A wind speed interval prediction system based on multi-objective optimization for machine learning method

•Novel wind speed interval forecasting approach in multi-objective formulation introduced.•Hybrid framework building on data feature selection method.•Simultaneously the lower and upper bounds of the prediction intervals of future wind speed time series constructed.•The best compromise solution sele...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 228; pp. 2207 - 2220
Main Authors: Li, Ranran, Jin, Yu
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.10.2018
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Novel wind speed interval forecasting approach in multi-objective formulation introduced.•Hybrid framework building on data feature selection method.•Simultaneously the lower and upper bounds of the prediction intervals of future wind speed time series constructed.•The best compromise solution selected by the smallest coverage width criterion method. Accurate forecast of wind speed is the first prerequisite to supply high quality power energy to customer in a secure and economic manner. However, traditional point forecast may not be sufficiently reliable and accurate for decision-makers to perform operational strategies purely when the uncertainty level increases. For the sake of quantifying the uncertainty associated with point predictions, it is necessary to conduct interval prediction to provide reliable and accurate wind speed information. In this work, a hybrid model framework based on combinatorial modules was proposed and successfully adopted to construct the prediction intervals of the future wind speed. Feature selection methods are developed to determine the most suitable modes of original time series and the optimal input form of the model, while the optimization forecasting module is applied to model the wind speed series based on the machine learning method and the multi-objective optimization algorithm, then the compromise solution of Pareto front is chosen by “Min-max” method. Finally, the proposed combined model was investigated via the hourly wind speed data from two different periods in Penglai, China. Besides, the study’s experimental results indicated that the prediction intervals generated perform well and are satisfactory in both criterion functions of high coverage and small width through discussion among single-objective models and other multi-objective models (signal pre-processing method comparison included).
AbstractList •Novel wind speed interval forecasting approach in multi-objective formulation introduced.•Hybrid framework building on data feature selection method.•Simultaneously the lower and upper bounds of the prediction intervals of future wind speed time series constructed.•The best compromise solution selected by the smallest coverage width criterion method. Accurate forecast of wind speed is the first prerequisite to supply high quality power energy to customer in a secure and economic manner. However, traditional point forecast may not be sufficiently reliable and accurate for decision-makers to perform operational strategies purely when the uncertainty level increases. For the sake of quantifying the uncertainty associated with point predictions, it is necessary to conduct interval prediction to provide reliable and accurate wind speed information. In this work, a hybrid model framework based on combinatorial modules was proposed and successfully adopted to construct the prediction intervals of the future wind speed. Feature selection methods are developed to determine the most suitable modes of original time series and the optimal input form of the model, while the optimization forecasting module is applied to model the wind speed series based on the machine learning method and the multi-objective optimization algorithm, then the compromise solution of Pareto front is chosen by “Min-max” method. Finally, the proposed combined model was investigated via the hourly wind speed data from two different periods in Penglai, China. Besides, the study’s experimental results indicated that the prediction intervals generated perform well and are satisfactory in both criterion functions of high coverage and small width through discussion among single-objective models and other multi-objective models (signal pre-processing method comparison included).
Accurate forecast of wind speed is the first prerequisite to supply high quality power energy to customer in a secure and economic manner. However, traditional point forecast may not be sufficiently reliable and accurate for decision-makers to perform operational strategies purely when the uncertainty level increases. For the sake of quantifying the uncertainty associated with point predictions, it is necessary to conduct interval prediction to provide reliable and accurate wind speed information. In this work, a hybrid model framework based on combinatorial modules was proposed and successfully adopted to construct the prediction intervals of the future wind speed. Feature selection methods are developed to determine the most suitable modes of original time series and the optimal input form of the model, while the optimization forecasting module is applied to model the wind speed series based on the machine learning method and the multi-objective optimization algorithm, then the compromise solution of Pareto front is chosen by “Min-max” method. Finally, the proposed combined model was investigated via the hourly wind speed data from two different periods in Penglai, China. Besides, the study’s experimental results indicated that the prediction intervals generated perform well and are satisfactory in both criterion functions of high coverage and small width through discussion among single-objective models and other multi-objective models (signal pre-processing method comparison included).
Author Li, Ranran
Jin, Yu
Author_xml – sequence: 1
  givenname: Ranran
  orcidid: 0000-0003-0284-2730
  surname: Li
  fullname: Li, Ranran
– sequence: 2
  givenname: Yu
  surname: Jin
  fullname: Jin, Yu
  email: jinyudc@dufe.edu.cn
BookMark eNqFkMFqGzEQhkVIIU7aVyg69rLbkdbWytBDQkjaQqCX9iy02tlkzK60kWQH5-kr282ll5yGYb7_h_ku2bkPHhn7LKAWINTXTW1n9Bgf97UEoWtoa2jkGVsI3cpqLYQ-ZwtoQFVSifUFu0xpAwBSSFgwuuEv5HueZsSek88Yd3bkc8SeXKbgedqnjBPvbCpA2aftmKkK3QbLfYc8zJkmerVHeAiRT9Y9kUc-oo2e_COfMD-F_iP7MNgx4ad_84r9ub_7ffujevj1_eftzUPllmqZK6fsalAKWqFw2fbOgVKtVKsOJXQAVq9XVi6H8oAdVtgI0A1qrV3TdYNyTjRX7Mupd47heYspm4mSw3G0HsM2GSmE0u26hQOqTqiLIaWIg5kjTTbujQBzcGs25s2tObg10JritgS__Rd0lI8GcrQ0vh-_PsWxeNgRRpMcoXfFeSxWTR_ovYq__U-eXw
CitedBy_id crossref_primary_10_1007_s12036_020_09649_4
crossref_primary_10_1016_j_eswa_2024_123851
crossref_primary_10_1016_j_apenergy_2018_10_025
crossref_primary_10_3390_su141912683
crossref_primary_10_3390_en15249657
crossref_primary_10_1016_j_renene_2024_121057
crossref_primary_10_1109_TSTE_2021_3054125
crossref_primary_10_1109_ACCESS_2025_3545969
crossref_primary_10_1016_j_apenergy_2024_122785
crossref_primary_10_1016_j_asoc_2022_109690
crossref_primary_10_1016_j_asoc_2023_110310
crossref_primary_10_2166_wcc_2022_113
crossref_primary_10_1016_j_eneco_2022_106471
crossref_primary_10_1155_2020_9601763
crossref_primary_10_1016_j_enconman_2022_115540
crossref_primary_10_1016_j_jhydrol_2024_132100
crossref_primary_10_1016_j_segan_2023_101157
crossref_primary_10_1109_TSTE_2021_3131522
crossref_primary_10_3390_app10175975
crossref_primary_10_1016_j_asoc_2022_108644
crossref_primary_10_1088_1742_6596_1964_5_052007
crossref_primary_10_1016_j_asoc_2021_108009
crossref_primary_10_1177_10692509251337224
crossref_primary_10_1016_j_eswa_2024_123965
crossref_primary_10_3389_fenrg_2022_927260
crossref_primary_10_1016_j_apenergy_2025_126234
crossref_primary_10_1016_j_renene_2025_122653
crossref_primary_10_1109_ACCESS_2020_3041533
crossref_primary_10_1109_MCI_2021_3084416
crossref_primary_10_1590_0001_3765202420230891
crossref_primary_10_1109_ACCESS_2020_3022872
crossref_primary_10_1016_j_enconman_2019_06_024
crossref_primary_10_3390_en13226125
crossref_primary_10_1016_j_asoc_2020_106294
crossref_primary_10_1016_j_asoc_2022_109602
crossref_primary_10_1007_s10462_023_10554_9
crossref_primary_10_1016_j_apenergy_2019_113353
crossref_primary_10_1109_ACCESS_2020_2978169
crossref_primary_10_1016_j_epsr_2023_109159
crossref_primary_10_1016_j_epsr_2022_108069
crossref_primary_10_1016_j_knosys_2020_106052
crossref_primary_10_1016_j_scs_2020_102052
crossref_primary_10_3390_su11020526
crossref_primary_10_1016_j_apenergy_2019_05_016
crossref_primary_10_1111_exsy_13830
crossref_primary_10_1016_j_est_2022_104591
crossref_primary_10_1016_j_techfore_2024_123846
crossref_primary_10_3390_electronics12041062
crossref_primary_10_1109_ACCESS_2019_2957174
crossref_primary_10_1016_j_chemosphere_2022_136614
crossref_primary_10_2166_nh_2021_161
crossref_primary_10_1016_j_asoc_2021_108345
crossref_primary_10_1007_s42452_020_2830_0
crossref_primary_10_4018_IJDST_307955
crossref_primary_10_1016_j_engappai_2024_107906
crossref_primary_10_3934_mbe_2025083
crossref_primary_10_3390_en13071596
crossref_primary_10_1016_j_energy_2023_127526
crossref_primary_10_1016_j_jenvman_2025_126225
crossref_primary_10_1109_TSG_2020_2972513
crossref_primary_10_1109_ACCESS_2019_2957062
crossref_primary_10_1016_j_energy_2021_121467
crossref_primary_10_1109_TKDE_2025_3579406
crossref_primary_10_1016_j_energy_2025_138050
crossref_primary_10_3390_s22020422
crossref_primary_10_1016_j_renene_2022_10_123
crossref_primary_10_1016_j_energy_2024_130492
crossref_primary_10_1080_02626667_2024_2428428
crossref_primary_10_1177_1475921720929755
crossref_primary_10_1016_j_jweia_2023_105507
crossref_primary_10_1016_j_asoc_2025_113476
crossref_primary_10_1016_j_cageo_2024_105535
crossref_primary_10_1016_j_oceaneng_2025_122518
crossref_primary_10_1109_TII_2020_3004436
crossref_primary_10_1002_ente_202100700
crossref_primary_10_3390_su13073665
crossref_primary_10_1016_j_enconman_2020_113680
crossref_primary_10_1016_j_jclepro_2019_119195
crossref_primary_10_2298_TSCI2406097A
crossref_primary_10_1109_ACCESS_2020_2973746
crossref_primary_10_1016_j_asoc_2022_109930
crossref_primary_10_1016_j_enconman_2022_115583
crossref_primary_10_1016_j_apenergy_2019_114257
crossref_primary_10_1016_j_apenergy_2019_113686
crossref_primary_10_1016_j_apenergy_2019_04_188
crossref_primary_10_1016_j_physa_2024_129543
crossref_primary_10_1007_s11356_022_21904_5
crossref_primary_10_1002_stc_2969
crossref_primary_10_1016_j_energy_2020_118773
crossref_primary_10_1016_j_engappai_2020_104133
crossref_primary_10_1007_s00500_021_06025_4
crossref_primary_10_1016_j_enconman_2020_113324
crossref_primary_10_1061__ASCE_EY_1943_7897_0000823
crossref_primary_10_1080_15435075_2023_2269443
crossref_primary_10_1016_j_ecmx_2025_101119
crossref_primary_10_1016_j_heliyon_2023_e23071
crossref_primary_10_1080_15325008_2023_2220688
crossref_primary_10_1007_s00521_020_04996_3
crossref_primary_10_1109_ACCESS_2021_3097102
crossref_primary_10_1016_j_apm_2020_07_019
crossref_primary_10_1016_j_engappai_2023_107034
crossref_primary_10_1007_s00521_023_08807_3
crossref_primary_10_1109_ACCESS_2021_3073995
crossref_primary_10_1007_s11440_022_01455_2
crossref_primary_10_1016_j_apenergy_2021_117446
crossref_primary_10_1109_ACCESS_2021_3056003
crossref_primary_10_1016_j_asoc_2021_107848
crossref_primary_10_1016_j_energy_2023_130155
crossref_primary_10_1016_j_enconman_2019_112239
crossref_primary_10_1109_TAI_2021_3123928
crossref_primary_10_1016_j_jhydrol_2024_132646
crossref_primary_10_1016_j_apenergy_2019_03_097
crossref_primary_10_3390_en13071687
crossref_primary_10_1007_s00500_021_06189_z
crossref_primary_10_1016_j_apm_2018_10_019
crossref_primary_10_1016_j_compeleceng_2022_108000
crossref_primary_10_1016_j_ces_2020_116210
crossref_primary_10_1109_TEVC_2021_3122191
crossref_primary_10_1155_2021_6632390
crossref_primary_10_1016_j_apenergy_2019_04_047
crossref_primary_10_1016_j_flowmeasinst_2023_102403
crossref_primary_10_1049_gtd2_12291
crossref_primary_10_1002_ese3_928
crossref_primary_10_1371_journal_pone_0273257
crossref_primary_10_1080_0952813X_2022_2093409
crossref_primary_10_1109_ACCESS_2020_2966641
crossref_primary_10_1177_09544062251347475
crossref_primary_10_1109_TSTE_2019_2926147
crossref_primary_10_1016_j_asoc_2019_105587
crossref_primary_10_1016_j_heliyon_2024_e33945
crossref_primary_10_1109_TII_2020_2973413
crossref_primary_10_3390_en12101931
crossref_primary_10_3390_pr8010035
crossref_primary_10_1007_s11269_024_03883_z
crossref_primary_10_1016_j_asoc_2020_106350
crossref_primary_10_3390_en13174487
Cites_doi 10.1016/j.eswa.2017.01.004
10.1016/j.knosys.2018.02.022
10.1016/j.ijepes.2016.01.037
10.1016/j.apenergy.2017.01.063
10.1016/j.rser.2014.03.033
10.1016/j.apenergy.2015.01.038
10.1016/j.solener.2017.08.022
10.1109/TFUZZ.2011.2130529
10.1016/j.apenergy.2010.10.031
10.1016/j.neucom.2013.08.020
10.1016/j.renene.2017.06.095
10.1016/j.advengsoft.2015.01.010
10.1016/j.eswa.2012.08.018
10.1016/j.apenergy.2015.07.059
10.1016/j.energy.2014.06.104
10.1109/TSP.2013.2288675
10.1016/j.enconman.2016.06.053
10.1109/TPWRS.2007.901117
10.1109/TNNLS.2015.2418739
10.1016/j.renene.2015.07.004
10.1109/TNN.2010.2096824
10.1007/s10489-016-0825-8
10.1109/TIA.2007.908203
10.1016/j.cor.2014.03.016
10.1016/j.neucom.2016.03.061
10.1016/j.applthermaleng.2015.08.037
10.1016/j.apenergy.2014.05.026
10.1007/s00521-015-2148-9
10.1016/j.renene.2018.05.031
10.1016/j.neucom.2014.09.090
10.1016/j.renene.2015.08.038
10.1109/TNN.2010.2087769
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2018.07.032
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 2220
ExternalDocumentID 10_1016_j_apenergy_2018_07_032
S0306261918310584
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c464t-c6a5f660716e47dcc0667265be20b00a895a24f000af5e31083e888c3bbf6cc13
ISICitedReferencesCount 151
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453489800085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Wed Oct 01 13:54:16 EDT 2025
Sat Nov 29 07:18:31 EST 2025
Tue Nov 18 22:28:38 EST 2025
Fri Feb 23 02:46:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Prediction intervals
Feature selection
Multi-objective optimization
Least squares support vector machines
Wind speed forecasting
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c464t-c6a5f660716e47dcc0667265be20b00a895a24f000af5e31083e888c3bbf6cc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0284-2730
PQID 2116879701
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_2116879701
crossref_primary_10_1016_j_apenergy_2018_07_032
crossref_citationtrail_10_1016_j_apenergy_2018_07_032
elsevier_sciencedirect_doi_10_1016_j_apenergy_2018_07_032
PublicationCentury 2000
PublicationDate 2018-10-15
PublicationDateYYYYMMDD 2018-10-15
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dragomiretskiy, Zosso (b0085) 2014; 62
Wang, Wang, Jiang (b0080) 2015; 143
Kong, Liu, Shi, Lee (b0045) 2015; 168
Ak, Fink, Zio (b0150) 2015; 27
Mirjalili (b0095) 2015; 83
Ak, Li, Vitelli, Zio, Droguett, Jacinto (b0140) 2013; 40
Quan, Srinivasan, Khosravi (b0145) 2014; 73
Akçay, Filik (b0005) 2017; 191
Tascikaraoglu, Uzunoglu (b0050) 2014; 34
Belhoul, Galand, Vanderpooten (b0155) 2014; 49
Ye, Suganthan, Srikanth (b0025) 2014; 6
Kamboj, Bhadoria, Bath (b0105) 2017; 28
Exizidis, Vallée, De Grève, Lobry, Chatziathanasiou (b0030) 2015; 91
Mirjalili, Jangir, Saremi (b0110) 2017; 46
Santamaría-Bonfil, Reyes-Ballesteros, Gershenson (b0015) 2016; 85
Methaprayoon, Yingvivatanapong, Lee, Liao (b0175) 2005; 43
Jiang, Li, Zhang (b0010) 2016
Erdem, Shi (b0035) 2011; 88
Rezaeipour, Zahedi (b0160) 2017; 157
Brabanter, Brabanter, Suykens, Moor (b0115) 2011; 22
Wang, Zhao, Wu, Wu (b0070) 2017; 74
Raju, ChandraSaikia, Sinha (b0100) 2016; 80
Shrivastava, Lohia, Panigrahi (b0130) 2016; 87
Khosravi, Nahavandi, Creighton, Atiya (b0165) 2011; 22
Okumus, Dinler (b0020) 2016; 123
Pinson, Chevallier, Kariniotakis (b0170) 2007; 22
Song, Jiang, Zhang (b0040) 2014; 130
Acampora, Herrera, Tortora, Vitiello (b0075) 2018; 147
Khosravi, Nahavandi, Creighton (b0135) 2011; 19
Quan, Srinivasan, Khosravi (b0055) 2014; 127
Zhang, Draxl, Hopson, Delle Monache, Vanvyve, Hodge (b0065) 2015; 156
Wang, Luo, Grunder, Lin (b0090) 2017; 113
Zhang, Wei, Xie, Shen, Zhang (b0125) 2016; 205
Zhang, Liu, Qin, An (b0120) 2016; 112(15): 208
Naik, Bisoi, Dash (b0060) 2018; 129
Wang (10.1016/j.apenergy.2018.07.032_b0080) 2015; 143
Brabanter (10.1016/j.apenergy.2018.07.032_b0115) 2011; 22
Kong (10.1016/j.apenergy.2018.07.032_b0045) 2015; 168
Khosravi (10.1016/j.apenergy.2018.07.032_b0135) 2011; 19
Zhang (10.1016/j.apenergy.2018.07.032_b0120) 2016; 112(15): 208
Ye (10.1016/j.apenergy.2018.07.032_b0025) 2014; 6
Mirjalili (10.1016/j.apenergy.2018.07.032_b0095) 2015; 83
Zhang (10.1016/j.apenergy.2018.07.032_b0065) 2015; 156
Ak (10.1016/j.apenergy.2018.07.032_b0150) 2015; 27
Shrivastava (10.1016/j.apenergy.2018.07.032_b0130) 2016; 87
Methaprayoon (10.1016/j.apenergy.2018.07.032_b0175) 2005; 43
Dragomiretskiy (10.1016/j.apenergy.2018.07.032_b0085) 2014; 62
Jiang (10.1016/j.apenergy.2018.07.032_b0010) 2016
Khosravi (10.1016/j.apenergy.2018.07.032_b0165) 2011; 22
Acampora (10.1016/j.apenergy.2018.07.032_b0075) 2018; 147
Belhoul (10.1016/j.apenergy.2018.07.032_b0155) 2014; 49
Santamaría-Bonfil (10.1016/j.apenergy.2018.07.032_b0015) 2016; 85
Erdem (10.1016/j.apenergy.2018.07.032_b0035) 2011; 88
Raju (10.1016/j.apenergy.2018.07.032_b0100) 2016; 80
Mirjalili (10.1016/j.apenergy.2018.07.032_b0110) 2017; 46
Akçay (10.1016/j.apenergy.2018.07.032_b0005) 2017; 191
Kamboj (10.1016/j.apenergy.2018.07.032_b0105) 2017; 28
Pinson (10.1016/j.apenergy.2018.07.032_b0170) 2007; 22
Naik (10.1016/j.apenergy.2018.07.032_b0060) 2018; 129
Wang (10.1016/j.apenergy.2018.07.032_b0070) 2017; 74
Ak (10.1016/j.apenergy.2018.07.032_b0140) 2013; 40
Rezaeipour (10.1016/j.apenergy.2018.07.032_b0160) 2017; 157
Quan (10.1016/j.apenergy.2018.07.032_b0055) 2014; 127
Quan (10.1016/j.apenergy.2018.07.032_b0145) 2014; 73
Wang (10.1016/j.apenergy.2018.07.032_b0090) 2017; 113
Okumus (10.1016/j.apenergy.2018.07.032_b0020) 2016; 123
Song (10.1016/j.apenergy.2018.07.032_b0040) 2014; 130
Exizidis (10.1016/j.apenergy.2018.07.032_b0030) 2015; 91
Tascikaraoglu (10.1016/j.apenergy.2018.07.032_b0050) 2014; 34
Zhang (10.1016/j.apenergy.2018.07.032_b0125) 2016; 205
References_xml – volume: 191
  start-page: 653
  year: 2017
  end-page: 662
  ident: b0005
  article-title: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values
  publication-title: Appl Energy
– volume: 156
  start-page: 528
  year: 2015
  end-page: 541
  ident: b0065
  article-title: Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods
  publication-title: Appl Energy
– volume: 113
  start-page: 1345
  year: 2017
  end-page: 1358
  ident: b0090
  article-title: Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction
  publication-title: Renew Energy
– volume: 22
  start-page: 337
  year: 2011
  end-page: 346
  ident: b0165
  article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals
  publication-title: IEEE Trans Neural Networ
– volume: 88
  start-page: 1405
  year: 2011
  end-page: 1414
  ident: b0035
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Appl Energy
– volume: 205
  start-page: 53
  year: 2016
  end-page: 63
  ident: b0125
  article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework
  publication-title: Neurocomputing
– volume: 147
  start-page: 94
  year: 2018
  end-page: 108
  ident: b0075
  article-title: A multi-objective evolutionary approach to training set selection for support vector machine
  publication-title: Knowl-Based Syst
– volume: 28
  start-page: 2181
  year: 2017
  end-page: 2192
  ident: b0105
  article-title: Solution of non-convex economic load dispatch problem for small-scale power systems using ant lion optimizer
  publication-title: Neural Comput Appl
– volume: 22
  start-page: 110
  year: 2011
  end-page: 120
  ident: b0115
  article-title: Approximate confidence and prediction intervals for least squares support vector regression
  publication-title: IEEE Trans Neural Networ
– volume: 27
  start-page: 1734
  year: 2015
  end-page: 1747
  ident: b0150
  article-title: Two machine learning approaches for short-term wind speed time-series prediction
  publication-title: IEEE Trans Neural Networ Learn Syst
– volume: 157
  start-page: 227
  year: 2017
  end-page: 235
  ident: b0160
  article-title: Multi-objective based economic operation and environmental performance of PV-based large industrial consumer
  publication-title: Sol Energy
– volume: 46
  start-page: 79
  year: 2017
  end-page: 95
  ident: b0110
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Appl Int
– start-page: 1
  year: 2016
  end-page: 19
  ident: b0010
  article-title: Two combined forecasting models based on singular spectrum analysis and intelligent optimized algorithm for short-term wind speed
  publication-title: Neural Comput Appl
– volume: 43
  start-page: 1441
  year: 2005
  end-page: 1448
  ident: b0175
  article-title: An integration of ANN wind power estimation into unit commitment considering the forecasting uncertainty
  publication-title: IEEE Trans Ind Appl Ia
– volume: 168
  start-page: 449
  year: 2015
  end-page: 456
  ident: b0045
  article-title: Wind speed prediction using reduced support vector machines with feature selection
  publication-title: Neurocomputing
– volume: 112(15): 208
  start-page: 219
  year: 2016
  ident: b0120
  article-title: Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods
  publication-title: Energy Convers Manage
– volume: 49
  start-page: 97
  year: 2014
  end-page: 106
  ident: b0155
  article-title: An efficient procedure for finding best compromise solutions to the multi-objective assignment problem
  publication-title: Comput Oper Res
– volume: 80
  start-page: 52
  year: 2016
  end-page: 63
  ident: b0100
  article-title: Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller
  publication-title: Int J Electr Power Energy Syst
– volume: 22
  start-page: 1148
  year: 2007
  end-page: 1156
  ident: b0170
  article-title: Trading wind generation from short-term probabilistic forecasts of wind power
  publication-title: IEEE Trans Power Syst
– volume: 74
  start-page: 96
  year: 2017
  end-page: 104
  ident: b0070
  article-title: Multi-objective optimization: a method for selecting the optimal solution from Pareto non-inferior solutions
  publication-title: Expert Syst Appl
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: b0085
  article-title: Variational mode decomposition
  publication-title: IEEE Trans Signal Process
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: b0095
  article-title: The ant lion optimizer
  publication-title: Adv Eng Softw
– volume: 34
  start-page: 243
  year: 2014
  end-page: 254
  ident: b0050
  article-title: A review of combined approaches for prediction of short-term wind speed and power
  publication-title: Renew Sustain Energy Rev
– volume: 143
  start-page: 472
  year: 2015
  end-page: 488
  ident: b0080
  article-title: The study and application of a novel hybrid forecasting model – a case study of wind speed forecasting in China
  publication-title: Appl Energy
– volume: 129
  start-page: 357
  year: 2018
  end-page: 383
  ident: b0060
  article-title: Prediction interval forecasting of wind speed and wind power using modes decomposition based low rank multi-kernel ridge regression
  publication-title: Renew Energy
– volume: 19
  start-page: 983
  year: 2011
  end-page: 988
  ident: b0135
  article-title: Prediction interval construction and optimization for adaptive neurofuzzy inference systems
  publication-title: IEEE Trans Fuzzy Syst
– volume: 73
  start-page: 916
  year: 2014
  end-page: 925
  ident: b0145
  article-title: Uncertainty handling using neural network-based prediction intervals for electrical load forecasting
  publication-title: Energy
– volume: 40
  start-page: 1205
  year: 2013
  end-page: 1212
  ident: b0140
  article-title: NSGA-II-trained neural network approach to the estimation of prediction intervals of scale deposition rate in oil & gas equipment
  publication-title: Expert Syst Appl
– volume: 123
  start-page: 362
  year: 2016
  end-page: 371
  ident: b0020
  article-title: Current status of wind energy forecasting and a hybrid method for hourly predictions
  publication-title: Energy Convers Manage
– volume: 85
  start-page: 790
  year: 2016
  end-page: 809
  ident: b0015
  article-title: Wind speed forecasting for wind farms: a method based on support vector regression
  publication-title: Renew Energy
– volume: 6
  start-page: 236
  year: 2014
  end-page: 244
  ident: b0025
  article-title: A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods
  publication-title: IEEE Trans Sustain Energy
– volume: 127
  start-page: 172
  year: 2014
  end-page: 180
  ident: b0055
  article-title: Particle swarm optimization for construction of neural network-based prediction intervals
  publication-title: Neurocomputing
– volume: 87
  start-page: 903
  year: 2016
  end-page: 910
  ident: b0130
  article-title: A multiobjective framework for wind speed prediction interval forecasts
  publication-title: Renew Energy
– volume: 91
  start-page: 471
  year: 2015
  end-page: 478
  ident: b0030
  article-title: Thermal behavior of power cables in offshore wind sites considering wind speed uncertainty
  publication-title: Appl Therm Eng
– volume: 130
  start-page: 103
  year: 2014
  end-page: 112
  ident: b0040
  article-title: Short-term wind speed forecasting with Markov-switching model
  publication-title: Appl Energy
– volume: 74
  start-page: 96
  year: 2017
  ident: 10.1016/j.apenergy.2018.07.032_b0070
  article-title: Multi-objective optimization: a method for selecting the optimal solution from Pareto non-inferior solutions
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.01.004
– volume: 147
  start-page: 94
  year: 2018
  ident: 10.1016/j.apenergy.2018.07.032_b0075
  article-title: A multi-objective evolutionary approach to training set selection for support vector machine
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.02.022
– volume: 80
  start-page: 52
  year: 2016
  ident: 10.1016/j.apenergy.2018.07.032_b0100
  article-title: Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2016.01.037
– volume: 191
  start-page: 653
  year: 2017
  ident: 10.1016/j.apenergy.2018.07.032_b0005
  article-title: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.01.063
– volume: 34
  start-page: 243
  year: 2014
  ident: 10.1016/j.apenergy.2018.07.032_b0050
  article-title: A review of combined approaches for prediction of short-term wind speed and power
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.03.033
– volume: 143
  start-page: 472
  year: 2015
  ident: 10.1016/j.apenergy.2018.07.032_b0080
  article-title: The study and application of a novel hybrid forecasting model – a case study of wind speed forecasting in China
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.038
– volume: 157
  start-page: 227
  year: 2017
  ident: 10.1016/j.apenergy.2018.07.032_b0160
  article-title: Multi-objective based economic operation and environmental performance of PV-based large industrial consumer
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.08.022
– volume: 19
  start-page: 983
  issue: 5
  year: 2011
  ident: 10.1016/j.apenergy.2018.07.032_b0135
  article-title: Prediction interval construction and optimization for adaptive neurofuzzy inference systems
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2011.2130529
– volume: 88
  start-page: 1405
  issue: 4
  year: 2011
  ident: 10.1016/j.apenergy.2018.07.032_b0035
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.10.031
– volume: 127
  start-page: 172
  year: 2014
  ident: 10.1016/j.apenergy.2018.07.032_b0055
  article-title: Particle swarm optimization for construction of neural network-based prediction intervals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.08.020
– volume: 113
  start-page: 1345
  year: 2017
  ident: 10.1016/j.apenergy.2018.07.032_b0090
  article-title: Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.06.095
– volume: 83
  start-page: 80
  year: 2015
  ident: 10.1016/j.apenergy.2018.07.032_b0095
  article-title: The ant lion optimizer
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 40
  start-page: 1205
  issue: 4
  year: 2013
  ident: 10.1016/j.apenergy.2018.07.032_b0140
  article-title: NSGA-II-trained neural network approach to the estimation of prediction intervals of scale deposition rate in oil & gas equipment
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.08.018
– volume: 156
  start-page: 528
  year: 2015
  ident: 10.1016/j.apenergy.2018.07.032_b0065
  article-title: Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.07.059
– volume: 73
  start-page: 916
  year: 2014
  ident: 10.1016/j.apenergy.2018.07.032_b0145
  article-title: Uncertainty handling using neural network-based prediction intervals for electrical load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2014.06.104
– volume: 62
  start-page: 531
  issue: 3
  year: 2014
  ident: 10.1016/j.apenergy.2018.07.032_b0085
  article-title: Variational mode decomposition
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2013.2288675
– volume: 123
  start-page: 362
  year: 2016
  ident: 10.1016/j.apenergy.2018.07.032_b0020
  article-title: Current status of wind energy forecasting and a hybrid method for hourly predictions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.06.053
– volume: 22
  start-page: 1148
  year: 2007
  ident: 10.1016/j.apenergy.2018.07.032_b0170
  article-title: Trading wind generation from short-term probabilistic forecasts of wind power
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2007.901117
– volume: 27
  start-page: 1734
  issue: 8
  year: 2015
  ident: 10.1016/j.apenergy.2018.07.032_b0150
  article-title: Two machine learning approaches for short-term wind speed time-series prediction
  publication-title: IEEE Trans Neural Networ Learn Syst
  doi: 10.1109/TNNLS.2015.2418739
– volume: 85
  start-page: 790
  year: 2016
  ident: 10.1016/j.apenergy.2018.07.032_b0015
  article-title: Wind speed forecasting for wind farms: a method based on support vector regression
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.07.004
– volume: 6
  start-page: 236
  issue: 1
  year: 2014
  ident: 10.1016/j.apenergy.2018.07.032_b0025
  article-title: A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods
  publication-title: IEEE Trans Sustain Energy
– volume: 22
  start-page: 337
  issue: 3
  year: 2011
  ident: 10.1016/j.apenergy.2018.07.032_b0165
  article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals
  publication-title: IEEE Trans Neural Networ
  doi: 10.1109/TNN.2010.2096824
– volume: 46
  start-page: 79
  issue: 1
  year: 2017
  ident: 10.1016/j.apenergy.2018.07.032_b0110
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Appl Int
  doi: 10.1007/s10489-016-0825-8
– volume: 43
  start-page: 1441
  year: 2005
  ident: 10.1016/j.apenergy.2018.07.032_b0175
  article-title: An integration of ANN wind power estimation into unit commitment considering the forecasting uncertainty
  publication-title: IEEE Trans Ind Appl Ia
  doi: 10.1109/TIA.2007.908203
– volume: 112(15): 208
  start-page: 219
  year: 2016
  ident: 10.1016/j.apenergy.2018.07.032_b0120
  article-title: Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods
  publication-title: Energy Convers Manage
– volume: 49
  start-page: 97
  year: 2014
  ident: 10.1016/j.apenergy.2018.07.032_b0155
  article-title: An efficient procedure for finding best compromise solutions to the multi-objective assignment problem
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2014.03.016
– volume: 205
  start-page: 53
  year: 2016
  ident: 10.1016/j.apenergy.2018.07.032_b0125
  article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.061
– volume: 91
  start-page: 471
  year: 2015
  ident: 10.1016/j.apenergy.2018.07.032_b0030
  article-title: Thermal behavior of power cables in offshore wind sites considering wind speed uncertainty
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.08.037
– start-page: 1
  year: 2016
  ident: 10.1016/j.apenergy.2018.07.032_b0010
  article-title: Two combined forecasting models based on singular spectrum analysis and intelligent optimized algorithm for short-term wind speed
  publication-title: Neural Comput Appl
– volume: 130
  start-page: 103
  year: 2014
  ident: 10.1016/j.apenergy.2018.07.032_b0040
  article-title: Short-term wind speed forecasting with Markov-switching model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.05.026
– volume: 28
  start-page: 2181
  issue: 8
  year: 2017
  ident: 10.1016/j.apenergy.2018.07.032_b0105
  article-title: Solution of non-convex economic load dispatch problem for small-scale power systems using ant lion optimizer
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2148-9
– volume: 129
  start-page: 357
  issue: Part A
  year: 2018
  ident: 10.1016/j.apenergy.2018.07.032_b0060
  article-title: Prediction interval forecasting of wind speed and wind power using modes decomposition based low rank multi-kernel ridge regression
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.05.031
– volume: 168
  start-page: 449
  year: 2015
  ident: 10.1016/j.apenergy.2018.07.032_b0045
  article-title: Wind speed prediction using reduced support vector machines with feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.090
– volume: 87
  start-page: 903
  year: 2016
  ident: 10.1016/j.apenergy.2018.07.032_b0130
  article-title: A multiobjective framework for wind speed prediction interval forecasts
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.08.038
– volume: 22
  start-page: 110
  issue: 1
  year: 2011
  ident: 10.1016/j.apenergy.2018.07.032_b0115
  article-title: Approximate confidence and prediction intervals for least squares support vector regression
  publication-title: IEEE Trans Neural Networ
  doi: 10.1109/TNN.2010.2087769
SSID ssj0002120
Score 2.6105928
Snippet •Novel wind speed interval forecasting approach in multi-objective formulation introduced.•Hybrid framework building on data feature selection...
Accurate forecast of wind speed is the first prerequisite to supply high quality power energy to customer in a secure and economic manner. However, traditional...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2207
SubjectTerms algorithms
artificial intelligence
China
decision making
energy
Feature selection
Least squares support vector machines
Multi-objective optimization
prediction
Prediction intervals
selection methods
time series analysis
uncertainty
wind speed
Wind speed forecasting
Title A wind speed interval prediction system based on multi-objective optimization for machine learning method
URI https://dx.doi.org/10.1016/j.apenergy.2018.07.032
https://www.proquest.com/docview/2116879701
Volume 228
WOSCitedRecordID wos000453489800085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLag4wEeEAwmxk1GQrxUHomT2M5jhTrBVBWEOlSerCR2plYsDb2M_XyOb20YoI0HXqI2jXvJ9_X42Oec7yD0WpVRkhSqJCYKRdJcaSKSWJGac6XKVNfcRnS_jPh4LKbT_JNvd7Sy7QR404jLy7z9r1DDOQDblM7-A9zbN4UT8BhAhyPADscbAT_o_5iZzfAW5iWrBrG8MNVWSxORsWA78ea-mb-UiRXYnEKyKOfO9vUXYEXOfXmmzUI8twmXOnSYOPNtp7t-bXBmtS0l3Gb52FSBz0Wz3HHwxIkWfN109xtiK_7qKi5DnVXEiFl3dW0opaLfHlEacQIOR9S1iNR1tfWza3j1N8vtNhHmR0XrvqnJuhNWV9Xvf_4ilT3-KI9PRyM5GU4nb9rvxHQRM9F231LlNtqjPMtFD-0NPgynJ9u5mXqhzvAbOjXjf_7ov7krVyZu641MHqD7fhmBBw7-h-iWbvbRvY645D46GO5qGOFSb8RXj9BsgA1DsGUIDgzBO4ZgxxBsGYLh-RWG4C5DMDAEe4bgwBDsGPIYnR4PJ-_eE99xg1QpS9ekYkVWMyM5yHTKVVWZFGjKslLTCOxzIfKsoGkNN7KoMw0rA5FoIUSVlGXNqipODlCvWTT6CcJRJuJaw-qbFknKVCJUxeuYmcLrNMsTcYiycGNl5eXoTVeUbzLkHc5lAEQaQGTEJQByiN5ux7VOkOXaEXnATXq30rmLErh37dhXAWgJdtcE04pGLzYrSeOYCZ7zKH56g2ueobu7_9Jz1FsvN_oFulNdrGer5UvP0p9gfqhI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+wind+speed+interval+prediction+system+based+on+multi-objective+optimization+for+machine+learning+method&rft.jtitle=Applied+energy&rft.au=Li%2C+Ranran&rft.au=Jin%2C+Yu&rft.date=2018-10-15&rft.issn=0306-2619&rft.volume=228+p.2207-2220&rft.spage=2207&rft.epage=2220&rft_id=info:doi/10.1016%2Fj.apenergy.2018.07.032&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon