GEOMAPLEARN 1.2: detecting structures from geological maps with machine learning – the case of geological folds

The increasing availability of large geological datasets and modern methods of data analysis facilitate a data science approach to geology in which inferences are drawn from geological data using automated methods based on statistics and machine learning. Such methods offer the potential for faster...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geoscientific Model Development Jg. 18; H. 4; S. 939 - 960
Hauptverfasser: Oakley, David, Loiselet, Christelle, Coowar, Thierry, Labbe, Vincent, Callot, Jean-Paul
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 19.02.2025
European Geosciences Union
Copernicus Publications
Schlagworte:
ISSN:1991-9603, 1991-959X, 1991-962X, 1991-9603, 1991-962X, 1991-959X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The increasing availability of large geological datasets and modern methods of data analysis facilitate a data science approach to geology in which inferences are drawn from geological data using automated methods based on statistics and machine learning. Such methods offer the potential for faster and less subjective interpretations of geological data than are possible from a human interpreter, but translating the understanding of a trained geologist to an algorithm is not straightforward. In this paper, we present automated workflows for detecting geological folds from map data using both unsupervised and supervised machine learning. For the unsupervised case, we use regular expression matching to identify map patterns suggestive of folds along lines crossing the map. We then use the HDBSCAN clustering algorithm to cluster these possible fold identifications into a smaller number of distinct folds. This clustering algorithm is chosen because it does not require the number of clusters to be known a priori. For the supervised learning case, we use synthetic models of folds to train a convolutional neural network to identify folds using map and topographic data. We test both methods on synthetic and real datasets, where they both prove capable of identifying folds. We also find that distinguishing folds from similar map patterns produced by topography is a major issue that must be accounted for with both methods. The unsupervised method has advantages, including the explainability of its results, and provides clearly better results in one of the two real-world test datasets, while the supervised learning method is more fully automated and likely more easily extensible to other structures. Both methods demonstrate the ability of machine learning to interpret folds on geological maps and have potential for further development targeting a wider range of structures and datasets.
AbstractList The increasing availability of large geological datasets and modern methods of data analysis facilitate a data science approach to geology in which inferences are drawn from geological data using automated methods based on statistics and machine learning. Such methods offer the potential for faster and less subjective interpretations of geological data than are possible from a human interpreter, but translating the understanding of a trained geologist to an algorithm is not straightforward. In this paper, we present automated workflows for detecting geological folds from map data using both unsupervised and supervised machine learning. For the unsupervised case, we use regular expression matching to identify map patterns suggestive of folds along lines crossing the map. We then use the HDBSCAN clustering algorithm to cluster these possible fold identifications into a smaller number of distinct folds. This clustering algorithm is chosen because it does not require the number of clusters to be known a priori. For the supervised learning case, we use synthetic models of folds to train a convolutional neural network to identify folds using map and topographic data. We test both methods on synthetic and real datasets, where they both prove capable of identifying folds. We also find that distinguishing folds from similar map patterns produced by topography is a major issue that must be accounted for with both methods. The unsupervised method has advantages, including the explainability of its results, and provides clearly better results in one of the two real-world test datasets, while the supervised learning method is more fully automated and likely more easily extensible to other structures. Both methods demonstrate the ability of machine learning to interpret folds on geological maps and have potential for further development targeting a wider range of structures and datasets.
Audience Academic
Author Oakley, David
Loiselet, Christelle
Labbe, Vincent
Callot, Jean-Paul
Coowar, Thierry
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0002-2749-2856
  surname: Oakley
  fullname: Oakley, David
– sequence: 2
  givenname: Christelle
  surname: Loiselet
  fullname: Loiselet, Christelle
– sequence: 3
  givenname: Thierry
  surname: Coowar
  fullname: Coowar, Thierry
– sequence: 4
  givenname: Vincent
  surname: Labbe
  fullname: Labbe, Vincent
– sequence: 5
  givenname: Jean-Paul
  orcidid: 0000-0001-9385-3974
  surname: Callot
  fullname: Callot, Jean-Paul
BackLink https://brgm.hal.science/hal-04977994$$DView record in HAL
BookMark eNptks1u1DAUhSNUJNrCmq0lVl1k6r_ENruoGtqRBooKrC2PY2c8SuKp7QDd9R14Q54Eh0HQkZAXvrr6zpGPfM6Kk9GPpiheI7iokKCX3dCWiJeCiBJDXD0rTpEQqBQ1JCdP5hfFWYw7CGvBanZa3F8vb983H9fL5u4DQAv8FrQmGZ3c2IGYwqTTFEwENvgBdMb3vnNa9WBQ-wi-ubTNk9660YDeqDDOqp-PP0DaGqBVNMDbpyrr-za-LJ5b1Ufz6s99Xnx5t_x8dVOub69XV8261LSuUokN4xa3XLSCCi00VpZDVZENpVWO0bZMCV4bzXUGKbXcalhTY7WgihBsyHmxOvi2Xu3kPrhBhQfplZO_Fz50UoXkdG-ktlZAggjboJpCxASEpmIQYY02WNSz18XBa6v6I6ubZi3nHaSCMSHoV5TZNwd2H_z9ZGKSOz-FMUeVBNUcMZgD_aM6lR_gRutTUHpwUcuGYw4pI5xkavEfKp_WDE7n_7cu748EF0eCzCTzPXVqilGuPt0ds5cHVgcfYzD2bzIE5VwpmSslEZe5UnKuFPkF6Hi81w
Cites_doi 10.1190/geo2011-0302.1
10.1190/geo2017-0590.1
10.5194/gmd-16-6987-2023
10.1016/j.jsg.2018.11.010
10.1145/325165.325247
10.1007/s11004-021-09945-x
10.1190/geo2020-0945.1
10.1007/978-3-642-37456-2_14
10.1002/2017TC004731
10.1190/geo2018-0646.1
10.1016/j.cageo.2020.104475
10.4095/328296
10.1109/MFI49285.2020.9235263
10.1007/s11004-022-10027-9
10.1016/j.cageo.2014.04.012
10.1007/s10596-011-9257-z
10.1130/GSAT01711A.1
10.5194/gmd-15-6841-2022
10.1109/TGRS.2012.2207727
10.1190/SEGJ2018-138.1
10.1190/geo2012-0411.1
10.1190/geo2021-0586.1
10.1007/s11004-016-9663-9
10.1126/science.aau0323
10.1016/j.earscirev.2021.103812
10.1145/2733381
10.1016/j.earscirev.2023.104509
10.1007/978-3-540-74375-0
10.1109/VS-GAMES.2016.7590336
10.1016/0191-8141(92)90066-6
10.1144/1354-079308-738
10.1190/INT-2018-0235.1
10.1130/GES02253.1
10.1145/342009.335388
10.1016/j.egypro.2014.10.391
10.1016/j.cageo.2013.10.008
10.1007/BF00337288
10.1007/978-3-642-28872-2_27
10.1016/j.cageo.2019.03.006
10.1007/s10596-022-10152-8
10.1109/TNNLS.2017.2704779
10.1515/geo-2022-0479
10.5194/gmd-14-5063-2021
10.5194/essd-14-381-2022
10.1190/geo2019-0375.1
10.1016/j.cageo.2021.104701
10.1016/0191-8141(87)90012-5
10.1007/978-3-319-24574-4_28
10.1016/j.jsg.2004.12.004
10.1016/j.cageo.2021.104724
10.1016/j.epsl.2016.09.040
10.21105/joss.00205
10.1016/j.earscirev.2014.06.008
10.1016/j.jsg.2015.03.003
10.1016/j.cageo.2019.104344
10.1016/j.cageo.2021.104776
10.1016/0098-3004(94)90057-4
ContentType Journal Article
Copyright COPYRIGHT 2025 Copernicus GmbH
2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: COPYRIGHT 2025 Copernicus GmbH
– notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID AAYXX
CITATION
ISR
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
1XC
VOOES
DOA
DOI 10.5194/gmd-18-939-2025
DatabaseName CrossRef
Gale In Context: Science
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1991-9603
1991-962X
1991-959X
EndPage 960
ExternalDocumentID oai_doaj_org_article_cff903137b164017900e57012c1b296e
oai:HAL:hal-04977994v1
A828047383
10_5194_gmd_18_939_2025
GroupedDBID 5VS
8R4
8R5
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AENEX
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
ESX
GROUPED_DOAJ
H13
IAO
IEA
IEP
ISR
ITC
KQ8
OK1
P2P
Q2X
RKB
RNS
TR2
TUS
7TG
7TN
7UA
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
LK5
M7R
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
1XC
VOOES
ID FETCH-LOGICAL-c465t-2e78f2d89d949c9c2af80a53b445603dd7a986ec8ce7844f8fc064efc94a332e3
IEDL.DBID RKB
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001424435100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1991-9603
1991-959X
1991-962X
IngestDate Fri Oct 03 12:41:43 EDT 2025
Tue Oct 14 20:33:15 EDT 2025
Fri Jul 25 12:22:58 EDT 2025
Mon Oct 20 22:45:33 EDT 2025
Mon Oct 20 16:53:20 EDT 2025
Thu Oct 16 15:37:28 EDT 2025
Sat Nov 29 08:18:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-2e78f2d89d949c9c2af80a53b445603dd7a986ec8ce7844f8fc064efc94a332e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2749-2856
0000-0001-9385-3974
OpenAccessLink https://doaj.org/article/cff903137b164017900e57012c1b296e
PQID 3168170949
PQPubID 105726
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_cff903137b164017900e57012c1b296e
hal_primary_oai_HAL_hal_04977994v1
proquest_journals_3168170949
gale_infotracmisc_A828047383
gale_infotracacademiconefile_A828047383
gale_incontextgauss_ISR_A828047383
crossref_primary_10_5194_gmd_18_939_2025
PublicationCentury 2000
PublicationDate 2025-02-19
PublicationDateYYYYMMDD 2025-02-19
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-19
  day: 19
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Geoscientific Model Development
PublicationYear 2025
Publisher Copernicus GmbH
European Geosciences Union
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: European Geosciences Union
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref74
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref19
  doi: 10.1190/geo2011-0302.1
– ident: ref49
  doi: 10.1190/geo2017-0590.1
– ident: ref1
– ident: ref40
  doi: 10.5194/gmd-16-6987-2023
– ident: ref37
  doi: 10.1016/j.jsg.2018.11.010
– ident: ref66
– ident: ref62
  doi: 10.1145/325165.325247
– ident: ref39
  doi: 10.1007/s11004-021-09945-x
– ident: ref20
– ident: ref30
  doi: 10.1190/geo2020-0945.1
– ident: ref43
– ident: ref16
  doi: 10.1007/978-3-642-37456-2_14
– ident: ref27
– ident: ref36
  doi: 10.1002/2017TC004731
– ident: ref72
  doi: 10.1190/geo2018-0646.1
– ident: ref11
  doi: 10.1016/j.cageo.2020.104475
– ident: ref14
  doi: 10.4095/328296
– ident: ref34
– ident: ref53
  doi: 10.1109/MFI49285.2020.9235263
– ident: ref70
  doi: 10.1007/s11004-022-10027-9
– ident: ref67
  doi: 10.1016/j.cageo.2014.04.012
– ident: ref13
– ident: ref61
– ident: ref31
  doi: 10.1007/s10596-011-9257-z
– ident: ref9
  doi: 10.1130/GSAT01711A.1
– ident: ref7
  doi: 10.5194/gmd-15-6841-2022
– ident: ref15
  doi: 10.1109/TGRS.2012.2207727
– ident: ref33
  doi: 10.1190/SEGJ2018-138.1
– ident: ref23
  doi: 10.1190/geo2012-0411.1
– ident: ref57
  doi: 10.1190/geo2021-0586.1
– ident: ref47
– ident: ref69
  doi: 10.1007/s11004-016-9663-9
– ident: ref6
  doi: 10.1126/science.aau0323
– ident: ref58
  doi: 10.1016/j.earscirev.2021.103812
– ident: ref17
  doi: 10.1145/2733381
– ident: ref5
  doi: 10.1016/j.earscirev.2023.104509
– ident: ref54
  doi: 10.1007/978-3-540-74375-0
– ident: ref64
  doi: 10.1109/VS-GAMES.2016.7590336
– ident: ref21
  doi: 10.1016/0191-8141(92)90066-6
– ident: ref18
  doi: 10.1144/1354-079308-738
– ident: ref65
  doi: 10.1190/INT-2018-0235.1
– ident: ref3
  doi: 10.1130/GES02253.1
– ident: ref29
– ident: ref12
  doi: 10.1145/342009.335388
– ident: ref60
– ident: ref71
  doi: 10.1016/j.egypro.2014.10.391
– ident: ref22
– ident: ref24
  doi: 10.1016/j.cageo.2013.10.008
– ident: ref48
  doi: 10.1007/BF00337288
– ident: ref26
  doi: 10.1007/978-3-642-28872-2_27
– ident: ref32
– ident: ref51
  doi: 10.1016/j.cageo.2019.03.006
– ident: ref74
  doi: 10.1007/s10596-022-10152-8
– ident: ref35
  doi: 10.1109/TNNLS.2017.2704779
– ident: ref41
  doi: 10.1515/geo-2022-0479
– ident: ref44
  doi: 10.5194/gmd-14-5063-2021
– ident: ref45
  doi: 10.5194/essd-14-381-2022
– ident: ref73
  doi: 10.1190/geo2019-0375.1
– ident: ref38
  doi: 10.1016/j.cageo.2021.104701
– ident: ref59
– ident: ref68
  doi: 10.1016/0191-8141(87)90012-5
– ident: ref63
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref46
– ident: ref28
  doi: 10.1016/j.jsg.2004.12.004
– ident: ref2
  doi: 10.1016/j.cageo.2021.104724
– ident: ref50
  doi: 10.1016/j.epsl.2016.09.040
– ident: ref55
  doi: 10.21105/joss.00205
– ident: ref10
  doi: 10.1016/j.earscirev.2014.06.008
– ident: ref52
– ident: ref8
  doi: 10.1016/j.jsg.2015.03.003
– ident: ref25
  doi: 10.1016/j.cageo.2019.104344
– ident: ref4
  doi: 10.1016/j.cageo.2021.104776
– ident: ref42
  doi: 10.1016/0098-3004(94)90057-4
– ident: ref56
SSID ssj0069767
ssj0069768
Score 2.3711655
Snippet The increasing availability of large geological datasets and modern methods of data analysis facilitate a data science approach to geology in which inferences...
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 939
SubjectTerms Algorithms
Analysis
Artificial neural networks
Automation
Clustering
Data analysis
Data science
Datasets
Earth Sciences
Fault lines
Folds
Geological data
Geological mapping
Geological maps
Geologists
Geology
Identification
Learning algorithms
Machine learning
Neural networks
Sciences of the Universe
Statistical analysis
Statistical methods
Structures
Supervised learning
Topography
Unsupervised learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagAokLAgpioSCrQqKXqEnsxDa3FG1bpGWpCkh7s5yxva3U7pZmW4kb78Ab8iSdSbLVbi9ceomiZBLZM-P5ScbfMPZBuSAVlCIBhweZgkjqOmaJE9IX6GN1Di3O7EiNx3oyMUcrrb6oJqyDB-4YtwsxGsIXVDUG9qQ-aRoKhWYVsjo3ZSDrmyqzTKY6G1yik23bqlBdjynMpAP1wWhF7k7PfZLhIhcGNYQ6ZK_4oxa2_9Y4Pzyh2sg7Jrr1O_vP2NM-YORVN9Dn7EGYvWCPD9qGvL832a-D4bev1dFoWB2POWain7gP9F8APRLvsGGvMKHmtIuET8PS0vFzd9Fw-gaLZ1RNGXjfPmLK__35yzEq5ID-jc_j6lNxfuabl-zn_vDH58Okb6OQgCyLRZIHpWPutfFGGjCQu6hTV4haYvCUCu-VM7oMoAEJpYw6AsYpIYKRTog8iFdsYzafhdeMF0giShlV5pQMZayL2mN8mQvAqCMvYMB2lsy0Fx1ahsUsg_huke820xb5bonvA7ZHzL4lI5jr9gIK3_bCt_8T_oBtk6gsAVnMqFJm6q6axn75fmwrTCVTqTABH7CPPVGcLy4duH7jAU6JsK_WKLfWKHGlwdrtbdSItREfViNL1zDPUsoYeZ3hO5YKY3tz0FjqDpYpzKTNm_uY9lv2hFhIxeOZ2WIbqE3hHXsE14vT5vJ9uxJuAAWAByI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoAakX_lEXCrIqJLhETWInjrmggLYt0rJULUh7s5yJHZDoZrvZVuLGO_CGPAkzWW_Z5cCFS5Q4kyjOjOfHHn_D2AtlnVSQiwgsHmQMIqoqn0RWyDpDG1uk0OPMjtR4XEwm-iRMuHUhrXKlE3tFXbdAc-QHVGApURiM6Dezi4iqRtHqaiihscVuEkpC0qfuna00cY6mVq1f9PviKNVH5-lkifODDow8aM7rKMFxLzQKDRXNXjNRPZL_tb7e-kLpkn9p7d4UHd79307cY3eCE8rLpdTcZzfc9AG7fdQX-f3-kF0cDT9-KE9Gw_J0zDG6fc1rR2sNaOX4Em_2EoN0TjtTeONW2pOf21nHaV4XzyhD0_FQkqLhv3785OhpckCbyVu__pRvv9XdI_b5cPjp3XEUSjNEIPNsEaVOFT6tC11jX0BDan0R20xUEh2yWNS1srrIHRSAhFL6wgP6Ps6DllaI1InHbHvaTt0u4xmSiFx6lVglXe6rrKrRZ00FoCeTZjBgr1bcMLMlAofByIUYZ5BxJikMMs4Q4wbsLXHrmoygs_uGdt6YMBINeK8JsFJVGCmSPopjlym005BUqc7dgO0Trw2BY0wp-6axl11n3p-dmhLD01gqDOoH7GUg8u1ibsGGzQzYJcLT2qDc26DE0Qsbt_dRpDa--LgcGWrD2E0preVVgu9YiZMJKqYzf2Tpyb9vP2U79HMo1TzRe2wb5cQ9Y7fgavG1mz_vR8xvarQZmg
  priority: 102
  providerName: ProQuest
Title GEOMAPLEARN 1.2: detecting structures from geological maps with machine learning – the case of geological folds
URI https://www.proquest.com/docview/3168170949
https://brgm.hal.science/hal-04977994
https://doaj.org/article/cff903137b164017900e57012c1b296e
Volume 18
WOSCitedRecordID wos001424435100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069767
  issn: 1991-9603
  databaseCode: RKB
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069767
  issn: 1991-9603
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: BFMQW
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: PCBAR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BAakX3qiBEq0qJLhYtb1rr5ebi9KHlAYrBSmcVuvxbqjUJqVOK3HjP_AP-0s6YztVwoUDXKxoM7bs_WbnYc9-w9g7ZZ1UkIoALB5kCCIoSx8FVsgqQR-bxdDwzA7VaJRNJrpYafVFNWEtPXA7cbvgvSZ-QVViYE_qE4YuUWhWISpjnTrat46mlvJ06uHW2uAUnWzTVoXqenSiJy2pD0Yrcnd6XgURLnKhUUOoQ_aKP2po---M8_3vVBv5h4lu_M7-k3-446fscRds8rw95Rm752bP2aODppnvzxfsx8Hg83FeDAf5eMQxi_3IK0ffFNCb8ZZX9gqTcU47UPjULa0kP7cXNaf3t_iLKjEd71pPTPnNr98cI0oO6Bv53K-e5ednVf2Sfd0ffPl0GHQtGAKQabIIYqcyH1eZrrTUoCG2PgttIkqJgVcoqkpZnaUOMkBBKX3mAWMc50FLK0TsxCu2MZvP3BbjCYqIVHoVWSVd6sukrDA2jQVgxBIn0GMflkCYi5Zpw2CGQpgZxMxEmUHMDGHWY3s063diRJHdDCAMpoPB_A2GHtshmA2RYMyoymZqr-raHJ2MTY5paCgVJu899r4T8vPFpQXbbVrARyLerDXJ7TVJXKWw9vcOatPaHR_mQ0NjmKMppbW8jvAaS2UznSmpDXUWixRm4fr1_3jsN2yTppAKzyO9zTZQm9xb9hCuF6f1ZZ892BuMinG_eTXRp0LYExwrjo6Lb_1mhd0Cg5odwg
linkProvider Copernicus Gesellschaft
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF61KQgu_CMCBVYVCC5Wbe_a60VCVYC0iZqEqBQpnJb1ejcg0TiN06LeeIe-Bw_FkzDj2CXhwK0HLpZ_xivv-vN8M-vZGUKeCW25MDHzjIYN9w3z0tQFnmY8i4Bjk9CUeWZ7YjBIRiM5XCM_67UwGFZZ68RSUWe5wTnybSywFAhwRuTO9NjDqlH4d7UuobGAxb49-w4uW_G6-w7e7_Mw3G0fvu14VVUBz_A4mnuhFYkLs0Rm0JaRJtQu8XXEUg62hM-yTGiZxNYkBgQ5d4kzQNvWGck1Y6Fl0O462eAI9gbZGHb7w0-17o-B3MXyQbkSD4OLZByOFpmFwGTi2-OjzAtA0zAJMMUy3UukWNYOuGCI9S8YoPkXT5Tkt3vzfxu2W-RGZWbT1uK7uE3W7OQOubpXljE-u0uO99rv-61hr906GFDw31_RzOLfFOBxusioezKzBcW1N3Rsa36gR3paUJy5hj2MQbW0Kroxpr9-nFOwpakBq4Dmbvkul3_Linvk46X09z5pTPKJfUBoBCIs5k4EWnAbuzRKM7DKQ2bAVgsj0yQv67evposcIwp8MwSKAqCoIFEAFIVAaZI3iI4LMUwOXp7IZ2NV6RplnJOYklOk4AujxvV9GwmwREyQhjK2TbKF2FKY_mOC8UVjfVIUqvvhQLXAAfe5YAlrkheVkMvnM210tVwDuoQZw1YkN1ckQT-ZlctbAOGVJ-60egrPgXcqhJT8NIA2aviqSokW6g92H_778lNyrXPY76led7D_iFzHgcLA-kBukgZgxj4mV8zp_Gsxe1J9r5R8vmys_wZh1XjH
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF61KSAu_CMCBVYVCC5WbO_au4uEUEqTNmoaQgGR22KvdwMSjdM4LeqNd-BteByehBnHLgkHbj1wsez1eOWfz_PN7M7OEPJEJJYLEzPPJLDhvmFemrrASxjPIuBYGZoyz2xfDAZyNFLDNfKzXguDYZW1TiwVdZYbHCNvYYGlQIAzolquCosY7nRfTY89rCCFM611OY0FRPbt2Tdw34qXvR341k_DsNt5_3rPqyoMeIbH0dwLrZAuzKTKoF-jTJg46ScRSznYFT7LMpEoGVsjDQhy7qQzQOHWGcUTxkLLoN91siHjWPoNsrHdPXj7seaBGIheLB-Uq_Iw0EjF4WiRZQjMJ94aH2VeAFqHKYAsluxeIsiyjsA5W6x_xmDNvzijJMLu9f_5Fd4g1yrzm7YX_8tNsmYnt8jl3bK88dltcrzbeXPQHvY77cMBBb_-Bc0szrIAv9NFpt2TmS0orsmhY1vzBj1KpgXFEW3Yw9hUS6tiHGP66_sPCjY2NWAt0NwtX-Xyr1lxh3y4kOe9SxqTfGLvERqBCIu5E0EiuI1dGqUZWOshM2DDhZFpkuc1EvR0kXtEg8-GoNEAGh1IDaDRCJom2UaknIth0vCyIZ-NdaWDtHFOYapOkYKPjJrY920kwEIxQRqq2DbJFuJMY1qQCaJjnJwUhe69O9RtcMx9LphkTfKsEnL5fJaYpFrGAY-EmcRWJDdXJEFvmZXTWwDnlTvea_c1toHXKoRS_DSAPmoo60q5FvoPju__-_RjcgUArvu9wf4DchXfE8bbB2qTNAAy9iG5ZE7nX4rZo-rXpeTTRUP9N1l8gWc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GEOMAPLEARN+1.2%3A+detecting+structures+from+geological+maps+with+machine+learning+%E2%80%93+the+case+of+geological+folds&rft.jtitle=Geoscientific+model+development&rft.au=D.+Oakley&rft.au=D.+Oakley&rft.au=C.+Loiselet&rft.au=T.+Coowar&rft.date=2025-02-19&rft.pub=Copernicus+Publications&rft.issn=1991-959X&rft.eissn=1991-9603&rft.volume=18&rft.spage=939&rft.epage=960&rft_id=info:doi/10.5194%2Fgmd-18-939-2025&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cff903137b164017900e57012c1b296e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon