Large geographic variability in the resistance of corals to thermal stress
Aim Predictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological sensitivity to thermal stress. Without accounting for complex sensitivity responses, simple climate exposure models and associated predictions may l...
Saved in:
| Published in: | Global ecology and biogeography Vol. 29; no. 12; pp. 2229 - 2247 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Wiley Subscription Services, Inc
01.12.2020
Wiley |
| Subjects: | |
| ISSN: | 1466-822X, 1466-8238, 1466-822X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Aim
Predictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological sensitivity to thermal stress. Without accounting for complex sensitivity responses, simple climate exposure models and associated predictions may lead to poor estimates of future coral survival and lead to policies that fail to identify and implement the most appropriate interventions. To begin filling this gap, we evaluated a number of attributes of coral taxa and communities that are predicted to influence coral resistance to thermal stress over a large geographic range.
Location
Western Indo‐Pacific and Central Indo‐Pacific Ocean Realms.
Major taxa studied
Zooxanthellate Scleractinia – hard corals.
Methods
We evaluated the geographic variability of coral resistance to thermal stress as the ratio of thermal exposure and sensitivity in 12 countries during the 2016 global‐bleaching event. Thermal exposure was estimated by two metrics: (a) historical excess summer heat (cumulative thermal anomaly, CTA), and (b) a multivariate index of sea‐surface temperature (SST), light, and water flow (climate exposure, CE). Sensitivity was estimated for 226 sites using coordinated bleaching observations and underwater surveys of coral communities. We then evaluated coral resistance to thermal stress using 48 generalized linear mixed models (GLMMs) to compare the potential influences of geography, historical SST variation, coral cover and coral richness.
Results
Geographic faunal provinces and ecoregions were the strongest predictors of coral resistance to thermal stress, with sites in the Australian, Indonesian and Fiji‐Caroline Islands coral provinces having higher resistance to thermal stress than Africa‐India and Japan‐Vietnam provinces. Ecoregions also showed strong gradients in resistance with highest resistance to thermal stress in the western Pacific and Coral Triangle and lower resistance in the surrounding ecoregions. A more detailed evaluation of Coral Triangle and non‐Coral Triangle sites found higher resistance to thermal stress within the Coral Triangle, associated with c. 2.5 times more recent historical thermal anomalies and more centralized, warmer, and cool‐water skew SST distributions, than in non‐Coral Triangle sites. Our findings identify the importance of environmental history and geographic context in future predictions of bleaching, and identify some potential drivers of coral resistance to thermal stress.
Main conclusions
Simple threshold models of heat stress and coral acclimation are commonly used to predict the future of coral reefs. Here and elsewhere we show that large‐scale responses of coral communities to heat stress are geographically variable and associated with differential environmental stresses and histories. |
|---|---|
| AbstractList | AIM - Predictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological sensitivity to thermal stress. Without accounting for complex sensitivity responses, simple climate exposure models and associated predictions may lead to poor estimates of future coral survival and lead to policies that fail to identify and implement the most appropriate interventions. To begin filling this gap, we evaluated a number of attributes of coral taxa and communities that are predicted to influence coral resistance to thermal stress over a large geographic range.LOCATION - Western Indo-Pacific and Central Indo-Pacific Ocean Realms.MAJOR TAXA STUDIED - Zooxanthellate Scleractinia – hard corals.METHODS - We evaluated the geographic variability of coral resistance to thermal stress as the ratio of thermal exposure and sensitivity in 12 countries during the 2016 global-bleaching event. Thermal exposure was estimated by two metrics: (a) historical excess summer heat (cumulative thermal anomaly, CTA), and (b) a multivariate index of sea-surface temperature (SST), light, and water flow (climate exposure, CE). Sensitivity was estimated for 226 sites using coordinated bleaching observations and underwater surveys of coral communities. We then evaluated coral resistance to thermal stress using 48 generalized linear mixed models (GLMMs) to compare the potential influences of geography, historical SST variation, coral cover and coral richness.RESULTS - Geographic faunal provinces and ecoregions were the strongest predictors of coral resistance to thermal stress, with sites in the Australian, Indonesian and Fiji-Caroline Islands coral provinces having higher resistance to thermal stress than Africa-India and Japan-Vietnam provinces. Ecoregions also showed strong gradients in resistance with highest resistance to thermal stress in the western Pacific and Coral Triangle and lower resistance in the surrounding ecoregions. A more detailed evaluation of Coral Triangle and non-Coral Triangle sites found higher resistance to thermal stress within the Coral Triangle, associated with c. 2.5 times more recent historical thermal anomalies and more centralized, warmer, and cool-water skew SST distributions, than in non-Coral Triangle sites. Our findings identify the importance of environmental history and geographic context in future predictions of bleaching, and identify some potential drivers of coral resistance to thermal stress.MAIN CONLUSIONS - Simple threshold models of heat stress and coral acclimation are commonly used to predict the future of coral reefs. Here and elsewhere we show that large-scale responses of coral communities to heat stress are geographically variable and associated with differential environmental stresses and histories. AIM: Predictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological sensitivity to thermal stress. Without accounting for complex sensitivity responses, simple climate exposure models and associated predictions may lead to poor estimates of future coral survival and lead to policies that fail to identify and implement the most appropriate interventions. To begin filling this gap, we evaluated a number of attributes of coral taxa and communities that are predicted to influence coral resistance to thermal stress over a large geographic range. LOCATION: Western Indo‐Pacific and Central Indo‐Pacific Ocean Realms. MAJOR TAXA STUDIED: Zooxanthellate Scleractinia – hard corals. METHODS: We evaluated the geographic variability of coral resistance to thermal stress as the ratio of thermal exposure and sensitivity in 12 countries during the 2016 global‐bleaching event. Thermal exposure was estimated by two metrics: (a) historical excess summer heat (cumulative thermal anomaly, CTA), and (b) a multivariate index of sea‐surface temperature (SST), light, and water flow (climate exposure, CE). Sensitivity was estimated for 226 sites using coordinated bleaching observations and underwater surveys of coral communities. We then evaluated coral resistance to thermal stress using 48 generalized linear mixed models (GLMMs) to compare the potential influences of geography, historical SST variation, coral cover and coral richness. RESULTS: Geographic faunal provinces and ecoregions were the strongest predictors of coral resistance to thermal stress, with sites in the Australian, Indonesian and Fiji‐Caroline Islands coral provinces having higher resistance to thermal stress than Africa‐India and Japan‐Vietnam provinces. Ecoregions also showed strong gradients in resistance with highest resistance to thermal stress in the western Pacific and Coral Triangle and lower resistance in the surrounding ecoregions. A more detailed evaluation of Coral Triangle and non‐Coral Triangle sites found higher resistance to thermal stress within the Coral Triangle, associated with c. 2.5 times more recent historical thermal anomalies and more centralized, warmer, and cool‐water skew SST distributions, than in non‐Coral Triangle sites. Our findings identify the importance of environmental history and geographic context in future predictions of bleaching, and identify some potential drivers of coral resistance to thermal stress. MAIN CONCLUSIONS: Simple threshold models of heat stress and coral acclimation are commonly used to predict the future of coral reefs. Here and elsewhere we show that large‐scale responses of coral communities to heat stress are geographically variable and associated with differential environmental stresses and histories. AimPredictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological sensitivity to thermal stress. Without accounting for complex sensitivity responses, simple climate exposure models and associated predictions may lead to poor estimates of future coral survival and lead to policies that fail to identify and implement the most appropriate interventions. To begin filling this gap, we evaluated a number of attributes of coral taxa and communities that are predicted to influence coral resistance to thermal stress over a large geographic range.LocationWestern Indo‐Pacific and Central Indo‐Pacific Ocean Realms.Major taxa studiedZooxanthellate Scleractinia – hard corals.MethodsWe evaluated the geographic variability of coral resistance to thermal stress as the ratio of thermal exposure and sensitivity in 12 countries during the 2016 global‐bleaching event. Thermal exposure was estimated by two metrics: (a) historical excess summer heat (cumulative thermal anomaly, CTA), and (b) a multivariate index of sea‐surface temperature (SST), light, and water flow (climate exposure, CE). Sensitivity was estimated for 226 sites using coordinated bleaching observations and underwater surveys of coral communities. We then evaluated coral resistance to thermal stress using 48 generalized linear mixed models (GLMMs) to compare the potential influences of geography, historical SST variation, coral cover and coral richness.ResultsGeographic faunal provinces and ecoregions were the strongest predictors of coral resistance to thermal stress, with sites in the Australian, Indonesian and Fiji‐Caroline Islands coral provinces having higher resistance to thermal stress than Africa‐India and Japan‐Vietnam provinces. Ecoregions also showed strong gradients in resistance with highest resistance to thermal stress in the western Pacific and Coral Triangle and lower resistance in the surrounding ecoregions. A more detailed evaluation of Coral Triangle and non‐Coral Triangle sites found higher resistance to thermal stress within the Coral Triangle, associated with c. 2.5 times more recent historical thermal anomalies and more centralized, warmer, and cool‐water skew SST distributions, than in non‐Coral Triangle sites. Our findings identify the importance of environmental history and geographic context in future predictions of bleaching, and identify some potential drivers of coral resistance to thermal stress.Main conclusionsSimple threshold models of heat stress and coral acclimation are commonly used to predict the future of coral reefs. Here and elsewhere we show that large‐scale responses of coral communities to heat stress are geographically variable and associated with differential environmental stresses and histories. Aim Predictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological sensitivity to thermal stress. Without accounting for complex sensitivity responses, simple climate exposure models and associated predictions may lead to poor estimates of future coral survival and lead to policies that fail to identify and implement the most appropriate interventions. To begin filling this gap, we evaluated a number of attributes of coral taxa and communities that are predicted to influence coral resistance to thermal stress over a large geographic range. Location Western Indo‐Pacific and Central Indo‐Pacific Ocean Realms. Major taxa studied Zooxanthellate Scleractinia – hard corals. Methods We evaluated the geographic variability of coral resistance to thermal stress as the ratio of thermal exposure and sensitivity in 12 countries during the 2016 global‐bleaching event. Thermal exposure was estimated by two metrics: (a) historical excess summer heat (cumulative thermal anomaly, CTA), and (b) a multivariate index of sea‐surface temperature (SST), light, and water flow (climate exposure, CE). Sensitivity was estimated for 226 sites using coordinated bleaching observations and underwater surveys of coral communities. We then evaluated coral resistance to thermal stress using 48 generalized linear mixed models (GLMMs) to compare the potential influences of geography, historical SST variation, coral cover and coral richness. Results Geographic faunal provinces and ecoregions were the strongest predictors of coral resistance to thermal stress, with sites in the Australian, Indonesian and Fiji‐Caroline Islands coral provinces having higher resistance to thermal stress than Africa‐India and Japan‐Vietnam provinces. Ecoregions also showed strong gradients in resistance with highest resistance to thermal stress in the western Pacific and Coral Triangle and lower resistance in the surrounding ecoregions. A more detailed evaluation of Coral Triangle and non‐Coral Triangle sites found higher resistance to thermal stress within the Coral Triangle, associated with c. 2.5 times more recent historical thermal anomalies and more centralized, warmer, and cool‐water skew SST distributions, than in non‐Coral Triangle sites. Our findings identify the importance of environmental history and geographic context in future predictions of bleaching, and identify some potential drivers of coral resistance to thermal stress. Main conclusions Simple threshold models of heat stress and coral acclimation are commonly used to predict the future of coral reefs. Here and elsewhere we show that large‐scale responses of coral communities to heat stress are geographically variable and associated with differential environmental stresses and histories. |
| Author | Wilson, Shaun K. Muthiga, Nyawira A. Ussi, Ali M. Guillaume, Mireille M. M. Maina, Joseph M. Arthur, Rohan Mangubhai, Sangeeta Patankar, Vardhan Darling, Emily S. Leblond, Julien Humphries, Austin T. D’agata, Stephanie Shedrawi, George Grimsditch, Gabriel Julius, Pagu Ndagala, January Jupiter, Stacy D. McClanahan, Timothy R. |
| Author_xml | – sequence: 1 givenname: Timothy R. orcidid: 0000-0001-5821-3584 surname: McClanahan fullname: McClanahan, Timothy R. email: tmcclanahan@wcs.org organization: Wildlife Conservation Society – sequence: 2 givenname: Joseph M. surname: Maina fullname: Maina, Joseph M. organization: Macquarie University – sequence: 3 givenname: Emily S. surname: Darling fullname: Darling, Emily S. organization: Wildlife Conservation Society – sequence: 4 givenname: Mireille M. M. surname: Guillaume fullname: Guillaume, Mireille M. M. organization: Laboratoire d’Excellence CORAIL – sequence: 5 givenname: Nyawira A. surname: Muthiga fullname: Muthiga, Nyawira A. organization: Wildlife Conservation Society – sequence: 6 givenname: Stephanie surname: D’agata fullname: D’agata, Stephanie organization: Wildlife Conservation Society – sequence: 7 givenname: Julien surname: Leblond fullname: Leblond, Julien organization: Wildlife Conservation Society – sequence: 8 givenname: Rohan surname: Arthur fullname: Arthur, Rohan organization: Center for Advanced Studies (CEAB) – sequence: 9 givenname: Stacy D. surname: Jupiter fullname: Jupiter, Stacy D. organization: Wildlife Conservation Society Melanesia Program – sequence: 10 givenname: Shaun K. surname: Wilson fullname: Wilson, Shaun K. organization: Department of Biodiversity, Conservation and Attractions – sequence: 11 givenname: Sangeeta surname: Mangubhai fullname: Mangubhai, Sangeeta organization: Wildlife Conservation Society, Fiji Program – sequence: 12 givenname: Ali M. surname: Ussi fullname: Ussi, Ali M. organization: The State University of Zanzibar – sequence: 13 givenname: Austin T. surname: Humphries fullname: Humphries, Austin T. organization: University of Rhode Island – sequence: 14 givenname: Vardhan surname: Patankar fullname: Patankar, Vardhan organization: National Centre for Biological Sciences – sequence: 15 givenname: George surname: Shedrawi fullname: Shedrawi, George organization: Curtin University – sequence: 16 givenname: Pagu surname: Julius fullname: Julius, Pagu organization: Mafia Island Marine Park – sequence: 17 givenname: January surname: Ndagala fullname: Ndagala, January organization: Tanga Coelacanth Marine Park – sequence: 18 givenname: Gabriel surname: Grimsditch fullname: Grimsditch, Gabriel organization: IUCN Maldives |
| BackLink | https://hal.science/hal-03916692$$DView record in HAL |
| BookMark | eNp9kU1PAjEQhhujiYAe_AdNvOgBaLu7ZXtEgqAh8cLBW9PtzkLJssW2YPj3FjGYkOhcZjLzzFfeNrpsbAMI3VHSo9H6Cyh6NKGCXqAWTTnv5izJL08xe79Gbe9XhJAszXgLvc6UWwBegF04tVkajXfKGVWY2oQ9Ng0OS8AOvPFBNRqwrbC2TtUeB3uoubWqsQ-R8DfoqooFuP3xHTR_Hs9H0-7sbfIyGs66OuUZ7QrGKiqUKHieEEHLTGdiUA74gOmElUxolmiWcSjTQcZEBcAUT3MChBd5BSLpoMfj2KWq5caZtXJ7aZWR0-FMHnIkEZRzwXY0sg9HduPsxxZ8kGvjNdS1asBuvWSpyJkghB3Q-zN0ZbeuiY9EirM8npSkv8u1s947qE4XUCIPAsgogPwWILL9M1aboIKxTXDK1P91fJoa9n-PlpPx07HjCw-glm8 |
| CitedBy_id | crossref_primary_10_1029_2022EA002688 crossref_primary_10_3389_fmars_2021_669995 crossref_primary_10_1038_s41598_022_20138_2 crossref_primary_10_1088_1748_9326_ac7478 crossref_primary_10_1111_ddi_13770 crossref_primary_10_1002_ece3_9263 crossref_primary_10_7717_peerj_16100 crossref_primary_10_1007_s13199_021_00794_0 crossref_primary_10_1111_gcb_15818 crossref_primary_10_1038_s41597_024_03221_3 crossref_primary_10_1111_gcb_16083 crossref_primary_10_3354_meps14757 crossref_primary_10_1002_ecs2_70057 crossref_primary_10_1016_j_scitotenv_2023_162113 crossref_primary_10_1111_geb_13353 crossref_primary_10_3389_fmars_2022_948336 crossref_primary_10_1002_aqc_3569 crossref_primary_10_1038_s41598_025_02283_6 crossref_primary_10_1111_gcb_17112 crossref_primary_10_1088_1755_1315_1163_1_012005 crossref_primary_10_1111_geb_13506 crossref_primary_10_1007_s00227_024_04495_2 crossref_primary_10_1016_j_cub_2021_10_046 crossref_primary_10_1016_j_marenvres_2022_105587 crossref_primary_10_1371_journal_pclm_0000090 crossref_primary_10_1016_j_gloenvcha_2025_102983 crossref_primary_10_1038_s43247_023_00946_8 crossref_primary_10_1038_s42003_025_08657_w crossref_primary_10_1080_15481603_2023_2261213 crossref_primary_10_1016_j_jembe_2025_152096 crossref_primary_10_7717_peerj_19987 crossref_primary_10_1002_eap_2509 crossref_primary_10_3390_md23020089 crossref_primary_10_1038_s41598_024_67971_1 crossref_primary_10_1111_ecog_06534 crossref_primary_10_1111_gcb_16192 crossref_primary_10_1038_s41598_023_36355_2 crossref_primary_10_1371_journal_pclm_0000007 crossref_primary_10_1111_geb_70105 crossref_primary_10_1051_bioconf_202413402009 crossref_primary_10_1111_cobi_14108 crossref_primary_10_1371_journal_pone_0281719 crossref_primary_10_1111_csp2_13043 crossref_primary_10_1016_j_scitotenv_2022_156704 |
| Cites_doi | 10.1038/nature11148 10.1641/B570707 10.1007/978-3-662-06414-6_24 10.1126/science.1251336 10.1029/2009GL040590 10.1126/sciadv.aay7684 10.1111/gcb.12191 10.1126/science.aan8048 10.1038/ncomms9562 10.1371/journal.pone.0042884 10.1038/ismej.2016.54 10.1111/gcb.12658 10.1111/j.1600-0587.2013.00291.x 10.1038/nclimate1829 10.1007/978-94-007-0114-4_5 10.3354/meps07556 10.1111/conl.12587 10.1126/science.aav4236 10.1038/s41559-019-0953-8 10.1080/08920753.2010.509466 10.1007/978-1-4757-2917-7 10.1071/MF05106 10.3389/fmars.2018.00211 10.1016/j.fishres.2004.08.008 10.1371/journal.pone.0145822 10.3354/meps13402 10.1007/s003380000133 10.1371/journal.pone.0175490 10.1007/s00227-003-1271-9 10.1111/j.1937-2817.2010.tb01236.x 10.1038/s41598-019-40150-3 10.1016/j.marpolbul.2010.03.033 10.1371/journal.pone.0190957 10.1007/s003380100146 10.1038/ngeo357 10.1371/journal.pone.0023064 10.1371/journal.pone.0013969 10.1038/ncomms10581 10.1038/s41467-018-04741-4 10.1038/s41586-020-2084-4 10.1038/s41467-019-09238-2 10.32614/RJ-2017-066 10.1371/journal.pone.0082404 10.1016/j.ecolmodel.2007.10.033 10.1111/j.1600-0587.2013.00205.x 10.1111/jbi.13224 10.7717/peerj.9449 10.1890/140275 10.3354/meps298131 10.1111/gcb.12335 10.1007/s00338-009-0522-8 10.1038/srep39666 10.1071/MF99078 10.1038/s41558-019-0576-8 10.1007/s10584-015-1399-x 10.1002/2015PA002794 10.1111/ddi.12714 10.3354/meps337001 10.1139/F09-114 10.1371/journal.pone.0033353 10.1111/gcb.14972 10.1126/science.aac7125 10.1038/s41598-020-64411-8 10.1038/nature22901 10.1111/j.2007.0906-7590.05171.x 10.3354/meps12150 10.1371/journal.pone.0093385 10.1038/nature01779 10.1038/s41561-019-0486-4 10.1038/nclimate3399 10.1038/s41558-018-0351-2 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2020 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 24P AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 1XC |
| DOI | 10.1111/geb.13191 |
| DatabaseName | Wiley Online Library Open Access CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Entomology Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology Environmental Sciences Geography |
| EISSN | 1466-8238 1466-822X |
| EndPage | 2247 |
| ExternalDocumentID | oai:HAL:hal-03916692v1 10_1111_geb_13191 GEB13191 |
| Genre | article |
| GrantInformation_xml | – fundername: John D. and Catherine T. MacArthur Foundation |
| GroupedDBID | -~X .3N .GA .Y3 0R~ 10A 1OC 24P 29I 31~ 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACHIC ACPOU ACPRK ACRPL ACSCC ACSTJ ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZFZN BDRZF BFHJK BMNLL BMXJE BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD EQZMY ESX F00 F01 F04 FEDTE G-S GODZA GTFYD HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI IHE IPSME IX1 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A OIG P2W P4D Q11 QB0 ROL RX1 SA0 SUPJJ TN5 UB1 UPT VQP W99 WIH WIK WQJ WRC WXSBR XG1 ZZTAW ~KM AAMMB AAYXX ABSQW AEFGJ AEYWJ AGHNM AGQPQ AGUYK AGXDD AGYGG AIDQK AIDYY CITATION O8X 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 1XC |
| ID | FETCH-LOGICAL-c4651-922f19a9b683091d5c597d7672c32d29c23c256ed47529fee2a6480e06b8fe93 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000574959500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1466-822X |
| IngestDate | Tue Oct 14 20:37:08 EDT 2025 Fri Jul 11 18:26:53 EDT 2025 Fri Jul 25 04:19:10 EDT 2025 Tue Nov 18 21:35:21 EST 2025 Sat Nov 29 03:56:14 EST 2025 Wed Jan 22 16:31:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | oceanographic change biodiversity adaptation diversity hotspots refugia climate change coral bleaching |
| Language | English |
| License | Attribution Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4651-922f19a9b683091d5c597d7672c32d29c23c256ed47529fee2a6480e06b8fe93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5821-3584 0000-0001-6941-8489 0000-0001-7249-0131 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.13191 |
| PQID | 2462825634 |
| PQPubID | 1066347 |
| PageCount | 18 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03916692v1 proquest_miscellaneous_2498290021 proquest_journals_2462825634 crossref_primary_10_1111_geb_13191 crossref_citationtrail_10_1111_geb_13191 wiley_primary_10_1111_geb_13191_GEB13191 |
| PublicationCentury | 2000 |
| PublicationDate | December 2020 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Global ecology and biogeography |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc Wiley |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
| References | 2017; 7 2013; 3 2012; 486 2005; 298 2019; 10 2015; 30 2020; 13 2007; 30 2020; 10 2008; 1 2018; 45 2013; 280 2013; 8 2017; 9 2020; 648 2010; 60 2019; 363 2014; 20 2013; 19 2020; 8 2020; 6 2018; 9 2004; 75 2018; 5 2004; 70 2007; 337 2000 2015; 131 2019; 26 2001; 19 2020; 579 2016; 352 1999; 50 2014; 9 2010; 5 2010; 74 2015; 13 2009; 66 2004; 144 2019; 9 2010; 38 2015; 6 2019; 3 2011 2006; 57 2016; 10 1998 2004 2017; 570 2011; 6 2008; 361 2007; 57 2001; 20 2009; 28 2016; 11 2018; 24 2009; 36 2016; 6 2016; 7 2013; 36 2003; 424 2018; 359 2020 2017; 12 2014; 37 2019 2015 2008; 212 2018; 11 2012; 7 2017; 546 2018; 13 2014; 344 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Van Hooidonk R. (e_1_2_8_73_1) 2016; 6 e_1_2_8_3_1 e_1_2_8_5_1 DiNezio P. N. (e_1_2_8_23_1) 2020; 6 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 Safaie A. (e_1_2_8_66_1) 2018; 9 Veron J. E. N. (e_1_2_8_75_1) 2000 e_1_2_8_17_1 e_1_2_8_19_1 R Core Team (e_1_2_8_65_1) 2019 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 McClanahan T. R. (e_1_2_8_46_1) 2020 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 Woo M. (e_1_2_8_76_1) 2006; 57 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 McClanahan T. R. (e_1_2_8_54_1) 2001; 19 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 Barber P. H. (e_1_2_8_8_1) 2015 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 Strong A. E. (e_1_2_8_69_1) 2004; 75 Houk P. (e_1_2_8_35_1) 2020; 10 Keith S. A. (e_1_2_8_39_1) 2013; 280 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – volume: 144 start-page: 1239 issue: 6 year: 2004 end-page: 1245 article-title: The relationship between bleaching and mortality of common corals publication-title: Marine Biology – volume: 363 issue: 6430 year: 2019 article-title: Pantropical climate interactions publication-title: Science – volume: 66 start-page: 1809 issue: 10 year: 2009 end-page: 1820 article-title: Modelling the distribution of fish accounting for spatial correlation and overdispersion publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 5 article-title: A global analysis of coral bleaching over the past two decades publication-title: Nature Communications – volume: 11 issue: 6 year: 2018 article-title: Risk‐sensitive planning for conserving coral reefs under rapid climate change publication-title: Conservation Letters – volume: 10 start-page: 2693 issue: 11 year: 2016 end-page: 2701 article-title: Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef‐building corals publication-title: The ISME Journal – volume: 337 start-page: 1 year: 2007 end-page: 13 article-title: Western Indian Ocean coral communities: Bleaching responses and susceptibility to extinction publication-title: Marine Ecology Progress Series – volume: 344 start-page: 895 issue: 6186 year: 2014 end-page: 898 article-title: Mechanisms of reef coral resistance to future climate change publication-title: Science – volume: 19 start-page: 1930 issue: 6 year: 2013 end-page: 1940 article-title: Life histories predict coral community disassembly under multiple stressors publication-title: Global Change Biology – volume: 9 start-page: 1 issue: 1 year: 2019 end-page: 13 article-title: Resilience of Central Pacific reefs subject to frequent heat stress and human disturbance publication-title: Scientific Reports – volume: 648 start-page: 135 year: 2020 end-page: 151 article-title: Highly variable taxa‐specific coral bleaching responses to thermal stresses publication-title: Marine Ecology Progress Series – volume: 37 start-page: 191 issue: 2 year: 2014 end-page: 203 article-title: Where is positional uncertainty a problem for species distribution modelling? publication-title: Ecography – volume: 7 start-page: 839 issue: 11 year: 2017 end-page: 844 article-title: Coral bleaching pathways under the control of regional temperature variability publication-title: Nature Climate Change – year: 1998 – volume: 36 start-page: L23708 issue: 23 year: 2009 article-title: Mode shift in the Indian Ocean climate under global warming stress publication-title: Geophysical Research Letters – volume: 9 start-page: 378 issue: 2 year: 2017 end-page: 400 article-title: glmmTMB balances speed and flexibility among packages for zero‐inflated generalized linear mixed modeling publication-title: The R Journal – volume: 75 start-page: 259 issue: 2 year: 2004 end-page: 268 article-title: Coral reef Watch 2002 publication-title: Bulletin of Marine Science – volume: 12 issue: 4 year: 2017 article-title: A new, high‐resolution global mass coral bleaching database publication-title: PLoS ONE – volume: 11 issue: 1 year: 2016 article-title: Ocean transport pathways to a world heritage fringing coral reef: Ningaloo Reef, Western Australia publication-title: PLoS ONE – volume: 45 start-page: 1355 issue: 6 year: 2018 end-page: 1366 article-title: Thermal energy and stress properties as the main drivers of regional distribution of coral species richness in the Indian Ocean publication-title: Journal of Biogeography – volume: 30 start-page: 609 issue: 5 year: 2007 end-page: 628 article-title: Methods to account for spatial autocorrelation in the analysis of species distributional data: A review publication-title: Ecography – volume: 70 start-page: 265 issue: 2–3 year: 2004 end-page: 274 article-title: Incorporating spatial autocorrelation into the general linear model with an application to the yellowfin tuna ( ) longline CPUE data publication-title: Fisheries Research – volume: 361 start-page: 307 year: 2008 end-page: 310 article-title: Acclimatization in tropical reef corals publication-title: Marine Ecology Progress Series – volume: 50 start-page: 839 issue: 8 year: 1999 end-page: 866 article-title: Climate change, coral bleaching and the future of the world's coral reefs publication-title: Marine and Freshwater Research – volume: 546 start-page: 82 issue: 7656 year: 2017 end-page: 90 article-title: Coral reefs in the Anthropocene publication-title: Nature – volume: 7 issue: 8 year: 2012 article-title: Prioritizing key resilience indicators to support coral reef management in a changing climate publication-title: PLoS ONE – volume: 3 start-page: 508 issue: 5 year: 2013 end-page: 511 article-title: Temporary refugia for coral reefs in a warming world publication-title: Nature Climate Change – volume: 9 start-page: 845 issue: 11 year: 2019 end-page: 851 article-title: Temperature patterns and mechanisms influencing coral bleaching during the 2016 El Niño publication-title: Nature Climate Change – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 9 article-title: Predicting coral‐reef futures from El Niño and Pacific Decadal Oscillation events publication-title: Scientific Reports – volume: 131 start-page: 607 issue: 4 year: 2015 end-page: 620 article-title: Regional coral responses to climate disturbances and warming is predicted by multivariate stress model and not temperature threshold metrics publication-title: Climatic Change – volume: 6 start-page: 39666 issue: 1 year: 2016 article-title: Local‐scale projections of coral reef futures and implications of the Paris Agreement publication-title: Scientific Reports – volume: 6 start-page: 8562 year: 2015 article-title: Coral record of southeast Indian Ocean marine heatwaves with intensified Western Pacific temperature gradient publication-title: Nature Communications – volume: 38 start-page: 518 issue: 5 year: 2010 end-page: 539 article-title: Warming seas in the coral triangle: Coral reef vulnerability and management implications publication-title: Coastal Management – volume: 60 start-page: 964 issue: 7 year: 2010 end-page: 970 article-title: Relationship between historical sea‐surface temperature variability and climate change‐induced coral mortality in the western Indian Ocean publication-title: Marine Pollution Bulletin – volume: 20 start-page: 51 issue: 1 year: 2001 end-page: 65 article-title: Coral bleaching: Interpretation of thermal tolerance limits and thermal thresholds in tropical corals publication-title: Coral Reefs – year: 2019 – volume: 19 start-page: 3592 issue: 12 year: 2013 end-page: 3606 article-title: Future habitat suitability for coral reef ecosystems under global warming and ocean acidification publication-title: Global Change Biology – year: 2015 – volume: 424 start-page: 271 issue: 6946 year: 2003 end-page: 276 article-title: El Niño/southern oscillation and tropical Pacific climate during the last millennium publication-title: Nature – volume: 212 start-page: 180 issue: 3 year: 2008 end-page: 199 article-title: Modelling susceptibility of coral reefs to environmental stress using remote sensing data and GIS models in the western Indian Ocean publication-title: Ecological Modelling – volume: 36 start-page: 1254 issue: 12 year: 2013 end-page: 1262 article-title: Global patterns and predictors of tropical reef fish species richness publication-title: Ecography – volume: 486 start-page: 59 issue: 7401 year: 2012 end-page: 67 article-title: Biodiversity loss and its impact on humanity publication-title: Nature – volume: 1 start-page: 849 issue: 12 year: 2008 end-page: 853 article-title: Recent intensification of tropical climate variability in the Indian Ocean publication-title: Nature Geoscience – volume: 57 start-page: 573 issue: 7 year: 2007 end-page: 583 article-title: Marine ecoregions of the world: A bioregionalization of coastal and shelf areas publication-title: BioScience – volume: 6 issue: 8 year: 2011 article-title: Global gradients of coral exposure to environmental stresses and implications for local management publication-title: PLoS ONE – volume: 26 start-page: 2120 year: 2019 end-page: 2133 article-title: Extreme temperature events will drive coral decline in the Coral Triangle publication-title: Global Change Biology. – volume: 30 start-page: 1113 issue: 8 year: 2015 end-page: 1131 article-title: Holocene variability in the intensity of wind‐gap upwelling in the tropical eastern Pacific publication-title: Paleoceanography and Paleoclimatology – volume: 13 start-page: 257 issue: 5 year: 2015 end-page: 263 article-title: The portfolio concept in ecology and evolution publication-title: Frontiers in Ecology and the Environment – year: 2000 – volume: 359 start-page: 80 issue: 6371 year: 2018 end-page: 83 article-title: Spatial and temporal patterns of mass bleaching of corals in the Anthropocene publication-title: Science – volume: 19 start-page: 380 issue: 4 year: 2001 end-page: 391 article-title: Coral and algal changes after the 1998 coral bleaching: Interaction with reef management and herbivores on Kenyan reefs publication-title: Coral Reefs – volume: 5 issue: 11 year: 2010 article-title: Caribbean corals in crisis: Record thermal stress, bleaching, and mortality in 2005 publication-title: PLoS ONE – volume: 7 issue: 3 year: 2012 article-title: Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress publication-title: PLoS ONE – volume: 3 start-page: 1341 year: 2019 end-page: 1350 article-title: Social–environmental drivers inform strategic management of coral reefs in the Anthropocene publication-title: Nature Ecology & Evolution – volume: 9 start-page: 2244 issue: 1 year: 2018 article-title: Author Correction: High frequency temperature variability reduces the risk of coral bleaching publication-title: Nature Communications – volume: 57 start-page: 291 issue: 3 year: 2006 end-page: 301 article-title: Dynamics of the Ningaloo current off Point Cloates, Western Australia publication-title: Marine and Freshwater Research – volume: 7 year: 2016 article-title: Near‐island biological hotspots in barren ocean basins publication-title: Nature Communications – volume: 570 start-page: 71 year: 2017 end-page: 85 article-title: Changes in coral sensitivity to thermal anomalies publication-title: Marine Ecology Progress Series – volume: 9 start-page: 40 issue: 1 year: 2019 end-page: 43 article-title: Ecological memory modifies the cumulative impact of recurrent climate extremes publication-title: Nature Climate Change – volume: 74 start-page: 1175 issue: 6 year: 2010 end-page: 1178 article-title: Uninformative parameters and model selection using Akaike's Information Criterion publication-title: The Journal of Wildlife Management – volume: 298 start-page: 131 year: 2005 end-page: 142 article-title: Effects of geography, taxa, water flow, and temperature variation on coral bleaching intensity in Mauritius publication-title: Marine Ecology Progress Series – year: 2020 – volume: 9 issue: 4 year: 2014 article-title: Biogeography and change among regional coral communities across the Western Indian Ocean publication-title: PLoS ONE – start-page: 47 year: 2011 end-page: 55 – volume: 24 start-page: 605 issue: 5 year: 2018 end-page: 620 article-title: Gradients of disturbance and environmental conditions shape coral community structure for south‐eastern Indian Ocean reefs publication-title: Diversity and Distributions – volume: 579 start-page: 385 issue: 7799 year: 2020 end-page: 392 article-title: Coupling of Indo‐Pacific climate variability over the last millennium publication-title: Nature – start-page: 427 year: 2004 end-page: 444 – volume: 280 start-page: 1 issue: 1763 year: 2013 end-page: 9 article-title: Faunal breaks and species composition of Indo‐Pacific corals: the role of plate tectonics, environment and habitat distribution publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 5 start-page: 211 year: 2018 article-title: Advancing marine biological observations and data requirements of the complementary essential ocean variables (EOVs) and essential biodiversity variables (EBVs) frameworks publication-title: Frontiers in Marine Science – volume: 13 start-page: 28 issue: 1 year: 2020 end-page: 34 article-title: Heat accumulation on coral reefs mitigated by internal waves publication-title: Nature Geoscience – volume: 28 start-page: 841 issue: 4 year: 2009 end-page: 850 article-title: Sea‐surface temperature and thermal stress in the Coral Triangle over the past two decades publication-title: Coral Reefs – volume: 352 start-page: 338 issue: 6283 year: 2016 end-page: 342 article-title: Climate change disables coral bleaching protection on the Great Barrier Reef publication-title: Science – volume: 13 issue: 2 year: 2018 article-title: Global patterns and impacts of El Niño events on coral reefs: A meta‐analysis publication-title: PLoS ONE – volume: 8 year: 2020 article-title: Treating coral bleaching as weather: A framework to validate and optimize prediction skill publication-title: PeerJ – volume: 20 start-page: 3823 issue: 12 year: 2014 end-page: 3833 article-title: The cumulative impact of annual coral bleaching can turn some coral species winners into losers publication-title: Global Change Biology – volume: 6 issue: 19 year: 2020 article-title: Emergence of an equatorial mode of climate variability in the Indian Ocean publication-title: Science Advances – volume: 8 issue: 12 year: 2013 article-title: Coral reef habitat response to climate change scenarios publication-title: PLoS ONE – ident: e_1_2_8_16_1 doi: 10.1038/nature11148 – ident: e_1_2_8_68_1 doi: 10.1641/B570707 – ident: e_1_2_8_13_1 doi: 10.1007/978-3-662-06414-6_24 – ident: e_1_2_8_62_1 doi: 10.1126/science.1251336 – ident: e_1_2_8_59_1 doi: 10.1029/2009GL040590 – volume: 6 issue: 19 year: 2020 ident: e_1_2_8_23_1 article-title: Emergence of an equatorial mode of climate variability in the Indian Ocean publication-title: Science Advances doi: 10.1126/sciadv.aay7684 – ident: e_1_2_8_20_1 doi: 10.1111/gcb.12191 – ident: e_1_2_8_36_1 doi: 10.1126/science.aan8048 – ident: e_1_2_8_80_1 doi: 10.1038/ncomms9562 – ident: e_1_2_8_51_1 doi: 10.1371/journal.pone.0042884 – ident: e_1_2_8_11_1 doi: 10.1038/ismej.2016.54 – volume: 75 start-page: 259 issue: 2 year: 2004 ident: e_1_2_8_69_1 article-title: Coral reef Watch 2002 publication-title: Bulletin of Marine Science – ident: e_1_2_8_32_1 doi: 10.1111/gcb.12658 – ident: e_1_2_8_63_1 doi: 10.1111/j.1600-0587.2013.00291.x – ident: e_1_2_8_72_1 doi: 10.1038/nclimate1829 – ident: e_1_2_8_74_1 doi: 10.1007/978-94-007-0114-4_5 – ident: e_1_2_8_28_1 doi: 10.3354/meps07556 – ident: e_1_2_8_10_1 doi: 10.1111/conl.12587 – ident: e_1_2_8_15_1 doi: 10.1126/science.aav4236 – ident: e_1_2_8_21_1 doi: 10.1038/s41559-019-0953-8 – ident: e_1_2_8_55_1 doi: 10.1080/08920753.2010.509466 – ident: e_1_2_8_14_1 doi: 10.1007/978-1-4757-2917-7 – volume: 57 start-page: 291 issue: 3 year: 2006 ident: e_1_2_8_76_1 article-title: Dynamics of the Ningaloo current off Point Cloates, Western Australia publication-title: Marine and Freshwater Research doi: 10.1071/MF05106 – ident: e_1_2_8_57_1 doi: 10.3389/fmars.2018.00211 – ident: e_1_2_8_60_1 doi: 10.1016/j.fishres.2004.08.008 – ident: e_1_2_8_78_1 doi: 10.1371/journal.pone.0145822 – ident: e_1_2_8_50_1 doi: 10.3354/meps13402 – volume: 19 start-page: 380 issue: 4 year: 2001 ident: e_1_2_8_54_1 article-title: Coral and algal changes after the 1998 coral bleaching: Interaction with reef management and herbivores on Kenyan reefs publication-title: Coral Reefs doi: 10.1007/s003380000133 – ident: e_1_2_8_25_1 doi: 10.1371/journal.pone.0175490 – ident: e_1_2_8_44_1 doi: 10.1007/s00227-003-1271-9 – ident: e_1_2_8_5_1 doi: 10.1111/j.1937-2817.2010.tb01236.x – ident: e_1_2_8_61_1 – ident: e_1_2_8_24_1 doi: 10.1038/s41598-019-40150-3 – ident: e_1_2_8_6_1 doi: 10.1016/j.marpolbul.2010.03.033 – ident: e_1_2_8_17_1 doi: 10.1371/journal.pone.0190957 – ident: e_1_2_8_9_1 – ident: e_1_2_8_29_1 doi: 10.1007/s003380100146 – volume-title: Population dynamics of the reef crisis year: 2020 ident: e_1_2_8_46_1 – ident: e_1_2_8_2_1 doi: 10.1038/ngeo357 – volume-title: R: A language and environment for statistical computing year: 2019 ident: e_1_2_8_65_1 – ident: e_1_2_8_42_1 doi: 10.1371/journal.pone.0023064 – ident: e_1_2_8_27_1 doi: 10.1371/journal.pone.0013969 – ident: e_1_2_8_31_1 doi: 10.1038/ncomms10581 – volume-title: 30 Pluralism explains diversity in the Coral Triangle year: 2015 ident: e_1_2_8_8_1 – volume: 9 start-page: 2244 issue: 1 year: 2018 ident: e_1_2_8_66_1 article-title: Author Correction: High frequency temperature variability reduces the risk of coral bleaching publication-title: Nature Communications doi: 10.1038/s41467-018-04741-4 – ident: e_1_2_8_3_1 doi: 10.1038/s41586-020-2084-4 – ident: e_1_2_8_70_1 doi: 10.1038/s41467-019-09238-2 – ident: e_1_2_8_12_1 doi: 10.32614/RJ-2017-066 – ident: e_1_2_8_30_1 doi: 10.1371/journal.pone.0082404 – ident: e_1_2_8_43_1 doi: 10.1016/j.ecolmodel.2007.10.033 – ident: e_1_2_8_58_1 doi: 10.1111/j.1600-0587.2013.00205.x – volume-title: Corals of the world, Vol 1–3 year: 2000 ident: e_1_2_8_75_1 – ident: e_1_2_8_7_1 doi: 10.1111/jbi.13224 – ident: e_1_2_8_22_1 doi: 10.7717/peerj.9449 – ident: e_1_2_8_67_1 doi: 10.1890/140275 – ident: e_1_2_8_53_1 doi: 10.3354/meps298131 – ident: e_1_2_8_19_1 doi: 10.1111/gcb.12335 – ident: e_1_2_8_64_1 doi: 10.1007/s00338-009-0522-8 – volume: 6 start-page: 39666 issue: 1 year: 2016 ident: e_1_2_8_73_1 article-title: Local‐scale projections of coral reef futures and implications of the Paris Agreement publication-title: Scientific Reports doi: 10.1038/srep39666 – ident: e_1_2_8_34_1 doi: 10.1071/MF99078 – ident: e_1_2_8_49_1 doi: 10.1038/s41558-019-0576-8 – ident: e_1_2_8_52_1 doi: 10.1007/s10584-015-1399-x – ident: e_1_2_8_71_1 doi: 10.1002/2015PA002794 – ident: e_1_2_8_79_1 doi: 10.1111/ddi.12714 – ident: e_1_2_8_48_1 doi: 10.3354/meps337001 – volume: 280 start-page: 1 issue: 1763 year: 2013 ident: e_1_2_8_39_1 article-title: Faunal breaks and species composition of Indo‐Pacific corals: the role of plate tectonics, environment and habitat distribution publication-title: Proceedings of the Royal Society B: Biological Sciences – ident: e_1_2_8_41_1 doi: 10.1139/F09-114 – ident: e_1_2_8_33_1 doi: 10.1371/journal.pone.0033353 – ident: e_1_2_8_56_1 doi: 10.1111/gcb.14972 – ident: e_1_2_8_4_1 doi: 10.1126/science.aac7125 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: e_1_2_8_35_1 article-title: Predicting coral‐reef futures from El Niño and Pacific Decadal Oscillation events publication-title: Scientific Reports doi: 10.1038/s41598-020-64411-8 – ident: e_1_2_8_37_1 doi: 10.1038/nature22901 – ident: e_1_2_8_26_1 doi: 10.1111/j.2007.0906-7590.05171.x – ident: e_1_2_8_45_1 doi: 10.3354/meps12150 – ident: e_1_2_8_47_1 doi: 10.1371/journal.pone.0093385 – ident: e_1_2_8_18_1 doi: 10.1038/nature01779 – ident: e_1_2_8_77_1 doi: 10.1038/s41561-019-0486-4 – ident: e_1_2_8_40_1 doi: 10.1038/nclimate3399 – ident: e_1_2_8_38_1 doi: 10.1038/s41558-018-0351-2 |
| SSID | ssj0005456 |
| Score | 2.5242934 |
| Snippet | Aim
Predictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological... AimPredictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological... AIM: Predictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological... AIM - Predictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological... |
| SourceID | hal proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2229 |
| SubjectTerms | Acclimation Acclimatization accounting adaptation Anomalies biodiversity biogeography Bleaching climate climate change Climate models coral bleaching Coral reefs Corals diversity hotspots ecoregions Environmental history Environmental stress Exposure exposure models fauna Faunal provinces geographical distribution geographical variation Geographical variations Geography Heat Heat stress Heat tolerance history islands issues and policy lead Life Sciences light oceanographic change prediction Predictions refugia Scleractinia Sea surface temperature Sensitivity Skewed distributions Statistical models summer surface water temperature surveys Temperature Thermal resistance Thermal stress threshold models Underwater Variability Water flow |
| Title | Large geographic variability in the resistance of corals to thermal stress |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.13191 https://www.proquest.com/docview/2462825634 https://www.proquest.com/docview/2498290021 https://hal.science/hal-03916692 |
| Volume | 29 |
| WOSCitedRecordID | wos000574959500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1466-8238 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005456 issn: 1466-822X databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90U_DF7-F0jig--FJp08_g09TNIUNEFPZW0jT7gNHJOgf-9961XZ2gIPhWkkubJrn0d83d7wAuBOdKBqZtaOnHhiMj1wi45RnKRmvCCbSSKk824T8-Bv2-eFqD62UsTM4PUf5wI83I9mtScBmlK0o-1NGVhQsITZ-qZdkB5W3gztOXf4fjFqFFHj6e9wtaIXLjKZt--xitj8gVcgVnrqLV7HPT2flXR3dhu0CZrJUviz1Y08k-bLYzhuqPfai1v8LbUKzQ7_QAHnrkGM6GeWb00VixBdrSOZX3BxsnDOEiQwOdQCe2YNMBUxTin7L5lOpwl5-wPPzkEF467ZfbrlFkWzAU5UM3cNYGlpAi8gIbQUTsKrQ1Yt_zubJ5zIXitkJ8pGPHd7kYaM2l5wSmNr0oGGhh16CSTBN9BMy3tLS06ctYRI6LtzRxUzAllrhKSO3W4XI56qEqmMgpIcYkXFokOGRhNmR1OC9F33L6jR-FcOrKeiLM7rZ6IZUR_73nCb5AocZyZsNCTdOQU2QuvpTt1OGsrEYFo1MTmejpO8kIOmxGLIT9zub5956E9-2b7OL476InsMXJhs9cZBpQmc_e9SlsqMV8nM6a2ZpuQvXuufPa-wQPAfgk |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_8RF_8FudnFB98qbTpZ8AXPzan1iEyYW8lTbM5GJ1sc-B_713b1QkKgm8luZQ0d5feJXe_AzgVnCsZmLahpZ8YjoxdI-CWZygbvQkn0EqqvNiE32gErZZ4moGLSS5Mjg9RHriRZmT7NSk4HUhPaXlHx-cWShD6PvMOihHK9_zNc-0l_ArxcNwiu8jDGfBWgSxEkTzl4G__o9lXioacMjWnDdbsj1Nb_d9c12ClsDTZZS4a6zCj0w1YrGYo1R8bsF39SnFDskLHh5twH1JwOOvk1dFfu4qN0Z_O4bw_WDdlaDIydNLJ8MQRrN9mitL8h2zUpz7c6XssT0HZgmat2ryuG0XFBUNRTXQDOde2hBSxF9hoSCSuQn8j8T2fK5snXChuK7SRdOL4Lhdtrbn0nMDUphcHbS3sbZhL-6neAeZbWlra9GUiYsfFV5q4MZgSW1wlpHYrcDZZ9kgVaORUFKMXTbwSXLIoW7IKnJSkbzkEx49EyLuyn0Cz65dhRG2Ege95go-RaH_C2qhQ1WHEKTsXP8p2KnBcdqOS0c2JTHX_nWgEXTijPYTzzhj9-0yi2-pV9rD7d9IjWKo3H8MovGs87MEyJ58-C5nZh7nR4F0fwIIaj7rDwWEh4p-vzfwK |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60PvDiu1ifq3jwEkk2zwUvVVtfpYgo9BY2m01bkFRsLfTfO5OksYKC4C3szsJmZ2fzTXbmG4BTwbmSgWkbWvqx4cjINQJueYay0ZtwAq2kyotN-O120OmIxzm4mObC5PwQ5Q83sozsvCYD129xMmPlXR2dW7iD0PdZcKiITAUWrp-aL62vEA_HLbKLPJwB7xTMQhTJUw7-9j2a71E05AzUnAWs2Renufa_ua7DaoE0WT3fGhswp9NNWGpkLNWTTag2vlLcUKyw8eEW3LcoOJx18-rovb5iY_SnczrvCeunDCEjQyedgCeOYIOEKUrzH7LRgPrwpH9leQrKNjw3G89Xt0ZRccFQVBPdQM0llpAi8gIbgUTsKvQ3Yt_zubJ5zIXitkKMpGPHd7lItObScwJTm14UJFrYVaikg1TvAPMtLS1t-jIWESpHChMPBlNii6uE1G4NzqbLHqqCjZyKYryGU68ElyzMlqwGJ6XoW07B8aMQ6q7sJ9Ls23orpDbiwPc8wccotD9VbViY6jDklJ2LL2U7NTguu9HI6OZEpnrwQTKCLpwRD-G8M0X_PpPwpnGZPez-XfQIlh-vm2Hrrv2wByucXPosYmYfKqP3D30Ai2o86g_fD4sd_gk_pfuF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+geographic+variability+in+the+resistance+of+corals+to+thermal+stress&rft.jtitle=Global+ecology+and+biogeography&rft.au=McClanahan%2C+Timothy+R.&rft.au=Maina%2C+Joseph+M.&rft.au=Darling%2C+Emily+S.&rft.au=Guillaume%2C+Mireille+M.+M.&rft.date=2020-12-01&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=29&rft.issue=12&rft.spage=2229&rft.epage=2247&rft_id=info:doi/10.1111%2Fgeb.13191&rft.externalDBID=10.1111%252Fgeb.13191&rft.externalDocID=GEB13191 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |