Truly monolithic algebraic multigrid for fluid-structure interaction

The coupling of flexible structures to incompressible fluids draws a lot of attention during the last decade. Many different solution schemes have been proposed. In this contribution, we concentrate on the strong coupling fluid–structure interaction by means of monolithic solution schemes. Therein,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering Jg. 85; H. 8; S. 987 - 1016
Hauptverfasser: Gee, M. W., Küttler, U., Wall, W. A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester, UK John Wiley & Sons, Ltd 25.02.2011
Wiley
Schlagworte:
ISSN:0029-5981, 1097-0207, 1097-0207
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The coupling of flexible structures to incompressible fluids draws a lot of attention during the last decade. Many different solution schemes have been proposed. In this contribution, we concentrate on the strong coupling fluid–structure interaction by means of monolithic solution schemes. Therein, a Newton–Krylov method is applied to the monolithic set of nonlinear equations. Such schemes require good preconditioning to be efficient. We propose two preconditioners that apply algebraic multigrid techniques to the entire fluid–structure interaction system of equations. The first is based on a standard block Gauss–Seidel approach, where approximate inverses of the individual field blocks are based on a algebraic multigrid hierarchy tailored for the type of the underlying physical problem. The second is based on a monolithic coarsening scheme for the coupled system that makes use of prolongation and restriction projections constructed for the individual fields. The resulting nonsymmetric monolithic algebraic multigrid method therefore involves coupling of the fields on coarse approximations to the problem yielding significantly enhanced performance. Copyright © 2010 John Wiley & Sons, Ltd.
AbstractList The coupling of flexible structures to incompressible fluids draws a lot of attention during the last decade. Many different solution schemes have been proposed. In this contribution, we concentrate on the strong coupling fluid-structure interaction by means of monolithic solution schemes. Therein, a Newton-Krylov method is applied to the monolithic set of nonlinear equations. Such schemes require good preconditioning to be efficient. We propose two preconditioners that apply algebraic multigrid techniques to the entire fluid-structure interaction system of equations. The first is based on a standard block Gauss-Seidel approach, where approximate inverses of the individual field blocks are based on a algebraic multigrid hierarchy tailored for the type of the underlying physical problem. The second is based on a monolithic coarsening scheme for the coupled system that makes use of prolongation and restriction projections constructed for the individual fields. The resulting nonsymmetric monolithic algebraic multigrid method therefore involves coupling of the fields on coarse approximations to the problem yielding significantly enhanced performance. Copyright 2010 John Wiley & Sons, Ltd.
The coupling of flexible structures to incompressible fluids draws a lot of attention during the last decade. Many different solution schemes have been proposed. In this contribution, we concentrate on the strong coupling fluid–structure interaction by means of monolithic solution schemes. Therein, a Newton–Krylov method is applied to the monolithic set of nonlinear equations. Such schemes require good preconditioning to be efficient. We propose two preconditioners that apply algebraic multigrid techniques to the entire fluid–structure interaction system of equations. The first is based on a standard block Gauss–Seidel approach, where approximate inverses of the individual field blocks are based on a algebraic multigrid hierarchy tailored for the type of the underlying physical problem. The second is based on a monolithic coarsening scheme for the coupled system that makes use of prolongation and restriction projections constructed for the individual fields. The resulting nonsymmetric monolithic algebraic multigrid method therefore involves coupling of the fields on coarse approximations to the problem yielding significantly enhanced performance. Copyright © 2010 John Wiley & Sons, Ltd.
Author Küttler, U.
Gee, M. W.
Wall, W. A.
Author_xml – sequence: 1
  givenname: M. W.
  surname: Gee
  fullname: Gee, M. W.
  email: gee@lnm.mw.tum.de
  organization: Institute for Computational Mechanics, Technische Universität München, Boltzmannstrasse 15, D-85747 Garching b. München, Germany
– sequence: 2
  givenname: U.
  surname: Küttler
  fullname: Küttler, U.
  organization: Institute for Computational Mechanics, Technische Universität München, Boltzmannstrasse 15, D-85747 Garching b. München, Germany
– sequence: 3
  givenname: W. A.
  surname: Wall
  fullname: Wall, W. A.
  organization: Institute for Computational Mechanics, Technische Universität München, Boltzmannstrasse 15, D-85747 Garching b. München, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23760072$$DView record in Pascal Francis
BookMark eNp10N9rFDEQB_AgFbzWgn_CvhR92XOSbH49Su0P4axUWtq3MJvLtmmzuzXJovffu8dVQdGnGZjPDMx3n-wN4-AJeUNhSQHY-6H3Sw5AX5AFBaNqYKD2yGIemVoYTV-R_ZwfZkAF8AX5eJWmuKn6cRhjKPfBVRjvfJtw7voplnCXwrrqxlR1cQrrOpc0uTIlX4Wh-ISuhHF4TV52GLM_fK4H5Pr05Or4vF59Oft0_GFVu0YKWusO16Z1AjuKjYJGS6a07kRLDdPYOg1eSnDYes-9FAJaCWrNOArNG-oafkDe7u4-pfHb5HOxfcjOx4iDH6dstZGsaQw3szx6lpgdxi7h4EK2Tyn0mDaWcSUBFJvdcudcGnNOvrMuFNz-VOYIoqVgt6naOVW7TXVeePfXwq-b_6D1jn4P0W_-6-zF55M_fcjF__jtMT1aqbgS9ubizF6y1em5-XprL_lPIYqXQQ
CODEN IJNMBH
CitedBy_id crossref_primary_10_1016_j_cma_2023_116134
crossref_primary_10_1016_j_compfluid_2018_01_016
crossref_primary_10_1002_nla_2109
crossref_primary_10_1002_nme_5214
crossref_primary_10_1007_s00021_021_00593_z
crossref_primary_10_3390_fluids6060229
crossref_primary_10_1002_cnm_2488
crossref_primary_10_1007_s10237_010_0246_2
crossref_primary_10_1186_s40323_022_00237_5
crossref_primary_10_1007_s10915_017_0638_x
crossref_primary_10_1016_j_compfluid_2018_08_003
crossref_primary_10_1002_gamm_202100007
crossref_primary_10_1002_nme_4530
crossref_primary_10_1002_nme_4370
crossref_primary_10_2514_1_J056163
crossref_primary_10_1002_nla_1889
crossref_primary_10_1007_s11831_013_9085_5
crossref_primary_10_1137_17M1138868
crossref_primary_10_1137_20M1385950
crossref_primary_10_3390_fluids6060213
crossref_primary_10_1002_cnm_2813
crossref_primary_10_1137_22M1496773
crossref_primary_10_1002_nme_7350
crossref_primary_10_3390_fluids6070259
crossref_primary_10_1016_j_rser_2015_01_021
crossref_primary_10_1002_nme_5970
crossref_primary_10_1007_s10915_022_02049_6
crossref_primary_10_1016_j_jcp_2012_04_037
crossref_primary_10_1016_j_jcp_2022_111179
crossref_primary_10_1016_j_cma_2016_09_020
crossref_primary_10_1016_j_compfluid_2013_07_031
crossref_primary_10_1016_j_compstruc_2022_106969
crossref_primary_10_1017_jfm_2023_386
crossref_primary_10_1002_nme_4943
crossref_primary_10_1002_nme_4785
crossref_primary_10_1002_fld_4169
crossref_primary_10_1016_j_jcp_2015_05_009
crossref_primary_10_3390_math9151747
crossref_primary_10_1002_zamm_202300562
crossref_primary_10_1007_s10409_024_24074_x
crossref_primary_10_1145_3766906
crossref_primary_10_1137_140953253
crossref_primary_10_1007_s00366_019_00880_4
crossref_primary_10_1007_s10915_017_0363_5
crossref_primary_10_1137_151006135
crossref_primary_10_1016_j_compfluid_2018_11_004
crossref_primary_10_1016_j_cma_2014_09_034
crossref_primary_10_1007_s10494_022_00364_4
crossref_primary_10_1016_j_jcp_2012_08_047
crossref_primary_10_1016_j_cma_2014_08_018
crossref_primary_10_1002_cnm_2795
crossref_primary_10_1137_120893239
crossref_primary_10_1016_j_jfluidstructs_2022_103510
crossref_primary_10_1017_S0962492917000046
crossref_primary_10_1016_j_cma_2019_03_017
crossref_primary_10_1007_s10915_019_01113_y
crossref_primary_10_1016_j_cma_2013_09_020
crossref_primary_10_1016_j_jcp_2012_07_001
crossref_primary_10_1016_j_cma_2016_07_016
crossref_primary_10_1002_nme_6047
crossref_primary_10_1016_j_cma_2017_09_020
crossref_primary_10_1016_j_cma_2012_09_004
crossref_primary_10_1016_j_jcp_2016_03_020
crossref_primary_10_1002_nme_6680
crossref_primary_10_1016_j_jcp_2023_112347
crossref_primary_10_1016_j_cma_2015_08_004
crossref_primary_10_1016_j_jcp_2014_05_020
crossref_primary_10_1016_j_jfluidstructs_2015_07_006
crossref_primary_10_1002_cnm_1472
crossref_primary_10_1002_cnm_1477
crossref_primary_10_1016_j_cma_2024_117541
crossref_primary_10_5402_2012_127647
crossref_primary_10_1002_cnm_3771
crossref_primary_10_1002_fld_5159
crossref_primary_10_1016_j_compfluid_2016_04_023
crossref_primary_10_1007_s10237_017_0982_7
crossref_primary_10_1007_s11075_025_02100_1
crossref_primary_10_1002_nme_4607
crossref_primary_10_1016_j_jcp_2019_108923
crossref_primary_10_1137_23M1578401
crossref_primary_10_1016_j_paerosci_2013_09_003
crossref_primary_10_1016_j_matcom_2016_07_008
crossref_primary_10_1016_j_jcp_2022_111708
crossref_primary_10_1002_bit_25191
crossref_primary_10_1007_s10915_024_02764_2
crossref_primary_10_1016_j_camwa_2015_12_024
crossref_primary_10_1002_cnm_3301
crossref_primary_10_1016_j_camwa_2015_12_025
crossref_primary_10_1016_j_jcp_2013_03_025
crossref_primary_10_1016_j_jcp_2014_03_006
crossref_primary_10_1016_j_cma_2022_115596
crossref_primary_10_1016_j_cma_2023_116468
crossref_primary_10_1137_090772836
crossref_primary_10_1002_nme_4315
crossref_primary_10_1061__ASCE_AS_1943_5525_0000427
crossref_primary_10_1007_s10439_010_0067_6
crossref_primary_10_1016_j_ijheatfluidflow_2019_01_010
crossref_primary_10_1016_j_compfluid_2017_05_005
crossref_primary_10_1137_21M140448X
crossref_primary_10_1016_j_finel_2019_02_002
crossref_primary_10_1137_16M1055396
crossref_primary_10_1016_j_cma_2012_03_010
crossref_primary_10_1016_j_cma_2022_115506
crossref_primary_10_1016_j_cma_2016_03_005
crossref_primary_10_1515_rnam_2022_0014
crossref_primary_10_1016_j_apor_2021_102734
crossref_primary_10_1016_j_jcp_2012_10_028
crossref_primary_10_1007_s00158_012_0808_2
crossref_primary_10_1016_j_finel_2017_12_002
crossref_primary_10_1002_fld_4801
crossref_primary_10_1016_j_jcp_2012_10_025
crossref_primary_10_1002_nme_6094
crossref_primary_10_1007_s00466_010_0486_0
crossref_primary_10_1002_nme_6258
crossref_primary_10_1016_j_jcp_2011_09_025
crossref_primary_10_1002_nme_6494
crossref_primary_10_1002_nme_5285
crossref_primary_10_1016_j_ijheatfluidflow_2013_06_004
crossref_primary_10_1016_j_cma_2011_06_006
crossref_primary_10_1016_j_compstruc_2021_106718
crossref_primary_10_1016_j_cma_2012_12_010
crossref_primary_10_1016_j_cma_2024_116783
crossref_primary_10_1137_19M1285044
crossref_primary_10_1137_18M1184047
crossref_primary_10_1002_fld_4776
crossref_primary_10_1007_s10915_021_01748_w
crossref_primary_10_1016_j_cma_2016_01_007
crossref_primary_10_1016_j_padiff_2025_101227
crossref_primary_10_1186_s40323_020_00150_9
crossref_primary_10_1016_j_jcp_2016_10_005
crossref_primary_10_1080_17445302_2024_2317040
crossref_primary_10_1016_j_cma_2022_115489
crossref_primary_10_1002_num_22771
crossref_primary_10_1007_s11831_019_09394_0
Cites_doi 10.1016/j.cma.2005.10.019
10.1016/j.jbiomech.2009.04.016
10.1016/j.jcp.2008.04.006
10.1016/j.cma.2004.12.005
10.1007/s00466-006-0084-3
10.1115/1.3057468
10.1137/1.9780898719505
10.1002/fld.1093
10.1137/0907058
10.1002/nme.2503
10.1007/s006070050022
10.1016/j.cma.2004.01.024
10.1137/1.9780898718003
10.1016/0045-7930(92)90047-Y
10.1007/978-3-662-02427-0
10.1016/j.compstruc.2006.11.006
10.1016/j.cma.2009.04.004
10.1002/nla.593
10.1016/j.cma.2008.04.018
10.1051/m2an:2003049
10.1002/nme.1624
10.1146/annurev.bioeng.10.061807.160439
10.1007/BF02238511
10.1002/cnm.1281
10.1016/j.compstruc.2004.04.021
10.1007/s00466-008-0255-5
10.1016/j.cma.2003.09.006
10.1002/nme.1792
10.1016/S0045-7825(00)00381-9
10.1137/1.9781611970944
10.1002/fld.1430
10.1137/050626272
10.1002/cnm.1236
10.1007/s00466-008-0270-6
10.1142/S0218202507002170
10.1016/S0045-7825(99)00416-8
10.1137/060659545
10.1002/0470091355.ecm063
10.1016/j.cma.2004.07.043
10.1016/S0021-9290(99)00201-8
10.1002/fld.1931
10.1007/s211-001-8015-y
10.1002/fld.1443
10.1023/A:1019161730732
10.1016/j.cma.2006.09.002
10.1109/SC.2000.10008
10.1002/(SICI)1097-0363(19960930)23:6<527::AID-FLD429>3.0.CO;2-Z
ContentType Journal Article
Copyright Copyright © 2010 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2010 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.3001
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1097-0207
EndPage 1016
ExternalDocumentID 23760072
10_1002_nme_3001
NME3001
ark_67375_WNG_Q2LFH9RX_Q
Genre article
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
ALUQN
AAYXX
CITATION
O8X
.4S
6TJ
ABDPE
ABEML
ACKIV
ACSCC
AGHNM
AI.
ARCSS
GBZZK
IQODW
M6O
PALCI
RIWAO
SAMSI
VH1
VOH
ZY4
~A~
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c4651-8fad9bc5af1a4704862788f5b1928abc80e660cabee3e6550b607d23a58341c43
IEDL.DBID DRFUL
ISICitedReferencesCount 143
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287059700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
1097-0207
IngestDate Fri Sep 05 10:48:53 EDT 2025
Mon Jul 21 09:16:17 EDT 2025
Tue Nov 18 22:21:11 EST 2025
Sat Nov 29 06:43:43 EST 2025
Wed Aug 20 07:27:10 EDT 2025
Tue Nov 11 03:33:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Performance evaluation
Algebraic structure
Vibration
monolithic solution schemes
Krylov subspace method
Fluid structure interaction
Modeling
fluid-structure interaction
Multigrid
Algebraic method
algebraic multigrid
Coupling
Incompressible fluid
Non linear effect
Gauss Seidel method
Newton method
Preconditioning
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4651-8fad9bc5af1a4704862788f5b1928abc80e660cabee3e6550b607d23a58341c43
Notes ark:/67375/WNG-Q2LFH9RX-Q
istex:AB3537332DF857BC7A47F100B8263C682CFC6EF6
ArticleID:NME3001
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://mediatum.ub.tum.de/node?id=1084630
PQID 896244939
PQPubID 23500
PageCount 30
ParticipantIDs proquest_miscellaneous_896244939
pascalfrancis_primary_23760072
crossref_citationtrail_10_1002_nme_3001
crossref_primary_10_1002_nme_3001
wiley_primary_10_1002_nme_3001_NME3001
istex_primary_ark_67375_WNG_Q2LFH9RX_Q
PublicationCentury 2000
PublicationDate 25 February 2011
PublicationDateYYYYMMDD 2011-02-25
PublicationDate_xml – month: 02
  year: 2011
  text: 25 February 2011
  day: 25
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Causin P, Gerbeau J-F, Nobile F. Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Computer Methods in Applied Mechanics and Engineering 2005; 194:4506-4527.
Humphrey J, Taylor C. Intracranial and abdominal aortic aneurysms: Similarities, differences, and need for a new class of computational models. Annual Review of Biomedical Engineering 2008; 10:221-246.
Sala M, Tuminaro R. A new Petrov-Galerkin smoothed aggregation preconditioner for nonsymmetric linear systems. SIAM Journal on Scientific Computing 2008; 31:143-166.
Küttler U, Gee M, Förster C, Comerford A, Wall W. Coupling strategies for biomedical fluid-structure interaction problems. International Journal for Numerical Methods in Biomedical Engineering 2009; DOI: 10.1002/cnm.1281.
Hübner B, Walhorn E, Dinkler D. A monolithic approach to fluid-structure interaction using space-time finite elements. Computer Methods in Applied Mechanics and Engineering 2004; 193:2087-2104.
Vaněk P, Brezina M, Mandel J. Convergence of algebraic multigrid based on smoothed aggregation. Numerical Mathematics 2001; 88:559-579.
Joosten MM, Dettmer WG, Peric D. Analysis of the block Gauss-Seidel solution procedure for a strongly coupled model problem with reference to fluid-structure interaction. International Journal for Numerical Methods in Engineering 2009; 78:757-778.
Gee M, Hu J, Tuminaro R. A new smoothed aggregation multigrid method for anisotropic problems. Numerical Linear Algebra With Applications 2009; 16:19-37.
Quarteroni A, Sacco R, Saleri F. Numerical Mathematics-Series: Texts in Applied Mathematics. vol. 37. Springer: Berlin, 2004.
Briggs W, Henson V, McCormick S. A multigrid Tutorial (2nd edn). SIAM: Philadelphia, 2000.
Carre G, Lanteri S. Parallel linear multigrid by agglomeration for the acceleration of 3d compressible flow calculations on unstructured meshes. Numerical Algorithms 2000; 24:309-322.
Lallemand M-H, Steve H, Dervieux A. Unstructured multigridding by volume agglomeration: current status. Computational Fluids 1992; 21:397-433.
Förster C, Wall WA, Ramm E. On the geometric conservation law in transient flow calculations on deforming domains. International Journal for Numerical Methods in Fluids 2005; 50:1369-1379.
Gerbeau J-F, Vidrascu M. A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. Mathematical Modelling and Numerical Analysis 2003; 37:631-647.
Küttler U, Wall WA. Fixed-point fluid-structure interaction solvers with dynamic relaxation. Computational Mechanics 2008; 43:61-72.
Mandel J, Brezina M, Vaněk P. Energy optimization of algebraic multigrid bases. Computing 1999; 62:205-228.
Lin P, Sala M, Shadid J, Tuminaro R. Performance of fully coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport. International Journal for Numerical Methods in Engineering 2006; 67:208-225.
Braess H, Wriggers P. Arbitrary Lagrangian Eulerian finite element analysis of free surface flow. Computer Methods in Applied Mechanics and Engineering 2000; 190:95-109.
Mavriplis D, Venkatakrishnan V. A 3d agglomeration multigrid solver for the Reynolds-averaged Navier-Stokes equations on unstructured meshes. International Journal for Numerical Methods in Fluids 1996; 23:527-544.
Saad Y. Iterative Methods for Sparse Linear Systems. SIAM: Philadelphia, PA, 2003.
Heil M, Hazel A, Boyle J. Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches. Computational Mechanics 2008; 43:91-101.
Brezina M, Falgout R, MacLachlan S, Manteuffel T, McCormick S, Ruge J. Adaptive smoothed aggregation (αsa) multigrid. SIAM Review 2005; 47(2):317-346.
Gee M, Ramm E, Wall W. Parallel multilevel solution of nonlinear shell structures. Computer Methods in Applied Mechanics and Engineering 2005; 194:2513-2533.
Murea CM, Sy S. A fast method for solving fluid-structure interaction problems numerically. International Journal for Numerical Methods in Fluids 2009; 60:1149-1172.
Bazilevs Y, Calo V, Zhang Y, Hughes T. Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Computational Mechanics 2006; 38:310-322.
Tezduyar T, Sathe S, Cragin T, Nanna B, Conklin B, Pausewang J, Schwaab M. Modelling of fluid-structure interactions with the space-time finite elements: arterial fluid mechanics. International Journal for Numerical Methods in Fluids 2007; 54:901-922.
Gee M, Reeps C, Eckstein H, Wall W. Prestressing in finite deformation abdominal aortic aneurysm simulation. Journal of Biomechanics 2009; 42:1732-1739.
Quaini A, Quarteroni A. A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method. Mathematical Models and Methods in Applied Sciences 2007; 17:957-983.
Vierendeels J, Lanoye L, Degroote J, Verdonck P. Implicit coupling of partitioned fluid-structure interaction problems with reduced order models. Computers and Structures 2007; 85:970-976.
Tezduyar T, Sathe S. Modelling of fluid-structure interactions with the space-time finite elements: solution techniques. International Journal for Numerical Methods in Fluids 2007; 54:855-900.
Badia S, Quaini A, Quarteroni A. Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect. In Computer Methods in Applied Mechanics and Engineering 2008; 197:4216-4232.
Förster C, Wall WA, Ramm E. Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering 2007; 196:1278-1293.
Fernández M, Moubachir M. A Newton method using exact Jacobians for solving fluid-structure coupling. Computers and Structures 2005; 83:127-142.
Küttler U, Wall WA. Vector extrapolation for strong coupling fluid-structure interaction solvers. Journal of Applied Mechanics 2009; 76:021205-1-7.
Saad Y, Schultz M. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 1986; 7:856-869.
Badia A, Nobile F, Vergara C. Fluid-structure partitioned procedures based on robin transmission conditions. Journal of Computational Physics 2008; 227:7027-7051.
Raghavan M, Vorp D. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. Journal of Biomechanics 2000; 33:475-482.
Brannick J, Zikatanov L. In Domain Decomposition Methods in Science and Engineering XVI. Algebraic Multigrid Methods Based on Compatible Relaxation and Energy Minimization, Widlund OB, Keyes DE (eds). Springer: New York, 2006; 15-26.
Kelley C. Iterative Methods for Linear and Nonlinear Equations Frontiers in Applied Mathematics. SIAM: Philadelphia, PA, 1995.
Gee M, Förster C, Wall W. A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. International Journal for Numerical Methods in Biomedical Engineering 2010; 1:52-72.
Le Tallec P, Mouro J. Fluid structure interaction with large structural displacements. Computer Methods in Applied Mechanics and Engineering 2001; 190:3039-3067.
Trottenberg U, Oosterlee C, Schüller A. Multigrid. Academic Press: London, 2001.
Vaněk P, Mandel J, Brezina M. Algebraic multigrid based on smoothed aggregation for second and fourth order problems. Computing 1996; 56:179-196.
Fernández M, Gerbeau J-F, Grandmont C. A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. International Journal for Numerical Methods in Engineering 2007; 69:794-821.
Hackbusch W. Multigrid Methods and Applications, Computational Mathematics, vol. 4. Springer: Berlin, 1985.
Heil M. An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering 2004; 193:1-23.
Dettmer W, Perić D. A computational framework for fluid-structure interaction: finite element formulation applications. Computer Methods in Applied Mechanics and Engineering 2006; 195:5754-5779.
Wesseling P. Principles of Computational Fluid Dynamics. Springer: Heidelberg, 2000.
Küttler U, Wall W. Strong coupling schemes for fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering, under review.
Badia S, Nobile F, Vergara C. Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering 2009; 198:2768-2784.
2009; 42
2006; 38
2009; 198
2004; 3
2008; 227
2008; 31
2001; 88
2010; 1
2001
2006; 67
1986; 7
2000
2004; 37
1985
2008; 197
2009; 16
2007; 69
1996; 23
2007; 17
2005; 194
2009; 60
2000; 24
2009
2006; 195
2008
2003; 37
1995
2006
1994
2005
2008; 10
2003
1999; 62
2005; 83
2007; 54
2000; 190
1996; 56
1999
2005; 47
2009; 78
2009; 76
2001; 190
2000; 33
2007; 196
2004; 193
2008; 43
2007; 85
2005; 50
1992; 21
e_1_2_11_30_2
e_1_2_11_55_2
e_1_2_11_57_2
e_1_2_11_13_2
e_1_2_11_34_2
e_1_2_11_11_2
e_1_2_11_6_2
e_1_2_11_27_2
e_1_2_11_4_2
Brannick J (e_1_2_11_51_2) 2006
Mok D (e_1_2_11_10_2) 2001
e_1_2_11_25_2
e_1_2_11_2_2
e_1_2_11_29_2
e_1_2_11_60_2
e_1_2_11_20_2
e_1_2_11_43_2
e_1_2_11_45_2
Quarteroni A (e_1_2_11_53_2) 2004
e_1_2_11_24_2
e_1_2_11_62_2
e_1_2_11_8_2
e_1_2_11_22_2
e_1_2_11_41_2
e_1_2_11_17_2
e_1_2_11_15_2
e_1_2_11_36_2
e_1_2_11_59_2
e_1_2_11_19_2
e_1_2_11_38_2
e_1_2_11_31_2
e_1_2_11_54_2
e_1_2_11_56_2
e_1_2_11_35_2
e_1_2_11_50_2
e_1_2_11_12_2
e_1_2_11_33_2
e_1_2_11_52_2
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_26_2
e_1_2_11_3_2
e_1_2_11_47_2
Küttler U (e_1_2_11_14_2)
e_1_2_11_49_2
e_1_2_11_44_2
e_1_2_11_46_2
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_40_2
e_1_2_11_61_2
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_42_2
Wesseling P (e_1_2_11_48_2) 2000
e_1_2_11_16_2
Trottenberg U (e_1_2_11_32_2) 2001
e_1_2_11_58_2
e_1_2_11_37_2
e_1_2_11_18_2
e_1_2_11_39_2
References_xml – reference: Gee M, Ramm E, Wall W. Parallel multilevel solution of nonlinear shell structures. Computer Methods in Applied Mechanics and Engineering 2005; 194:2513-2533.
– reference: Kelley C. Iterative Methods for Linear and Nonlinear Equations Frontiers in Applied Mathematics. SIAM: Philadelphia, PA, 1995.
– reference: Badia A, Nobile F, Vergara C. Fluid-structure partitioned procedures based on robin transmission conditions. Journal of Computational Physics 2008; 227:7027-7051.
– reference: Badia S, Nobile F, Vergara C. Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering 2009; 198:2768-2784.
– reference: Vaněk P, Mandel J, Brezina M. Algebraic multigrid based on smoothed aggregation for second and fourth order problems. Computing 1996; 56:179-196.
– reference: Fernández M, Moubachir M. A Newton method using exact Jacobians for solving fluid-structure coupling. Computers and Structures 2005; 83:127-142.
– reference: Saad Y. Iterative Methods for Sparse Linear Systems. SIAM: Philadelphia, PA, 2003.
– reference: Quarteroni A, Sacco R, Saleri F. Numerical Mathematics-Series: Texts in Applied Mathematics. vol. 37. Springer: Berlin, 2004.
– reference: Hübner B, Walhorn E, Dinkler D. A monolithic approach to fluid-structure interaction using space-time finite elements. Computer Methods in Applied Mechanics and Engineering 2004; 193:2087-2104.
– reference: Lallemand M-H, Steve H, Dervieux A. Unstructured multigridding by volume agglomeration: current status. Computational Fluids 1992; 21:397-433.
– reference: Küttler U, Gee M, Förster C, Comerford A, Wall W. Coupling strategies for biomedical fluid-structure interaction problems. International Journal for Numerical Methods in Biomedical Engineering 2009; DOI: 10.1002/cnm.1281.
– reference: Gee M, Förster C, Wall W. A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. International Journal for Numerical Methods in Biomedical Engineering 2010; 1:52-72.
– reference: Briggs W, Henson V, McCormick S. A multigrid Tutorial (2nd edn). SIAM: Philadelphia, 2000.
– reference: Förster C, Wall WA, Ramm E. On the geometric conservation law in transient flow calculations on deforming domains. International Journal for Numerical Methods in Fluids 2005; 50:1369-1379.
– reference: Vaněk P, Brezina M, Mandel J. Convergence of algebraic multigrid based on smoothed aggregation. Numerical Mathematics 2001; 88:559-579.
– reference: Heil M. An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering 2004; 193:1-23.
– reference: Raghavan M, Vorp D. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. Journal of Biomechanics 2000; 33:475-482.
– reference: Gee M, Hu J, Tuminaro R. A new smoothed aggregation multigrid method for anisotropic problems. Numerical Linear Algebra With Applications 2009; 16:19-37.
– reference: Gee M, Reeps C, Eckstein H, Wall W. Prestressing in finite deformation abdominal aortic aneurysm simulation. Journal of Biomechanics 2009; 42:1732-1739.
– reference: Gerbeau J-F, Vidrascu M. A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. Mathematical Modelling and Numerical Analysis 2003; 37:631-647.
– reference: Vierendeels J, Lanoye L, Degroote J, Verdonck P. Implicit coupling of partitioned fluid-structure interaction problems with reduced order models. Computers and Structures 2007; 85:970-976.
– reference: Küttler U, Wall W. Strong coupling schemes for fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering, under review.
– reference: Quaini A, Quarteroni A. A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method. Mathematical Models and Methods in Applied Sciences 2007; 17:957-983.
– reference: Brezina M, Falgout R, MacLachlan S, Manteuffel T, McCormick S, Ruge J. Adaptive smoothed aggregation (αsa) multigrid. SIAM Review 2005; 47(2):317-346.
– reference: Dettmer W, Perić D. A computational framework for fluid-structure interaction: finite element formulation applications. Computer Methods in Applied Mechanics and Engineering 2006; 195:5754-5779.
– reference: Le Tallec P, Mouro J. Fluid structure interaction with large structural displacements. Computer Methods in Applied Mechanics and Engineering 2001; 190:3039-3067.
– reference: Bazilevs Y, Calo V, Zhang Y, Hughes T. Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Computational Mechanics 2006; 38:310-322.
– reference: Tezduyar T, Sathe S, Cragin T, Nanna B, Conklin B, Pausewang J, Schwaab M. Modelling of fluid-structure interactions with the space-time finite elements: arterial fluid mechanics. International Journal for Numerical Methods in Fluids 2007; 54:901-922.
– reference: Trottenberg U, Oosterlee C, Schüller A. Multigrid. Academic Press: London, 2001.
– reference: Murea CM, Sy S. A fast method for solving fluid-structure interaction problems numerically. International Journal for Numerical Methods in Fluids 2009; 60:1149-1172.
– reference: Joosten MM, Dettmer WG, Peric D. Analysis of the block Gauss-Seidel solution procedure for a strongly coupled model problem with reference to fluid-structure interaction. International Journal for Numerical Methods in Engineering 2009; 78:757-778.
– reference: Badia S, Quaini A, Quarteroni A. Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect. In Computer Methods in Applied Mechanics and Engineering 2008; 197:4216-4232.
– reference: Mavriplis D, Venkatakrishnan V. A 3d agglomeration multigrid solver for the Reynolds-averaged Navier-Stokes equations on unstructured meshes. International Journal for Numerical Methods in Fluids 1996; 23:527-544.
– reference: Heil M, Hazel A, Boyle J. Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches. Computational Mechanics 2008; 43:91-101.
– reference: Carre G, Lanteri S. Parallel linear multigrid by agglomeration for the acceleration of 3d compressible flow calculations on unstructured meshes. Numerical Algorithms 2000; 24:309-322.
– reference: Humphrey J, Taylor C. Intracranial and abdominal aortic aneurysms: Similarities, differences, and need for a new class of computational models. Annual Review of Biomedical Engineering 2008; 10:221-246.
– reference: Küttler U, Wall WA. Fixed-point fluid-structure interaction solvers with dynamic relaxation. Computational Mechanics 2008; 43:61-72.
– reference: Tezduyar T, Sathe S. Modelling of fluid-structure interactions with the space-time finite elements: solution techniques. International Journal for Numerical Methods in Fluids 2007; 54:855-900.
– reference: Fernández M, Gerbeau J-F, Grandmont C. A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. International Journal for Numerical Methods in Engineering 2007; 69:794-821.
– reference: Brannick J, Zikatanov L. In Domain Decomposition Methods in Science and Engineering XVI. Algebraic Multigrid Methods Based on Compatible Relaxation and Energy Minimization, Widlund OB, Keyes DE (eds). Springer: New York, 2006; 15-26.
– reference: Hackbusch W. Multigrid Methods and Applications, Computational Mathematics, vol. 4. Springer: Berlin, 1985.
– reference: Küttler U, Wall WA. Vector extrapolation for strong coupling fluid-structure interaction solvers. Journal of Applied Mechanics 2009; 76:021205-1-7.
– reference: Braess H, Wriggers P. Arbitrary Lagrangian Eulerian finite element analysis of free surface flow. Computer Methods in Applied Mechanics and Engineering 2000; 190:95-109.
– reference: Saad Y, Schultz M. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 1986; 7:856-869.
– reference: Sala M, Tuminaro R. A new Petrov-Galerkin smoothed aggregation preconditioner for nonsymmetric linear systems. SIAM Journal on Scientific Computing 2008; 31:143-166.
– reference: Lin P, Sala M, Shadid J, Tuminaro R. Performance of fully coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport. International Journal for Numerical Methods in Engineering 2006; 67:208-225.
– reference: Wesseling P. Principles of Computational Fluid Dynamics. Springer: Heidelberg, 2000.
– reference: Mandel J, Brezina M, Vaněk P. Energy optimization of algebraic multigrid bases. Computing 1999; 62:205-228.
– reference: Causin P, Gerbeau J-F, Nobile F. Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Computer Methods in Applied Mechanics and Engineering 2005; 194:4506-4527.
– reference: Förster C, Wall WA, Ramm E. Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering 2007; 196:1278-1293.
– year: 1985
– volume: 60
  start-page: 1149
  year: 2009
  end-page: 1172
  article-title: A fast method for solving fluid–structure interaction problems numerically
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 190
  start-page: 95
  year: 2000
  end-page: 109
  article-title: Arbitrary Lagrangian Eulerian finite element analysis of free surface flow
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 33
  start-page: 475
  year: 2000
  end-page: 482
  article-title: Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability
  publication-title: Journal of Biomechanics
– volume: 76
  year: 2009
  article-title: Vector extrapolation for strong coupling fluid–structure interaction solvers
  publication-title: Journal of Applied Mechanics
– volume: 195
  start-page: 5754
  year: 2006
  end-page: 5779
  article-title: A computational framework for fluid–structure interaction: finite element formulation applications
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2005
– year: 2009
  article-title: Coupling strategies for biomedical fluid–structure interaction problems
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
– year: 2001
– volume: 69
  start-page: 794
  year: 2007
  end-page: 821
  article-title: A projection semi‐implicit scheme for the coupling of an elastic structure with an incompressible fluid
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 67
  start-page: 208
  year: 2006
  end-page: 225
  article-title: Performance of fully coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 54
  start-page: 901
  year: 2007
  end-page: 922
  article-title: Modelling of fluid–structure interactions with the space‐time finite elements: arterial fluid mechanics
  publication-title: International Journal for Numerical Methods in Fluids
– year: 1994
– volume: 193
  start-page: 2087
  year: 2004
  end-page: 2104
  article-title: A monolithic approach to fluid–structure interaction using space‐time finite elements
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 16
  start-page: 19
  year: 2009
  end-page: 37
  article-title: A new smoothed aggregation multigrid method for anisotropic problems
  publication-title: Numerical Linear Algebra With Applications
– volume: 38
  start-page: 310
  year: 2006
  end-page: 322
  article-title: Isogeometric fluid–structure interaction analysis with applications to arterial blood flow
  publication-title: Computational Mechanics
– volume: 197
  start-page: 4216
  year: 2008
  end-page: 4232
  article-title: Modular vs. non‐modular preconditioners for fluid–structure systems with large added‐mass effect
  publication-title: In Computer Methods in Applied Mechanics and Engineering
– volume: 37
  start-page: 631
  year: 2003
  end-page: 647
  article-title: A quasi‐Newton algorithm based on a reduced model for fluid–structure interaction problems in blood flows
  publication-title: Mathematical Modelling and Numerical Analysis
– volume: 50
  start-page: 1369
  year: 2005
  end-page: 1379
  article-title: On the geometric conservation law in transient flow calculations on deforming domains
  publication-title: International Journal for Numerical Methods in Fluids
– year: 2008
– volume: 23
  start-page: 527
  year: 1996
  end-page: 544
  article-title: A 3d agglomeration multigrid solver for the Reynolds‐averaged Navier–Stokes equations on unstructured meshes
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 47
  start-page: 317
  issue: 2
  year: 2005
  end-page: 346
  article-title: Adaptive smoothed aggregation (α ) multigrid
  publication-title: SIAM Review
– start-page: 15
  year: 2006
  end-page: 26
– volume: 3
  start-page: 13
  year: 2004
– volume: 37
  year: 2004
– volume: 194
  start-page: 4506
  year: 2005
  end-page: 4527
  article-title: Added‐mass effect in the design of partitioned algorithms for fluid–structure problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 31
  start-page: 143
  year: 2008
  end-page: 166
  article-title: A new Petrov–Galerkin smoothed aggregation preconditioner for nonsymmetric linear systems
  publication-title: SIAM Journal on Scientific Computing
– volume: 227
  start-page: 7027
  year: 2008
  end-page: 7051
  article-title: Fluid–structure partitioned procedures based on robin transmission conditions
  publication-title: Journal of Computational Physics
– volume: 42
  start-page: 1732
  year: 2009
  end-page: 1739
  article-title: Prestressing in finite deformation abdominal aortic aneurysm simulation
  publication-title: Journal of Biomechanics
– volume: 196
  start-page: 1278
  year: 2007
  end-page: 1293
  article-title: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 21
  start-page: 397
  year: 1992
  end-page: 433
  article-title: Unstructured multigridding by volume agglomeration: current status
  publication-title: Computational Fluids
– volume: 88
  start-page: 559
  year: 2001
  end-page: 579
  article-title: Convergence of algebraic multigrid based on smoothed aggregation
  publication-title: Numerical Mathematics
– volume: 62
  start-page: 205
  year: 1999
  end-page: 228
  article-title: Energy optimization of algebraic multigrid bases
  publication-title: Computing
– volume: 193
  start-page: 1
  year: 2004
  end-page: 23
  article-title: An efficient solver for the fully coupled solution of large‐displacement fluid–structure interaction problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– article-title: Strong coupling schemes for fluid–structure interaction
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 85
  start-page: 970
  year: 2007
  end-page: 976
  article-title: Implicit coupling of partitioned fluid–structure interaction problems with reduced order models
  publication-title: Computers and Structures
– year: 2003
– year: 2000
– volume: 190
  start-page: 3039
  year: 2001
  end-page: 3067
  article-title: Fluid structure interaction with large structural displacements
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 43
  start-page: 61
  year: 2008
  end-page: 72
  article-title: Fixed‐point fluid–structure interaction solvers with dynamic relaxation
  publication-title: Computational Mechanics
– volume: 56
  start-page: 179
  year: 1996
  end-page: 196
  article-title: Algebraic multigrid based on smoothed aggregation for second and fourth order problems
  publication-title: Computing
– volume: 17
  start-page: 957
  year: 2007
  end-page: 983
  article-title: A semi‐implicit approach for fluid–structure interaction based on an algebraic fractional step method
  publication-title: Mathematical Models and Methods in Applied Sciences
– volume: 10
  start-page: 221
  year: 2008
  end-page: 246
  article-title: Intracranial and abdominal aortic aneurysms: Similarities, differences, and need for a new class of computational models
  publication-title: Annual Review of Biomedical Engineering
– volume: 24
  start-page: 309
  year: 2000
  end-page: 322
  article-title: Parallel linear multigrid by agglomeration for the acceleration of 3d compressible flow calculations on unstructured meshes
  publication-title: Numerical Algorithms
– volume: 78
  start-page: 757
  year: 2009
  end-page: 778
  article-title: Analysis of the block Gauss–Seidel solution procedure for a strongly coupled model problem with reference to fluid–structure interaction
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 54
  start-page: 855
  year: 2007
  end-page: 900
  article-title: Modelling of fluid–structure interactions with the space‐time finite elements: solution techniques
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 1
  start-page: 52
  year: 2010
  end-page: 72
  article-title: A computational strategy for prestressing patient‐specific biomechanical problems under finite deformation
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
– volume: 194
  start-page: 2513
  year: 2005
  end-page: 2533
  article-title: Parallel multilevel solution of nonlinear shell structures
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 7
  start-page: 856
  year: 1986
  end-page: 869
  article-title: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems
  publication-title: SIAM Journal on Scientific and Statistical Computing
– year: 2006
– year: 1995
– volume: 43
  start-page: 91
  year: 2008
  end-page: 101
  article-title: Solvers for large‐displacement fluid–structure interaction problems: segregated versus monolithic approaches
  publication-title: Computational Mechanics
– volume: 198
  start-page: 2768
  year: 2009
  end-page: 2784
  article-title: Robin–Robin preconditioned Krylov methods for fluid–structure interaction problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 83
  start-page: 127
  year: 2005
  end-page: 142
  article-title: A Newton method using exact Jacobians for solving fluid–structure coupling
  publication-title: Computers and Structures
– year: 1999
– ident: e_1_2_11_27_2
  doi: 10.1016/j.cma.2005.10.019
– volume-title: Trends in Computational Structural Mechanics
  year: 2001
  ident: e_1_2_11_10_2
– ident: e_1_2_11_60_2
  doi: 10.1016/j.jbiomech.2009.04.016
– ident: e_1_2_11_62_2
– ident: e_1_2_11_17_2
  doi: 10.1016/j.jcp.2008.04.006
– start-page: 15
  volume-title: Domain Decomposition Methods in Science and Engineering XVI. Algebraic Multigrid Methods Based on Compatible Relaxation and Energy Minimization
  year: 2006
  ident: e_1_2_11_51_2
– ident: e_1_2_11_3_2
  doi: 10.1016/j.cma.2004.12.005
– ident: e_1_2_11_21_2
  doi: 10.1007/s00466-006-0084-3
– ident: e_1_2_11_16_2
  doi: 10.1115/1.3057468
– volume-title: Multigrid
  year: 2001
  ident: e_1_2_11_32_2
– ident: e_1_2_11_33_2
  doi: 10.1137/1.9780898719505
– ident: e_1_2_11_24_2
  doi: 10.1002/fld.1093
– ident: e_1_2_11_52_2
  doi: 10.1137/0907058
– ident: e_1_2_11_30_2
  doi: 10.1002/nme.2503
– ident: e_1_2_11_42_2
  doi: 10.1007/s006070050022
– volume-title: Numerical Mathematics—Series: Texts in Applied Mathematics
  year: 2004
  ident: e_1_2_11_53_2
– ident: e_1_2_11_20_2
  doi: 10.1016/j.cma.2004.01.024
– ident: e_1_2_11_28_2
  doi: 10.1137/1.9780898718003
– ident: e_1_2_11_38_2
  doi: 10.1016/0045-7930(92)90047-Y
– ident: e_1_2_11_31_2
  doi: 10.1007/978-3-662-02427-0
– ident: e_1_2_11_13_2
  doi: 10.1016/j.compstruc.2006.11.006
– ident: e_1_2_11_18_2
  doi: 10.1016/j.cma.2009.04.004
– volume-title: Principles of Computational Fluid Dynamics
  year: 2000
  ident: e_1_2_11_48_2
– ident: e_1_2_11_49_2
– ident: e_1_2_11_57_2
– ident: e_1_2_11_46_2
  doi: 10.1002/nla.593
– ident: e_1_2_11_35_2
– ident: e_1_2_11_7_2
  doi: 10.1016/j.cma.2008.04.018
– ident: e_1_2_11_11_2
  doi: 10.1051/m2an:2003049
– ident: e_1_2_11_37_2
  doi: 10.1002/nme.1624
– ident: e_1_2_11_58_2
  doi: 10.1146/annurev.bioeng.10.061807.160439
– ident: e_1_2_11_34_2
  doi: 10.1007/BF02238511
– ident: e_1_2_11_54_2
  doi: 10.1002/cnm.1281
– ident: e_1_2_11_12_2
  doi: 10.1016/j.compstruc.2004.04.021
– ident: e_1_2_11_15_2
  doi: 10.1007/s00466-008-0255-5
– ident: e_1_2_11_19_2
  doi: 10.1016/j.cma.2003.09.006
– ident: e_1_2_11_5_2
  doi: 10.1002/nme.1792
– ident: e_1_2_11_9_2
  doi: 10.1016/S0045-7825(00)00381-9
– ident: e_1_2_11_26_2
  doi: 10.1137/1.9781611970944
– ident: e_1_2_11_23_2
  doi: 10.1002/fld.1430
– ident: e_1_2_11_50_2
– ident: e_1_2_11_44_2
  doi: 10.1137/050626272
– ident: e_1_2_11_59_2
  doi: 10.1002/cnm.1236
– ident: e_1_2_11_29_2
  doi: 10.1007/s00466-008-0270-6
– ident: e_1_2_11_56_2
– ident: e_1_2_11_6_2
  doi: 10.1142/S0218202507002170
– ident: e_1_2_11_25_2
  doi: 10.1016/S0045-7825(99)00416-8
– ident: e_1_2_11_36_2
  doi: 10.1137/060659545
– ident: e_1_2_11_2_2
  doi: 10.1002/0470091355.ecm063
– ident: e_1_2_11_55_2
– ident: e_1_2_11_45_2
  doi: 10.1016/j.cma.2004.07.043
– ident: e_1_2_11_61_2
  doi: 10.1016/S0021-9290(99)00201-8
– ident: e_1_2_11_8_2
  doi: 10.1002/fld.1931
– ident: e_1_2_11_41_2
  doi: 10.1007/s211-001-8015-y
– ident: e_1_2_11_22_2
  doi: 10.1002/fld.1443
– ident: e_1_2_11_40_2
  doi: 10.1023/A:1019161730732
– ident: e_1_2_11_4_2
  doi: 10.1016/j.cma.2006.09.002
– ident: e_1_2_11_47_2
– ident: e_1_2_11_43_2
  doi: 10.1109/SC.2000.10008
– ident: e_1_2_11_14_2
  article-title: Strong coupling schemes for fluid–structure interaction
  publication-title: Computer Methods in Applied Mechanics and Engineering
– ident: e_1_2_11_39_2
  doi: 10.1002/(SICI)1097-0363(19960930)23:6<527::AID-FLD429>3.0.CO;2-Z
SSID ssj0011503
Score 2.4376817
Snippet The coupling of flexible structures to incompressible fluids draws a lot of attention during the last decade. Many different solution schemes have been...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 987
SubjectTerms Algebra
algebraic multigrid
Approximation
Blocking
Coarsening
Exact sciences and technology
Fluid-structure interaction
Fundamental areas of phenomenology (including applications)
Joining
Mathematical analysis
Mathematical models
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
monolithic solution schemes
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Physics
Sciences and techniques of general use
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Title Truly monolithic algebraic multigrid for fluid-structure interaction
URI https://api.istex.fr/ark:/67375/WNG-Q2LFH9RX-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.3001
https://www.proquest.com/docview/896244939
Volume 85
WOSCitedRecordID wos000287059700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5Vuz3AoYUC6vJTuRKCU6hrx3F8rKChh-2KVq3Ym2U7Trti2VYJi-DGO_CGfRLG-dOuBBJST0mkiWJ5ZjLf2ONvAF7nmNx4oYpIOosJipc0Sp0sIgy2BiOWsTKuDwqP5WSSTqfqU1tVGc7CNPwQ_YJb8Iz6fx0c3NjqYIU09Kt_x2k4ujVkaLZiAMMP59nluN9DQKjDuwIPodLDjnqWsoPu3bVgNAzz-iMUR5oK56doGlusIc9V_FoHoGz7PkN_BFst7CRHjZ08hg2_2IHtFoKS1sGrHXi4wk-IT6c9qWv1BLKLcjn_SdBuQ83c9cyR0CMEx4F3dV3iVTnLCYJgUsyXs_zu1--GnHZZehJYKcrmDMVTuMyOL96fRG0bhsiFRulRWphcWSdMcWhiGSj6GObNhbAIDlNjXUp9klBnrPfcJ5jx2ITKnHEjUgyRLubPYLC4WfhdILE0uRO5chZtwPJCcRrnCDAxx-E2pmYEbzt9aNdylIdWGXPdsCszjVOnw9SNYL-XvG14Of4i86ZWaS9gyi-hjk0K_XnyUZ-xcXaizqf6bAR7azrvX6hLhqhkIyCdEWh0v7CnYhb-ZlnpVCUIkBRX-LFa5f8cjZ6cHofr8_8VfAEPmgVsFjHxEgaoMv8KNt33b7Oq3Gut_Q9HQQQe
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5V3UrAgZZCxfLTGgnBKdSNkzgWp6o0XUQ2otVW7M2yHQdWLFuUsAhuvANv2CfpOH_alUBC4pREmiiWZybzjT3-BuB5jsmNDUXhcaMxQbGcerHhhYfBVmHEUpoH9UHhlGdZPJ2K9xvwujsL0_BD9AtuzjPq_7VzcLcgfbjCGvrFvmLUnd0aBGhFaN6DNxfJZdpvIiDWYV2FRyjio457lvqH3btr0WjgJvaHq45UFU5Q0XS2WIOeqwC2jkDJ9n-NfQfutsCTHDeWcg827GIXtlsQSloXr3bhzgpDIT6Ne1rX6j4kk3I5_0nQcl3V3KeZIa5LCA4E7-rKxI_lLCcIg0kxX87y61-_G3raZWmJ46Uom1MUD-AyOZ2cjLy2EYNnXKt0Ly5ULrQJVXGkAu5I-nzMnItQIzyMlTYxtVFEjdLWMhthzqMjynOfqTDGIGkCtgebi6uFfQgk4Co3YS6MRivQrBCMBjlCTMxymA6oGsLLTiHStCzlrlnGXDb8yr7EqZNu6obwrJf82jBz_EHmRa3TXkCVn10lGw_lh-xMnvtpMhIXU3k-hP01pfcv1EVDlPtDIJ0VSHRAt6uiFvZqWclYRAiRBBP4sVrnfx2NzMan7vroXwUP4NZoMk5l-jZ79xhuN8vZvueHT2AT1Wefwpb5_m1Wlfut6d8AzTEIDg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_KnYh9sFoVz4-6guhTbJrd3GbxSWxjxWtoS4v3tuynHj2vJfFE3_wf_A_9S5zNF3egIPiUBCZkmY_MzO7MbwCeWUxuXCp8xI3GBMXxOMoM9xE6W4UeS2nO6kbhCS-KbDoVxxvwquuFafAh-g23YBn1_zoYuLuyfncFNfSze0nj0Ls1ZGGGzACG-6f5-aQ_RMBYh3YVHqnI9jrs2TjZ7d5d80bDwNhvoTpSVcgg30y2WAs9VwPY2gPlW_-19ltwsw08yetGU27Dhltsw1YbhJLWxKtt2FxBKMSnox7WtboD-Vm5nH8nqLmhau7TzJAwJQQXgnd1ZeLHcmYJhsHEz5cz--vHzwaedlk6EnApyqaL4i6c5wdnbw6jdhBDZMKo9CjzygptUuX3FOMBpC_BzNmnGsPDTGmTxW48jo3SzlE3xpxHj2NuE6rSDJ2kYfQeDBaXC3cfCOPKmtQKo1ELNPWCxsxiiIlZDtUsViN40QlEmhalPAzLmMsGXzmRyDoZWDeCpz3lVYPM8Qea57VMewJVXoRKNp7KD8VbeZJM8kNxOpUnI9hZE3r_Ql00FPNkBKTTAokGGE5V1MJdLiuZoeoxJqjAj9Uy_-tqZHF0EK4P_pXwCVw_3s_l5F3x_iHcaHazkyhJH8EApecewzXz9cusKndazf8NTqkHiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Truly+monolithic+algebraic+multigrid+for+fluid-structure+interaction&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Gee%2C+M+W&rft.au=Kuettler%2C+U&rft.au=Wall%2C+WA&rft.date=2011-02-25&rft.issn=1097-0207&rft.volume=85&rft.issue=8&rft.spage=987&rft.epage=1016&rft_id=info:doi/10.1002%2Fnme.3001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon