 2021
  ident: B89
  article-title: Automated biomarker candidate discovery in imaging mass spectrometry data through spatially localized Shapley additive explanations.
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2021.338522
– volume: 32
  start-page: 2583
  year: 2021
  ident: B56
  article-title: Enhancement of tryptic peptide signals from tissue sections using MALDI IMS postionization (MALDI-2).
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1021/jasms.1c00213
– volume: 90
  start-page: 12404
  year: 2018
  ident: B69
  article-title: Next generation histology-directed imaging mass spectrometry driven by autofluorescence microscopy.
  publication-title: Analyt. Chem.
  doi: 10.1021/acs.analchem.8b02885
– volume: 113
  start-page: 2309
  year: 2013
  ident: B65
  article-title: Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research.
  publication-title: Chem. Rev.
  doi: 10.1021/cr3004295
– volume: 2
  start-page: 112
  year: 2012
  ident: B5
  article-title: Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function.
  publication-title: Eur. J. Microbiol. Immunol.
  doi: 10.1556/EuJMI.2.2012.2.3
– volume: 5
  start-page: 1876
  year: 2006
  ident: B57
  article-title: Biomarker discovery by imaging mass spectrometry: transthyretin is a biomarker for gentamicin-induced nephrotoxicity in rat.
  publication-title: Mol. Cell Proteomics
  doi: 10.1074/mcp.M500399-MCP200
– volume: 91
  start-page: 3575
  year: 2019
  ident: B93
  article-title: Rapid identification of ischemic injury in renal tissue by mass-spectrometry imaging.
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b05521
– volume: 10
  year: 2009
  ident: B29
  article-title: Correlations between RNA and protein expression profiles in 23 human cell lines.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-365
– volume: 92
  start-page: 13290
  year: 2020
  ident: B19
  article-title: Resolving the complexity of spatial lipidomics using MALDI TIMS imaging mass spectrometry.
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c02520
– volume: 95
  start-page: 333
  year: 2019
  ident: B84
  article-title: The proteome microenvironment determines the protective effect of preconditioning in cisplatin-induced acute kidney injury.
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2018.08.037
– volume: 14
  year: 2016
  ident: B102
  article-title: The association of plasma cystatin C proteoforms with diabetic chronic kidney disease.
  publication-title: Proteome Sci.
  doi: 10.1186/s12953-016-0096-7
– volume: 7
  start-page: 121
  year: 2016
  ident: B58
  article-title: Mass spectrometry imaging reveals elevated glomerular ATP/AMP in diabetes/obesity and identifies sphingomyelin as a possible mediator.
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2016.03.033
– volume: 19
  start-page: 1739
  year: 2020
  ident: B44
  article-title: Single-cell proteomics: progress and prospects.
  publication-title: Mol. Cell Proteomics
  doi: 10.1074/mcp.R120.002234
– volume: 12
  start-page: 366
  year: 2015
  ident: B92
  article-title: Image fusion of mass spectrometry and microscopy: a multimodality paradigm for molecular tissue mapping.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3296
– volume: 28
  start-page: 1648
  year: 2013
  ident: B49
  article-title: Imaging mass spectrometry: a new tool for kidney disease investigations.
  publication-title: Nephrol. Dial Transplant
  doi: 10.1093/ndt/gft008
– volume: 14
  start-page: 924
  year: 2014
  ident: B40
  article-title: MALDI imaging mass spectrometry profiling of proteins and lipids in clear cell renal cell carcinoma.
  publication-title: Proteomics
  doi: 10.1002/pmic.201300434
– volume: 40
  start-page: 1319
  year: 2005
  ident: B66
  article-title: Nonacid cleavable detergents applied to MALDI mass spectrometry profiling of whole cells.
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.914
– volume: 318
  start-page: 685
  year: 2017
  ident: B1
  article-title: An international human cell atlas consortium takes shape.
  publication-title: JAMA
  doi: 10.1001/jama.2017.5640
– volume: 55
  start-page: 1375
  year: 2014
  ident: B28
  article-title: Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles.
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M049189
– volume: 13
  year: 2019
  ident: B7
  article-title: Integrative clustering in mass spectrometry imaging for enhanced patient stratification.
  publication-title: Proteomics Clin. Appl.
  doi: 10.1002/prca.201800137
– volume: 23
  year: 2021
  ident: B87
  article-title: Effect of nanoparticle exposure in a living system: probed by quantification of Fetuin-B in plasma proteome and kidney tissue imaging using MALDI imaging mass spectrometry in a rat model.
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-021-05251-z
– volume: 54
  start-page: 716
  year: 2019
  ident: B41
  article-title: A recommended and verified procedure for in situ tryptic digestion of formalin-fixed paraffin-embedded tissues for analysis by matrix-assisted laser desorption/ionization imaging mass spectrometry.
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.4384
– volume: 2
  ident: B62
  article-title: Protocol for multimodal analysis of human kidney tissue by imaging mass spectrometry and CODEX multiplexed immunofluorescence.
  publication-title: STAR Protoc.
  doi: 10.1016/j.xpro.2021.100747
– volume: 537
  start-page: 347
  year: 2016
  ident: B3
  article-title: Mass-spectrometric exploration of proteome structure and function.
  publication-title: Nature
  doi: 10.1038/nature19949
– volume: 252
  start-page: 6827
  year: 2006
  ident: B34
  article-title: Why don’t biologists use SIMS?: a critical evaluation of imaging MS.
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2006.02.134
– volume: 17
  start-page: 1195
  year: 2006
  ident: B55
  article-title: Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging.
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/j.jasms.2006.05.003
– volume: 68
  start-page: 873
  year: 1996
  ident: B99
  article-title: Matrix-enhanced secondary ion mass spectrometry:? a method for molecular analysis of solid surfaces.
  publication-title: Anal. Chem.
  doi: 10.1021/ac950717i
– volume: 14
  start-page: 57
  year: 2017
  ident: B68
  article-title: FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4072
– volume: 231
  year: 2021
  ident: B50
  article-title: Biomarkers and predicting acute kidney injury.
  publication-title: Acta Physiol.
  doi: 10.1111/apha.13479
– volume: 116
  start-page: 21980
  year: 2019
  ident: B70
  article-title: Staphylococcus aureus exhibits heterogeneous siderophore production within the vertebrate host.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1913991116
– volume: 302
  start-page: E1016
  year: 2012
  ident: B27
  article-title: Mass spectrometry for the molecular imaging of angiotensin metabolism in kidney.
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00515.2011
– volume: 93
  start-page: 1308
  year: 2018
  ident: B36
  article-title: Single-nephron proteomes connect morphology and function in proteinuric kidney disease.
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2017.12.012
– volume: 100
  start-page: 850
  year: 2021
  ident: B8
  article-title: Specific disruption of calcineurin-signaling in the distal convoluted tubule impacts the transcriptome and proteome, and causes hypomagnesemia and metabolic acidosis.
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2021.06.030
– volume: 8
  year: 2016
  ident: B9
  article-title: Reconciling evidence-based medicine and precision medicine in the era of big data: challenges and opportunities.
  publication-title: Genome Med.
  doi: 10.1186/s13073-016-0388-7
– volume: 7
  start-page: 101
  year: 2021
  ident: B31
  article-title: Spatially targeted proteomics of the host-pathogen interface during staphylococcal abscess formation.
  publication-title: ACS Infect. Dis.
  doi: 10.1021/acsinfecdis.0c00647
– volume: 12
  year: 2021
  ident: B32
  article-title: Automated annotation and visualisation of high-resolution spatial proteomic mass spectrometry imaging data using HIT-MAP.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23461-w
– volume: 407
  start-page: 2127
  year: 2015
  ident: B33
  article-title: MALDI imaging mass spectrometry of N-linked glycans on formalin-fixed paraffin-embedded murine kidney.
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-014-8293-7
– volume: 92
  start-page: 4711
  year: 2020
  ident: B100
  article-title: Picoflow liquid chromatography-mass spectrometry for ultrasensitive bottom-up proteomics using 2-μm-i.d. open tubular columns.
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b05639
– volume: 7
  year: 2020
  ident: B82
  article-title: Near-single-cell proteomics profiling of the proximal tubular and glomerulus of the normal human kidney.
  publication-title: Front. Med.
  doi: 10.3389/fmed.2020.00499
– volume: 7
  start-page: 1452
  year: 2008
  ident: B95
  article-title: A novel chromatographic method allows on-line reanalysis of the proteome.
  publication-title: Mol. Cell Proteomics
  doi: 10.1074/mcp.M800141-MCP200
– volume: 1811
  start-page: 946
  year: 2011
  ident: B20
  article-title: Desorption electrospray ionization mass spectrometry for lipid characterization and biological tissue imaging.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2011.05.006
– volume: 53
  start-page: 1
  year: 2021
  ident: B21
  article-title: A multimodal and integrated approach to interrogate human kidney biopsies with rigor and reproducibility: guidelines from the kidney precision medicine project.
  publication-title: Physiol. Genomics
  doi: 10.1152/physiolgenomics.00104.2020
– volume: 78
  start-page: 567
  year: 2006
  ident: B12
  article-title: Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation.
  publication-title: Anal. Chem.
  doi: 10.1021/ac051495j
– volume: 91
  start-page: 501
  year: 2017
  ident: B35
  article-title: Characterization of glomerular extracellular matrix by proteomic analysis of laser-captured microdissected glomeruli.
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2016.09.044
– volume: 87
  start-page: 1437
  year: 2015
  ident: B64
  article-title: Mass spectrometry imaging in drug development.
  publication-title: Anal. Chem.
  doi: 10.1021/ac504734s
– volume: 92
  start-page: 14702
  year: 2020
  ident: B26
  article-title: Improved sensitivity of ultralow flow LC-MS-based proteomic profiling of limited samples using monolithic capillary columns and FAIMS technology.
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c03262
– volume: 90
  start-page: 9868
  year: 2018
  ident: B46
  article-title: Shotgun lipidomics combined with laser capture microdissection: a tool to analyze histological zones in cryosections of tissues.
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b02004
– volume: 135
  start-page: 2233
  year: 2010
  ident: B77
  article-title: Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry.
  publication-title: Analyst
  doi: 10.1039/c0an00312c
SSID ssj0000402001
Score 2.3652427
SecondaryResourceType review_article
Snippet The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 837773
SubjectTerms kidney
lipidomics
mass spectrometry
metabolomics
multimodal imaging
Physiology
proteomics
Title Uncovering Molecular Heterogeneity in the Kidney With Spatially Targeted Mass Spectrometry
URI https://www.ncbi.nlm.nih.gov/pubmed/35222094
https://www.proquest.com/docview/2634549939
https://pubmed.ncbi.nlm.nih.gov/PMC8874197
https://doaj.org/article/faec4c243d924ec7a53983b32fbf1975
Volume 13
WOSCitedRecordID wos000761132000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-042X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402001
  issn: 1664-042X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-042X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402001
  issn: 1664-042X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sAFFcojhVZGQhyQQuNHYvtYqlaV0FYcWrHiEjl-qJGKF23TSnvhtzPj7K52EYILlxwSR3b8jTPz2aNvCHnHjey4MrH00vJS6sDLjpmu5BbYhO1UqKXPxSbUxYWeTs2XjVJfmBM2ygOPE3cUbXDScSk8MIXglK2F0aITPHaRGZXVSyHq2SBT-R-MtKhi4zEmsDBzFHGnAPgg5x-BkyklthxR1uv_U5D5e67khvM52yVPllEjPR5H-5Q8COkZ2TtOwJi_L-h7mvM48wb5Hvl2lRzmZYJPopNV8Vt6jmkvM7CWAGE37ROFwI9-7n0KC_q1H64p1iYGW7xZ0MucHB48nUBgTbFA_YCaBsN88ZxcnZ1enpyXywoKpZNNPZSi6qxD7dkYNGuq4EOwUkah6wBeKEaM1yoVowbIfHCcOWPqulZWSO2ryosXZCfNUnhFqGfadJKprLgXRaODNZUzjWWOxYbzglSr6WzdUl4cq1zctEAzEIE2I9AiAu2IQEE-rF_5MWpr_K3xJ8Ro3RBlsfMNMJZ2aSztv4ylIG9XCLewjPBsxKYwu4OeGiGRKgtTkJcj4uuuMEbl8NUFUVu2sDWW7Sepv85S3fALl9Dx_v8Y_GvyGOcDU8YZe0N2hvldOCCP3P3Q384PyUM11Yd5FcB18vP0F2nqDxs
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+Molecular+Heterogeneity+in+the+Kidney+With+Spatially+Targeted+Mass+Spectrometry&rft.jtitle=Frontiers+in+physiology&rft.au=Angela+R.+S.+Kruse&rft.au=Angela+R.+S.+Kruse&rft.au=Jeffrey+M.+Spraggins&rft.au=Jeffrey+M.+Spraggins&rft.date=2022-02-11&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-042X&rft.volume=13&rft_id=info:doi/10.3389%2Ffphys.2022.837773&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_faec4c243d924ec7a53983b32fbf1975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon