CFD modeling for pipeline flow of fine particles at high concentration

Velocity and slip-velocity distributions, that have never been measured experimentally at such higher concentrations up to 50% by volume, predicted by two-phase Eulerian model are presented for the concentration and velocity ranges covered in this study. Slip velocity between fluid and solids dragge...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of multiphase flow Ročník 43; s. 85 - 100
Hlavní autoři: Kaushal, D.R., Thinglas, T., Tomita, Yuji, Kuchii, Shigeru, Tsukamoto, Hiroshi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.07.2012
Elsevier
Témata:
ISSN:0301-9322, 1879-3533
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Velocity and slip-velocity distributions, that have never been measured experimentally at such higher concentrations up to 50% by volume, predicted by two-phase Eulerian model are presented for the concentration and velocity ranges covered in this study. Slip velocity between fluid and solids dragged most of the particles in the central core of pipeline, resulting point of maximum concentration to occur away from pipe bottom. Slip-velocity distribution predicted by Eulerian two-phase model. [Display omitted] ► Slip-velocity distributions. ► Slip drags particles away from bottom. ► Maximum concentration occurs away from pipe bottom. Pipeline slurry flow of mono-dispersed fine particles at high concentration is numerically simulated using Mixture and Eulerian two-phase models. Both the models are part of the CFD software package FLUENT. A hexagonal shape and cooper type non-uniform three-dimensional grid is chosen to discretize the entire computational domain, and a control volume finite difference method was used to solve the governing equations. The modeling results are compared with the authors’ experimental data collected in 54.9mm diameter horizontal pipe for concentration profiles at central vertical plane using γ-ray densitometer and pressure drop along the pipeline using differential pressure transducers. Experiments are performed on glass beads with mean diameter of 125μm for flow velocity up to 5m/s and four overall concentrations up to 50% (namely, 0%, 30%, 40% and 50%) by volume for each velocity. The modeling results by both the models for pressure drop in the flow of water are found to be in good agreement with experimental data. For flow of slurry, Mixture model fails to predict pressure drops correctly. The amount of error increases rapidly with the slurry concentration. However, Eulerian model gives fairly accurate predictions for both the pressure drop and concentration profiles at all efflux concentrations and flow velocities. Velocity and slip-velocity distributions, that have never been measured experimentally at such higher concentrations, predicted by Eulerian model are presented for the concentration and velocity ranges covered in this study. Slip velocity between fluid and solids dragged most of the particles in the central core of pipeline, resulting point of maximum concentration to occur away from the pipe bottom.
AbstractList Velocity and slip-velocity distributions, that have never been measured experimentally at such higher concentrations up to 50% by volume, predicted by two-phase Eulerian model are presented for the concentration and velocity ranges covered in this study. Slip velocity between fluid and solids dragged most of the particles in the central core of pipeline, resulting point of maximum concentration to occur away from pipe bottom. Slip-velocity distribution predicted by Eulerian two-phase model. [Display omitted] ► Slip-velocity distributions. ► Slip drags particles away from bottom. ► Maximum concentration occurs away from pipe bottom. Pipeline slurry flow of mono-dispersed fine particles at high concentration is numerically simulated using Mixture and Eulerian two-phase models. Both the models are part of the CFD software package FLUENT. A hexagonal shape and cooper type non-uniform three-dimensional grid is chosen to discretize the entire computational domain, and a control volume finite difference method was used to solve the governing equations. The modeling results are compared with the authors’ experimental data collected in 54.9mm diameter horizontal pipe for concentration profiles at central vertical plane using γ-ray densitometer and pressure drop along the pipeline using differential pressure transducers. Experiments are performed on glass beads with mean diameter of 125μm for flow velocity up to 5m/s and four overall concentrations up to 50% (namely, 0%, 30%, 40% and 50%) by volume for each velocity. The modeling results by both the models for pressure drop in the flow of water are found to be in good agreement with experimental data. For flow of slurry, Mixture model fails to predict pressure drops correctly. The amount of error increases rapidly with the slurry concentration. However, Eulerian model gives fairly accurate predictions for both the pressure drop and concentration profiles at all efflux concentrations and flow velocities. Velocity and slip-velocity distributions, that have never been measured experimentally at such higher concentrations, predicted by Eulerian model are presented for the concentration and velocity ranges covered in this study. Slip velocity between fluid and solids dragged most of the particles in the central core of pipeline, resulting point of maximum concentration to occur away from the pipe bottom.
Pipeline slurry flow of mono-dispersed fine particles at high concentration is numerically simulated using Mixture and Eulerian two-phase models. Both the models are part of the CFD software package FLUENT. A hexagonal shape and cooper type non-uniform three-dimensional grid is chosen to discretize the entire computational domain, and a control volume finite difference method was used to solve the governing equations. The modeling results are compared with the authorsa experimental data collected in 54.9 mm diameter horizontal pipe for concentration profiles at central vertical plane using gamma -ray densitometer and pressure drop along the pipeline using differential pressure transducers. Experiments are performed on glass beads with mean diameter of 125 mu m for flow velocity up to 5 m/s and four overall concentrations up to 50% (namely, 0%, 30%, 40% and 50%) by volume for each velocity. The modeling results by both the models for pressure drop in the flow of water are found to be in good agreement with experimental data. For flow of slurry, Mixture model fails to predict pressure drops correctly. The amount of error increases rapidly with the slurry concentration. However, Eulerian model gives fairly accurate predictions for both the pressure drop and concentration profiles at all efflux concentrations and flow velocities. Velocity and slip-velocity distributions, that have never been measured experimentally at such higher concentrations, predicted by Eulerian model are presented for the concentration and velocity ranges covered in this study. Slip velocity between fluid and solids dragged most of the particles in the central core of pipeline, resulting point of maximum concentration to occur away from the pipe bottom.
Author Tsukamoto, Hiroshi
Tomita, Yuji
Kaushal, D.R.
Kuchii, Shigeru
Thinglas, T.
Author_xml – sequence: 1
  givenname: D.R.
  surname: Kaushal
  fullname: Kaushal, D.R.
  email: kaushal@civil.iitd.ac.in
  organization: Department of Civil Engineering, IIT Delhi, Hauz Khas, New Delhi 110 016, India
– sequence: 2
  givenname: T.
  surname: Thinglas
  fullname: Thinglas, T.
  organization: Department of Civil Engineering, IIT Delhi, Hauz Khas, New Delhi 110 016, India
– sequence: 3
  givenname: Yuji
  surname: Tomita
  fullname: Tomita, Yuji
  organization: Kyushu Institute of Technology, 1-1 Sensui cho, Tobata, Kitakyushu 804-8550, Japan
– sequence: 4
  givenname: Shigeru
  surname: Kuchii
  fullname: Kuchii, Shigeru
  organization: Kitakyushu National College of Technology, 5-20-1 Shii, Kokura-minami, Kitakyushu 802-0985, Japan
– sequence: 5
  givenname: Hiroshi
  surname: Tsukamoto
  fullname: Tsukamoto, Hiroshi
  organization: Kitakyushu National College of Technology, 5-20-1 Shii, Kokura-minami, Kitakyushu 802-0985, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25889099$$DView record in Pascal Francis
BookMark eNqNkEGLFDEQRoOs4Ozqf8hF8dJtJenudF8EmXVcYcGLnkMmqexkyHTaJKP47007i4c97an44PEK3jW5muOMhLxj0DJgw4dj64-ncyh-OeiMLsTfLQfGWxAtQP-CbNgop0b0QlyRDQhgzSQ4f0Wucz5CJWQnNmS33d3SU7QY_PxAXUx08cs6kK5GGh1161h0Kt4EzFQXevAPB2ribHAuSRcf59fkpdMh45vHe0N-7D5_394199--fN1-um9MN_Sl4dZKMdXPDgSOTuLejnzYD07KEQczOea4NpZLYbkQIMcRLTeAcr_vLMhe3JD3F--S4s8z5qJOPhsMQc8Yz1mxQTLRQceHir59RHU2OrikZ-OzWpI_6fRH8X4cJ5imyn28cCbFnBO6_wgDtYZWR_U0tFpDKxCqZqyC2ycC48u_KjWOD8_X3F00WPv98phUNh5rY-sTmqJs9M9V_QX9sasz
CODEN IJMFBP
CitedBy_id crossref_primary_10_1016_j_powtec_2022_118149
crossref_primary_10_1016_j_sajce_2020_04_001
crossref_primary_10_1186_s44147_023_00262_0
crossref_primary_10_3390_pr9091566
crossref_primary_10_1016_j_apenergy_2017_09_016
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104831
crossref_primary_10_1016_j_oceaneng_2024_117880
crossref_primary_10_1111_mice_13049
crossref_primary_10_3390_met12040594
crossref_primary_10_1016_j_powtec_2014_02_005
crossref_primary_10_1016_j_euromechflu_2023_04_003
crossref_primary_10_1016_j_oceaneng_2021_109625
crossref_primary_10_3390_en15197175
crossref_primary_10_1016_j_ijhydene_2017_06_060
crossref_primary_10_1002_cjce_22484
crossref_primary_10_1016_j_cherd_2025_08_027
crossref_primary_10_1016_j_powtec_2024_119595
crossref_primary_10_1111_1750_3841_15814
crossref_primary_10_2118_209193_PA
crossref_primary_10_3390_pr10081454
crossref_primary_10_1007_s43995_025_00162_9
crossref_primary_10_1016_j_ijhydene_2022_05_201
crossref_primary_10_1260_1757_482X_7_2_79
crossref_primary_10_1016_j_powtec_2019_11_049
crossref_primary_10_1260_1757_482X_7_4_241
crossref_primary_10_1002_ghg_1915
crossref_primary_10_1016_j_oceaneng_2025_120408
crossref_primary_10_1016_j_jrmge_2024_09_059
crossref_primary_10_1016_j_compfluid_2024_106263
crossref_primary_10_14356_kona_2023008
crossref_primary_10_1016_j_powtec_2013_10_014
crossref_primary_10_14356_kona_2017016
crossref_primary_10_1016_j_tsep_2021_100993
crossref_primary_10_1061_JPSEA2_PSENG_1391
crossref_primary_10_1063_1_5081677
crossref_primary_10_1016_j_powtec_2018_11_070
crossref_primary_10_1002_dug2_70001
crossref_primary_10_1016_j_powtec_2019_02_031
crossref_primary_10_1134_S0040601515060063
crossref_primary_10_1016_j_fuel_2024_133005
crossref_primary_10_1016_j_powtec_2024_119655
crossref_primary_10_1016_j_ijmultiphaseflow_2016_04_013
crossref_primary_10_1007_s00348_022_03481_y
crossref_primary_10_2118_199902_PA
crossref_primary_10_1080_23744731_2017_1408383
crossref_primary_10_1016_j_powtec_2025_121574
crossref_primary_10_1007_s11771_018_3724_9
crossref_primary_10_1007_s12008_022_01094_7
crossref_primary_10_1016_j_powtec_2025_121450
crossref_primary_10_1063_5_0257919
crossref_primary_10_1007_s12613_023_2610_0
crossref_primary_10_1016_j_powtec_2019_07_015
crossref_primary_10_1080_02726351_2020_1799274
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104339
crossref_primary_10_1179_1743278213Y_0000000102
crossref_primary_10_3390_pr12122863
crossref_primary_10_1016_j_jestch_2025_102100
crossref_primary_10_1080_02726351_2017_1364313
crossref_primary_10_3390_en17174240
crossref_primary_10_1016_j_jngse_2022_104792
crossref_primary_10_3390_w15244266
crossref_primary_10_1016_j_oceaneng_2019_03_065
crossref_primary_10_1186_s40677_022_00217_2
crossref_primary_10_2478_johh_2025_0012
crossref_primary_10_1016_j_anucene_2022_109518
crossref_primary_10_1016_j_powtec_2018_07_088
crossref_primary_10_1088_1757_899X_310_1_012095
crossref_primary_10_3390_en13215665
crossref_primary_10_1016_j_powtec_2017_11_067
crossref_primary_10_3390_min14121221
crossref_primary_10_3390_pr13061760
crossref_primary_10_1016_j_ijheatmasstransfer_2016_02_007
crossref_primary_10_1038_s41598_025_09254_x
crossref_primary_10_1002_ceat_201300809
crossref_primary_10_1016_j_powtec_2019_09_017
crossref_primary_10_1016_j_cherd_2016_05_013
crossref_primary_10_1051_e3sconf_202340602008
crossref_primary_10_1002_nag_3221
crossref_primary_10_1016_j_powtec_2021_10_050
crossref_primary_10_1016_j_ijmultiphaseflow_2018_03_023
crossref_primary_10_1016_j_ces_2018_02_001
crossref_primary_10_1016_j_jksues_2020_11_006
crossref_primary_10_1016_j_tust_2017_08_011
crossref_primary_10_1016_j_icheatmasstransfer_2025_108731
crossref_primary_10_2118_223953_PA
crossref_primary_10_1016_j_partic_2021_02_008
crossref_primary_10_1016_j_apt_2024_104680
crossref_primary_10_1016_j_oceaneng_2025_122757
crossref_primary_10_1088_1757_899X_802_1_012001
crossref_primary_10_3390_pr10030597
crossref_primary_10_3390_w12051332
crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_021
crossref_primary_10_3390_app9245402
crossref_primary_10_3390_su151511890
crossref_primary_10_1016_j_flowmeasinst_2024_102542
crossref_primary_10_1134_S0015462818020064
crossref_primary_10_1016_j_rineng_2025_105941
crossref_primary_10_1016_j_conbuildmat_2023_133014
crossref_primary_10_3390_en12214070
crossref_primary_10_1002_cepa_3136
crossref_primary_10_1016_j_petrol_2021_109395
crossref_primary_10_1016_j_powtec_2020_06_085
crossref_primary_10_3390_w14172627
crossref_primary_10_1016_j_psep_2014_04_013
crossref_primary_10_1080_02726351_2018_1435594
crossref_primary_10_3390_met12071105
crossref_primary_10_3390_pr9060988
crossref_primary_10_1016_j_oceaneng_2020_108160
crossref_primary_10_1080_02726351_2019_1621412
crossref_primary_10_1080_19942060_2014_11015521
crossref_primary_10_1016_j_powtec_2020_03_026
crossref_primary_10_3390_fluids7100331
crossref_primary_10_1108_WJE_03_2019_0086
crossref_primary_10_1016_j_wear_2016_07_005
crossref_primary_10_1016_j_apt_2020_11_009
crossref_primary_10_1016_j_cherd_2025_05_023
crossref_primary_10_1134_S0015462823602309
crossref_primary_10_1007_s11012_021_01314_6
crossref_primary_10_1016_j_jspr_2020_101581
crossref_primary_10_1080_02726351_2022_2124209
crossref_primary_10_1016_j_seppur_2024_130371
crossref_primary_10_1140_epje_i2019_11810_3
crossref_primary_10_1016_j_corsci_2020_109045
crossref_primary_10_1016_j_powtec_2023_119048
crossref_primary_10_1080_19392699_2017_1346632
crossref_primary_10_1002_ghg_1666
crossref_primary_10_2118_208613_PA
crossref_primary_10_3390_jmse8090675
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104094
crossref_primary_10_1080_02726351_2023_2278051
crossref_primary_10_1016_j_ijheatmasstransfer_2017_01_057
crossref_primary_10_1007_s12008_024_01862_7
crossref_primary_10_3390_math12182879
crossref_primary_10_1080_02726351_2014_971988
crossref_primary_10_14356_kona_2015009
crossref_primary_10_1080_19392699_2018_1488693
crossref_primary_10_1016_j_oceaneng_2018_06_046
crossref_primary_10_1016_j_ijmultiphaseflow_2013_04_006
crossref_primary_10_1016_j_petrol_2017_12_014
crossref_primary_10_1007_s12008_025_02289_4
crossref_primary_10_1002_fld_4809
crossref_primary_10_1016_j_petrol_2018_08_032
crossref_primary_10_1016_j_powtec_2014_10_027
crossref_primary_10_1088_1742_6596_1600_1_012005
crossref_primary_10_1016_j_powtec_2023_118284
crossref_primary_10_1088_1755_1315_864_1_012043
crossref_primary_10_1016_j_powtec_2024_119850
crossref_primary_10_1016_j_compgeo_2020_103497
crossref_primary_10_1016_j_ijthermalsci_2016_05_027
crossref_primary_10_2478_johh_2021_0011
crossref_primary_10_1016_j_petrol_2020_107877
crossref_primary_10_3390_ma15093339
crossref_primary_10_1016_j_ces_2023_118513
crossref_primary_10_3390_w12061763
crossref_primary_10_1016_j_powtec_2022_117620
crossref_primary_10_1061__ASCE_PS_1949_1204_0000518
crossref_primary_10_1016_j_apt_2025_104899
crossref_primary_10_1080_02726351_2022_2110341
crossref_primary_10_1016_j_apt_2015_03_009
crossref_primary_10_1016_j_rineng_2022_100858
crossref_primary_10_1016_j_solener_2025_113873
crossref_primary_10_1142_S0129183125501001
crossref_primary_10_1080_01457632_2018_1436670
crossref_primary_10_3390_app9030512
crossref_primary_10_1080_1573062X_2023_2229289
crossref_primary_10_1016_j_oceaneng_2024_119987
crossref_primary_10_3390_w12102698
crossref_primary_10_1016_j_oceaneng_2022_110617
crossref_primary_10_1016_j_powtec_2023_118573
Cites_doi 10.1016/j.partic.2007.12.003
10.1016/j.powtec.2006.11.020
10.1016/j.ijmultiphaseflow.2005.03.003
10.1016/S0301-9322(02)00047-2
10.1017/S0022112084000586
10.1016/0045-7825(74)90029-2
10.1016/S0142-727X(03)00018-3
10.1016/j.ijmultiphaseflow.2003.10.008
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijmultiphaseflow.2012.03.005
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-3533
EndPage 100
ExternalDocumentID 25889099
10_1016_j_ijmultiphaseflow_2012_03_005
S030193221200047X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c465t-2dd739574f03e8f7ebd826b6f778e6c9f1f2acd273d2330788ed2c0e7bb4d0753
ISICitedReferencesCount 212
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000304689200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0301-9322
IngestDate Mon Sep 29 06:01:03 EDT 2025
Mon Jul 21 09:12:55 EDT 2025
Sat Nov 29 03:59:48 EST 2025
Tue Nov 18 21:00:30 EST 2025
Fri Feb 23 02:25:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mixture model
Eulerian model
Slurry pipeline
Pressure drop
3D CFD modeling
Concentration distribution
Computational fluid dynamics
Pipelines
Digital simulation
Velocity distribution
Finite volume methods
Concentrated suspension
Horizontal pipe
Two-phase flow
Fine particle
Modelling
Slurries
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c465t-2dd739574f03e8f7ebd826b6f778e6c9f1f2acd273d2330788ed2c0e7bb4d0753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671340426
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_1671340426
pascalfrancis_primary_25889099
crossref_primary_10_1016_j_ijmultiphaseflow_2012_03_005
crossref_citationtrail_10_1016_j_ijmultiphaseflow_2012_03_005
elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2012_03_005
PublicationCentury 2000
PublicationDate 2012-07-01
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of multiphase flow
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Kaushal, Tomita (b0030) 2002; 28
Kaushal, Sato, Toyota, Funatsu, Tomita (b0025) 2005; 31
Kaushal, Tomita (b0020) 2007; 172
Ling, Skudarnov, Lin, Ebadian (b0040) 2003; 24
Campbell, Francisco, Liu (b0005) 2004; 30
Lun, Savage, Jeffrey, Chepurniy (b0045) 1984; 140
Launder, Spalding (b0035) 1974; 3
FLUENT, 2005. User’s guide FLUENT 6.2, Fluent Incorporation, USA.
Gidaspow, D., Bezburuah, R., Ding, J., 1992. Hydrodynamics of circulating fluidized beds, kinetic theory approach in fluidization VII. In: Proceedings of the 7th Engineering Foundation Conference on Fluidization.
Thinglas, Kaushal (b0050) 2008; 6
Thinglas, Kaushal (b0055) 2008; 26
10.1016/j.ijmultiphaseflow.2012.03.005_b0015
Campbell (10.1016/j.ijmultiphaseflow.2012.03.005_b0005) 2004; 30
Lun (10.1016/j.ijmultiphaseflow.2012.03.005_b0045) 1984; 140
Kaushal (10.1016/j.ijmultiphaseflow.2012.03.005_b0020) 2007; 172
Thinglas (10.1016/j.ijmultiphaseflow.2012.03.005_b0050) 2008; 6
Kaushal (10.1016/j.ijmultiphaseflow.2012.03.005_b0025) 2005; 31
Kaushal (10.1016/j.ijmultiphaseflow.2012.03.005_b0030) 2002; 28
Thinglas (10.1016/j.ijmultiphaseflow.2012.03.005_b0055) 2008; 26
Launder (10.1016/j.ijmultiphaseflow.2012.03.005_b0035) 1974; 3
Ling (10.1016/j.ijmultiphaseflow.2012.03.005_b0040) 2003; 24
10.1016/j.ijmultiphaseflow.2012.03.005_b0010
References_xml – volume: 30
  start-page: 199
  year: 2004
  end-page: 216
  ident: b0005
  article-title: Preliminary observations of a particle lift force in horizontal slurry flow
  publication-title: Int. J. Multiph. Flow
– volume: 172
  start-page: 177
  year: 2007
  end-page: 187
  ident: b0020
  article-title: Experimental investigation of near-wall lift of coarser particles in slurry pipeline using γ-ray densitometer
  publication-title: Powder Technol.
– volume: 6
  start-page: 176
  year: 2008
  end-page: 184
  ident: b0050
  article-title: Comparison of two dimensional and three dimensional CFD modeling of invert trap configuration to be used in sewer solid management
  publication-title: Particuol, Else. Publ.
– reference: Gidaspow, D., Bezburuah, R., Ding, J., 1992. Hydrodynamics of circulating fluidized beds, kinetic theory approach in fluidization VII. In: Proceedings of the 7th Engineering Foundation Conference on Fluidization.
– volume: 3
  start-page: 269
  year: 1974
  end-page: 289
  ident: b0035
  article-title: The numerical computation of turbulent flows
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 26
  year: 2008
  ident: b0055
  publication-title: Three dimensional CFD modeling for optimization of invert trap configuration to be used in sewer solid management
– reference: FLUENT, 2005. User’s guide FLUENT 6.2, Fluent Incorporation, USA.
– volume: 31
  start-page: 809
  year: 2005
  end-page: 823
  ident: b0025
  article-title: Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry
  publication-title: Int. J. Multiphase Flow
– volume: 28
  start-page: 1697
  year: 2002
  end-page: 1717
  ident: b0030
  article-title: Solids concentration profiles and pressure drop in pipeline flow of multisized particulate slurries
  publication-title: Int. J. Multiphase Flow
– volume: 140
  start-page: 223
  year: 1984
  end-page: 256
  ident: b0045
  article-title: Kinetic theories for granular flow: inelastic particles in couette flow and slightly inelastic particles in a general flow field
  publication-title: J. Fluid Mech.
– volume: 24
  start-page: 389
  year: 2003
  end-page: 398
  ident: b0040
  article-title: Numerical investigations of liquid–solid slurry flows in a fully developed turbulent flow region
  publication-title: Int. J. Heat Fluid Flow
– volume: 6
  start-page: 176
  year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0050
  article-title: Comparison of two dimensional and three dimensional CFD modeling of invert trap configuration to be used in sewer solid management
  publication-title: Particuol, Else. Publ.
  doi: 10.1016/j.partic.2007.12.003
– volume: 172
  start-page: 177
  year: 2007
  ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0020
  article-title: Experimental investigation of near-wall lift of coarser particles in slurry pipeline using γ-ray densitometer
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2006.11.020
– volume: 31
  start-page: 809
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0025
  article-title: Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2005.03.003
– ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0015
– ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0010
– volume: 28
  start-page: 1697
  year: 2002
  ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0030
  article-title: Solids concentration profiles and pressure drop in pipeline flow of multisized particulate slurries
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/S0301-9322(02)00047-2
– volume: 140
  start-page: 223
  year: 1984
  ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0045
  article-title: Kinetic theories for granular flow: inelastic particles in couette flow and slightly inelastic particles in a general flow field
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112084000586
– volume: 3
  start-page: 269
  year: 1974
  ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0035
  article-title: The numerical computation of turbulent flows
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(74)90029-2
– volume: 24
  start-page: 389
  year: 2003
  ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0040
  article-title: Numerical investigations of liquid–solid slurry flows in a fully developed turbulent flow region
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/S0142-727X(03)00018-3
– volume: 30
  start-page: 199
  year: 2004
  ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0005
  article-title: Preliminary observations of a particle lift force in horizontal slurry flow
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2003.10.008
– volume: 26
  year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0055
SSID ssj0005743
Score 2.4667919
Snippet Velocity and slip-velocity distributions, that have never been measured experimentally at such higher concentrations up to 50% by volume, predicted by...
Pipeline slurry flow of mono-dispersed fine particles at high concentration is numerically simulated using Mixture and Eulerian two-phase models. Both the...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 85
SubjectTerms 3D CFD modeling
Computational fluid dynamics
Computational methods in fluid dynamics
Concentration distribution
Eulerian model
Exact sciences and technology
Flow velocity
Flows in ducts, channels, nozzles, and conduits
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mathematical models
Mixture model
Multiphase and particle-laden flows
Nonhomogeneous flows
Physics
Pipe
Pipelines
Pressure drop
Slurries
Slurry pipeline
Title CFD modeling for pipeline flow of fine particles at high concentration
URI https://dx.doi.org/10.1016/j.ijmultiphaseflow.2012.03.005
https://www.proquest.com/docview/1671340426
Volume 43
WOSCitedRecordID wos000304689200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3533
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005743
  issn: 0301-9322
  databaseCode: AIEXJ
  dateStart: 19951201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF_qnYoioqdi_ThWEF8kJd-7efCh3F1RkUO8E-pTSPaDJtQ09OO4P8M_2dndbLbnoVTQl9AuJJ3O_DI7u_ubGYReJzGTCcS1AN7S9-LA972SlKXHIsm4SHzOS9215BM5PaXTafZ5MPhhc2Eu5qRp6OVl1v5XU8MYGFulzv6FufuHwgB8BqPDFcwO150MfzQ5Nv1tLEeyrVqhg0k5X-gkFam-tJYSp9IZVdFiRUA3VM3eVrWjubtdw61aE4aNOIOJUD-7d97FZjXTjQTeHo--jBz3pFIdQwwvyY0uvlcmgv22qSt3ssRmlSYanIFsYrnZ3p0IHJO12zKzaTOOo6RTtfzAg8DRuGFhPC8lmRclpiqGdc1xtOVbTWufbpYOdH3T6xOA2YuoR1XtVKA0oEh8oSlnm7iprycknimRlESBSl2KyfQG2g9JkoGr3x9_OJl-dLQhk7TR_4Xb6I3jDP7pV38X-NxrixW8jtL0UbkWEug45_wBut8tUPDYoOMhGojmAN3dKlt5gG5p2jBbPUITABu2YMMANmzBhpVgeCGxAhvuwYaLNVZgw1fA9hh9nZycH733us4cHovTZO2FnOsD3lj6kaCSiJLDMrVMJSFUpCyTgQwLxiE05mEEswilgofMF-AFYg5BavQE7TWLRjxFWMD6IgVH4qc8jikPacpImRawkBAhJwUfondWbTnrytar7inz3PIT6_xXtedK7bkf5aD2ISL9_a0p4LLznWNrpbwLR02YmQPYdn7G4RXz9iKECaUZrM6G6JW1dw6OXZ3WFY1YbFZ5kKo0b7XF8ewfCPIc3XGv5wu0t15uxEt0k12sq9XysAP5TzWt1Qs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+modeling+for+pipeline+flow+of+fine+particles+at+high+concentration&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Kaushal%2C+D.R.&rft.au=Thinglas%2C+T.&rft.au=Tomita%2C+Yuji&rft.au=Kuchii%2C+Shigeru&rft.date=2012-07-01&rft.pub=Elsevier+Ltd&rft.issn=0301-9322&rft.eissn=1879-3533&rft.volume=43&rft.spage=85&rft.epage=100&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2012.03.005&rft.externalDocID=S030193221200047X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon