CFD modeling for pipeline flow of fine particles at high concentration
Velocity and slip-velocity distributions, that have never been measured experimentally at such higher concentrations up to 50% by volume, predicted by two-phase Eulerian model are presented for the concentration and velocity ranges covered in this study. Slip velocity between fluid and solids dragge...
Uloženo v:
| Vydáno v: | International journal of multiphase flow Ročník 43; s. 85 - 100 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier Ltd
01.07.2012
Elsevier |
| Témata: | |
| ISSN: | 0301-9322, 1879-3533 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Velocity and slip-velocity distributions, that have never been measured experimentally at such higher concentrations up to 50% by volume, predicted by two-phase Eulerian model are presented for the concentration and velocity ranges covered in this study. Slip velocity between fluid and solids dragged most of the particles in the central core of pipeline, resulting point of maximum concentration to occur away from pipe bottom. Slip-velocity distribution predicted by Eulerian two-phase model. [Display omitted]
► Slip-velocity distributions. ► Slip drags particles away from bottom. ► Maximum concentration occurs away from pipe bottom.
Pipeline slurry flow of mono-dispersed fine particles at high concentration is numerically simulated using Mixture and Eulerian two-phase models. Both the models are part of the CFD software package FLUENT. A hexagonal shape and cooper type non-uniform three-dimensional grid is chosen to discretize the entire computational domain, and a control volume finite difference method was used to solve the governing equations. The modeling results are compared with the authors’ experimental data collected in 54.9mm diameter horizontal pipe for concentration profiles at central vertical plane using γ-ray densitometer and pressure drop along the pipeline using differential pressure transducers. Experiments are performed on glass beads with mean diameter of 125μm for flow velocity up to 5m/s and four overall concentrations up to 50% (namely, 0%, 30%, 40% and 50%) by volume for each velocity. The modeling results by both the models for pressure drop in the flow of water are found to be in good agreement with experimental data. For flow of slurry, Mixture model fails to predict pressure drops correctly. The amount of error increases rapidly with the slurry concentration. However, Eulerian model gives fairly accurate predictions for both the pressure drop and concentration profiles at all efflux concentrations and flow velocities. Velocity and slip-velocity distributions, that have never been measured experimentally at such higher concentrations, predicted by Eulerian model are presented for the concentration and velocity ranges covered in this study. Slip velocity between fluid and solids dragged most of the particles in the central core of pipeline, resulting point of maximum concentration to occur away from the pipe bottom. |
|---|---|
| AbstractList | Velocity and slip-velocity distributions, that have never been measured experimentally at such higher concentrations up to 50% by volume, predicted by two-phase Eulerian model are presented for the concentration and velocity ranges covered in this study. Slip velocity between fluid and solids dragged most of the particles in the central core of pipeline, resulting point of maximum concentration to occur away from pipe bottom. Slip-velocity distribution predicted by Eulerian two-phase model. [Display omitted]
► Slip-velocity distributions. ► Slip drags particles away from bottom. ► Maximum concentration occurs away from pipe bottom.
Pipeline slurry flow of mono-dispersed fine particles at high concentration is numerically simulated using Mixture and Eulerian two-phase models. Both the models are part of the CFD software package FLUENT. A hexagonal shape and cooper type non-uniform three-dimensional grid is chosen to discretize the entire computational domain, and a control volume finite difference method was used to solve the governing equations. The modeling results are compared with the authors’ experimental data collected in 54.9mm diameter horizontal pipe for concentration profiles at central vertical plane using γ-ray densitometer and pressure drop along the pipeline using differential pressure transducers. Experiments are performed on glass beads with mean diameter of 125μm for flow velocity up to 5m/s and four overall concentrations up to 50% (namely, 0%, 30%, 40% and 50%) by volume for each velocity. The modeling results by both the models for pressure drop in the flow of water are found to be in good agreement with experimental data. For flow of slurry, Mixture model fails to predict pressure drops correctly. The amount of error increases rapidly with the slurry concentration. However, Eulerian model gives fairly accurate predictions for both the pressure drop and concentration profiles at all efflux concentrations and flow velocities. Velocity and slip-velocity distributions, that have never been measured experimentally at such higher concentrations, predicted by Eulerian model are presented for the concentration and velocity ranges covered in this study. Slip velocity between fluid and solids dragged most of the particles in the central core of pipeline, resulting point of maximum concentration to occur away from the pipe bottom. Pipeline slurry flow of mono-dispersed fine particles at high concentration is numerically simulated using Mixture and Eulerian two-phase models. Both the models are part of the CFD software package FLUENT. A hexagonal shape and cooper type non-uniform three-dimensional grid is chosen to discretize the entire computational domain, and a control volume finite difference method was used to solve the governing equations. The modeling results are compared with the authorsa experimental data collected in 54.9 mm diameter horizontal pipe for concentration profiles at central vertical plane using gamma -ray densitometer and pressure drop along the pipeline using differential pressure transducers. Experiments are performed on glass beads with mean diameter of 125 mu m for flow velocity up to 5 m/s and four overall concentrations up to 50% (namely, 0%, 30%, 40% and 50%) by volume for each velocity. The modeling results by both the models for pressure drop in the flow of water are found to be in good agreement with experimental data. For flow of slurry, Mixture model fails to predict pressure drops correctly. The amount of error increases rapidly with the slurry concentration. However, Eulerian model gives fairly accurate predictions for both the pressure drop and concentration profiles at all efflux concentrations and flow velocities. Velocity and slip-velocity distributions, that have never been measured experimentally at such higher concentrations, predicted by Eulerian model are presented for the concentration and velocity ranges covered in this study. Slip velocity between fluid and solids dragged most of the particles in the central core of pipeline, resulting point of maximum concentration to occur away from the pipe bottom. |
| Author | Tsukamoto, Hiroshi Tomita, Yuji Kaushal, D.R. Kuchii, Shigeru Thinglas, T. |
| Author_xml | – sequence: 1 givenname: D.R. surname: Kaushal fullname: Kaushal, D.R. email: kaushal@civil.iitd.ac.in organization: Department of Civil Engineering, IIT Delhi, Hauz Khas, New Delhi 110 016, India – sequence: 2 givenname: T. surname: Thinglas fullname: Thinglas, T. organization: Department of Civil Engineering, IIT Delhi, Hauz Khas, New Delhi 110 016, India – sequence: 3 givenname: Yuji surname: Tomita fullname: Tomita, Yuji organization: Kyushu Institute of Technology, 1-1 Sensui cho, Tobata, Kitakyushu 804-8550, Japan – sequence: 4 givenname: Shigeru surname: Kuchii fullname: Kuchii, Shigeru organization: Kitakyushu National College of Technology, 5-20-1 Shii, Kokura-minami, Kitakyushu 802-0985, Japan – sequence: 5 givenname: Hiroshi surname: Tsukamoto fullname: Tsukamoto, Hiroshi organization: Kitakyushu National College of Technology, 5-20-1 Shii, Kokura-minami, Kitakyushu 802-0985, Japan |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25889099$$DView record in Pascal Francis |
| BookMark | eNqNkEGLFDEQRoOs4Ozqf8hF8dJtJenudF8EmXVcYcGLnkMmqexkyHTaJKP47007i4c97an44PEK3jW5muOMhLxj0DJgw4dj64-ncyh-OeiMLsTfLQfGWxAtQP-CbNgop0b0QlyRDQhgzSQ4f0Wucz5CJWQnNmS33d3SU7QY_PxAXUx08cs6kK5GGh1161h0Kt4EzFQXevAPB2ribHAuSRcf59fkpdMh45vHe0N-7D5_394199--fN1-um9MN_Sl4dZKMdXPDgSOTuLejnzYD07KEQczOea4NpZLYbkQIMcRLTeAcr_vLMhe3JD3F--S4s8z5qJOPhsMQc8Yz1mxQTLRQceHir59RHU2OrikZ-OzWpI_6fRH8X4cJ5imyn28cCbFnBO6_wgDtYZWR_U0tFpDKxCqZqyC2ycC48u_KjWOD8_X3F00WPv98phUNh5rY-sTmqJs9M9V_QX9sasz |
| CODEN | IJMFBP |
| CitedBy_id | crossref_primary_10_1016_j_powtec_2022_118149 crossref_primary_10_1016_j_sajce_2020_04_001 crossref_primary_10_1186_s44147_023_00262_0 crossref_primary_10_3390_pr9091566 crossref_primary_10_1016_j_apenergy_2017_09_016 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104831 crossref_primary_10_1016_j_oceaneng_2024_117880 crossref_primary_10_1111_mice_13049 crossref_primary_10_3390_met12040594 crossref_primary_10_1016_j_powtec_2014_02_005 crossref_primary_10_1016_j_euromechflu_2023_04_003 crossref_primary_10_1016_j_oceaneng_2021_109625 crossref_primary_10_3390_en15197175 crossref_primary_10_1016_j_ijhydene_2017_06_060 crossref_primary_10_1002_cjce_22484 crossref_primary_10_1016_j_cherd_2025_08_027 crossref_primary_10_1016_j_powtec_2024_119595 crossref_primary_10_1111_1750_3841_15814 crossref_primary_10_2118_209193_PA crossref_primary_10_3390_pr10081454 crossref_primary_10_1007_s43995_025_00162_9 crossref_primary_10_1016_j_ijhydene_2022_05_201 crossref_primary_10_1260_1757_482X_7_2_79 crossref_primary_10_1016_j_powtec_2019_11_049 crossref_primary_10_1260_1757_482X_7_4_241 crossref_primary_10_1002_ghg_1915 crossref_primary_10_1016_j_oceaneng_2025_120408 crossref_primary_10_1016_j_jrmge_2024_09_059 crossref_primary_10_1016_j_compfluid_2024_106263 crossref_primary_10_14356_kona_2023008 crossref_primary_10_1016_j_powtec_2013_10_014 crossref_primary_10_14356_kona_2017016 crossref_primary_10_1016_j_tsep_2021_100993 crossref_primary_10_1061_JPSEA2_PSENG_1391 crossref_primary_10_1063_1_5081677 crossref_primary_10_1016_j_powtec_2018_11_070 crossref_primary_10_1002_dug2_70001 crossref_primary_10_1016_j_powtec_2019_02_031 crossref_primary_10_1134_S0040601515060063 crossref_primary_10_1016_j_fuel_2024_133005 crossref_primary_10_1016_j_powtec_2024_119655 crossref_primary_10_1016_j_ijmultiphaseflow_2016_04_013 crossref_primary_10_1007_s00348_022_03481_y crossref_primary_10_2118_199902_PA crossref_primary_10_1080_23744731_2017_1408383 crossref_primary_10_1016_j_powtec_2025_121574 crossref_primary_10_1007_s11771_018_3724_9 crossref_primary_10_1007_s12008_022_01094_7 crossref_primary_10_1016_j_powtec_2025_121450 crossref_primary_10_1063_5_0257919 crossref_primary_10_1007_s12613_023_2610_0 crossref_primary_10_1016_j_powtec_2019_07_015 crossref_primary_10_1080_02726351_2020_1799274 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104339 crossref_primary_10_1179_1743278213Y_0000000102 crossref_primary_10_3390_pr12122863 crossref_primary_10_1016_j_jestch_2025_102100 crossref_primary_10_1080_02726351_2017_1364313 crossref_primary_10_3390_en17174240 crossref_primary_10_1016_j_jngse_2022_104792 crossref_primary_10_3390_w15244266 crossref_primary_10_1016_j_oceaneng_2019_03_065 crossref_primary_10_1186_s40677_022_00217_2 crossref_primary_10_2478_johh_2025_0012 crossref_primary_10_1016_j_anucene_2022_109518 crossref_primary_10_1016_j_powtec_2018_07_088 crossref_primary_10_1088_1757_899X_310_1_012095 crossref_primary_10_3390_en13215665 crossref_primary_10_1016_j_powtec_2017_11_067 crossref_primary_10_3390_min14121221 crossref_primary_10_3390_pr13061760 crossref_primary_10_1016_j_ijheatmasstransfer_2016_02_007 crossref_primary_10_1038_s41598_025_09254_x crossref_primary_10_1002_ceat_201300809 crossref_primary_10_1016_j_powtec_2019_09_017 crossref_primary_10_1016_j_cherd_2016_05_013 crossref_primary_10_1051_e3sconf_202340602008 crossref_primary_10_1002_nag_3221 crossref_primary_10_1016_j_powtec_2021_10_050 crossref_primary_10_1016_j_ijmultiphaseflow_2018_03_023 crossref_primary_10_1016_j_ces_2018_02_001 crossref_primary_10_1016_j_jksues_2020_11_006 crossref_primary_10_1016_j_tust_2017_08_011 crossref_primary_10_1016_j_icheatmasstransfer_2025_108731 crossref_primary_10_2118_223953_PA crossref_primary_10_1016_j_partic_2021_02_008 crossref_primary_10_1016_j_apt_2024_104680 crossref_primary_10_1016_j_oceaneng_2025_122757 crossref_primary_10_1088_1757_899X_802_1_012001 crossref_primary_10_3390_pr10030597 crossref_primary_10_3390_w12051332 crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_021 crossref_primary_10_3390_app9245402 crossref_primary_10_3390_su151511890 crossref_primary_10_1016_j_flowmeasinst_2024_102542 crossref_primary_10_1134_S0015462818020064 crossref_primary_10_1016_j_rineng_2025_105941 crossref_primary_10_1016_j_conbuildmat_2023_133014 crossref_primary_10_3390_en12214070 crossref_primary_10_1002_cepa_3136 crossref_primary_10_1016_j_petrol_2021_109395 crossref_primary_10_1016_j_powtec_2020_06_085 crossref_primary_10_3390_w14172627 crossref_primary_10_1016_j_psep_2014_04_013 crossref_primary_10_1080_02726351_2018_1435594 crossref_primary_10_3390_met12071105 crossref_primary_10_3390_pr9060988 crossref_primary_10_1016_j_oceaneng_2020_108160 crossref_primary_10_1080_02726351_2019_1621412 crossref_primary_10_1080_19942060_2014_11015521 crossref_primary_10_1016_j_powtec_2020_03_026 crossref_primary_10_3390_fluids7100331 crossref_primary_10_1108_WJE_03_2019_0086 crossref_primary_10_1016_j_wear_2016_07_005 crossref_primary_10_1016_j_apt_2020_11_009 crossref_primary_10_1016_j_cherd_2025_05_023 crossref_primary_10_1134_S0015462823602309 crossref_primary_10_1007_s11012_021_01314_6 crossref_primary_10_1016_j_jspr_2020_101581 crossref_primary_10_1080_02726351_2022_2124209 crossref_primary_10_1016_j_seppur_2024_130371 crossref_primary_10_1140_epje_i2019_11810_3 crossref_primary_10_1016_j_corsci_2020_109045 crossref_primary_10_1016_j_powtec_2023_119048 crossref_primary_10_1080_19392699_2017_1346632 crossref_primary_10_1002_ghg_1666 crossref_primary_10_2118_208613_PA crossref_primary_10_3390_jmse8090675 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104094 crossref_primary_10_1080_02726351_2023_2278051 crossref_primary_10_1016_j_ijheatmasstransfer_2017_01_057 crossref_primary_10_1007_s12008_024_01862_7 crossref_primary_10_3390_math12182879 crossref_primary_10_1080_02726351_2014_971988 crossref_primary_10_14356_kona_2015009 crossref_primary_10_1080_19392699_2018_1488693 crossref_primary_10_1016_j_oceaneng_2018_06_046 crossref_primary_10_1016_j_ijmultiphaseflow_2013_04_006 crossref_primary_10_1016_j_petrol_2017_12_014 crossref_primary_10_1007_s12008_025_02289_4 crossref_primary_10_1002_fld_4809 crossref_primary_10_1016_j_petrol_2018_08_032 crossref_primary_10_1016_j_powtec_2014_10_027 crossref_primary_10_1088_1742_6596_1600_1_012005 crossref_primary_10_1016_j_powtec_2023_118284 crossref_primary_10_1088_1755_1315_864_1_012043 crossref_primary_10_1016_j_powtec_2024_119850 crossref_primary_10_1016_j_compgeo_2020_103497 crossref_primary_10_1016_j_ijthermalsci_2016_05_027 crossref_primary_10_2478_johh_2021_0011 crossref_primary_10_1016_j_petrol_2020_107877 crossref_primary_10_3390_ma15093339 crossref_primary_10_1016_j_ces_2023_118513 crossref_primary_10_3390_w12061763 crossref_primary_10_1016_j_powtec_2022_117620 crossref_primary_10_1061__ASCE_PS_1949_1204_0000518 crossref_primary_10_1016_j_apt_2025_104899 crossref_primary_10_1080_02726351_2022_2110341 crossref_primary_10_1016_j_apt_2015_03_009 crossref_primary_10_1016_j_rineng_2022_100858 crossref_primary_10_1016_j_solener_2025_113873 crossref_primary_10_1142_S0129183125501001 crossref_primary_10_1080_01457632_2018_1436670 crossref_primary_10_3390_app9030512 crossref_primary_10_1080_1573062X_2023_2229289 crossref_primary_10_1016_j_oceaneng_2024_119987 crossref_primary_10_3390_w12102698 crossref_primary_10_1016_j_oceaneng_2022_110617 crossref_primary_10_1016_j_powtec_2023_118573 |
| Cites_doi | 10.1016/j.partic.2007.12.003 10.1016/j.powtec.2006.11.020 10.1016/j.ijmultiphaseflow.2005.03.003 10.1016/S0301-9322(02)00047-2 10.1017/S0022112084000586 10.1016/0045-7825(74)90029-2 10.1016/S0142-727X(03)00018-3 10.1016/j.ijmultiphaseflow.2003.10.008 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijmultiphaseflow.2012.03.005 |
| DatabaseName | CrossRef Pascal-Francis Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1879-3533 |
| EndPage | 100 |
| ExternalDocumentID | 25889099 10_1016_j_ijmultiphaseflow_2012_03_005 S030193221200047X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7TB 8FD FR3 H8D KR7 L7M |
| ID | FETCH-LOGICAL-c465t-2dd739574f03e8f7ebd826b6f778e6c9f1f2acd273d2330788ed2c0e7bb4d0753 |
| ISICitedReferencesCount | 212 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000304689200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0301-9322 |
| IngestDate | Mon Sep 29 06:01:03 EDT 2025 Mon Jul 21 09:12:55 EDT 2025 Sat Nov 29 03:59:48 EST 2025 Tue Nov 18 21:00:30 EST 2025 Fri Feb 23 02:25:59 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Mixture model Eulerian model Slurry pipeline Pressure drop 3D CFD modeling Concentration distribution Computational fluid dynamics Pipelines Digital simulation Velocity distribution Finite volume methods Concentrated suspension Horizontal pipe Two-phase flow Fine particle Modelling Slurries |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c465t-2dd739574f03e8f7ebd826b6f778e6c9f1f2acd273d2330788ed2c0e7bb4d0753 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1671340426 |
| PQPubID | 23500 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1671340426 pascalfrancis_primary_25889099 crossref_primary_10_1016_j_ijmultiphaseflow_2012_03_005 crossref_citationtrail_10_1016_j_ijmultiphaseflow_2012_03_005 elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2012_03_005 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-07-01 |
| PublicationDateYYYYMMDD | 2012-07-01 |
| PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | International journal of multiphase flow |
| PublicationYear | 2012 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Kaushal, Tomita (b0030) 2002; 28 Kaushal, Sato, Toyota, Funatsu, Tomita (b0025) 2005; 31 Kaushal, Tomita (b0020) 2007; 172 Ling, Skudarnov, Lin, Ebadian (b0040) 2003; 24 Campbell, Francisco, Liu (b0005) 2004; 30 Lun, Savage, Jeffrey, Chepurniy (b0045) 1984; 140 Launder, Spalding (b0035) 1974; 3 FLUENT, 2005. User’s guide FLUENT 6.2, Fluent Incorporation, USA. Gidaspow, D., Bezburuah, R., Ding, J., 1992. Hydrodynamics of circulating fluidized beds, kinetic theory approach in fluidization VII. In: Proceedings of the 7th Engineering Foundation Conference on Fluidization. Thinglas, Kaushal (b0050) 2008; 6 Thinglas, Kaushal (b0055) 2008; 26 10.1016/j.ijmultiphaseflow.2012.03.005_b0015 Campbell (10.1016/j.ijmultiphaseflow.2012.03.005_b0005) 2004; 30 Lun (10.1016/j.ijmultiphaseflow.2012.03.005_b0045) 1984; 140 Kaushal (10.1016/j.ijmultiphaseflow.2012.03.005_b0020) 2007; 172 Thinglas (10.1016/j.ijmultiphaseflow.2012.03.005_b0050) 2008; 6 Kaushal (10.1016/j.ijmultiphaseflow.2012.03.005_b0025) 2005; 31 Kaushal (10.1016/j.ijmultiphaseflow.2012.03.005_b0030) 2002; 28 Thinglas (10.1016/j.ijmultiphaseflow.2012.03.005_b0055) 2008; 26 Launder (10.1016/j.ijmultiphaseflow.2012.03.005_b0035) 1974; 3 Ling (10.1016/j.ijmultiphaseflow.2012.03.005_b0040) 2003; 24 10.1016/j.ijmultiphaseflow.2012.03.005_b0010 |
| References_xml | – volume: 30 start-page: 199 year: 2004 end-page: 216 ident: b0005 article-title: Preliminary observations of a particle lift force in horizontal slurry flow publication-title: Int. J. Multiph. Flow – volume: 172 start-page: 177 year: 2007 end-page: 187 ident: b0020 article-title: Experimental investigation of near-wall lift of coarser particles in slurry pipeline using γ-ray densitometer publication-title: Powder Technol. – volume: 6 start-page: 176 year: 2008 end-page: 184 ident: b0050 article-title: Comparison of two dimensional and three dimensional CFD modeling of invert trap configuration to be used in sewer solid management publication-title: Particuol, Else. Publ. – reference: Gidaspow, D., Bezburuah, R., Ding, J., 1992. Hydrodynamics of circulating fluidized beds, kinetic theory approach in fluidization VII. In: Proceedings of the 7th Engineering Foundation Conference on Fluidization. – volume: 3 start-page: 269 year: 1974 end-page: 289 ident: b0035 article-title: The numerical computation of turbulent flows publication-title: Comput. Methods Appl. Mech. Eng. – volume: 26 year: 2008 ident: b0055 publication-title: Three dimensional CFD modeling for optimization of invert trap configuration to be used in sewer solid management – reference: FLUENT, 2005. User’s guide FLUENT 6.2, Fluent Incorporation, USA. – volume: 31 start-page: 809 year: 2005 end-page: 823 ident: b0025 article-title: Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry publication-title: Int. J. Multiphase Flow – volume: 28 start-page: 1697 year: 2002 end-page: 1717 ident: b0030 article-title: Solids concentration profiles and pressure drop in pipeline flow of multisized particulate slurries publication-title: Int. J. Multiphase Flow – volume: 140 start-page: 223 year: 1984 end-page: 256 ident: b0045 article-title: Kinetic theories for granular flow: inelastic particles in couette flow and slightly inelastic particles in a general flow field publication-title: J. Fluid Mech. – volume: 24 start-page: 389 year: 2003 end-page: 398 ident: b0040 article-title: Numerical investigations of liquid–solid slurry flows in a fully developed turbulent flow region publication-title: Int. J. Heat Fluid Flow – volume: 6 start-page: 176 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0050 article-title: Comparison of two dimensional and three dimensional CFD modeling of invert trap configuration to be used in sewer solid management publication-title: Particuol, Else. Publ. doi: 10.1016/j.partic.2007.12.003 – volume: 172 start-page: 177 year: 2007 ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0020 article-title: Experimental investigation of near-wall lift of coarser particles in slurry pipeline using γ-ray densitometer publication-title: Powder Technol. doi: 10.1016/j.powtec.2006.11.020 – volume: 31 start-page: 809 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0025 article-title: Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2005.03.003 – ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0015 – ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0010 – volume: 28 start-page: 1697 year: 2002 ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0030 article-title: Solids concentration profiles and pressure drop in pipeline flow of multisized particulate slurries publication-title: Int. J. Multiphase Flow doi: 10.1016/S0301-9322(02)00047-2 – volume: 140 start-page: 223 year: 1984 ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0045 article-title: Kinetic theories for granular flow: inelastic particles in couette flow and slightly inelastic particles in a general flow field publication-title: J. Fluid Mech. doi: 10.1017/S0022112084000586 – volume: 3 start-page: 269 year: 1974 ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0035 article-title: The numerical computation of turbulent flows publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(74)90029-2 – volume: 24 start-page: 389 year: 2003 ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0040 article-title: Numerical investigations of liquid–solid slurry flows in a fully developed turbulent flow region publication-title: Int. J. Heat Fluid Flow doi: 10.1016/S0142-727X(03)00018-3 – volume: 30 start-page: 199 year: 2004 ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0005 article-title: Preliminary observations of a particle lift force in horizontal slurry flow publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2003.10.008 – volume: 26 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2012.03.005_b0055 |
| SSID | ssj0005743 |
| Score | 2.4667919 |
| Snippet | Velocity and slip-velocity distributions, that have never been measured experimentally at such higher concentrations up to 50% by volume, predicted by... Pipeline slurry flow of mono-dispersed fine particles at high concentration is numerically simulated using Mixture and Eulerian two-phase models. Both the... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 85 |
| SubjectTerms | 3D CFD modeling Computational fluid dynamics Computational methods in fluid dynamics Concentration distribution Eulerian model Exact sciences and technology Flow velocity Flows in ducts, channels, nozzles, and conduits Fluid dynamics Fundamental areas of phenomenology (including applications) Mathematical analysis Mathematical models Mixture model Multiphase and particle-laden flows Nonhomogeneous flows Physics Pipe Pipelines Pressure drop Slurries Slurry pipeline |
| Title | CFD modeling for pipeline flow of fine particles at high concentration |
| URI | https://dx.doi.org/10.1016/j.ijmultiphaseflow.2012.03.005 https://www.proquest.com/docview/1671340426 |
| Volume | 43 |
| WOSCitedRecordID | wos000304689200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3533 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005743 issn: 0301-9322 databaseCode: AIEXJ dateStart: 19951201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF_qnYoioqdi_ThWEF8kJd-7efCh3F1RkUO8E-pTSPaDJtQ09OO4P8M_2dndbLbnoVTQl9AuJJ3O_DI7u_ubGYReJzGTCcS1AN7S9-LA972SlKXHIsm4SHzOS9215BM5PaXTafZ5MPhhc2Eu5qRp6OVl1v5XU8MYGFulzv6FufuHwgB8BqPDFcwO150MfzQ5Nv1tLEeyrVqhg0k5X-gkFam-tJYSp9IZVdFiRUA3VM3eVrWjubtdw61aE4aNOIOJUD-7d97FZjXTjQTeHo--jBz3pFIdQwwvyY0uvlcmgv22qSt3ssRmlSYanIFsYrnZ3p0IHJO12zKzaTOOo6RTtfzAg8DRuGFhPC8lmRclpiqGdc1xtOVbTWufbpYOdH3T6xOA2YuoR1XtVKA0oEh8oSlnm7iprycknimRlESBSl2KyfQG2g9JkoGr3x9_OJl-dLQhk7TR_4Xb6I3jDP7pV38X-NxrixW8jtL0UbkWEug45_wBut8tUPDYoOMhGojmAN3dKlt5gG5p2jBbPUITABu2YMMANmzBhpVgeCGxAhvuwYaLNVZgw1fA9hh9nZycH733us4cHovTZO2FnOsD3lj6kaCSiJLDMrVMJSFUpCyTgQwLxiE05mEEswilgofMF-AFYg5BavQE7TWLRjxFWMD6IgVH4qc8jikPacpImRawkBAhJwUfondWbTnrytar7inz3PIT6_xXtedK7bkf5aD2ISL9_a0p4LLznWNrpbwLR02YmQPYdn7G4RXz9iKECaUZrM6G6JW1dw6OXZ3WFY1YbFZ5kKo0b7XF8ewfCPIc3XGv5wu0t15uxEt0k12sq9XysAP5TzWt1Qs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+modeling+for+pipeline+flow+of+fine+particles+at+high+concentration&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Kaushal%2C+D.R.&rft.au=Thinglas%2C+T.&rft.au=Tomita%2C+Yuji&rft.au=Kuchii%2C+Shigeru&rft.date=2012-07-01&rft.pub=Elsevier+Ltd&rft.issn=0301-9322&rft.eissn=1879-3533&rft.volume=43&rft.spage=85&rft.epage=100&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2012.03.005&rft.externalDocID=S030193221200047X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon |