A wind speed interval prediction system based on multi-objective optimization for machine learning method
•Novel wind speed interval forecasting approach in multi-objective formulation introduced.•Hybrid framework building on data feature selection method.•Simultaneously the lower and upper bounds of the prediction intervals of future wind speed time series constructed.•The best compromise solution sele...
Uložené v:
| Vydané v: | Applied energy Ročník 228; s. 2207 - 2220 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
15.10.2018
|
| Predmet: | |
| ISSN: | 0306-2619, 1872-9118 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Novel wind speed interval forecasting approach in multi-objective formulation introduced.•Hybrid framework building on data feature selection method.•Simultaneously the lower and upper bounds of the prediction intervals of future wind speed time series constructed.•The best compromise solution selected by the smallest coverage width criterion method.
Accurate forecast of wind speed is the first prerequisite to supply high quality power energy to customer in a secure and economic manner. However, traditional point forecast may not be sufficiently reliable and accurate for decision-makers to perform operational strategies purely when the uncertainty level increases. For the sake of quantifying the uncertainty associated with point predictions, it is necessary to conduct interval prediction to provide reliable and accurate wind speed information. In this work, a hybrid model framework based on combinatorial modules was proposed and successfully adopted to construct the prediction intervals of the future wind speed. Feature selection methods are developed to determine the most suitable modes of original time series and the optimal input form of the model, while the optimization forecasting module is applied to model the wind speed series based on the machine learning method and the multi-objective optimization algorithm, then the compromise solution of Pareto front is chosen by “Min-max” method. Finally, the proposed combined model was investigated via the hourly wind speed data from two different periods in Penglai, China. Besides, the study’s experimental results indicated that the prediction intervals generated perform well and are satisfactory in both criterion functions of high coverage and small width through discussion among single-objective models and other multi-objective models (signal pre-processing method comparison included). |
|---|---|
| AbstractList | •Novel wind speed interval forecasting approach in multi-objective formulation introduced.•Hybrid framework building on data feature selection method.•Simultaneously the lower and upper bounds of the prediction intervals of future wind speed time series constructed.•The best compromise solution selected by the smallest coverage width criterion method.
Accurate forecast of wind speed is the first prerequisite to supply high quality power energy to customer in a secure and economic manner. However, traditional point forecast may not be sufficiently reliable and accurate for decision-makers to perform operational strategies purely when the uncertainty level increases. For the sake of quantifying the uncertainty associated with point predictions, it is necessary to conduct interval prediction to provide reliable and accurate wind speed information. In this work, a hybrid model framework based on combinatorial modules was proposed and successfully adopted to construct the prediction intervals of the future wind speed. Feature selection methods are developed to determine the most suitable modes of original time series and the optimal input form of the model, while the optimization forecasting module is applied to model the wind speed series based on the machine learning method and the multi-objective optimization algorithm, then the compromise solution of Pareto front is chosen by “Min-max” method. Finally, the proposed combined model was investigated via the hourly wind speed data from two different periods in Penglai, China. Besides, the study’s experimental results indicated that the prediction intervals generated perform well and are satisfactory in both criterion functions of high coverage and small width through discussion among single-objective models and other multi-objective models (signal pre-processing method comparison included). Accurate forecast of wind speed is the first prerequisite to supply high quality power energy to customer in a secure and economic manner. However, traditional point forecast may not be sufficiently reliable and accurate for decision-makers to perform operational strategies purely when the uncertainty level increases. For the sake of quantifying the uncertainty associated with point predictions, it is necessary to conduct interval prediction to provide reliable and accurate wind speed information. In this work, a hybrid model framework based on combinatorial modules was proposed and successfully adopted to construct the prediction intervals of the future wind speed. Feature selection methods are developed to determine the most suitable modes of original time series and the optimal input form of the model, while the optimization forecasting module is applied to model the wind speed series based on the machine learning method and the multi-objective optimization algorithm, then the compromise solution of Pareto front is chosen by “Min-max” method. Finally, the proposed combined model was investigated via the hourly wind speed data from two different periods in Penglai, China. Besides, the study’s experimental results indicated that the prediction intervals generated perform well and are satisfactory in both criterion functions of high coverage and small width through discussion among single-objective models and other multi-objective models (signal pre-processing method comparison included). |
| Author | Li, Ranran Jin, Yu |
| Author_xml | – sequence: 1 givenname: Ranran orcidid: 0000-0003-0284-2730 surname: Li fullname: Li, Ranran – sequence: 2 givenname: Yu surname: Jin fullname: Jin, Yu email: jinyudc@dufe.edu.cn |
| BookMark | eNqFkMFqGzEQhkVIIU7aVyg69rLbkdbWytBDQkjaQqCX9iy02tlkzK60kWQH5-kr282ll5yGYb7_h_ku2bkPHhn7LKAWINTXTW1n9Bgf97UEoWtoa2jkGVsI3cpqLYQ-ZwtoQFVSifUFu0xpAwBSSFgwuuEv5HueZsSek88Yd3bkc8SeXKbgedqnjBPvbCpA2aftmKkK3QbLfYc8zJkmerVHeAiRT9Y9kUc-oo2e_COfMD-F_iP7MNgx4ad_84r9ub_7ffujevj1_eftzUPllmqZK6fsalAKWqFw2fbOgVKtVKsOJXQAVq9XVi6H8oAdVtgI0A1qrV3TdYNyTjRX7Mupd47heYspm4mSw3G0HsM2GSmE0u26hQOqTqiLIaWIg5kjTTbujQBzcGs25s2tObg10JritgS__Rd0lI8GcrQ0vh-_PsWxeNgRRpMcoXfFeSxWTR_ovYq__U-eXw |
| CitedBy_id | crossref_primary_10_1007_s12036_020_09649_4 crossref_primary_10_1016_j_eswa_2024_123851 crossref_primary_10_1016_j_apenergy_2018_10_025 crossref_primary_10_3390_su141912683 crossref_primary_10_3390_en15249657 crossref_primary_10_1016_j_renene_2024_121057 crossref_primary_10_1109_TSTE_2021_3054125 crossref_primary_10_1109_ACCESS_2025_3545969 crossref_primary_10_1016_j_apenergy_2024_122785 crossref_primary_10_1016_j_asoc_2022_109690 crossref_primary_10_1016_j_asoc_2023_110310 crossref_primary_10_2166_wcc_2022_113 crossref_primary_10_1016_j_eneco_2022_106471 crossref_primary_10_1155_2020_9601763 crossref_primary_10_1016_j_enconman_2022_115540 crossref_primary_10_1016_j_jhydrol_2024_132100 crossref_primary_10_1016_j_segan_2023_101157 crossref_primary_10_1109_TSTE_2021_3131522 crossref_primary_10_3390_app10175975 crossref_primary_10_1016_j_asoc_2022_108644 crossref_primary_10_1088_1742_6596_1964_5_052007 crossref_primary_10_1016_j_asoc_2021_108009 crossref_primary_10_1177_10692509251337224 crossref_primary_10_1016_j_eswa_2024_123965 crossref_primary_10_3389_fenrg_2022_927260 crossref_primary_10_1016_j_apenergy_2025_126234 crossref_primary_10_1016_j_renene_2025_122653 crossref_primary_10_1109_ACCESS_2020_3041533 crossref_primary_10_1109_MCI_2021_3084416 crossref_primary_10_1590_0001_3765202420230891 crossref_primary_10_1109_ACCESS_2020_3022872 crossref_primary_10_1016_j_enconman_2019_06_024 crossref_primary_10_3390_en13226125 crossref_primary_10_1016_j_asoc_2020_106294 crossref_primary_10_1016_j_asoc_2022_109602 crossref_primary_10_1007_s10462_023_10554_9 crossref_primary_10_1016_j_apenergy_2019_113353 crossref_primary_10_1109_ACCESS_2020_2978169 crossref_primary_10_1016_j_epsr_2023_109159 crossref_primary_10_1016_j_epsr_2022_108069 crossref_primary_10_1016_j_knosys_2020_106052 crossref_primary_10_1016_j_scs_2020_102052 crossref_primary_10_3390_su11020526 crossref_primary_10_1016_j_apenergy_2019_05_016 crossref_primary_10_1111_exsy_13830 crossref_primary_10_1016_j_est_2022_104591 crossref_primary_10_1016_j_techfore_2024_123846 crossref_primary_10_3390_electronics12041062 crossref_primary_10_1109_ACCESS_2019_2957174 crossref_primary_10_1016_j_chemosphere_2022_136614 crossref_primary_10_2166_nh_2021_161 crossref_primary_10_1016_j_asoc_2021_108345 crossref_primary_10_1007_s42452_020_2830_0 crossref_primary_10_4018_IJDST_307955 crossref_primary_10_1016_j_engappai_2024_107906 crossref_primary_10_3934_mbe_2025083 crossref_primary_10_3390_en13071596 crossref_primary_10_1016_j_energy_2023_127526 crossref_primary_10_1016_j_jenvman_2025_126225 crossref_primary_10_1109_TSG_2020_2972513 crossref_primary_10_1109_ACCESS_2019_2957062 crossref_primary_10_1016_j_energy_2021_121467 crossref_primary_10_1109_TKDE_2025_3579406 crossref_primary_10_1016_j_energy_2025_138050 crossref_primary_10_3390_s22020422 crossref_primary_10_1016_j_renene_2022_10_123 crossref_primary_10_1016_j_energy_2024_130492 crossref_primary_10_1080_02626667_2024_2428428 crossref_primary_10_1177_1475921720929755 crossref_primary_10_1016_j_jweia_2023_105507 crossref_primary_10_1016_j_asoc_2025_113476 crossref_primary_10_1016_j_cageo_2024_105535 crossref_primary_10_1016_j_oceaneng_2025_122518 crossref_primary_10_1109_TII_2020_3004436 crossref_primary_10_1002_ente_202100700 crossref_primary_10_3390_su13073665 crossref_primary_10_1016_j_enconman_2020_113680 crossref_primary_10_1016_j_jclepro_2019_119195 crossref_primary_10_2298_TSCI2406097A crossref_primary_10_1109_ACCESS_2020_2973746 crossref_primary_10_1016_j_asoc_2022_109930 crossref_primary_10_1016_j_enconman_2022_115583 crossref_primary_10_1016_j_apenergy_2019_114257 crossref_primary_10_1016_j_apenergy_2019_113686 crossref_primary_10_1016_j_apenergy_2019_04_188 crossref_primary_10_1016_j_physa_2024_129543 crossref_primary_10_1007_s11356_022_21904_5 crossref_primary_10_1002_stc_2969 crossref_primary_10_1016_j_energy_2020_118773 crossref_primary_10_1016_j_engappai_2020_104133 crossref_primary_10_1007_s00500_021_06025_4 crossref_primary_10_1016_j_enconman_2020_113324 crossref_primary_10_1061__ASCE_EY_1943_7897_0000823 crossref_primary_10_1080_15435075_2023_2269443 crossref_primary_10_1016_j_ecmx_2025_101119 crossref_primary_10_1016_j_heliyon_2023_e23071 crossref_primary_10_1080_15325008_2023_2220688 crossref_primary_10_1007_s00521_020_04996_3 crossref_primary_10_1109_ACCESS_2021_3097102 crossref_primary_10_1016_j_apm_2020_07_019 crossref_primary_10_1016_j_engappai_2023_107034 crossref_primary_10_1007_s00521_023_08807_3 crossref_primary_10_1109_ACCESS_2021_3073995 crossref_primary_10_1007_s11440_022_01455_2 crossref_primary_10_1016_j_apenergy_2021_117446 crossref_primary_10_1109_ACCESS_2021_3056003 crossref_primary_10_1016_j_asoc_2021_107848 crossref_primary_10_1016_j_energy_2023_130155 crossref_primary_10_1016_j_enconman_2019_112239 crossref_primary_10_1109_TAI_2021_3123928 crossref_primary_10_1016_j_jhydrol_2024_132646 crossref_primary_10_1016_j_apenergy_2019_03_097 crossref_primary_10_3390_en13071687 crossref_primary_10_1007_s00500_021_06189_z crossref_primary_10_1016_j_apm_2018_10_019 crossref_primary_10_1016_j_compeleceng_2022_108000 crossref_primary_10_1016_j_ces_2020_116210 crossref_primary_10_1109_TEVC_2021_3122191 crossref_primary_10_1155_2021_6632390 crossref_primary_10_1016_j_apenergy_2019_04_047 crossref_primary_10_1016_j_flowmeasinst_2023_102403 crossref_primary_10_1049_gtd2_12291 crossref_primary_10_1002_ese3_928 crossref_primary_10_1371_journal_pone_0273257 crossref_primary_10_1080_0952813X_2022_2093409 crossref_primary_10_1109_ACCESS_2020_2966641 crossref_primary_10_1177_09544062251347475 crossref_primary_10_1109_TSTE_2019_2926147 crossref_primary_10_1016_j_asoc_2019_105587 crossref_primary_10_1016_j_heliyon_2024_e33945 crossref_primary_10_1109_TII_2020_2973413 crossref_primary_10_3390_en12101931 crossref_primary_10_3390_pr8010035 crossref_primary_10_1007_s11269_024_03883_z crossref_primary_10_1016_j_asoc_2020_106350 crossref_primary_10_3390_en13174487 |
| Cites_doi | 10.1016/j.eswa.2017.01.004 10.1016/j.knosys.2018.02.022 10.1016/j.ijepes.2016.01.037 10.1016/j.apenergy.2017.01.063 10.1016/j.rser.2014.03.033 10.1016/j.apenergy.2015.01.038 10.1016/j.solener.2017.08.022 10.1109/TFUZZ.2011.2130529 10.1016/j.apenergy.2010.10.031 10.1016/j.neucom.2013.08.020 10.1016/j.renene.2017.06.095 10.1016/j.advengsoft.2015.01.010 10.1016/j.eswa.2012.08.018 10.1016/j.apenergy.2015.07.059 10.1016/j.energy.2014.06.104 10.1109/TSP.2013.2288675 10.1016/j.enconman.2016.06.053 10.1109/TPWRS.2007.901117 10.1109/TNNLS.2015.2418739 10.1016/j.renene.2015.07.004 10.1109/TNN.2010.2096824 10.1007/s10489-016-0825-8 10.1109/TIA.2007.908203 10.1016/j.cor.2014.03.016 10.1016/j.neucom.2016.03.061 10.1016/j.applthermaleng.2015.08.037 10.1016/j.apenergy.2014.05.026 10.1007/s00521-015-2148-9 10.1016/j.renene.2018.05.031 10.1016/j.neucom.2014.09.090 10.1016/j.renene.2015.08.038 10.1109/TNN.2010.2087769 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2018.07.032 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| EndPage | 2220 |
| ExternalDocumentID | 10_1016_j_apenergy_2018_07_032 S0306261918310584 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c464t-c6a5f660716e47dcc0667265be20b00a895a24f000af5e31083e888c3bbf6cc13 |
| ISICitedReferencesCount | 151 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453489800085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Wed Oct 01 13:54:16 EDT 2025 Sat Nov 29 07:18:31 EST 2025 Tue Nov 18 22:28:38 EST 2025 Fri Feb 23 02:46:53 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Prediction intervals Feature selection Multi-objective optimization Least squares support vector machines Wind speed forecasting |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c464t-c6a5f660716e47dcc0667265be20b00a895a24f000af5e31083e888c3bbf6cc13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0284-2730 |
| PQID | 2116879701 |
| PQPubID | 24069 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2116879701 crossref_primary_10_1016_j_apenergy_2018_07_032 crossref_citationtrail_10_1016_j_apenergy_2018_07_032 elsevier_sciencedirect_doi_10_1016_j_apenergy_2018_07_032 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-15 |
| PublicationDateYYYYMMDD | 2018-10-15 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied energy |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Dragomiretskiy, Zosso (b0085) 2014; 62 Wang, Wang, Jiang (b0080) 2015; 143 Kong, Liu, Shi, Lee (b0045) 2015; 168 Ak, Fink, Zio (b0150) 2015; 27 Mirjalili (b0095) 2015; 83 Ak, Li, Vitelli, Zio, Droguett, Jacinto (b0140) 2013; 40 Quan, Srinivasan, Khosravi (b0145) 2014; 73 Akçay, Filik (b0005) 2017; 191 Tascikaraoglu, Uzunoglu (b0050) 2014; 34 Belhoul, Galand, Vanderpooten (b0155) 2014; 49 Ye, Suganthan, Srikanth (b0025) 2014; 6 Kamboj, Bhadoria, Bath (b0105) 2017; 28 Exizidis, Vallée, De Grève, Lobry, Chatziathanasiou (b0030) 2015; 91 Mirjalili, Jangir, Saremi (b0110) 2017; 46 Santamaría-Bonfil, Reyes-Ballesteros, Gershenson (b0015) 2016; 85 Methaprayoon, Yingvivatanapong, Lee, Liao (b0175) 2005; 43 Jiang, Li, Zhang (b0010) 2016 Erdem, Shi (b0035) 2011; 88 Rezaeipour, Zahedi (b0160) 2017; 157 Brabanter, Brabanter, Suykens, Moor (b0115) 2011; 22 Wang, Zhao, Wu, Wu (b0070) 2017; 74 Raju, ChandraSaikia, Sinha (b0100) 2016; 80 Shrivastava, Lohia, Panigrahi (b0130) 2016; 87 Khosravi, Nahavandi, Creighton, Atiya (b0165) 2011; 22 Okumus, Dinler (b0020) 2016; 123 Pinson, Chevallier, Kariniotakis (b0170) 2007; 22 Song, Jiang, Zhang (b0040) 2014; 130 Acampora, Herrera, Tortora, Vitiello (b0075) 2018; 147 Khosravi, Nahavandi, Creighton (b0135) 2011; 19 Quan, Srinivasan, Khosravi (b0055) 2014; 127 Zhang, Draxl, Hopson, Delle Monache, Vanvyve, Hodge (b0065) 2015; 156 Wang, Luo, Grunder, Lin (b0090) 2017; 113 Zhang, Wei, Xie, Shen, Zhang (b0125) 2016; 205 Zhang, Liu, Qin, An (b0120) 2016; 112(15): 208 Naik, Bisoi, Dash (b0060) 2018; 129 Wang (10.1016/j.apenergy.2018.07.032_b0080) 2015; 143 Brabanter (10.1016/j.apenergy.2018.07.032_b0115) 2011; 22 Kong (10.1016/j.apenergy.2018.07.032_b0045) 2015; 168 Khosravi (10.1016/j.apenergy.2018.07.032_b0135) 2011; 19 Zhang (10.1016/j.apenergy.2018.07.032_b0120) 2016; 112(15): 208 Ye (10.1016/j.apenergy.2018.07.032_b0025) 2014; 6 Mirjalili (10.1016/j.apenergy.2018.07.032_b0095) 2015; 83 Zhang (10.1016/j.apenergy.2018.07.032_b0065) 2015; 156 Ak (10.1016/j.apenergy.2018.07.032_b0150) 2015; 27 Shrivastava (10.1016/j.apenergy.2018.07.032_b0130) 2016; 87 Methaprayoon (10.1016/j.apenergy.2018.07.032_b0175) 2005; 43 Dragomiretskiy (10.1016/j.apenergy.2018.07.032_b0085) 2014; 62 Jiang (10.1016/j.apenergy.2018.07.032_b0010) 2016 Khosravi (10.1016/j.apenergy.2018.07.032_b0165) 2011; 22 Acampora (10.1016/j.apenergy.2018.07.032_b0075) 2018; 147 Belhoul (10.1016/j.apenergy.2018.07.032_b0155) 2014; 49 Santamaría-Bonfil (10.1016/j.apenergy.2018.07.032_b0015) 2016; 85 Erdem (10.1016/j.apenergy.2018.07.032_b0035) 2011; 88 Raju (10.1016/j.apenergy.2018.07.032_b0100) 2016; 80 Mirjalili (10.1016/j.apenergy.2018.07.032_b0110) 2017; 46 Akçay (10.1016/j.apenergy.2018.07.032_b0005) 2017; 191 Kamboj (10.1016/j.apenergy.2018.07.032_b0105) 2017; 28 Pinson (10.1016/j.apenergy.2018.07.032_b0170) 2007; 22 Naik (10.1016/j.apenergy.2018.07.032_b0060) 2018; 129 Wang (10.1016/j.apenergy.2018.07.032_b0070) 2017; 74 Ak (10.1016/j.apenergy.2018.07.032_b0140) 2013; 40 Rezaeipour (10.1016/j.apenergy.2018.07.032_b0160) 2017; 157 Quan (10.1016/j.apenergy.2018.07.032_b0055) 2014; 127 Quan (10.1016/j.apenergy.2018.07.032_b0145) 2014; 73 Wang (10.1016/j.apenergy.2018.07.032_b0090) 2017; 113 Okumus (10.1016/j.apenergy.2018.07.032_b0020) 2016; 123 Song (10.1016/j.apenergy.2018.07.032_b0040) 2014; 130 Exizidis (10.1016/j.apenergy.2018.07.032_b0030) 2015; 91 Tascikaraoglu (10.1016/j.apenergy.2018.07.032_b0050) 2014; 34 Zhang (10.1016/j.apenergy.2018.07.032_b0125) 2016; 205 |
| References_xml | – volume: 191 start-page: 653 year: 2017 end-page: 662 ident: b0005 article-title: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values publication-title: Appl Energy – volume: 156 start-page: 528 year: 2015 end-page: 541 ident: b0065 article-title: Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods publication-title: Appl Energy – volume: 113 start-page: 1345 year: 2017 end-page: 1358 ident: b0090 article-title: Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction publication-title: Renew Energy – volume: 22 start-page: 337 year: 2011 end-page: 346 ident: b0165 article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals publication-title: IEEE Trans Neural Networ – volume: 88 start-page: 1405 year: 2011 end-page: 1414 ident: b0035 article-title: ARMA based approaches for forecasting the tuple of wind speed and direction publication-title: Appl Energy – volume: 205 start-page: 53 year: 2016 end-page: 63 ident: b0125 article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework publication-title: Neurocomputing – volume: 147 start-page: 94 year: 2018 end-page: 108 ident: b0075 article-title: A multi-objective evolutionary approach to training set selection for support vector machine publication-title: Knowl-Based Syst – volume: 28 start-page: 2181 year: 2017 end-page: 2192 ident: b0105 article-title: Solution of non-convex economic load dispatch problem for small-scale power systems using ant lion optimizer publication-title: Neural Comput Appl – volume: 22 start-page: 110 year: 2011 end-page: 120 ident: b0115 article-title: Approximate confidence and prediction intervals for least squares support vector regression publication-title: IEEE Trans Neural Networ – volume: 27 start-page: 1734 year: 2015 end-page: 1747 ident: b0150 article-title: Two machine learning approaches for short-term wind speed time-series prediction publication-title: IEEE Trans Neural Networ Learn Syst – volume: 157 start-page: 227 year: 2017 end-page: 235 ident: b0160 article-title: Multi-objective based economic operation and environmental performance of PV-based large industrial consumer publication-title: Sol Energy – volume: 46 start-page: 79 year: 2017 end-page: 95 ident: b0110 article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems publication-title: Appl Int – start-page: 1 year: 2016 end-page: 19 ident: b0010 article-title: Two combined forecasting models based on singular spectrum analysis and intelligent optimized algorithm for short-term wind speed publication-title: Neural Comput Appl – volume: 43 start-page: 1441 year: 2005 end-page: 1448 ident: b0175 article-title: An integration of ANN wind power estimation into unit commitment considering the forecasting uncertainty publication-title: IEEE Trans Ind Appl Ia – volume: 168 start-page: 449 year: 2015 end-page: 456 ident: b0045 article-title: Wind speed prediction using reduced support vector machines with feature selection publication-title: Neurocomputing – volume: 112(15): 208 start-page: 219 year: 2016 ident: b0120 article-title: Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods publication-title: Energy Convers Manage – volume: 49 start-page: 97 year: 2014 end-page: 106 ident: b0155 article-title: An efficient procedure for finding best compromise solutions to the multi-objective assignment problem publication-title: Comput Oper Res – volume: 80 start-page: 52 year: 2016 end-page: 63 ident: b0100 article-title: Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller publication-title: Int J Electr Power Energy Syst – volume: 22 start-page: 1148 year: 2007 end-page: 1156 ident: b0170 article-title: Trading wind generation from short-term probabilistic forecasts of wind power publication-title: IEEE Trans Power Syst – volume: 74 start-page: 96 year: 2017 end-page: 104 ident: b0070 article-title: Multi-objective optimization: a method for selecting the optimal solution from Pareto non-inferior solutions publication-title: Expert Syst Appl – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: b0085 article-title: Variational mode decomposition publication-title: IEEE Trans Signal Process – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: b0095 article-title: The ant lion optimizer publication-title: Adv Eng Softw – volume: 34 start-page: 243 year: 2014 end-page: 254 ident: b0050 article-title: A review of combined approaches for prediction of short-term wind speed and power publication-title: Renew Sustain Energy Rev – volume: 143 start-page: 472 year: 2015 end-page: 488 ident: b0080 article-title: The study and application of a novel hybrid forecasting model – a case study of wind speed forecasting in China publication-title: Appl Energy – volume: 129 start-page: 357 year: 2018 end-page: 383 ident: b0060 article-title: Prediction interval forecasting of wind speed and wind power using modes decomposition based low rank multi-kernel ridge regression publication-title: Renew Energy – volume: 19 start-page: 983 year: 2011 end-page: 988 ident: b0135 article-title: Prediction interval construction and optimization for adaptive neurofuzzy inference systems publication-title: IEEE Trans Fuzzy Syst – volume: 73 start-page: 916 year: 2014 end-page: 925 ident: b0145 article-title: Uncertainty handling using neural network-based prediction intervals for electrical load forecasting publication-title: Energy – volume: 40 start-page: 1205 year: 2013 end-page: 1212 ident: b0140 article-title: NSGA-II-trained neural network approach to the estimation of prediction intervals of scale deposition rate in oil & gas equipment publication-title: Expert Syst Appl – volume: 123 start-page: 362 year: 2016 end-page: 371 ident: b0020 article-title: Current status of wind energy forecasting and a hybrid method for hourly predictions publication-title: Energy Convers Manage – volume: 85 start-page: 790 year: 2016 end-page: 809 ident: b0015 article-title: Wind speed forecasting for wind farms: a method based on support vector regression publication-title: Renew Energy – volume: 6 start-page: 236 year: 2014 end-page: 244 ident: b0025 article-title: A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods publication-title: IEEE Trans Sustain Energy – volume: 127 start-page: 172 year: 2014 end-page: 180 ident: b0055 article-title: Particle swarm optimization for construction of neural network-based prediction intervals publication-title: Neurocomputing – volume: 87 start-page: 903 year: 2016 end-page: 910 ident: b0130 article-title: A multiobjective framework for wind speed prediction interval forecasts publication-title: Renew Energy – volume: 91 start-page: 471 year: 2015 end-page: 478 ident: b0030 article-title: Thermal behavior of power cables in offshore wind sites considering wind speed uncertainty publication-title: Appl Therm Eng – volume: 130 start-page: 103 year: 2014 end-page: 112 ident: b0040 article-title: Short-term wind speed forecasting with Markov-switching model publication-title: Appl Energy – volume: 74 start-page: 96 year: 2017 ident: 10.1016/j.apenergy.2018.07.032_b0070 article-title: Multi-objective optimization: a method for selecting the optimal solution from Pareto non-inferior solutions publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.01.004 – volume: 147 start-page: 94 year: 2018 ident: 10.1016/j.apenergy.2018.07.032_b0075 article-title: A multi-objective evolutionary approach to training set selection for support vector machine publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.02.022 – volume: 80 start-page: 52 year: 2016 ident: 10.1016/j.apenergy.2018.07.032_b0100 article-title: Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2016.01.037 – volume: 191 start-page: 653 year: 2017 ident: 10.1016/j.apenergy.2018.07.032_b0005 article-title: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.01.063 – volume: 34 start-page: 243 year: 2014 ident: 10.1016/j.apenergy.2018.07.032_b0050 article-title: A review of combined approaches for prediction of short-term wind speed and power publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.03.033 – volume: 143 start-page: 472 year: 2015 ident: 10.1016/j.apenergy.2018.07.032_b0080 article-title: The study and application of a novel hybrid forecasting model – a case study of wind speed forecasting in China publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.038 – volume: 157 start-page: 227 year: 2017 ident: 10.1016/j.apenergy.2018.07.032_b0160 article-title: Multi-objective based economic operation and environmental performance of PV-based large industrial consumer publication-title: Sol Energy doi: 10.1016/j.solener.2017.08.022 – volume: 19 start-page: 983 issue: 5 year: 2011 ident: 10.1016/j.apenergy.2018.07.032_b0135 article-title: Prediction interval construction and optimization for adaptive neurofuzzy inference systems publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2011.2130529 – volume: 88 start-page: 1405 issue: 4 year: 2011 ident: 10.1016/j.apenergy.2018.07.032_b0035 article-title: ARMA based approaches for forecasting the tuple of wind speed and direction publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.10.031 – volume: 127 start-page: 172 year: 2014 ident: 10.1016/j.apenergy.2018.07.032_b0055 article-title: Particle swarm optimization for construction of neural network-based prediction intervals publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.08.020 – volume: 113 start-page: 1345 year: 2017 ident: 10.1016/j.apenergy.2018.07.032_b0090 article-title: Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction publication-title: Renew Energy doi: 10.1016/j.renene.2017.06.095 – volume: 83 start-page: 80 year: 2015 ident: 10.1016/j.apenergy.2018.07.032_b0095 article-title: The ant lion optimizer publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2015.01.010 – volume: 40 start-page: 1205 issue: 4 year: 2013 ident: 10.1016/j.apenergy.2018.07.032_b0140 article-title: NSGA-II-trained neural network approach to the estimation of prediction intervals of scale deposition rate in oil & gas equipment publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.08.018 – volume: 156 start-page: 528 year: 2015 ident: 10.1016/j.apenergy.2018.07.032_b0065 article-title: Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.07.059 – volume: 73 start-page: 916 year: 2014 ident: 10.1016/j.apenergy.2018.07.032_b0145 article-title: Uncertainty handling using neural network-based prediction intervals for electrical load forecasting publication-title: Energy doi: 10.1016/j.energy.2014.06.104 – volume: 62 start-page: 531 issue: 3 year: 2014 ident: 10.1016/j.apenergy.2018.07.032_b0085 article-title: Variational mode decomposition publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2013.2288675 – volume: 123 start-page: 362 year: 2016 ident: 10.1016/j.apenergy.2018.07.032_b0020 article-title: Current status of wind energy forecasting and a hybrid method for hourly predictions publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.06.053 – volume: 22 start-page: 1148 year: 2007 ident: 10.1016/j.apenergy.2018.07.032_b0170 article-title: Trading wind generation from short-term probabilistic forecasts of wind power publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2007.901117 – volume: 27 start-page: 1734 issue: 8 year: 2015 ident: 10.1016/j.apenergy.2018.07.032_b0150 article-title: Two machine learning approaches for short-term wind speed time-series prediction publication-title: IEEE Trans Neural Networ Learn Syst doi: 10.1109/TNNLS.2015.2418739 – volume: 85 start-page: 790 year: 2016 ident: 10.1016/j.apenergy.2018.07.032_b0015 article-title: Wind speed forecasting for wind farms: a method based on support vector regression publication-title: Renew Energy doi: 10.1016/j.renene.2015.07.004 – volume: 6 start-page: 236 issue: 1 year: 2014 ident: 10.1016/j.apenergy.2018.07.032_b0025 article-title: A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods publication-title: IEEE Trans Sustain Energy – volume: 22 start-page: 337 issue: 3 year: 2011 ident: 10.1016/j.apenergy.2018.07.032_b0165 article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals publication-title: IEEE Trans Neural Networ doi: 10.1109/TNN.2010.2096824 – volume: 46 start-page: 79 issue: 1 year: 2017 ident: 10.1016/j.apenergy.2018.07.032_b0110 article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems publication-title: Appl Int doi: 10.1007/s10489-016-0825-8 – volume: 43 start-page: 1441 year: 2005 ident: 10.1016/j.apenergy.2018.07.032_b0175 article-title: An integration of ANN wind power estimation into unit commitment considering the forecasting uncertainty publication-title: IEEE Trans Ind Appl Ia doi: 10.1109/TIA.2007.908203 – volume: 112(15): 208 start-page: 219 year: 2016 ident: 10.1016/j.apenergy.2018.07.032_b0120 article-title: Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods publication-title: Energy Convers Manage – volume: 49 start-page: 97 year: 2014 ident: 10.1016/j.apenergy.2018.07.032_b0155 article-title: An efficient procedure for finding best compromise solutions to the multi-objective assignment problem publication-title: Comput Oper Res doi: 10.1016/j.cor.2014.03.016 – volume: 205 start-page: 53 year: 2016 ident: 10.1016/j.apenergy.2018.07.032_b0125 article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.061 – volume: 91 start-page: 471 year: 2015 ident: 10.1016/j.apenergy.2018.07.032_b0030 article-title: Thermal behavior of power cables in offshore wind sites considering wind speed uncertainty publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.08.037 – start-page: 1 year: 2016 ident: 10.1016/j.apenergy.2018.07.032_b0010 article-title: Two combined forecasting models based on singular spectrum analysis and intelligent optimized algorithm for short-term wind speed publication-title: Neural Comput Appl – volume: 130 start-page: 103 year: 2014 ident: 10.1016/j.apenergy.2018.07.032_b0040 article-title: Short-term wind speed forecasting with Markov-switching model publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.05.026 – volume: 28 start-page: 2181 issue: 8 year: 2017 ident: 10.1016/j.apenergy.2018.07.032_b0105 article-title: Solution of non-convex economic load dispatch problem for small-scale power systems using ant lion optimizer publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2148-9 – volume: 129 start-page: 357 issue: Part A year: 2018 ident: 10.1016/j.apenergy.2018.07.032_b0060 article-title: Prediction interval forecasting of wind speed and wind power using modes decomposition based low rank multi-kernel ridge regression publication-title: Renew Energy doi: 10.1016/j.renene.2018.05.031 – volume: 168 start-page: 449 year: 2015 ident: 10.1016/j.apenergy.2018.07.032_b0045 article-title: Wind speed prediction using reduced support vector machines with feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.09.090 – volume: 87 start-page: 903 year: 2016 ident: 10.1016/j.apenergy.2018.07.032_b0130 article-title: A multiobjective framework for wind speed prediction interval forecasts publication-title: Renew Energy doi: 10.1016/j.renene.2015.08.038 – volume: 22 start-page: 110 issue: 1 year: 2011 ident: 10.1016/j.apenergy.2018.07.032_b0115 article-title: Approximate confidence and prediction intervals for least squares support vector regression publication-title: IEEE Trans Neural Networ doi: 10.1109/TNN.2010.2087769 |
| SSID | ssj0002120 |
| Score | 2.6106482 |
| Snippet | •Novel wind speed interval forecasting approach in multi-objective formulation introduced.•Hybrid framework building on data feature selection... Accurate forecast of wind speed is the first prerequisite to supply high quality power energy to customer in a secure and economic manner. However, traditional... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2207 |
| SubjectTerms | algorithms artificial intelligence China decision making energy Feature selection Least squares support vector machines Multi-objective optimization prediction Prediction intervals selection methods time series analysis uncertainty wind speed Wind speed forecasting |
| Title | A wind speed interval prediction system based on multi-objective optimization for machine learning method |
| URI | https://dx.doi.org/10.1016/j.apenergy.2018.07.032 https://www.proquest.com/docview/2116879701 |
| Volume | 228 |
| WOSCitedRecordID | wos000453489800085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLag4wEeEAwmxk1GQrxUHonj3B4r1AmmqSDUSeXJcmwHtWJpSNuxn8_xrQ0DtPHAS9S6cdrm-3J8bJ_zHYReqzROYGIlCM3rhLBYpaSqakVYVVRMlDWFXrbYRD6ZFLNZ-cmXO1rZcgJ50xSXl2X7X6GGNgDbpM7-A9zbi0IDvAbQ4Qiww_FGwI-GP-ZmMbyFccmqQXQXJtuqMzsyFmwn3jw045cyewU2ppAsq4WzfcMlWJFzn55poxDPbcClDhUmvvqy032_Njiz2qYSbqN8bKjAZ9F0Ow6eONGCL5v-ekNsxV9dxmXIs4oyYuZdfRtKaTFsjyiNcgIOR9S3iNRVtfWja_j0N8vtFhEWR6J1v9RE3RVWV9Wvf_4ilT35yI_PTk_5dDybvmm_E1NFzOy2-5Iqt9EezdOyGKC90Yfx7GQ7NlMv1Bn-Qy9n_M9f_Td35crAbb2R6QN0308j8MjB_xDd0s0-utcTl9xHB-NdDiOc6o346hGaj7BhCLYMwYEheMcQ7BiCLUMwvL_CENxnCAaGYM8QHBiCHUMeo7Pj8fTde-IrbhDJMrYmMhNpnRnJwUyzXElpQqBpllaaRmCfRVGmgrIabqSoUw0zgyLR8KTLBJ7vTMo4OUCDZtnoJwgnKlMamiuWSCaqrMojyagUBVxRqVodojTcWC69HL2pivKNh7jDBQ-AcAMIj3IOgByit9t-rRNkubZHGXDj3q107iIH7l3b91UAmoPdNZtpotHLzYrTOM6KvMyj-OkNznmG7u6epedosO42-gW6Iy_W81X30rP0J32yqmY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+wind+speed+interval+prediction+system+based+on+multi-objective+optimization+for+machine+learning+method&rft.jtitle=Applied+energy&rft.au=Li%2C+Ranran&rft.au=Jin%2C+Yu&rft.date=2018-10-15&rft.issn=0306-2619&rft.volume=228+p.2207-2220&rft.spage=2207&rft.epage=2220&rft_id=info:doi/10.1016%2Fj.apenergy.2018.07.032&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |