Large geographic variability in the resistance of corals to thermal stress

Aim Predictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological sensitivity to thermal stress. Without accounting for complex sensitivity responses, simple climate exposure models and associated predictions may l...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Global ecology and biogeography Ročník 29; číslo 12; s. 2229 - 2247
Hlavní autori: McClanahan, Timothy R., Maina, Joseph M., Darling, Emily S., Guillaume, Mireille M. M., Muthiga, Nyawira A., D’agata, Stephanie, Leblond, Julien, Arthur, Rohan, Jupiter, Stacy D., Wilson, Shaun K., Mangubhai, Sangeeta, Ussi, Ali M., Humphries, Austin T., Patankar, Vardhan, Shedrawi, George, Julius, Pagu, Ndagala, January, Grimsditch, Gabriel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Wiley Subscription Services, Inc 01.12.2020
Wiley
Predmet:
ISSN:1466-822X, 1466-8238, 1466-822X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Aim Predictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological sensitivity to thermal stress. Without accounting for complex sensitivity responses, simple climate exposure models and associated predictions may lead to poor estimates of future coral survival and lead to policies that fail to identify and implement the most appropriate interventions. To begin filling this gap, we evaluated a number of attributes of coral taxa and communities that are predicted to influence coral resistance to thermal stress over a large geographic range. Location Western Indo‐Pacific and Central Indo‐Pacific Ocean Realms. Major taxa studied Zooxanthellate Scleractinia – hard corals. Methods We evaluated the geographic variability of coral resistance to thermal stress as the ratio of thermal exposure and sensitivity in 12 countries during the 2016 global‐bleaching event. Thermal exposure was estimated by two metrics: (a) historical excess summer heat (cumulative thermal anomaly, CTA), and (b) a multivariate index of sea‐surface temperature (SST), light, and water flow (climate exposure, CE). Sensitivity was estimated for 226 sites using coordinated bleaching observations and underwater surveys of coral communities. We then evaluated coral resistance to thermal stress using 48 generalized linear mixed models (GLMMs) to compare the potential influences of geography, historical SST variation, coral cover and coral richness. Results Geographic faunal provinces and ecoregions were the strongest predictors of coral resistance to thermal stress, with sites in the Australian, Indonesian and Fiji‐Caroline Islands coral provinces having higher resistance to thermal stress than Africa‐India and Japan‐Vietnam provinces. Ecoregions also showed strong gradients in resistance with highest resistance to thermal stress in the western Pacific and Coral Triangle and lower resistance in the surrounding ecoregions. A more detailed evaluation of Coral Triangle and non‐Coral Triangle sites found higher resistance to thermal stress within the Coral Triangle, associated with c. 2.5 times more recent historical thermal anomalies and more centralized, warmer, and cool‐water skew SST distributions, than in non‐Coral Triangle sites. Our findings identify the importance of environmental history and geographic context in future predictions of bleaching, and identify some potential drivers of coral resistance to thermal stress. Main conclusions Simple threshold models of heat stress and coral acclimation are commonly used to predict the future of coral reefs. Here and elsewhere we show that large‐scale responses of coral communities to heat stress are geographically variable and associated with differential environmental stresses and histories.
AbstractList AIM - Predictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological sensitivity to thermal stress. Without accounting for complex sensitivity responses, simple climate exposure models and associated predictions may lead to poor estimates of future coral survival and lead to policies that fail to identify and implement the most appropriate interventions. To begin filling this gap, we evaluated a number of attributes of coral taxa and communities that are predicted to influence coral resistance to thermal stress over a large geographic range.LOCATION - Western Indo-Pacific and Central Indo-Pacific Ocean Realms.MAJOR TAXA STUDIED - Zooxanthellate Scleractinia – hard corals.METHODS - We evaluated the geographic variability of coral resistance to thermal stress as the ratio of thermal exposure and sensitivity in 12 countries during the 2016 global-bleaching event. Thermal exposure was estimated by two metrics: (a) historical excess summer heat (cumulative thermal anomaly, CTA), and (b) a multivariate index of sea-surface temperature (SST), light, and water flow (climate exposure, CE). Sensitivity was estimated for 226 sites using coordinated bleaching observations and underwater surveys of coral communities. We then evaluated coral resistance to thermal stress using 48 generalized linear mixed models (GLMMs) to compare the potential influences of geography, historical SST variation, coral cover and coral richness.RESULTS - Geographic faunal provinces and ecoregions were the strongest predictors of coral resistance to thermal stress, with sites in the Australian, Indonesian and Fiji-Caroline Islands coral provinces having higher resistance to thermal stress than Africa-India and Japan-Vietnam provinces. Ecoregions also showed strong gradients in resistance with highest resistance to thermal stress in the western Pacific and Coral Triangle and lower resistance in the surrounding ecoregions. A more detailed evaluation of Coral Triangle and non-Coral Triangle sites found higher resistance to thermal stress within the Coral Triangle, associated with c. 2.5 times more recent historical thermal anomalies and more centralized, warmer, and cool-water skew SST distributions, than in non-Coral Triangle sites. Our findings identify the importance of environmental history and geographic context in future predictions of bleaching, and identify some potential drivers of coral resistance to thermal stress.MAIN CONLUSIONS - Simple threshold models of heat stress and coral acclimation are commonly used to predict the future of coral reefs. Here and elsewhere we show that large-scale responses of coral communities to heat stress are geographically variable and associated with differential environmental stresses and histories.
AIM: Predictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological sensitivity to thermal stress. Without accounting for complex sensitivity responses, simple climate exposure models and associated predictions may lead to poor estimates of future coral survival and lead to policies that fail to identify and implement the most appropriate interventions. To begin filling this gap, we evaluated a number of attributes of coral taxa and communities that are predicted to influence coral resistance to thermal stress over a large geographic range. LOCATION: Western Indo‐Pacific and Central Indo‐Pacific Ocean Realms. MAJOR TAXA STUDIED: Zooxanthellate Scleractinia – hard corals. METHODS: We evaluated the geographic variability of coral resistance to thermal stress as the ratio of thermal exposure and sensitivity in 12 countries during the 2016 global‐bleaching event. Thermal exposure was estimated by two metrics: (a) historical excess summer heat (cumulative thermal anomaly, CTA), and (b) a multivariate index of sea‐surface temperature (SST), light, and water flow (climate exposure, CE). Sensitivity was estimated for 226 sites using coordinated bleaching observations and underwater surveys of coral communities. We then evaluated coral resistance to thermal stress using 48 generalized linear mixed models (GLMMs) to compare the potential influences of geography, historical SST variation, coral cover and coral richness. RESULTS: Geographic faunal provinces and ecoregions were the strongest predictors of coral resistance to thermal stress, with sites in the Australian, Indonesian and Fiji‐Caroline Islands coral provinces having higher resistance to thermal stress than Africa‐India and Japan‐Vietnam provinces. Ecoregions also showed strong gradients in resistance with highest resistance to thermal stress in the western Pacific and Coral Triangle and lower resistance in the surrounding ecoregions. A more detailed evaluation of Coral Triangle and non‐Coral Triangle sites found higher resistance to thermal stress within the Coral Triangle, associated with c. 2.5 times more recent historical thermal anomalies and more centralized, warmer, and cool‐water skew SST distributions, than in non‐Coral Triangle sites. Our findings identify the importance of environmental history and geographic context in future predictions of bleaching, and identify some potential drivers of coral resistance to thermal stress. MAIN CONCLUSIONS: Simple threshold models of heat stress and coral acclimation are commonly used to predict the future of coral reefs. Here and elsewhere we show that large‐scale responses of coral communities to heat stress are geographically variable and associated with differential environmental stresses and histories.
AimPredictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological sensitivity to thermal stress. Without accounting for complex sensitivity responses, simple climate exposure models and associated predictions may lead to poor estimates of future coral survival and lead to policies that fail to identify and implement the most appropriate interventions. To begin filling this gap, we evaluated a number of attributes of coral taxa and communities that are predicted to influence coral resistance to thermal stress over a large geographic range.LocationWestern Indo‐Pacific and Central Indo‐Pacific Ocean Realms.Major taxa studiedZooxanthellate Scleractinia – hard corals.MethodsWe evaluated the geographic variability of coral resistance to thermal stress as the ratio of thermal exposure and sensitivity in 12 countries during the 2016 global‐bleaching event. Thermal exposure was estimated by two metrics: (a) historical excess summer heat (cumulative thermal anomaly, CTA), and (b) a multivariate index of sea‐surface temperature (SST), light, and water flow (climate exposure, CE). Sensitivity was estimated for 226 sites using coordinated bleaching observations and underwater surveys of coral communities. We then evaluated coral resistance to thermal stress using 48 generalized linear mixed models (GLMMs) to compare the potential influences of geography, historical SST variation, coral cover and coral richness.ResultsGeographic faunal provinces and ecoregions were the strongest predictors of coral resistance to thermal stress, with sites in the Australian, Indonesian and Fiji‐Caroline Islands coral provinces having higher resistance to thermal stress than Africa‐India and Japan‐Vietnam provinces. Ecoregions also showed strong gradients in resistance with highest resistance to thermal stress in the western Pacific and Coral Triangle and lower resistance in the surrounding ecoregions. A more detailed evaluation of Coral Triangle and non‐Coral Triangle sites found higher resistance to thermal stress within the Coral Triangle, associated with c. 2.5 times more recent historical thermal anomalies and more centralized, warmer, and cool‐water skew SST distributions, than in non‐Coral Triangle sites. Our findings identify the importance of environmental history and geographic context in future predictions of bleaching, and identify some potential drivers of coral resistance to thermal stress.Main conclusionsSimple threshold models of heat stress and coral acclimation are commonly used to predict the future of coral reefs. Here and elsewhere we show that large‐scale responses of coral communities to heat stress are geographically variable and associated with differential environmental stresses and histories.
Aim Predictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological sensitivity to thermal stress. Without accounting for complex sensitivity responses, simple climate exposure models and associated predictions may lead to poor estimates of future coral survival and lead to policies that fail to identify and implement the most appropriate interventions. To begin filling this gap, we evaluated a number of attributes of coral taxa and communities that are predicted to influence coral resistance to thermal stress over a large geographic range. Location Western Indo‐Pacific and Central Indo‐Pacific Ocean Realms. Major taxa studied Zooxanthellate Scleractinia – hard corals. Methods We evaluated the geographic variability of coral resistance to thermal stress as the ratio of thermal exposure and sensitivity in 12 countries during the 2016 global‐bleaching event. Thermal exposure was estimated by two metrics: (a) historical excess summer heat (cumulative thermal anomaly, CTA), and (b) a multivariate index of sea‐surface temperature (SST), light, and water flow (climate exposure, CE). Sensitivity was estimated for 226 sites using coordinated bleaching observations and underwater surveys of coral communities. We then evaluated coral resistance to thermal stress using 48 generalized linear mixed models (GLMMs) to compare the potential influences of geography, historical SST variation, coral cover and coral richness. Results Geographic faunal provinces and ecoregions were the strongest predictors of coral resistance to thermal stress, with sites in the Australian, Indonesian and Fiji‐Caroline Islands coral provinces having higher resistance to thermal stress than Africa‐India and Japan‐Vietnam provinces. Ecoregions also showed strong gradients in resistance with highest resistance to thermal stress in the western Pacific and Coral Triangle and lower resistance in the surrounding ecoregions. A more detailed evaluation of Coral Triangle and non‐Coral Triangle sites found higher resistance to thermal stress within the Coral Triangle, associated with c. 2.5 times more recent historical thermal anomalies and more centralized, warmer, and cool‐water skew SST distributions, than in non‐Coral Triangle sites. Our findings identify the importance of environmental history and geographic context in future predictions of bleaching, and identify some potential drivers of coral resistance to thermal stress. Main conclusions Simple threshold models of heat stress and coral acclimation are commonly used to predict the future of coral reefs. Here and elsewhere we show that large‐scale responses of coral communities to heat stress are geographically variable and associated with differential environmental stresses and histories.
Author Wilson, Shaun K.
Muthiga, Nyawira A.
Ussi, Ali M.
Guillaume, Mireille M. M.
Maina, Joseph M.
Arthur, Rohan
Mangubhai, Sangeeta
Patankar, Vardhan
Darling, Emily S.
Leblond, Julien
Humphries, Austin T.
D’agata, Stephanie
Shedrawi, George
Grimsditch, Gabriel
Julius, Pagu
Ndagala, January
Jupiter, Stacy D.
McClanahan, Timothy R.
Author_xml – sequence: 1
  givenname: Timothy R.
  orcidid: 0000-0001-5821-3584
  surname: McClanahan
  fullname: McClanahan, Timothy R.
  email: tmcclanahan@wcs.org
  organization: Wildlife Conservation Society
– sequence: 2
  givenname: Joseph M.
  surname: Maina
  fullname: Maina, Joseph M.
  organization: Macquarie University
– sequence: 3
  givenname: Emily S.
  surname: Darling
  fullname: Darling, Emily S.
  organization: Wildlife Conservation Society
– sequence: 4
  givenname: Mireille M. M.
  surname: Guillaume
  fullname: Guillaume, Mireille M. M.
  organization: Laboratoire d’Excellence CORAIL
– sequence: 5
  givenname: Nyawira A.
  surname: Muthiga
  fullname: Muthiga, Nyawira A.
  organization: Wildlife Conservation Society
– sequence: 6
  givenname: Stephanie
  surname: D’agata
  fullname: D’agata, Stephanie
  organization: Wildlife Conservation Society
– sequence: 7
  givenname: Julien
  surname: Leblond
  fullname: Leblond, Julien
  organization: Wildlife Conservation Society
– sequence: 8
  givenname: Rohan
  surname: Arthur
  fullname: Arthur, Rohan
  organization: Center for Advanced Studies (CEAB)
– sequence: 9
  givenname: Stacy D.
  surname: Jupiter
  fullname: Jupiter, Stacy D.
  organization: Wildlife Conservation Society Melanesia Program
– sequence: 10
  givenname: Shaun K.
  surname: Wilson
  fullname: Wilson, Shaun K.
  organization: Department of Biodiversity, Conservation and Attractions
– sequence: 11
  givenname: Sangeeta
  surname: Mangubhai
  fullname: Mangubhai, Sangeeta
  organization: Wildlife Conservation Society, Fiji Program
– sequence: 12
  givenname: Ali M.
  surname: Ussi
  fullname: Ussi, Ali M.
  organization: The State University of Zanzibar
– sequence: 13
  givenname: Austin T.
  surname: Humphries
  fullname: Humphries, Austin T.
  organization: University of Rhode Island
– sequence: 14
  givenname: Vardhan
  surname: Patankar
  fullname: Patankar, Vardhan
  organization: National Centre for Biological Sciences
– sequence: 15
  givenname: George
  surname: Shedrawi
  fullname: Shedrawi, George
  organization: Curtin University
– sequence: 16
  givenname: Pagu
  surname: Julius
  fullname: Julius, Pagu
  organization: Mafia Island Marine Park
– sequence: 17
  givenname: January
  surname: Ndagala
  fullname: Ndagala, January
  organization: Tanga Coelacanth Marine Park
– sequence: 18
  givenname: Gabriel
  surname: Grimsditch
  fullname: Grimsditch, Gabriel
  organization: IUCN Maldives
BackLink https://hal.science/hal-03916692$$DView record in HAL
BookMark eNp9kU1PAjEQhhujiYAe_AdNvOgBaLu7ZXtEgqAh8cLBW9PtzkLJssW2YPj3FjGYkOhcZjLzzFfeNrpsbAMI3VHSo9H6Cyh6NKGCXqAWTTnv5izJL08xe79Gbe9XhJAszXgLvc6UWwBegF04tVkajXfKGVWY2oQ9Ng0OS8AOvPFBNRqwrbC2TtUeB3uoubWqsQ-R8DfoqooFuP3xHTR_Hs9H0-7sbfIyGs66OuUZ7QrGKiqUKHieEEHLTGdiUA74gOmElUxolmiWcSjTQcZEBcAUT3MChBd5BSLpoMfj2KWq5caZtXJ7aZWR0-FMHnIkEZRzwXY0sg9HduPsxxZ8kGvjNdS1asBuvWSpyJkghB3Q-zN0ZbeuiY9EirM8npSkv8u1s947qE4XUCIPAsgogPwWILL9M1aboIKxTXDK1P91fJoa9n-PlpPx07HjCw-glm8
CitedBy_id crossref_primary_10_1029_2022EA002688
crossref_primary_10_3389_fmars_2021_669995
crossref_primary_10_1038_s41598_022_20138_2
crossref_primary_10_1088_1748_9326_ac7478
crossref_primary_10_1111_ddi_13770
crossref_primary_10_1002_ece3_9263
crossref_primary_10_7717_peerj_16100
crossref_primary_10_1007_s13199_021_00794_0
crossref_primary_10_1111_gcb_15818
crossref_primary_10_1038_s41597_024_03221_3
crossref_primary_10_1111_gcb_16083
crossref_primary_10_3354_meps14757
crossref_primary_10_1002_ecs2_70057
crossref_primary_10_1016_j_scitotenv_2023_162113
crossref_primary_10_1111_geb_13353
crossref_primary_10_3389_fmars_2022_948336
crossref_primary_10_1002_aqc_3569
crossref_primary_10_1038_s41598_025_02283_6
crossref_primary_10_1111_gcb_17112
crossref_primary_10_1088_1755_1315_1163_1_012005
crossref_primary_10_1111_geb_13506
crossref_primary_10_1007_s00227_024_04495_2
crossref_primary_10_1016_j_cub_2021_10_046
crossref_primary_10_1016_j_marenvres_2022_105587
crossref_primary_10_1371_journal_pclm_0000090
crossref_primary_10_1016_j_gloenvcha_2025_102983
crossref_primary_10_1038_s43247_023_00946_8
crossref_primary_10_1038_s42003_025_08657_w
crossref_primary_10_1080_15481603_2023_2261213
crossref_primary_10_1016_j_jembe_2025_152096
crossref_primary_10_7717_peerj_19987
crossref_primary_10_1002_eap_2509
crossref_primary_10_3390_md23020089
crossref_primary_10_1038_s41598_024_67971_1
crossref_primary_10_1111_ecog_06534
crossref_primary_10_1111_gcb_16192
crossref_primary_10_1038_s41598_023_36355_2
crossref_primary_10_1371_journal_pclm_0000007
crossref_primary_10_1111_geb_70105
crossref_primary_10_1051_bioconf_202413402009
crossref_primary_10_1111_cobi_14108
crossref_primary_10_1371_journal_pone_0281719
crossref_primary_10_1111_csp2_13043
crossref_primary_10_1016_j_scitotenv_2022_156704
Cites_doi 10.1038/nature11148
10.1641/B570707
10.1007/978-3-662-06414-6_24
10.1126/science.1251336
10.1029/2009GL040590
10.1126/sciadv.aay7684
10.1111/gcb.12191
10.1126/science.aan8048
10.1038/ncomms9562
10.1371/journal.pone.0042884
10.1038/ismej.2016.54
10.1111/gcb.12658
10.1111/j.1600-0587.2013.00291.x
10.1038/nclimate1829
10.1007/978-94-007-0114-4_5
10.3354/meps07556
10.1111/conl.12587
10.1126/science.aav4236
10.1038/s41559-019-0953-8
10.1080/08920753.2010.509466
10.1007/978-1-4757-2917-7
10.1071/MF05106
10.3389/fmars.2018.00211
10.1016/j.fishres.2004.08.008
10.1371/journal.pone.0145822
10.3354/meps13402
10.1007/s003380000133
10.1371/journal.pone.0175490
10.1007/s00227-003-1271-9
10.1111/j.1937-2817.2010.tb01236.x
10.1038/s41598-019-40150-3
10.1016/j.marpolbul.2010.03.033
10.1371/journal.pone.0190957
10.1007/s003380100146
10.1038/ngeo357
10.1371/journal.pone.0023064
10.1371/journal.pone.0013969
10.1038/ncomms10581
10.1038/s41467-018-04741-4
10.1038/s41586-020-2084-4
10.1038/s41467-019-09238-2
10.32614/RJ-2017-066
10.1371/journal.pone.0082404
10.1016/j.ecolmodel.2007.10.033
10.1111/j.1600-0587.2013.00205.x
10.1111/jbi.13224
10.7717/peerj.9449
10.1890/140275
10.3354/meps298131
10.1111/gcb.12335
10.1007/s00338-009-0522-8
10.1038/srep39666
10.1071/MF99078
10.1038/s41558-019-0576-8
10.1007/s10584-015-1399-x
10.1002/2015PA002794
10.1111/ddi.12714
10.3354/meps337001
10.1139/F09-114
10.1371/journal.pone.0033353
10.1111/gcb.14972
10.1126/science.aac7125
10.1038/s41598-020-64411-8
10.1038/nature22901
10.1111/j.2007.0906-7590.05171.x
10.3354/meps12150
10.1371/journal.pone.0093385
10.1038/nature01779
10.1038/s41561-019-0486-4
10.1038/nclimate3399
10.1038/s41558-018-0351-2
ContentType Journal Article
Copyright 2020 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
AAYXX
CITATION
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
1XC
DOI 10.1111/geb.13191
DatabaseName Wiley Online Library Open Access
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Entomology Abstracts
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Entomology Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
Geography
EISSN 1466-8238
1466-822X
EndPage 2247
ExternalDocumentID oai:HAL:hal-03916692v1
10_1111_geb_13191
GEB13191
Genre article
GrantInformation_xml – fundername: John D. and Catherine T. MacArthur Foundation
GroupedDBID -~X
.3N
.GA
.Y3
0R~
10A
1OC
24P
29I
31~
33P
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACHIC
ACPOU
ACPRK
ACRPL
ACSCC
ACSTJ
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
BDRZF
BFHJK
BMNLL
BMXJE
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
FEDTE
G-S
GODZA
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
IHE
IPSME
IX1
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
OIG
P2W
P4D
Q11
QB0
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
VQP
W99
WIH
WIK
WQJ
WRC
WXSBR
XG1
ZZTAW
~KM
AAMMB
AAYXX
ABSQW
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGUYK
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
1XC
ID FETCH-LOGICAL-c4651-922f19a9b683091d5c597d7672c32d29c23c256ed47529fee2a6480e06b8fe93
IEDL.DBID 24P
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000574959500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1466-822X
IngestDate Tue Oct 14 20:37:08 EDT 2025
Fri Jul 11 18:26:53 EDT 2025
Fri Jul 25 04:19:10 EDT 2025
Tue Nov 18 21:35:21 EST 2025
Sat Nov 29 03:56:14 EST 2025
Wed Jan 22 16:31:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords oceanographic change
biodiversity
adaptation
diversity hotspots
refugia
climate change
coral bleaching
Language English
License Attribution
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4651-922f19a9b683091d5c597d7672c32d29c23c256ed47529fee2a6480e06b8fe93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5821-3584
0000-0001-6941-8489
0000-0001-7249-0131
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.13191
PQID 2462825634
PQPubID 1066347
PageCount 18
ParticipantIDs hal_primary_oai_HAL_hal_03916692v1
proquest_miscellaneous_2498290021
proquest_journals_2462825634
crossref_primary_10_1111_geb_13191
crossref_citationtrail_10_1111_geb_13191
wiley_primary_10_1111_geb_13191_GEB13191
PublicationCentury 2000
PublicationDate December 2020
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global ecology and biogeography
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2017; 7
2013; 3
2012; 486
2005; 298
2019; 10
2015; 30
2020; 13
2007; 30
2020; 10
2008; 1
2018; 45
2013; 280
2013; 8
2017; 9
2020; 648
2010; 60
2019; 363
2014; 20
2013; 19
2020; 8
2020; 6
2018; 9
2004; 75
2018; 5
2004; 70
2007; 337
2000
2015; 131
2019; 26
2001; 19
2020; 579
2016; 352
1999; 50
2014; 9
2010; 5
2010; 74
2015; 13
2009; 66
2004; 144
2019; 9
2010; 38
2015; 6
2019; 3
2011
2006; 57
2016; 10
1998
2004
2017; 570
2011; 6
2008; 361
2007; 57
2001; 20
2009; 28
2016; 11
2018; 24
2009; 36
2016; 6
2016; 7
2013; 36
2003; 424
2018; 359
2020
2017; 12
2014; 37
2019
2015
2008; 212
2018; 11
2012; 7
2017; 546
2018; 13
2014; 344
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Van Hooidonk R. (e_1_2_8_73_1) 2016; 6
e_1_2_8_3_1
e_1_2_8_5_1
DiNezio P. N. (e_1_2_8_23_1) 2020; 6
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
Safaie A. (e_1_2_8_66_1) 2018; 9
Veron J. E. N. (e_1_2_8_75_1) 2000
e_1_2_8_17_1
e_1_2_8_19_1
R Core Team (e_1_2_8_65_1) 2019
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
McClanahan T. R. (e_1_2_8_46_1) 2020
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
Woo M. (e_1_2_8_76_1) 2006; 57
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
McClanahan T. R. (e_1_2_8_54_1) 2001; 19
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
Barber P. H. (e_1_2_8_8_1) 2015
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
Strong A. E. (e_1_2_8_69_1) 2004; 75
Houk P. (e_1_2_8_35_1) 2020; 10
Keith S. A. (e_1_2_8_39_1) 2013; 280
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 144
  start-page: 1239
  issue: 6
  year: 2004
  end-page: 1245
  article-title: The relationship between bleaching and mortality of common corals
  publication-title: Marine Biology
– volume: 363
  issue: 6430
  year: 2019
  article-title: Pantropical climate interactions
  publication-title: Science
– volume: 66
  start-page: 1809
  issue: 10
  year: 2009
  end-page: 1820
  article-title: Modelling the distribution of fish accounting for spatial correlation and overdispersion
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 5
  article-title: A global analysis of coral bleaching over the past two decades
  publication-title: Nature Communications
– volume: 11
  issue: 6
  year: 2018
  article-title: Risk‐sensitive planning for conserving coral reefs under rapid climate change
  publication-title: Conservation Letters
– volume: 10
  start-page: 2693
  issue: 11
  year: 2016
  end-page: 2701
  article-title: Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef‐building corals
  publication-title: The ISME Journal
– volume: 337
  start-page: 1
  year: 2007
  end-page: 13
  article-title: Western Indian Ocean coral communities: Bleaching responses and susceptibility to extinction
  publication-title: Marine Ecology Progress Series
– volume: 344
  start-page: 895
  issue: 6186
  year: 2014
  end-page: 898
  article-title: Mechanisms of reef coral resistance to future climate change
  publication-title: Science
– volume: 19
  start-page: 1930
  issue: 6
  year: 2013
  end-page: 1940
  article-title: Life histories predict coral community disassembly under multiple stressors
  publication-title: Global Change Biology
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 13
  article-title: Resilience of Central Pacific reefs subject to frequent heat stress and human disturbance
  publication-title: Scientific Reports
– volume: 648
  start-page: 135
  year: 2020
  end-page: 151
  article-title: Highly variable taxa‐specific coral bleaching responses to thermal stresses
  publication-title: Marine Ecology Progress Series
– volume: 37
  start-page: 191
  issue: 2
  year: 2014
  end-page: 203
  article-title: Where is positional uncertainty a problem for species distribution modelling?
  publication-title: Ecography
– volume: 7
  start-page: 839
  issue: 11
  year: 2017
  end-page: 844
  article-title: Coral bleaching pathways under the control of regional temperature variability
  publication-title: Nature Climate Change
– year: 1998
– volume: 36
  start-page: L23708
  issue: 23
  year: 2009
  article-title: Mode shift in the Indian Ocean climate under global warming stress
  publication-title: Geophysical Research Letters
– volume: 9
  start-page: 378
  issue: 2
  year: 2017
  end-page: 400
  article-title: glmmTMB balances speed and flexibility among packages for zero‐inflated generalized linear mixed modeling
  publication-title: The R Journal
– volume: 75
  start-page: 259
  issue: 2
  year: 2004
  end-page: 268
  article-title: Coral reef Watch 2002
  publication-title: Bulletin of Marine Science
– volume: 12
  issue: 4
  year: 2017
  article-title: A new, high‐resolution global mass coral bleaching database
  publication-title: PLoS ONE
– volume: 11
  issue: 1
  year: 2016
  article-title: Ocean transport pathways to a world heritage fringing coral reef: Ningaloo Reef, Western Australia
  publication-title: PLoS ONE
– volume: 45
  start-page: 1355
  issue: 6
  year: 2018
  end-page: 1366
  article-title: Thermal energy and stress properties as the main drivers of regional distribution of coral species richness in the Indian Ocean
  publication-title: Journal of Biogeography
– volume: 30
  start-page: 609
  issue: 5
  year: 2007
  end-page: 628
  article-title: Methods to account for spatial autocorrelation in the analysis of species distributional data: A review
  publication-title: Ecography
– volume: 70
  start-page: 265
  issue: 2–3
  year: 2004
  end-page: 274
  article-title: Incorporating spatial autocorrelation into the general linear model with an application to the yellowfin tuna ( ) longline CPUE data
  publication-title: Fisheries Research
– volume: 361
  start-page: 307
  year: 2008
  end-page: 310
  article-title: Acclimatization in tropical reef corals
  publication-title: Marine Ecology Progress Series
– volume: 50
  start-page: 839
  issue: 8
  year: 1999
  end-page: 866
  article-title: Climate change, coral bleaching and the future of the world's coral reefs
  publication-title: Marine and Freshwater Research
– volume: 546
  start-page: 82
  issue: 7656
  year: 2017
  end-page: 90
  article-title: Coral reefs in the Anthropocene
  publication-title: Nature
– volume: 7
  issue: 8
  year: 2012
  article-title: Prioritizing key resilience indicators to support coral reef management in a changing climate
  publication-title: PLoS ONE
– volume: 3
  start-page: 508
  issue: 5
  year: 2013
  end-page: 511
  article-title: Temporary refugia for coral reefs in a warming world
  publication-title: Nature Climate Change
– volume: 9
  start-page: 845
  issue: 11
  year: 2019
  end-page: 851
  article-title: Temperature patterns and mechanisms influencing coral bleaching during the 2016 El Niño
  publication-title: Nature Climate Change
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 9
  article-title: Predicting coral‐reef futures from El Niño and Pacific Decadal Oscillation events
  publication-title: Scientific Reports
– volume: 131
  start-page: 607
  issue: 4
  year: 2015
  end-page: 620
  article-title: Regional coral responses to climate disturbances and warming is predicted by multivariate stress model and not temperature threshold metrics
  publication-title: Climatic Change
– volume: 6
  start-page: 39666
  issue: 1
  year: 2016
  article-title: Local‐scale projections of coral reef futures and implications of the Paris Agreement
  publication-title: Scientific Reports
– volume: 6
  start-page: 8562
  year: 2015
  article-title: Coral record of southeast Indian Ocean marine heatwaves with intensified Western Pacific temperature gradient
  publication-title: Nature Communications
– volume: 38
  start-page: 518
  issue: 5
  year: 2010
  end-page: 539
  article-title: Warming seas in the coral triangle: Coral reef vulnerability and management implications
  publication-title: Coastal Management
– volume: 60
  start-page: 964
  issue: 7
  year: 2010
  end-page: 970
  article-title: Relationship between historical sea‐surface temperature variability and climate change‐induced coral mortality in the western Indian Ocean
  publication-title: Marine Pollution Bulletin
– volume: 20
  start-page: 51
  issue: 1
  year: 2001
  end-page: 65
  article-title: Coral bleaching: Interpretation of thermal tolerance limits and thermal thresholds in tropical corals
  publication-title: Coral Reefs
– year: 2019
– volume: 19
  start-page: 3592
  issue: 12
  year: 2013
  end-page: 3606
  article-title: Future habitat suitability for coral reef ecosystems under global warming and ocean acidification
  publication-title: Global Change Biology
– year: 2015
– volume: 424
  start-page: 271
  issue: 6946
  year: 2003
  end-page: 276
  article-title: El Niño/southern oscillation and tropical Pacific climate during the last millennium
  publication-title: Nature
– volume: 212
  start-page: 180
  issue: 3
  year: 2008
  end-page: 199
  article-title: Modelling susceptibility of coral reefs to environmental stress using remote sensing data and GIS models in the western Indian Ocean
  publication-title: Ecological Modelling
– volume: 36
  start-page: 1254
  issue: 12
  year: 2013
  end-page: 1262
  article-title: Global patterns and predictors of tropical reef fish species richness
  publication-title: Ecography
– volume: 486
  start-page: 59
  issue: 7401
  year: 2012
  end-page: 67
  article-title: Biodiversity loss and its impact on humanity
  publication-title: Nature
– volume: 1
  start-page: 849
  issue: 12
  year: 2008
  end-page: 853
  article-title: Recent intensification of tropical climate variability in the Indian Ocean
  publication-title: Nature Geoscience
– volume: 57
  start-page: 573
  issue: 7
  year: 2007
  end-page: 583
  article-title: Marine ecoregions of the world: A bioregionalization of coastal and shelf areas
  publication-title: BioScience
– volume: 6
  issue: 8
  year: 2011
  article-title: Global gradients of coral exposure to environmental stresses and implications for local management
  publication-title: PLoS ONE
– volume: 26
  start-page: 2120
  year: 2019
  end-page: 2133
  article-title: Extreme temperature events will drive coral decline in the Coral Triangle
  publication-title: Global Change Biology.
– volume: 30
  start-page: 1113
  issue: 8
  year: 2015
  end-page: 1131
  article-title: Holocene variability in the intensity of wind‐gap upwelling in the tropical eastern Pacific
  publication-title: Paleoceanography and Paleoclimatology
– volume: 13
  start-page: 257
  issue: 5
  year: 2015
  end-page: 263
  article-title: The portfolio concept in ecology and evolution
  publication-title: Frontiers in Ecology and the Environment
– year: 2000
– volume: 359
  start-page: 80
  issue: 6371
  year: 2018
  end-page: 83
  article-title: Spatial and temporal patterns of mass bleaching of corals in the Anthropocene
  publication-title: Science
– volume: 19
  start-page: 380
  issue: 4
  year: 2001
  end-page: 391
  article-title: Coral and algal changes after the 1998 coral bleaching: Interaction with reef management and herbivores on Kenyan reefs
  publication-title: Coral Reefs
– volume: 5
  issue: 11
  year: 2010
  article-title: Caribbean corals in crisis: Record thermal stress, bleaching, and mortality in 2005
  publication-title: PLoS ONE
– volume: 7
  issue: 3
  year: 2012
  article-title: Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress
  publication-title: PLoS ONE
– volume: 3
  start-page: 1341
  year: 2019
  end-page: 1350
  article-title: Social–environmental drivers inform strategic management of coral reefs in the Anthropocene
  publication-title: Nature Ecology & Evolution
– volume: 9
  start-page: 2244
  issue: 1
  year: 2018
  article-title: Author Correction: High frequency temperature variability reduces the risk of coral bleaching
  publication-title: Nature Communications
– volume: 57
  start-page: 291
  issue: 3
  year: 2006
  end-page: 301
  article-title: Dynamics of the Ningaloo current off Point Cloates, Western Australia
  publication-title: Marine and Freshwater Research
– volume: 7
  year: 2016
  article-title: Near‐island biological hotspots in barren ocean basins
  publication-title: Nature Communications
– volume: 570
  start-page: 71
  year: 2017
  end-page: 85
  article-title: Changes in coral sensitivity to thermal anomalies
  publication-title: Marine Ecology Progress Series
– volume: 9
  start-page: 40
  issue: 1
  year: 2019
  end-page: 43
  article-title: Ecological memory modifies the cumulative impact of recurrent climate extremes
  publication-title: Nature Climate Change
– volume: 74
  start-page: 1175
  issue: 6
  year: 2010
  end-page: 1178
  article-title: Uninformative parameters and model selection using Akaike's Information Criterion
  publication-title: The Journal of Wildlife Management
– volume: 298
  start-page: 131
  year: 2005
  end-page: 142
  article-title: Effects of geography, taxa, water flow, and temperature variation on coral bleaching intensity in Mauritius
  publication-title: Marine Ecology Progress Series
– year: 2020
– volume: 9
  issue: 4
  year: 2014
  article-title: Biogeography and change among regional coral communities across the Western Indian Ocean
  publication-title: PLoS ONE
– start-page: 47
  year: 2011
  end-page: 55
– volume: 24
  start-page: 605
  issue: 5
  year: 2018
  end-page: 620
  article-title: Gradients of disturbance and environmental conditions shape coral community structure for south‐eastern Indian Ocean reefs
  publication-title: Diversity and Distributions
– volume: 579
  start-page: 385
  issue: 7799
  year: 2020
  end-page: 392
  article-title: Coupling of Indo‐Pacific climate variability over the last millennium
  publication-title: Nature
– start-page: 427
  year: 2004
  end-page: 444
– volume: 280
  start-page: 1
  issue: 1763
  year: 2013
  end-page: 9
  article-title: Faunal breaks and species composition of Indo‐Pacific corals: the role of plate tectonics, environment and habitat distribution
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 5
  start-page: 211
  year: 2018
  article-title: Advancing marine biological observations and data requirements of the complementary essential ocean variables (EOVs) and essential biodiversity variables (EBVs) frameworks
  publication-title: Frontiers in Marine Science
– volume: 13
  start-page: 28
  issue: 1
  year: 2020
  end-page: 34
  article-title: Heat accumulation on coral reefs mitigated by internal waves
  publication-title: Nature Geoscience
– volume: 28
  start-page: 841
  issue: 4
  year: 2009
  end-page: 850
  article-title: Sea‐surface temperature and thermal stress in the Coral Triangle over the past two decades
  publication-title: Coral Reefs
– volume: 352
  start-page: 338
  issue: 6283
  year: 2016
  end-page: 342
  article-title: Climate change disables coral bleaching protection on the Great Barrier Reef
  publication-title: Science
– volume: 13
  issue: 2
  year: 2018
  article-title: Global patterns and impacts of El Niño events on coral reefs: A meta‐analysis
  publication-title: PLoS ONE
– volume: 8
  year: 2020
  article-title: Treating coral bleaching as weather: A framework to validate and optimize prediction skill
  publication-title: PeerJ
– volume: 20
  start-page: 3823
  issue: 12
  year: 2014
  end-page: 3833
  article-title: The cumulative impact of annual coral bleaching can turn some coral species winners into losers
  publication-title: Global Change Biology
– volume: 6
  issue: 19
  year: 2020
  article-title: Emergence of an equatorial mode of climate variability in the Indian Ocean
  publication-title: Science Advances
– volume: 8
  issue: 12
  year: 2013
  article-title: Coral reef habitat response to climate change scenarios
  publication-title: PLoS ONE
– ident: e_1_2_8_16_1
  doi: 10.1038/nature11148
– ident: e_1_2_8_68_1
  doi: 10.1641/B570707
– ident: e_1_2_8_13_1
  doi: 10.1007/978-3-662-06414-6_24
– ident: e_1_2_8_62_1
  doi: 10.1126/science.1251336
– ident: e_1_2_8_59_1
  doi: 10.1029/2009GL040590
– volume: 6
  issue: 19
  year: 2020
  ident: e_1_2_8_23_1
  article-title: Emergence of an equatorial mode of climate variability in the Indian Ocean
  publication-title: Science Advances
  doi: 10.1126/sciadv.aay7684
– ident: e_1_2_8_20_1
  doi: 10.1111/gcb.12191
– ident: e_1_2_8_36_1
  doi: 10.1126/science.aan8048
– ident: e_1_2_8_80_1
  doi: 10.1038/ncomms9562
– ident: e_1_2_8_51_1
  doi: 10.1371/journal.pone.0042884
– ident: e_1_2_8_11_1
  doi: 10.1038/ismej.2016.54
– volume: 75
  start-page: 259
  issue: 2
  year: 2004
  ident: e_1_2_8_69_1
  article-title: Coral reef Watch 2002
  publication-title: Bulletin of Marine Science
– ident: e_1_2_8_32_1
  doi: 10.1111/gcb.12658
– ident: e_1_2_8_63_1
  doi: 10.1111/j.1600-0587.2013.00291.x
– ident: e_1_2_8_72_1
  doi: 10.1038/nclimate1829
– ident: e_1_2_8_74_1
  doi: 10.1007/978-94-007-0114-4_5
– ident: e_1_2_8_28_1
  doi: 10.3354/meps07556
– ident: e_1_2_8_10_1
  doi: 10.1111/conl.12587
– ident: e_1_2_8_15_1
  doi: 10.1126/science.aav4236
– ident: e_1_2_8_21_1
  doi: 10.1038/s41559-019-0953-8
– ident: e_1_2_8_55_1
  doi: 10.1080/08920753.2010.509466
– ident: e_1_2_8_14_1
  doi: 10.1007/978-1-4757-2917-7
– volume: 57
  start-page: 291
  issue: 3
  year: 2006
  ident: e_1_2_8_76_1
  article-title: Dynamics of the Ningaloo current off Point Cloates, Western Australia
  publication-title: Marine and Freshwater Research
  doi: 10.1071/MF05106
– ident: e_1_2_8_57_1
  doi: 10.3389/fmars.2018.00211
– ident: e_1_2_8_60_1
  doi: 10.1016/j.fishres.2004.08.008
– ident: e_1_2_8_78_1
  doi: 10.1371/journal.pone.0145822
– ident: e_1_2_8_50_1
  doi: 10.3354/meps13402
– volume: 19
  start-page: 380
  issue: 4
  year: 2001
  ident: e_1_2_8_54_1
  article-title: Coral and algal changes after the 1998 coral bleaching: Interaction with reef management and herbivores on Kenyan reefs
  publication-title: Coral Reefs
  doi: 10.1007/s003380000133
– ident: e_1_2_8_25_1
  doi: 10.1371/journal.pone.0175490
– ident: e_1_2_8_44_1
  doi: 10.1007/s00227-003-1271-9
– ident: e_1_2_8_5_1
  doi: 10.1111/j.1937-2817.2010.tb01236.x
– ident: e_1_2_8_61_1
– ident: e_1_2_8_24_1
  doi: 10.1038/s41598-019-40150-3
– ident: e_1_2_8_6_1
  doi: 10.1016/j.marpolbul.2010.03.033
– ident: e_1_2_8_17_1
  doi: 10.1371/journal.pone.0190957
– ident: e_1_2_8_9_1
– ident: e_1_2_8_29_1
  doi: 10.1007/s003380100146
– volume-title: Population dynamics of the reef crisis
  year: 2020
  ident: e_1_2_8_46_1
– ident: e_1_2_8_2_1
  doi: 10.1038/ngeo357
– volume-title: R: A language and environment for statistical computing
  year: 2019
  ident: e_1_2_8_65_1
– ident: e_1_2_8_42_1
  doi: 10.1371/journal.pone.0023064
– ident: e_1_2_8_27_1
  doi: 10.1371/journal.pone.0013969
– ident: e_1_2_8_31_1
  doi: 10.1038/ncomms10581
– volume-title: 30 Pluralism explains diversity in the Coral Triangle
  year: 2015
  ident: e_1_2_8_8_1
– volume: 9
  start-page: 2244
  issue: 1
  year: 2018
  ident: e_1_2_8_66_1
  article-title: Author Correction: High frequency temperature variability reduces the risk of coral bleaching
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-04741-4
– ident: e_1_2_8_3_1
  doi: 10.1038/s41586-020-2084-4
– ident: e_1_2_8_70_1
  doi: 10.1038/s41467-019-09238-2
– ident: e_1_2_8_12_1
  doi: 10.32614/RJ-2017-066
– ident: e_1_2_8_30_1
  doi: 10.1371/journal.pone.0082404
– ident: e_1_2_8_43_1
  doi: 10.1016/j.ecolmodel.2007.10.033
– ident: e_1_2_8_58_1
  doi: 10.1111/j.1600-0587.2013.00205.x
– volume-title: Corals of the world, Vol 1–3
  year: 2000
  ident: e_1_2_8_75_1
– ident: e_1_2_8_7_1
  doi: 10.1111/jbi.13224
– ident: e_1_2_8_22_1
  doi: 10.7717/peerj.9449
– ident: e_1_2_8_67_1
  doi: 10.1890/140275
– ident: e_1_2_8_53_1
  doi: 10.3354/meps298131
– ident: e_1_2_8_19_1
  doi: 10.1111/gcb.12335
– ident: e_1_2_8_64_1
  doi: 10.1007/s00338-009-0522-8
– volume: 6
  start-page: 39666
  issue: 1
  year: 2016
  ident: e_1_2_8_73_1
  article-title: Local‐scale projections of coral reef futures and implications of the Paris Agreement
  publication-title: Scientific Reports
  doi: 10.1038/srep39666
– ident: e_1_2_8_34_1
  doi: 10.1071/MF99078
– ident: e_1_2_8_49_1
  doi: 10.1038/s41558-019-0576-8
– ident: e_1_2_8_52_1
  doi: 10.1007/s10584-015-1399-x
– ident: e_1_2_8_71_1
  doi: 10.1002/2015PA002794
– ident: e_1_2_8_79_1
  doi: 10.1111/ddi.12714
– ident: e_1_2_8_48_1
  doi: 10.3354/meps337001
– volume: 280
  start-page: 1
  issue: 1763
  year: 2013
  ident: e_1_2_8_39_1
  article-title: Faunal breaks and species composition of Indo‐Pacific corals: the role of plate tectonics, environment and habitat distribution
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– ident: e_1_2_8_41_1
  doi: 10.1139/F09-114
– ident: e_1_2_8_33_1
  doi: 10.1371/journal.pone.0033353
– ident: e_1_2_8_56_1
  doi: 10.1111/gcb.14972
– ident: e_1_2_8_4_1
  doi: 10.1126/science.aac7125
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: e_1_2_8_35_1
  article-title: Predicting coral‐reef futures from El Niño and Pacific Decadal Oscillation events
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-64411-8
– ident: e_1_2_8_37_1
  doi: 10.1038/nature22901
– ident: e_1_2_8_26_1
  doi: 10.1111/j.2007.0906-7590.05171.x
– ident: e_1_2_8_45_1
  doi: 10.3354/meps12150
– ident: e_1_2_8_47_1
  doi: 10.1371/journal.pone.0093385
– ident: e_1_2_8_18_1
  doi: 10.1038/nature01779
– ident: e_1_2_8_77_1
  doi: 10.1038/s41561-019-0486-4
– ident: e_1_2_8_40_1
  doi: 10.1038/nclimate3399
– ident: e_1_2_8_38_1
  doi: 10.1038/s41558-018-0351-2
SSID ssj0005456
Score 2.5242934
Snippet Aim Predictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological...
AimPredictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological...
AIM: Predictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological...
AIM - Predictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2229
SubjectTerms Acclimation
Acclimatization
accounting
adaptation
Anomalies
biodiversity
biogeography
Bleaching
climate
climate change
Climate models
coral bleaching
Coral reefs
Corals
diversity hotspots
ecoregions
Environmental history
Environmental stress
Exposure
exposure models
fauna
Faunal provinces
geographical distribution
geographical variation
Geographical variations
Geography
Heat
Heat stress
Heat tolerance
history
islands
issues and policy
lead
Life Sciences
light
oceanographic change
prediction
Predictions
refugia
Scleractinia
Sea surface temperature
Sensitivity
Skewed distributions
Statistical models
summer
surface water temperature
surveys
Temperature
Thermal resistance
Thermal stress
threshold models
Underwater
Variability
Water flow
Title Large geographic variability in the resistance of corals to thermal stress
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.13191
https://www.proquest.com/docview/2462825634
https://www.proquest.com/docview/2498290021
https://hal.science/hal-03916692
Volume 29
WOSCitedRecordID wos000574959500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1466-8238
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005456
  issn: 1466-822X
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB_8OMGX85vbO5V43IMvlW2Spg335MeuIovI4cG-lTZJ1wXpHnZd8L93Ju3WPVAQfCvNBNIkk_lNM_MbgF9CFBGaAhtEJpaBVMoGuclkYGWBxju0Xc2tLzYR39wkw6G-XYLf81yYmh-i_eFGmuHPa1LwLK8WlHzk8pMQNxC6PqthKBKq28Dl7Wt8h4ya1CIVoBUcNrRCFMbTdv3PGC3fUyjkAs5cRKve3PQ3PjXQTfjaoEx2Wm-LLVhy5Tas9TxD9fM27PVe09tQrNHvageuBxQYzkZ1ZfT7sWEz9KVrKu9nNi4ZwkWGDjqBTuzBJgUzlOJfsemE2vCUf2B1-sku3PV7d-dXQVNtITBUDz3QnBehznSuEoEgwkYGfQ0bq5gbwS3XhguD-MhZGUdcF87xTMmk67oqTwqnxR6slJPSfQPGZa5jBD4qDjNJdDAiD6Oi0OS9mbCbdOB4PuupaZjIqSDGQzr3SHDKUj9lHfjZiv6r6TfeFMKla9uJMPvqdJDSO-K_V0rzGQrtz1c2bdS0Sjll5uJHCdmBo7YZFYxuTbLSTZ5IRtNlM2IhHLdf5_dHkl72zvzD94-L_oB1Tj68D5HZh5Xp45M7gC9mNh1Xj4d-Tx_C6sWf_t_BCxMb9uQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4VNrS9bMCG1lHAIB72kilxHCeWeOmmlsK6ioc-9C1KbAcqoXSipVL__e6cNO2kTZrEWxSfJcf25b6z774DuAzDIkJTYLxIx8ITUhov15nwjCjQeAfGV9y4YhPxaJRMJuquBVfrXJiKH6I5cCPNcP9rUnA6kN7S8nubfw1wB6Hv80qglaFdzsXdJsBDRHVukfTQDE5qXiGK42m6_mGNdh4oFnILaG7DVWdv-u9fNtJ9eFfjTNatNsYBtGx5CHs9x1G9OoSj3ibBDcVqDZ9_gNshhYaz-6o2-sNUsyV60xWZ94pNS4aAkaGLTrATe7BZwTQl-c_ZYkZt-J9_ZFUCykcY93vj7wOvrrfgaaqI7inOi0BlKpdJiDDCRBq9DRPLmOuQG640DzUiJGtEHHFVWMszKRLf-jJPCqvCI9gtZ6X9BIyLXMUIfWQcZIIIYcI8iIpCkf-mAz9pw5f1tKe65iKnkhiP6donwSlL3ZS14aIR_VURcPxVCNeuaSfK7EF3mNI7YsCXUvElCnXWS5vWijpPOeXm4keFog3nTTOqGN2bZKWdPZOMoutmREM4brfQ_x5Jet375h4-_7_oGbwZjH8O0-HN6McxvOXk0buAmQ7sLp6e7Qm81svFdP506jb4bxLK-S8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_saYsv1o-KZ7Wu0gdfIpfNZpOFvmi9qx_HIWLh3kKyH3ogObkv8L93JsnFEywIfQvZWdjs7uz8JjvzG4CfQeBCNAXGC3UkPCGl8TKdCs8Ih8bbNy3FTVFsIur14n5f3SzBr3kuTMkPUf9wI80ozmtScPtk3IKW39vsxMcdhL7PsqAiMg1YPr_t_O2-hniIsMoukh4awn7FLESRPHXnN_bo0wNFQy5AzUXAWlicztf_G-s6rFVIk52WW2MDlmy-CZ_bBUv18yZst19T3FCs0vHxFlx1KTic3ZfV0R8Gms3Qny7pvJ_ZIGcIGRk66QQ8sQcbOqYpzX_MJkNqw5P-kZUpKN_grtO--33hVRUXPE010T3FufNVqjIZBwgkTKjR3zCRjLgOuOFK80AjRrJGRCFXzlqeShG3bEtmsbMq2IZGPsztDjAuMhUh-JGRnwqihAkyP3ROkQen_VbchOP5tCe6YiOnohiPydwrwSlLiilrwlEt-lRScLwrhGtXtxNp9sVpN6F3xIEvpeIzFNqbL21Sqeo44ZSdix8ViCYc1s2oZHRzkuZ2OCUZRRfOiIdw3MVC_3skyZ_2WfGw-3HRA_hyc95Jupe96--wysmlLyJm9qAxGU3tPqzo2WQwHv2odvgLPMP6RQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+geographic+variability+in+the+resistance+of+corals+to+thermal+stress&rft.jtitle=Global+ecology+and+biogeography&rft.au=McClanahan%2C+Timothy+R&rft.au=Maina%2C+Joseph+M&rft.au=Darling%2C+Emily+S&rft.au=Guillaume%2C+Mireille+M+M&rft.date=2020-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=29&rft.issue=12&rft.spage=2229&rft.epage=2247&rft_id=info:doi/10.1111%2Fgeb.13191&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon