Source-free unsupervised domain adaptation: A survey

Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in pract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks Jg. 174; S. 106230
Hauptverfasser: Fang, Yuqi, Yap, Pew-Thian, Lin, Weili, Zhu, Hongtu, Liu, Mingxia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Ltd 01.06.2024
Schlagworte:
ISSN:0893-6080, 1879-2782, 1879-2782
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to the unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field. •Providing a review of existing source-free unsupervised domain adaptation approaches.•Dividing current methods into finer categories and discussing their (dis)advantages.•Summarizing benchmark datasets and techniques that improve model generalizability.•Discussing promising research directions to guide trajectory of future investigation.•Offering extensive references, serving as a valuable resource in this research field.
AbstractList Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to the unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field.
Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to the unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field.Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to the unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field.
Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to the unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field. •Providing a review of existing source-free unsupervised domain adaptation approaches.•Dividing current methods into finer categories and discussing their (dis)advantages.•Summarizing benchmark datasets and techniques that improve model generalizability.•Discussing promising research directions to guide trajectory of future investigation.•Offering extensive references, serving as a valuable resource in this research field.
ArticleNumber 106230
Author Liu, Mingxia
Fang, Yuqi
Yap, Pew-Thian
Lin, Weili
Zhu, Hongtu
AuthorAffiliation a Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
b Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
AuthorAffiliation_xml – name: a Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
– name: b Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
Author_xml – sequence: 1
  givenname: Yuqi
  orcidid: 0000-0002-8769-496X
  surname: Fang
  fullname: Fang, Yuqi
  organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
– sequence: 2
  givenname: Pew-Thian
  surname: Yap
  fullname: Yap, Pew-Thian
  organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
– sequence: 3
  givenname: Weili
  surname: Lin
  fullname: Lin, Weili
  organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
– sequence: 4
  givenname: Hongtu
  surname: Zhu
  fullname: Zhu, Hongtu
  organization: Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
– sequence: 5
  givenname: Mingxia
  surname: Liu
  fullname: Liu, Mingxia
  email: mingxia_liu@med.unc.edu
  organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38490115$$D View this record in MEDLINE/PubMed
BookMark eNqFUctKxDAUDTKi4-MPRLp00zGvpskslGHwBYILdR0y6a1m6CRj0g7491aqoi50deHe87ics4dGPnhA6IjgCcFEnC4nHjoP7YRiyvuVoAxvoTGRpcppKekIjbFULBdY4l20l9ISYywkZztol0muMCHFGPH70EULeR0Bss6nbg1x4xJUWRVWxvnMVGbdmtYFP81mWeriBl4P0HZtmgSHH3MfPV5ePMyv89u7q5v57Da3XPA2t6xWkppFycAsTMF5WTMlDTEl54oaYYUUQshFURLglgIFrFhtalZjTEFUbB-dD7rrbrGCyoJvo2n0OrqVia86GKd_Xrx71k9ho0mfUKEE7xVOPhRieOkgtXrlkoWmMR5ClzRVhaRKcUp76PF3sy-Xz6x6AB8ANoaUItRfEIL1eyV6qYdK9Hsleqikp01_0awbAu1fds1_5LOBDH3MGwdRJ-vAW6hcBNvqKri_Bd4A43KpvA
CitedBy_id crossref_primary_10_3390_app14114466
crossref_primary_10_1007_s11517_025_03287_0
crossref_primary_10_1631_FITEE_2400467
crossref_primary_10_1038_s42256_024_00961_0
crossref_primary_10_1109_ACCESS_2024_3429415
crossref_primary_10_1109_ACCESS_2025_3592034
crossref_primary_10_1007_s11227_024_06886_0
crossref_primary_10_3390_rs17071302
crossref_primary_10_3390_rs17101693
crossref_primary_10_3390_s25133856
crossref_primary_10_1007_s42452_025_06909_2
crossref_primary_10_1016_j_engappai_2025_111350
crossref_primary_10_1016_j_sigpro_2025_110118
crossref_primary_10_12677_mos_2025_144320
crossref_primary_10_1007_s00138_024_01615_2
crossref_primary_10_1016_j_neucom_2025_129472
crossref_primary_10_1016_j_ins_2025_122608
crossref_primary_10_1109_TMM_2024_3350917
crossref_primary_10_1016_j_neunet_2024_107031
crossref_primary_10_3390_electronics14010051
crossref_primary_10_1109_ACCESS_2024_3454082
crossref_primary_10_1371_journal_pone_0309118
crossref_primary_10_1088_1361_6501_adc6a6
crossref_primary_10_1007_s10994_025_06739_8
crossref_primary_10_1109_JIOT_2025_3554228
crossref_primary_10_1029_2025JH000754
crossref_primary_10_1109_JSTARS_2025_3561737
crossref_primary_10_1109_TIM_2025_3541814
crossref_primary_10_1016_j_engappai_2025_110913
crossref_primary_10_1016_j_eswa_2024_126031
crossref_primary_10_1016_j_neunet_2025_107161
crossref_primary_10_1109_TMRB_2025_3561865
crossref_primary_10_3390_s24248053
crossref_primary_10_1016_j_knosys_2024_112615
crossref_primary_10_1016_j_bspc_2025_108053
crossref_primary_10_1007_s10489_025_06777_8
crossref_primary_10_1016_j_cemconcomp_2025_105943
crossref_primary_10_3390_rs16183469
crossref_primary_10_1007_s10922_025_09927_y
crossref_primary_10_1016_j_patcog_2025_112290
crossref_primary_10_1016_j_knosys_2025_112982
crossref_primary_10_1109_TBME_2023_3303289
crossref_primary_10_1016_j_neunet_2024_106958
crossref_primary_10_1109_TCSVT_2025_3525715
crossref_primary_10_1016_j_media_2024_103404
crossref_primary_10_1007_s11263_024_02181_w
crossref_primary_10_1109_JIOT_2024_3464854
crossref_primary_10_1109_TCSVT_2025_3538539
crossref_primary_10_3934_acse_2025018
crossref_primary_10_1016_j_ress_2025_111263
crossref_primary_10_1109_TITS_2025_3550862
crossref_primary_10_1016_j_compag_2025_110473
crossref_primary_10_1109_JIOT_2024_3471410
Cites_doi 10.1002/int.22434
10.1145/3523273
10.1109/ICCV.2019.00683
10.1109/CVPR52729.2023.00343
10.1109/CVPR52688.2022.00701
10.1109/ACCESS.2020.3014264
10.1109/TPAMI.2021.3052758
10.1109/MSP.2020.2975749
10.1016/j.media.2022.102617
10.1109/MCI.2018.2840738
10.1109/TAI.2021.3110179
10.1016/j.neucom.2018.05.083
10.1109/ICCV.2019.00149
10.1109/CVPR42600.2020.00975
10.1109/TMM.2022.3146744
10.1109/ICCV48922.2021.00887
10.1146/annurev-bioeng-071516-044442
10.1145/3512527.3531392
10.1109/ICCVW54120.2021.00339
10.1109/CVPRW56347.2022.00324
10.1109/TPAMI.2021.3109287
10.1109/TCDS.2022.3193731
10.1016/j.media.2016.02.006
10.1109/CVPR42600.2020.00966
10.1016/j.ins.2023.119202
10.1016/j.cviu.2023.103747
10.1109/CVPR52688.2022.00784
10.1109/ICCVW54120.2021.00266
10.1109/TCSVT.2022.3179021
10.1109/CVPR52729.2023.02310
10.1371/journal.pone.0253415
10.1109/WACV48630.2021.00066
10.1109/TPAMI.2021.3103390
10.1109/CVPR52688.2022.00706
10.1109/TPAMI.2017.2773081
10.1109/CVPR.2016.308
10.1109/WACV57701.2024.00297
10.1109/CVPR46437.2021.00997
10.1145/3133956.3133982
10.1109/ICCV51070.2023.01377
10.1109/ICCV48922.2021.00885
10.1109/WACV56688.2023.00055
10.1109/TCSVT.2023.3234307
10.1109/ICCV51070.2023.00946
10.1109/TIP.2023.3258753
10.1109/ICCV.2019.00642
10.1109/CVPR.2017.572
10.1073/pnas.1611835114
10.1016/j.knosys.2022.109155
10.5244/C.35.324
10.1145/3474085.3475384
10.1007/s11390-021-1106-5
10.1109/TNNLS.2021.3111732
10.1109/WACV56688.2023.00416
10.1109/TNSRE.2022.3144169
10.1109/TIP.2021.3130530
10.1016/j.knosys.2023.111150
10.1016/j.jbi.2023.104404
10.1109/TII.2023.3297323
10.1016/j.media.2017.07.005
10.1109/TIP.2021.3112012
10.1109/ICCVW60793.2023.00466
10.1109/CVPR.2019.00503
10.1016/j.media.2022.102457
10.1109/TPAMI.2023.3270288
10.1109/TMI.2014.2377694
10.1109/WACV51458.2022.00115
10.3390/s22114238
10.1016/j.neunet.2023.08.005
10.1109/CVPR52688.2022.00707
10.1145/2939672.2939716
10.1109/WACV48630.2021.00052
10.1109/TIFS.2022.3149397
10.1109/WACV56688.2023.00052
10.1109/CVPR.2018.00392
10.1109/CVPR46437.2021.01361
10.1109/WACVW54805.2022.00027
10.18653/v1/2021.emnlp-main.20
10.1016/j.patcog.2021.108436
10.1109/CVPR.2019.00753
10.1145/3503161.3548009
10.1109/TMI.2022.3191535
10.1145/3469877.3490584
10.1109/CVPR52729.2023.01015
10.1109/TCSVT.2021.3111034
10.1016/j.media.2020.101907
10.1080/01621459.1986.10478240
10.1109/CVPR52688.2022.00816
10.1145/3503161.3548410
10.1109/TMM.2023.3321480
10.1109/ICCV.2013.208
10.1613/jair.1.12125
10.1561/2200000016
10.1109/TBME.2021.3117407
10.1109/ICCV48922.2021.00696
10.1016/j.neunet.2023.02.009
10.1109/ICCV48922.2021.00650
10.1109/CVPR46437.2021.00127
10.1109/TPAMI.2021.3128560
10.1016/j.media.2021.102136
10.1146/annurev.psych.56.091103.070217
10.1109/ICCV48922.2021.00888
10.1109/CVPR42600.2020.00874
10.1109/CVPR.2019.00309
10.1109/CVPR.2019.01053
10.1145/3447582
10.1109/CVPR.2018.00417
10.1109/TNNLS.2020.3017213
10.1109/TNNLS.2022.3160699
10.1109/WACV51458.2022.00286
10.1155/2018/7068349
10.1109/TNNLS.2020.2979670
10.1016/j.ymssp.2023.110159
10.1109/TIP.2022.3170728
10.1109/CVPR.2018.00395
10.1109/ICCV.2017.591
10.1109/TMI.2022.3150435
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.neunet.2024.106230
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 106230
ExternalDocumentID PMC11015964
38490115
10_1016_j_neunet_2024_106230
S0893608024001540
Genre Systematic Review
Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: RF1 AG082938
– fundername: NIA NIH HHS
  grantid: RF1 AG073297
– fundername: NIBIB NIH HHS
  grantid: R01 EB035160
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
5PM
ID FETCH-LOGICAL-c464t-c3f982ab73eaba5447f398a1a74492a6c686668b571e4c2e2e093faf3f002e6d3
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001216450500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Tue Sep 30 17:04:32 EDT 2025
Thu Oct 02 10:35:35 EDT 2025
Sun Jul 13 01:33:08 EDT 2025
Sat Nov 29 07:19:09 EST 2025
Tue Nov 18 21:56:37 EST 2025
Sat Apr 13 16:40:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Domain adaptation
Source-free
Survey
Unsupervised learning
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c464t-c3f982ab73eaba5447f398a1a74492a6c686668b571e4c2e2e093faf3f002e6d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
ObjectType-Review-4
content type line 23
ORCID 0000-0002-8769-496X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11015964
PMID 38490115
PQID 2958299422
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11015964
proquest_miscellaneous_2958299422
pubmed_primary_38490115
crossref_primary_10_1016_j_neunet_2024_106230
crossref_citationtrail_10_1016_j_neunet_2024_106230
elsevier_sciencedirect_doi_10_1016_j_neunet_2024_106230
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Eastwood, Mason, Williams, Schölkopf (b37) 2021
Li, Wang, Shi, Liu, Hou (b110) 2016
Tarvainen, Valpola (b185) 2017; 30
Karani, Erdil, Chaitanya, Konukoglu (b76) 2021; 68
(pp. 5018–5027).
Xu, Yang, Cao, Wu, Wu, Li (b218) 2023; 33
(pp. 219–230).
Qu, Liu, Zhu, Nie, Zhang (b157) 2024; 283
Hu, X., Zhang, K., Xia, L., Chen, A., Luo, J., Sun, Y., et al. (2024). ReCLIP: Refine contrastive language image pre-training with source free domain adaptation. In
Kundu, Bhambri, Kulkarni, Sarkar, Jampani, Babu (b88) 2022
Kundu, J. N., Kulkarni, A., Singh, A., Jampani, V., & Babu, R. V. (2021). Generalize then adapt: Source-free domain adaptive semantic segmentation. In
(pp. 10307–10317).
Saenko, Kulis, Fritz, Darrell (b163) 2010
Liang, Hu, Feng (b116) 2020
(pp. 8715–8724).
Huang, Y., Yang, X., Zhang, J., & Xu, C. (2022). Relative Alignment Network for Source-Free Multimodal Video Domain Adaptation. In
Yu, Li, Du, Zhu, Shen (b244) 2023
Wang, Zhang, Yan, Shao, Li (b205) 2023
Fleuret, F., et al. (2021). Uncertainty reduction for model adaptation in semantic segmentation. In
.
Zhang, Ren, Feng, Yu, Beer, Liu (b249) 2023; 191
Chang, W. G., You, T., Seo, S., Kwak, S., & Han, B. (2019). Domain-specific batch normalization for unsupervised domain adaptation. In
Gal, Hron, Kendall (b48) 2017; 30
Young, Hazarika, Poria, Cambria (b242) 2018; 13
Zhang, Cisse, Dauphin, Lopez-Paz (b247) 2017
Zhao, Feng, Li, Song, Liang, Chen (b254) 2023; 20
Yazdanpanah, M., & Moradi, P. (2022). Visual Domain Bridge: A Source-Free Domain Adaptation for Cross-Domain Few-Shot Learning. In
Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., et al. (2017). Practical secure aggregation for privacy-preserving machine learning. In
Liang, Hu, He, Feng (b119) 2021
Lopez-Paz, Ranzato (b132) 2017; 30
Arazo, Ortego, Albert, O’Connor, McGuinness (b5) 2019
Tang, Su, Chen, Ouyang (b182) 2021; vol. 35
Lee, Jung, Yim, Yoon (b96) 2022
(pp. 489–497).
Caputo, Müller, Martinez-Gomez, Villegas, Acar, Patricia (b18) 2014
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian (b121) 2017; 42
Liu, Yoo, Xing, Kuo, El Fakhri, Kang (b125) 2022
Tian, Peng, Ma (b188) 2022; 14
VS, V., Oza, P., & Patel, V. M. (2023a). Instance relation graph guided source-free domain adaptive object detection. In
Berthelot, Carlini, Goodfellow, Papernot, Oliver, Raffel (b12) 2019; 32
(pp. 3049–3059).
Saito, Kim, Sclaroff, Saenko (b164) 2020; 33
Kang, G., Jiang, L., Yang, Y., & Hauptmann, A. G. (2019). Contrastive adaptation network for unsupervised domain adaptation. In
Zhuang, Shen (b260) 2016; 31
Song, Chen, Ye, Song (b173) 2022; 31
Agarwal, P., Paudel, D. P., Zaech, J. N., & Van Gool, L. (2022). Unsupervised Robust Domain Adaptation without Source Data. In
Arpit, Jastrzebski, Ballas, Krueger, Bengio, Kanwal (b6) 2017
Karim, N., Mithun, N. C., Rajvanshi, A., Chiu, H. p., Samarasekera, S., & Rahnavard, N. (2023). C-SFDA: A Curriculum Learning Aided Self-Training Framework for Efficient Source Free Domain Adaptation. In
(pp. 3723–3732).
Raychaudhuri, D. S., Ta, C. K., Dutta, A., Lal, R., & Roy-Chowdhury, A. K. (2023). Prior-guided Source-free Domain Adaptation for Human Pose Estimation. In
Deng, Dong, Socher, Li, Li, Fei-Fei (b30) 2009
Kemker, McClure, Abitino, Hayes, Kanan (b79) 2018; vol. 32
Liang, J., He, R., Sun, Z., & Tan, T. (2019). Distant supervised centroid shift: A simple and efficient approach to visual domain adaptation. In
Han, Zhang, Wang, He, Su, Xi (b55) 2023; vol. 37
(pp. 474–483).
Ding, Sheng, Liang, Zheng, He (b31) 2023; 167
Dong, Cong, Sun, Fang, Ding (b33) 2021; 46
Guan, Liu (b53) 2021; 69
Paul, Khurana, Aggarwal (b147) 2021
Nayak, Mopuri, Jain, Chakraborty (b143) 2021; 44
Xiao, Wei, Liu, Lin (b210) 2023
Hassaballah, Awad (b56) 2020
Luo, Chen, Tan, Li, He, Jia (b134) 2021
Hong, Zhang, Chen (b62) 2022
Li, D., Yang, Y., Song, Y. Z., & Hospedales, T. M. (2017). Deeper, broader and artier domain generalization. In
(pp. 9010–9019).
Lu, Sreekumar, Goodman, Banzhaf, Deb, Boddeti (b133) 2021; 43
Yang, Ma, Yuen (b226) 2022; 17
Peng, Huang, Zhu, Saenko (b151) 2019
(pp. 2818–2826).
Kang, He, Luo, Fan, Liu, Yang (b74) 2022
Kirkpatrick, Pascanu, Rabinowitz, Veness, Desjardins, Rusu (b83) 2017; 114
Liu, Zhang, Wang, Wang (b130) 2021
(pp. 2868–2877).
Song, Ma, Zhang, Zhang (b174) 2020; 8
Ba, Kiros, Hinton (b8) 2016
Wang, Liang, Zhang (b202) 2021
Lester, Al-Rfou, Constant (b99) 2021
(pp. 8344–8353).
Liu, Li, An, Chen (b123) 2022
Bonawitz, Eichner, Grieskamp, Huba, Ingerman, Ivanov (b14) 2019; 1
Jing, Zhen, Li, Snoek (b73) 2022; 35
Jeon, Lee, Kang (b72) 2021; 16
Li, Chen, Luo, He, Tan (b101) 2022
(pp. 451–460).
Chen, Lin, Yang, Xie, Pu, Zhuang (b23) 2022
Zara, G., Conti, A., Roy, S., Lathuilière, S., Rota, P., & Ricci, E. (2023). The Unreasonable Effectiveness of Large Language-Vision Models for Source-free Video Domain Adaptation. In
Yang, Wang, Wang, Jui, van de Weijer (b231) 2022
Hou, Y., & Zheng, L. (2021). Visualizing adapted knowledge in domain transfer. In
Yang, Tang, Zhong, Ding, Shao, Sebe (b228) 2021
(pp. 6645–6654).
Roy, Trapp, Pilzer, Kannala, Sebe, Ricci (b162) 2022
Tanwisuth, Zhang, Zheng, He, Zhou (b184) 2023
Liu, Yuan (b127) 2022; 41
Liu, Y., Zhang, W., & Wang, J. (2021). Source-free domain adaptation for semantic segmentation. In
Liu, Yoo, Xing, Kuo, El Fakhri, Kang (b126) 2022; vol. 12032
Ahmed, Lohit, Peng, Jones, Roy-Chowdhury (b3) 2022
Bochkovskiy, Wang, Liao (b13) 2020
Ding, N., Xu, Y., Tang, Y., Xu, C., Wang, Y., & Tao, D. (2022). Source-Free Domain Adaptation via Distribution Estimation. In
Grandvalet, Bengio (b52) 2004; 17
Li, Du, Zhu, Ding, Lu, Shen (b104) 2021; 44
Liu, Chen, Dai, Gou, Huang, Xiong (b122) 2022
Shen, Bu, Wornell (b169) 2023
(pp. 3274–3283).
Lee, C. Y., Batra, T., Baig, M. H., & Ulbricht, D. (2019). Sliced wasserstein discrepancy for unsupervised domain adaptation. In
Boudiaf, M., Mueller, R., Ben Ayed, I., & Bertinetto, L. (2022). Parameter-free Online Test-time Adaptation. In
Hegde, Sindagi, Kilic, Cooper, Foster, Patel (b60) 2021
(pp. 1406–1415).
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner (b35) 2020
Huang, Guan, Xiao, Lu (b67) 2021; 34
Liang, Hu, Feng, He (b117) 2021
Lekhtman, E., Ziser, Y., & Reichart, R. (2021). DILBERT: Customized pre-training for domain adaptation with category shift, with an application to aspect extraction. In
Hou, Zheng (b63) 2020
Kundu, J. N., Venkat, N., Babu, R. V., et al. (2020). Universal source-free domain adaptation. In
Li, Sahu, Talwalkar, Smith (b109) 2020; 37
Müller, Kornblith, Hinton (b140) 2019; 32
Saito, K., & Saenko, K. (2021). OVANet: One-vs-all network for universal domain adaptation. In
Xu, Lu, Wang, Luo, Jayender, Ma (b214) 2021
Kothandaraman, Shekhar, Sancheti, Ghuhan, Shukla, Manocha (b86) 2022
Liu, Xing, Yang, El Fakhri, Woo (b124) 2021
Ishii, Sugiyama (b70) 2021
Wang, Shelhamer, Liu, Olshausen, Darrell (b203) 2020
(pp. 444–454).
Ye, M., Zhang, J., Ouyang, J., & Yuan, D. (2021). Source data-free unsupervised domain adaptation for semantic segmentation. In
(pp. 8003–8013).
(pp. 9000–9009).
Yan, Guo (b220) 2022
Li, Zhou, Li, Wang, Bu, Yu (b114) 2023; 642
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception architecture for computer vision. In
Yang, Peng, Wang, Zhu, Feng, Xie (b227) 2022
(pp. 1652–1660).
VS, Valanarasu, Patel (b197) 2022
Lo, S. Y., Oza, P., Chennupati, S., Galindo, A., & Patel, V. M. (2023). Spatio-temporal pixel-level contrastive learning-based source-free domain adaptation for video semantic segmentation. In
Yang, Chen, Jiang, Liu, Cao, Heng (b222) 2022; 41
(pp. 615–625).
(pp. 10103–10112).
Kundu, J. N., Venkat, N., Revanur, A., Babu, R. V., et al. (2020). Towards inheritable models for open-set domain adaptation. In
Li, R., Jiao, Q., Cao, W., Wong, H.-S., & Wu, S. (2020). Model adaptation: Unsupervised domain adaptation without source data. In
Yang, Kuo, Hsu (b225) 2022
Kendall, Gal (b80) 2017; 30
Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., & Wang, B. (2019). Moment matching for multi-source domain adaptation. In
(pp. 7354–7362).
(pp. 7046–7056).
Qin, You, Wang, Kuo, Fu (b155) 2019; 32
Tang, Yang, Ma, Hendrich, Zeng, Ge (b183) 2021
Tierney, Kadane (b190) 1986; 81
Taufique, Jahan, Savakis (b186) 2021
(pp. 1424–1433).
Fang, Wang, Potter, Liu (b42) 2022
Fang, C., Xu, Y., & Rockmore, D. N. (2013). Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias. In
Liang, Hu, Wang, He, Feng (b120) 2021
Yang, Zhu, Chen, Yan, Zhang, Willis (b233) 2020
Sun, van Soest, Dumontier (b178) 2023
(pp. 6567–6576).
Yang, van de Weijer, Herranz, Jui (b223) 2021; 34
Li, Wu (b111) 2023
(pp. 10534–10543).
Peng, Usman, Kaushik, Hoffman, Wang, Saenko (b152) 2017
Ahmed, S. M., Raychaudhuri, D. S., Paul, S., Oymak, S., & Roy-Chowdhury, A. K. (2021). Unsupervised multi-source domain adaptation without access to source data. In
(pp. 4544–4553).
Pei, Jiang, Men, Chen, Liu, Chen (b148) 2023; 32
Luo, Wang, Chen, Huang, Baktashmotlagh (b135) 2023
Tan, Yu, Cui, Yang (b180) 2023; 34
Wang, Deng (b198) 2018; 312
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b175) 2014; 15
Chen, Liu, Kira, Wang, Huang (b25) 2019
(pp. 7151–7160).
Rao, Meng, Ding, Qi, Liu, Zhang (b159) 2023; 26
Zhang, D., Ye, M., Xiong, L., Li, S., & Li, X. (2021). Source-Style Transferred Mean Teacher for Source-data Free Object Detection. In
Ioffe, Szegedy (b69) 2015
Xiong, Ye, Zhang, Gan, Liu (b212) 2022; 124
Gawlikowski, Tassi, Ali, Lee, Humt, Feng (b50) 2023
He, Carass, Zuo, Dewey, Prince (b57) 2020
Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby (b139) 2014; 34
(pp. 2347–2356).
Kumar, V., Lal, R., Patil, H., & Chakraborty, A. (2023). Conmix for source-free single and multi-target domain adaptation. In
Wistuba, Rawat, Pedapati (b207) 2019
Wang, Wu, Weng, Chen, Qi, Jiang (b204) 2022; 25
He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. In
Elsken, Metzen, Hutter (b38) 2019; 20
Klingner, M., Termöhlen, J.-A., Ritterbach, J., & Fingscheidt, T. (2022). Unsupervised batchnorm adaptation (UBNA): A domain adaptation method for s
10.1016/j.neunet.2024.106230_b200
Lee (10.1016/j.neunet.2024.106230_b96) 2022
Kundu (10.1016/j.neunet.2024.106230_b88) 2022
Li (10.1016/j.neunet.2024.106230_b111) 2023
Ding (10.1016/j.neunet.2024.106230_b31) 2023; 167
Otter (10.1016/j.neunet.2024.106230_b146) 2020; 32
Zhang (10.1016/j.neunet.2024.106230_b248) 2020
Boyd (10.1016/j.neunet.2024.106230_b17) 2011; 3
10.1016/j.neunet.2024.106230_b77
10.1016/j.neunet.2024.106230_b78
10.1016/j.neunet.2024.106230_b75
Müller (10.1016/j.neunet.2024.106230_b140) 2019; 32
Fan (10.1016/j.neunet.2024.106230_b40) 2022; 30
Li (10.1016/j.neunet.2024.106230_b114) 2023; 642
Tian (10.1016/j.neunet.2024.106230_b189) 2021; 32
Wang (10.1016/j.neunet.2024.106230_b201) 2022
Liu (10.1016/j.neunet.2024.106230_b123) 2022
Bochkovskiy (10.1016/j.neunet.2024.106230_b13) 2020
Shen (10.1016/j.neunet.2024.106230_b169) 2023
Tang (10.1016/j.neunet.2024.106230_b183) 2021
Tierney (10.1016/j.neunet.2024.106230_b190) 1986; 81
Deng (10.1016/j.neunet.2024.106230_b30) 2009
Ho (10.1016/j.neunet.2024.106230_b61) 2020; 33
10.1016/j.neunet.2024.106230_b87
10.1016/j.neunet.2024.106230_b84
10.1016/j.neunet.2024.106230_b85
Saltori (10.1016/j.neunet.2024.106230_b167) 2020
10.1016/j.neunet.2024.106230_b82
Xiong (10.1016/j.neunet.2024.106230_b212) 2022; 124
Yang (10.1016/j.neunet.2024.106230_b230) 2023
Liang (10.1016/j.neunet.2024.106230_b120) 2021
Liu (10.1016/j.neunet.2024.106230_b124) 2021
Tian (10.1016/j.neunet.2024.106230_b187) 2021; 36
Kothandaraman (10.1016/j.neunet.2024.106230_b86) 2022
Wang (10.1016/j.neunet.2024.106230_b202) 2021
10.1016/j.neunet.2024.106230_b59
Stan (10.1016/j.neunet.2024.106230_b177) 2021
Ma (10.1016/j.neunet.2024.106230_b137) 2022
Qiu (10.1016/j.neunet.2024.106230_b156) 2021
Ganin (10.1016/j.neunet.2024.106230_b49) 2015
Liang (10.1016/j.neunet.2024.106230_b117) 2021
Huang (10.1016/j.neunet.2024.106230_b67) 2021; 34
Shen (10.1016/j.neunet.2024.106230_b170) 2017; 19
Hegde (10.1016/j.neunet.2024.106230_b60) 2021
Kirkpatrick (10.1016/j.neunet.2024.106230_b83) 2017; 114
10.1016/j.neunet.2024.106230_b68
10.1016/j.neunet.2024.106230_b66
He (10.1016/j.neunet.2024.106230_b58) 2021; 72
10.1016/j.neunet.2024.106230_b64
Zhou (10.1016/j.neunet.2024.106230_b258) 2021; 30
Liu (10.1016/j.neunet.2024.106230_b130) 2021
Ahmed (10.1016/j.neunet.2024.106230_b3) 2022
10.1016/j.neunet.2024.106230_b246
10.1016/j.neunet.2024.106230_b129
Li (10.1016/j.neunet.2024.106230_b109) 2020; 37
Lester (10.1016/j.neunet.2024.106230_b99) 2021
10.1016/j.neunet.2024.106230_b240
10.1016/j.neunet.2024.106230_b243
Liang (10.1016/j.neunet.2024.106230_b119) 2021
Yang (10.1016/j.neunet.2024.106230_b223) 2021; 34
Dong (10.1016/j.neunet.2024.106230_b34) 2021; 34
Jing (10.1016/j.neunet.2024.106230_b73) 2022; 35
Gal (10.1016/j.neunet.2024.106230_b47) 2016
Liu (10.1016/j.neunet.2024.106230_b127) 2022; 41
Li (10.1016/j.neunet.2024.106230_b108) 2023
Zhuang (10.1016/j.neunet.2024.106230_b260) 2016; 31
Arazo (10.1016/j.neunet.2024.106230_b5) 2019
10.1016/j.neunet.2024.106230_b234
Kundu (10.1016/j.neunet.2024.106230_b89) 2022
Li (10.1016/j.neunet.2024.106230_b102) 2021; vol. 35
10.1016/j.neunet.2024.106230_b112
10.1016/j.neunet.2024.106230_b115
10.1016/j.neunet.2024.106230_b236
10.1016/j.neunet.2024.106230_b235
10.1016/j.neunet.2024.106230_b238
Zhang (10.1016/j.neunet.2024.106230_b251) 2023; 15
Ishii (10.1016/j.neunet.2024.106230_b70) 2021
10.1016/j.neunet.2024.106230_b237
Karani (10.1016/j.neunet.2024.106230_b76) 2021; 68
10.1016/j.neunet.2024.106230_b118
10.1016/j.neunet.2024.106230_b239
Peng (10.1016/j.neunet.2024.106230_b151) 2019
Sun (10.1016/j.neunet.2024.106230_b178) 2023
Voulodimos (10.1016/j.neunet.2024.106230_b193) 2018; 2018
Chen (10.1016/j.neunet.2024.106230_b23) 2022
Song (10.1016/j.neunet.2024.106230_b173) 2022; 31
He (10.1016/j.neunet.2024.106230_b57) 2020
Xu (10.1016/j.neunet.2024.106230_b217) 2022
Wang (10.1016/j.neunet.2024.106230_b204) 2022; 25
Fang (10.1016/j.neunet.2024.106230_b41) 2020; 32
Berthelot (10.1016/j.neunet.2024.106230_b12) 2019; 32
Peng (10.1016/j.neunet.2024.106230_b150) 2022
Menze (10.1016/j.neunet.2024.106230_b139) 2014; 34
Yu (10.1016/j.neunet.2024.106230_b245) 2023
Xiao (10.1016/j.neunet.2024.106230_b210) 2023
10.1016/j.neunet.2024.106230_b106
Hu (10.1016/j.neunet.2024.106230_b65) 2022; 54
Tan (10.1016/j.neunet.2024.106230_b180) 2023; 34
10.1016/j.neunet.2024.106230_b229
Yang (10.1016/j.neunet.2024.106230_b226) 2022; 17
10.1016/j.neunet.2024.106230_b221
Guan (10.1016/j.neunet.2024.106230_b53) 2021; 69
Yan (10.1016/j.neunet.2024.106230_b220) 2022
Arpit (10.1016/j.neunet.2024.106230_b6) 2017
10.1016/j.neunet.2024.106230_b98
10.1016/j.neunet.2024.106230_b95
Xu (10.1016/j.neunet.2024.106230_b219) 2022
Chen (10.1016/j.neunet.2024.106230_b24) 2021
Gawlikowski (10.1016/j.neunet.2024.106230_b50) 2023
10.1016/j.neunet.2024.106230_b93
10.1016/j.neunet.2024.106230_b91
10.1016/j.neunet.2024.106230_b92
10.1016/j.neunet.2024.106230_b90
Wistuba (10.1016/j.neunet.2024.106230_b207) 2019
Gong (10.1016/j.neunet.2024.106230_b51) 2012
Laine (10.1016/j.neunet.2024.106230_b94) 2016
10.1016/j.neunet.2024.106230_b213
Li (10.1016/j.neunet.2024.106230_b105) 2017; 40
Hassaballah (10.1016/j.neunet.2024.106230_b56) 2020
Roy (10.1016/j.neunet.2024.106230_b162) 2022
Yang (10.1016/j.neunet.2024.106230_b222) 2022; 41
De Lange (10.1016/j.neunet.2024.106230_b29) 2021; 44
Gal (10.1016/j.neunet.2024.106230_b48) 2017; 30
Chen (10.1016/j.neunet.2024.106230_b25) 2019
Taufique (10.1016/j.neunet.2024.106230_b186) 2021
Liu (10.1016/j.neunet.2024.106230_b128) 2021
10.1016/j.neunet.2024.106230_b209
Ren (10.1016/j.neunet.2024.106230_b161) 2021; 54
Saito (10.1016/j.neunet.2024.106230_b164) 2020; 33
Grandvalet (10.1016/j.neunet.2024.106230_b52) 2004; 17
Lu (10.1016/j.neunet.2024.106230_b133) 2021; 43
Tanwisuth (10.1016/j.neunet.2024.106230_b184) 2023
Bonawitz (10.1016/j.neunet.2024.106230_b14) 2019; 1
10.1016/j.neunet.2024.106230_b168
Faisal (10.1016/j.neunet.2024.106230_b39) 2022
Yu (10.1016/j.neunet.2024.106230_b244) 2023
Yang (10.1016/j.neunet.2024.106230_b225) 2022
10.1016/j.neunet.2024.106230_b160
Li (10.1016/j.neunet.2024.106230_b101) 2022
Peng (10.1016/j.neunet.2024.106230_b152) 2017
10.1016/j.neunet.2024.106230_b166
10.1016/j.neunet.2024.106230_b165
Chen (10.1016/j.neunet.2024.106230_b22) 2020
Radford (10.1016/j.neunet.2024.106230_b158) 2021
Guan (10.1016/j.neunet.2024.106230_b54) 2022
Liu (10.1016/j.neunet.2024.106230_b126) 2022; vol. 12032
Zhang (10.1016/j.neunet.2024.106230_b249) 2023; 191
Litjens (10.1016/j.neunet.2024.106230_b121) 2017; 42
Bateson (10.1016/j.neunet.2024.106230_b10) 2022; 82
Dosovitskiy (10.1016/j.neunet.2024.106230_b35) 2020
Sohn (10.1016/j.neunet.2024.106230_b172) 2016; 29
Ashby (10.1016/j.neunet.2024.106230_b7) 2005; 56
Qu (10.1016/j.neunet.2024.106230_b157) 2024; 283
Prabhu (10.1016/j.neunet.2024.106230_b153) 2021
Du (10.1016/j.neunet.2024.106230_b36) 2021
Hou (10.1016/j.neunet.2024.106230_b63) 2020
Qin (10.1016/j.neunet.2024.106230_b155) 2019; 32
10.1016/j.neunet.2024.106230_b149
Elsken (10.1016/j.neunet.2024.106230_b38) 2019; 20
Chen (10.1016/j.neunet.2024.106230_b27) 2020
Luo (10.1016/j.neunet.2024.106230_b135) 2023
Yang (10.1016/j.neunet.2024.106230_b232) 2021; 31
Tian (10.1016/j.neunet.2024.106230_b188) 2022; 14
Kendall (10.1016/j.neunet.2024.106230_b80) 2017; 30
You (10.1016/j.neunet.2024.106230_b241) 2021
Nayak (10.1016/j.neunet.2024.106230_b143) 2021; 44
Kemker (10.1016/j.neunet.2024.106230_b79) 2018; vol. 32
Dong (10.1016/j.neunet.2024.106230_b33) 2021; 46
Ulyanov (10.1016/j.neunet.2024.106230_b191) 2016
10.1016/j.neunet.2024.106230_b4
Li (10.1016/j.neunet.2024.106230_b104) 2021; 44
Li (10.1016/j.neunet.2024.106230_b113) 2023
Xu (10.1016/j.neunet.2024.106230_b216) 2022
10.1016/j.neunet.2024.106230_b2
Li (10.1016/j.neunet.2024.106230_b100) 2022
10.1016/j.neunet.2024.106230_b9
Zhang (10.1016/j.neunet.2024.106230_b253) 2021
Abusitta (10.1016/j.neunet.2024.106230_b1) 2021
Srivastava (10.1016/j.neunet.2024.106230_b175) 2014; 15
Yang (10.1016/j.neunet.2024.106230_b224) 2022; 79
Eastwood (10.1016/j.neunet.2024.106230_b37) 2021
Liang (10.1016/j.neunet.2024.106230_b116) 2020
Qin (10.1016/j.neunet.2024.106230_b154) 2022
Song (10.1016/j.neunet.2024.106230_b174) 2020; 8
Li (10.1016/j.neunet.2024.106230_b107) 2022
Chen (10.1016/j.neunet.2024.106230_b21) 2020
10.1016/j.neunet.2024.106230_b131
Wang (10.1016/j.neunet.2024.106230_b203) 2020
10.1016/j.neunet.2024.106230_b252
Tang (10.1016/j.neunet.2024.106230_b181) 2021
Xiong (10.1016/j.neunet.2024.106230_b211) 2021; 36
Pei (10.1016/j.neunet.2024.106230_b148) 2023; 32
Stan (10.1016/j.neunet.2024.106230_b176) 2021
Zhou (10.1016/j.neunet.2024.106230_b257) 2022; 45
Paul (10.1016/j.neunet.2024.106230_b147) 2021
Liu (10.1016/j.neunet.2024.106230_b125) 2022
Nasr (10.1016/j.neunet.2024.106230_b142) 2019
Xu (10.1016/j.neunet.2024.106230_b215) 2022
Jeon (10.1016/j.neunet.2024.106230_b72) 2021; 16
Xu (10.1016/j.neunet.2024.106230_b214) 2021
Tarvainen (10.1016/j.neunet.2024.106230_b185) 2017; 30
Feng (10.1016/j.neunet.2024.106230_b44) 2021; 34
10.1016/j.neunet.2024.106230_b28
Liu (10.1016/j.neunet.2024.106230_b122) 2022
Ma (10.1016/j.neunet.2024.106230_b136) 2021
Saenko (10.1016/j.neunet.2024.106230_b163) 2010
Wang (10.1016/j.neunet.2024.106230_b198) 2018; 312
10.1016/j.neunet.2024.106230_b32
Young (10.1016/j.neunet.2024.106230_b242) 2018; 13
Lopez-Paz (10.1016/j.neunet.2024.106230_b132) 2017; 30
Hong (10.1016/j.neunet.2024.106230_b62) 2022
Zhang (10.1016/j.neunet.2024.106230_b247) 2017
Zhao (10.1016/j.neunet.2024.106230_b255) 2022; 22
10.1016/j.neunet.2024.106230_b192
Kang (10.1016/j.neunet.2024.106230_b74) 2022
10.1016/j.neunet.2024.106230_b195
Yang (10.1016/j.neunet.2024.106230_b231) 2022
10.1016/j.neunet.2024.106230_b194
10.1016/j.neunet.2024.106230_b199
Wu (10.1016/j.neunet.2024.106230_b208) 2021
Tang (10.1016/j.neunet.2024.106230_b182) 2021; vol. 35
10.1016/j.neunet.2024.106230_b46
Wang (10.1016/j.neunet.2024.106230_b205) 2023
10.1016/j.neunet.2024.106230_b45
10.1016/j.neunet.2024.106230_b43
Ba (10.1016/j.neunet.2024.106230_b8) 2016
Li (10.1016/j.neunet.2024.106230_b103) 2022
Yang (10.1016/j.neunet.2024.106230_b227) 2022
Zhang (10.1016/j.neunet.2024.106230_b250) 2020
Ioffe (10.1016/j.neunet.2024.106230_b
References_xml – reference: Yin, H., Molchanov, P., Alvarez, J. M., Li, Z., Mallya, A., Hoiem, D., et al. (2020). Dreaming to distill: Data-free knowledge transfer via DeepInversion. In
– volume: 312
  start-page: 135
  year: 2018
  end-page: 153
  ident: b198
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
– year: 2021
  ident: b253
  article-title: Unsupervised domain adaptation of black-box source models
– start-page: 1180
  year: 2015
  end-page: 1189
  ident: b49
  article-title: Unsupervised domain adaptation by backpropagation
  publication-title: International Conference on Machine Learning
– year: 2020
  ident: b63
  article-title: Source free domain adaptation with image translation
– volume: 43
  start-page: 2971
  year: 2021
  end-page: 2989
  ident: b133
  article-title: Neural architecture transfer
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Xia, H., Zhao, H., & Ding, Z. (2021). Adaptive adversarial network for source-free domain adaptation. In
– start-page: 6028
  year: 2020
  end-page: 6039
  ident: b116
  article-title: Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation
  publication-title: International Conference on Machine Learning
– year: 2022
  ident: b100
  article-title: Jacobian norm for unsupervised source-free domain adaptation
– year: 2021
  ident: b128
  article-title: Graph consistency based mean-teaching for unsupervised domain adaptive person re-identification
– year: 2021
  ident: b141
  article-title: Test-time adaptation to distribution shift by confidence maximization and input transformation
– year: 2021
  ident: b183
  article-title: Nearest neighborhood-based deep clustering for source data-absent unsupervised domain adaptation
– year: 2022
  ident: b123
  article-title: Source-free unsupervised domain adaptation for blind image quality assessment
– reference: (pp. 4178–4188).
– year: 2021
  ident: b60
  article-title: Uncertainty-aware mean teacher for source-free unsupervised domain adaptive 3D object detection
– reference: Kothandaraman, D., Chandra, R., & Manocha, D. (2021). SS-SFDA: Self-supervised source-free domain adaptation for road segmentation in hazardous environments. In
– volume: 81
  start-page: 82
  year: 1986
  end-page: 86
  ident: b190
  article-title: Accurate approximations for posterior moments and marginal densities
  publication-title: Journal of the American Statistical Association
– year: 2003
  ident: b138
  article-title: Information Theory, Inference and Learning Algorithms
– year: 2021
  ident: b134
  article-title: Exploiting negative learning for implicit pseudo label rectification in source-free domain adaptive semantic segmentation
– volume: 33
  start-page: 3860
  year: 2023
  end-page: 3871
  ident: b218
  article-title: Multi-source video domain adaptation with temporal attentive moment alignment network
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– reference: (pp. 489–497).
– reference: Lo, S. Y., Oza, P., Chennupati, S., Galindo, A., & Patel, V. M. (2023). Spatio-temporal pixel-level contrastive learning-based source-free domain adaptation for video semantic segmentation. In
– volume: 167
  start-page: 92
  year: 2023
  end-page: 103
  ident: b31
  article-title: ProxyMix: Proxy-based mixup training with label refinery for source-free domain adaptation
  publication-title: Neural Networks
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: b121
  article-title: A survey on deep learning in medical image analysis
  publication-title: Medical Image Analysis
– reference: Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., et al. (2017). Practical secure aggregation for privacy-preserving machine learning. In
– reference: (pp. 2994–3003).
– volume: 30
  year: 2017
  ident: b48
  article-title: Concrete dropout
  publication-title: Advances in Neural Information Processing Systems
– reference: Yu, H., Huang, J., Liu, Y., Zhu, Q., Zhou, M., & Zhao, F. (2022). Source-Free Domain Adaptation for Real-World Image Dehazing. In
– volume: 69
  start-page: 1173
  year: 2021
  end-page: 1185
  ident: b53
  article-title: Domain adaptation for medical image analysis: A survey
  publication-title: IEEE Transactions on Biomedical Engineering
– start-page: 549
  year: 2021
  end-page: 559
  ident: b124
  article-title: Adapting off-the-shelf source segmenter for target medical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2021
  ident: b186
  article-title: ConDA: Continual unsupervised domain adaptation
– start-page: 341
  year: 2022
  ident: b125
  article-title: Unsupervised black-box model domain adaptation for brain tumor segmentation
  publication-title: Frontiers in Neuroscience
– volume: vol. 35
  start-page: 2665
  year: 2021
  end-page: 2673
  ident: b182
  article-title: Gradient regularized contrastive learning for continual domain adaptation
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 70
  start-page: 1373
  year: 2021
  end-page: 1411
  ident: b145
  article-title: Confident learning: Estimating uncertainty in dataset labels
  publication-title: Journal of Artificial Intelligence Research
– reference: Liang, J., He, R., Sun, Z., & Tan, T. (2019). Distant supervised centroid shift: A simple and efficient approach to visual domain adaptation. In
– reference: (pp. 210–220).
– reference: (pp. 4893–4902).
– reference: Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., & Wang, B. (2019). Moment matching for multi-source domain adaptation. In
– year: 2023
  ident: b184
  article-title: POUF: Prompt-oriented unsupervised fine-tuning for large pre-trained models
– year: 2022
  ident: b74
  article-title: Privacy-preserving federated adversarial domain adaptation over feature groups for interpretability
  publication-title: IEEE Transactions on Big Data
– volume: 161
  start-page: 682
  year: 2023
  end-page: 692
  ident: b97
  article-title: Feature alignment by uncertainty and self-training for source-free unsupervised domain adaptation
  publication-title: Neural Networks
– start-page: 1050
  year: 2016
  end-page: 1059
  ident: b47
  article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning
  publication-title: International Conference on Machine Learning
– reference: Xu, R., Chen, Z., Zuo, W., Yan, J., & Lin, L. (2018). Deep cocktail network: Multi-source unsupervised domain adaptation with category shift. In
– volume: 34
  start-page: 3635
  year: 2021
  end-page: 3649
  ident: b67
  article-title: Model adaptation: Historical contrastive learning for unsupervised domain adaptation without source data
  publication-title: Advances in Neural Information Processing Systems
– year: 2022
  ident: b201
  article-title: Active source free domain adaptation
– year: 2021
  ident: b119
  article-title: Distill and fine-tune: Effective adaptation from a black-box source model
– start-page: 2066
  year: 2012
  end-page: 2073
  ident: b51
  article-title: Geodesic flow kernel for unsupervised domain adaptation
  publication-title: 2012 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2019
  ident: b207
  article-title: A survey on neural architecture search
– volume: 34
  start-page: 29393
  year: 2021
  end-page: 29405
  ident: b223
  article-title: Exploiting the intrinsic neighborhood structure for source-free domain adaptation
  publication-title: Advances in Neural Information Processing Systems
– volume: 32
  start-page: 2033
  year: 2023
  end-page: 2048
  ident: b148
  article-title: Uncertainty-induced transferability representation for source-free unsupervised domain adaptation
  publication-title: IEEE Transactions on Image Processing
– reference: Li, D., Yang, Y., Song, Y. Z., & Hospedales, T. M. (2017). Deeper, broader and artier domain generalization. In
– year: 2021
  ident: b202
  article-title: Give me your trained model: Domain adaptive semantic segmentation without source data
– reference: (pp. 10307–10317).
– volume: 1
  start-page: 374
  year: 2019
  end-page: 388
  ident: b14
  article-title: Towards federated learning at scale: System design
  publication-title: Proceedings of Machine Learning and Systems
– start-page: 2681
  year: 2023
  end-page: 2686
  ident: b210
  article-title: Adversarially robust source-free domain adaptation with relaxed adversarial training
  publication-title: 2023 IEEE International Conference on Multimedia and Expo
– year: 2022
  ident: b220
  article-title: Dual moving average pseudo-labeling for source-free inductive domain adaptation
– reference: (pp. 9010–9019).
– reference: (pp. 444–454).
– year: 2021
  ident: b70
  article-title: Source-free domain adaptation via distributional alignment by matching batch normalization statistics
– volume: 30
  year: 2017
  ident: b80
  article-title: What uncertainties do we need in bayesian deep learning for computer vision?
  publication-title: Advances in Neural Information Processing Systems
– volume: 13
  start-page: 55
  year: 2018
  end-page: 75
  ident: b242
  article-title: Recent trends in deep learning based natural language processing
  publication-title: IEEE Computational Intelligence Magazine
– reference: Kumar, V., Lal, R., Patil, H., & Chakraborty, A. (2023). Conmix for source-free single and multi-target domain adaptation. In
– reference: (pp. 14996–15006).
– year: 2021
  ident: b228
  article-title: Transformer-based source-free domain adaptation
– volume: 15
  year: 2023
  ident: b251
  article-title: Lightweight source-free transfer for privacy-preserving motor imagery classification
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– start-page: 12365
  year: 2022
  end-page: 12377
  ident: b96
  article-title: Confidence score for source-free unsupervised domain adaptation
  publication-title: International Conference on Machine Learning
– reference: Zara, G., Conti, A., Roy, S., Lathuilière, S., Rota, P., & Ricci, E. (2023). The Unreasonable Effectiveness of Large Language-Vision Models for Source-free Video Domain Adaptation. In
– reference: (pp. 3964–3973).
– year: 2023
  ident: b244
  article-title: A comprehensive survey on source-free domain adaptation
– volume: 29
  year: 2016
  ident: b172
  article-title: Improved deep metric learning with multi-class N-pair loss objective
  publication-title: Advances in Neural Information Processing Systems
– reference: Chen, M. H., Kira, Z., AlRegib, G., Yoo, J., Chen, R., & Zheng, J. (2019). Temporal attentive alignment for large-scale video domain adaptation. In
– reference: VS, V., Oza, P., & Patel, V. M. (2023a). Instance relation graph guided source-free domain adaptive object detection. In
– volume: vol. 35
  start-page: 8474
  year: 2021
  end-page: 8481
  ident: b102
  article-title: A free lunch for unsupervised domain adaptive object detection without source data
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– reference: (pp. 12376–12385).
– reference: (pp. 6321–6330).
– volume: 41
  start-page: 1897
  year: 2022
  end-page: 1908
  ident: b127
  article-title: A source-free domain adaptive polyp detection framework with style diversification flow
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 30976
  year: 2023
  end-page: 30991
  ident: b169
  article-title: On balancing bias and variance in unsupervised multi-source-free domain adaptation
  publication-title: International Conference on Machine Learning
– start-page: 3
  year: 2023
  end-page: 12
  ident: b245
  article-title: Source-free domain adaptation for medical image segmentation via prototype-anchored feature alignment and contrastive learning
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: (pp. 474–483).
– start-page: 147
  year: 2022
  end-page: 164
  ident: b217
  article-title: Source-free video domain adaptation by learning temporal consistency for action recognition
  publication-title: European Conference on Computer Vision
– reference: Saito, K., & Saenko, K. (2021). OVANet: One-vs-all network for universal domain adaptation. In
– reference: Boudiaf, M., Mueller, R., Ben Ayed, I., & Bertinetto, L. (2022). Parameter-free Online Test-time Adaptation. In
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  ident: b61
  article-title: Denoising diffusion probabilistic models
  publication-title: Advances in Neural Information Processing Systems
– start-page: 76
  year: 2023
  end-page: 80
  ident: b113
  article-title: Target-discriminability-induced multi-source-free domain adaptation
  publication-title: 2023 IEEE International Conference on Image Processing
– reference: (pp. 4313–4322).
– year: 2021
  ident: b208
  article-title: Domain adaptation without model transferring
– year: 2021
  ident: b156
  article-title: Source-free domain adaptation via avatar prototype generation and adaptation
– year: 2023
  ident: b205
  article-title: Black-box source-free domain adaptation via two-stage knowledge distillation
– reference: (pp. 219–230).
– volume: 34
  start-page: 1993
  year: 2014
  end-page: 2024
  ident: b139
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Transactions on Medical Imaging
– volume: 82
  year: 2022
  ident: b10
  article-title: Source-free domain adaptation for image segmentation
  publication-title: Medical Image Analysis
– start-page: 8748
  year: 2021
  end-page: 8763
  ident: b158
  article-title: Learning transferable visual models from natural language supervision
  publication-title: International Conference on Machine Learning
– volume: 32
  year: 2019
  ident: b12
  article-title: MixMatch: A holistic approach to semi-supervised learning
  publication-title: Advances in Neural Information Processing Systems
– reference: Yeh, H. W., Meng, Q., & Harada, T. (2023). Misalignment-Free Relation Aggregation for Multi-Source-Free Domain Adaptation. In
– reference: (pp. 10103–10112).
– year: 2022
  ident: b150
  article-title: Toward better target representation for source-free and black-box domain adaptation
– volume: 45
  start-page: 4396
  year: 2022
  end-page: 4415
  ident: b257
  article-title: Domain generalization: A survey
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: vol. 37
  start-page: 7811
  year: 2023
  end-page: 7820
  ident: b55
  article-title: Discriminability and transferability estimation: A Bayesian source importance estimation approach for multi-source-free domain adaptation
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– reference: (pp. 7046–7056).
– reference: (pp. 478–488).
– reference: (pp. 2818–2826).
– volume: 34
  start-page: 2427
  year: 2021
  end-page: 2440
  ident: b71
  article-title: Test-time classifier adjustment module for model-agnostic domain generalization
  publication-title: Advances in Neural Information Processing Systems
– year: 2017
  ident: b152
  article-title: VisDA: The visual domain adaptation challenge
– reference: Kundu, J. N., Kulkarni, A., Singh, A., Jampani, V., & Babu, R. V. (2021). Generalize then adapt: Source-free domain adaptive semantic segmentation. In
– reference: Liu, Y., Zhang, W., & Wang, J. (2021). Source-free domain adaptation for semantic segmentation. In
– volume: 44
  start-page: 8196
  year: 2021
  end-page: 8211
  ident: b104
  article-title: Divergence-agnostic unsupervised domain adaptation by adversarial attacks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 56
  start-page: 149
  year: 2005
  end-page: 178
  ident: b7
  article-title: Human category learning
  publication-title: Annual Review of Psychology
– reference: (pp. 9000–9009).
– year: 2017
  ident: b247
  article-title: Mixup: Beyond empirical risk minimization
– volume: 114
  start-page: 3521
  year: 2017
  end-page: 3526
  ident: b83
  article-title: Overcoming catastrophic forgetting in neural networks
  publication-title: Proceedings of the National Academy of Sciences
– start-page: 1091
  year: 2022
  end-page: 1095
  ident: b101
  article-title: Adaptive pseudo labeling for source-free domain adaptation in medical image segmentation
  publication-title: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing
– year: 2021
  ident: b147
  article-title: Unsupervised adaptation of semantic segmentation models without source data
– reference: Saito, K., Watanabe, K., Ushiku, Y., & Harada, T. (2018). Maximum classifier discrepancy for unsupervised domain adaptation. In
– year: 2021
  ident: b241
  article-title: Test-time batch statistics calibration for covariate shift
– reference: Ahmed, S. M., Raychaudhuri, D. S., Paul, S., Oymak, S., & Roy-Chowdhury, A. K. (2021). Unsupervised multi-source domain adaptation without access to source data. In
– reference: Yazdanpanah, M., & Moradi, P. (2022). Visual Domain Bridge: A Source-Free Domain Adaptation for Cross-Domain Few-Shot Learning. In
– volume: 36
  start-page: 3746
  year: 2021
  end-page: 3766
  ident: b211
  article-title: Source data-free domain adaptation of object detector through domain-specific perturbation
  publication-title: International Journal of Intelligent Systems
– year: 2020
  ident: b56
  article-title: Deep Learning in Computer Vision: Principles and Applications
– volume: 17
  year: 2004
  ident: b52
  article-title: Semi-supervised learning by entropy minimization
  publication-title: Advances in Neural Information Processing Systems
– reference: (pp. 6567–6576).
– volume: 32
  year: 2019
  ident: b259
  article-title: Deep leakage from gradients
  publication-title: Advances in Neural Information Processing Systems
– volume: 32
  year: 2019
  ident: b155
  article-title: PointDAN: A multi-scale 3D domain adaption network for point cloud representation
  publication-title: Advances in Neural Information Processing Systems
– volume: 44
  start-page: 8465
  year: 2021
  end-page: 8481
  ident: b143
  article-title: Mining data impressions from deep models as substitute for the unavailable training data
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2019
  ident: b25
  article-title: A closer look at few-shot classification
– start-page: 537
  year: 2022
  end-page: 555
  ident: b162
  article-title: Uncertainty-guided source-free domain adaptation
  publication-title: European Conference on Computer Vision
– start-page: 490
  year: 2020
  end-page: 499
  ident: b11
  article-title: Source-relaxed domain adaptation for image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 46
  start-page: 1664
  year: 2021
  end-page: 1681
  ident: b33
  article-title: Where and how to transfer: Knowledge aggregation-induced transferability perception for unsupervised domain adaptation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 31
  start-page: 419
  year: 2021
  end-page: 432
  ident: b232
  article-title: Model-induced generalization error bound for information-theoretic representation learning in source-data-free unsupervised domain adaptation
  publication-title: IEEE Transactions on Image Processing
– start-page: 1597
  year: 2020
  end-page: 1607
  ident: b22
  article-title: A simple framework for contrastive learning of visual representations
  publication-title: International Conference on Machine Learning
– volume: 79
  year: 2022
  ident: b224
  article-title: Source free domain adaptation for medical image segmentation with fourier style mining
  publication-title: Medical Image Analysis
– start-page: 1
  year: 2021
  end-page: 6
  ident: b1
  article-title: VirtualGAN: Reducing mode collapse in generative adversarial networks using virtual mapping
  publication-title: 2021 International Joint Conference on Neural Networks
– volume: 20
  start-page: 1997
  year: 2019
  end-page: 2017
  ident: b38
  article-title: Neural architecture search: A survey
  publication-title: Journal of Machine Learning Research
– start-page: 3576
  year: 2022
  end-page: 3579
  ident: b216
  article-title: Source-free domain adaptation for cross-scene hyperspectral image classification
  publication-title: IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium
– year: 2023
  ident: b178
  article-title: Generating synthetic personal health data using conditional generative adversarial networks combining with differential privacy
  publication-title: Journal of Biomedical Informatics
– year: 2022
  ident: b103
  article-title: Source-free domain adaptation for multi-site and lifespan brain skull stripping
– volume: 8
  start-page: 143233
  year: 2020
  end-page: 143240
  ident: b174
  article-title: Privacy-preserving unsupervised domain adaptation in federated setting
  publication-title: IEEE Access
– year: 2022
  ident: b42
  article-title: Unsupervised cross-domain functional MRI adaptation for automated major depressive disorder identification
  publication-title: Medical Image Analysis
– reference: Chidlovskii, B., Clinchant, S., & Csurka, G. (2016). Domain adaptation in the absence of source domain data. In
– year: 2023
  ident: b135
  article-title: Source-free progressive graph learning for open-set domain adaptation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 26
  start-page: 4230
  year: 2023
  end-page: 4241
  ident: b159
  article-title: Parameter-efficient and student-friendly knowledge distillation
  publication-title: IEEE Transactions on Multimedia
– start-page: 11710
  year: 2022
  end-page: 11728
  ident: b89
  article-title: Balancing discriminability and transferability for source-free domain adaptation
  publication-title: International Conference on Machine Learning
– year: 2021
  ident: b120
  article-title: Source data-absent unsupervised domain adaptation through hypothesis transfer and labeling transfer
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: (pp. 7201–7211).
– volume: 41
  start-page: 3575
  year: 2022
  end-page: 3586
  ident: b222
  article-title: DLTTA: Dynamic learning rate for test-time adaptation on cross-domain medical images
  publication-title: IEEE Transactions on Medical Imaging
– reference: Klingner, M., Termöhlen, J.-A., Ritterbach, J., & Fingscheidt, T. (2022). Unsupervised batchnorm adaptation (UBNA): A domain adaptation method for semantic segmentation without using source domain representations. In
– reference: (pp. 7354–7362).
– volume: 2018
  year: 2018
  ident: b193
  article-title: Deep learning for computer vision: A brief review
  publication-title: Computational Intelligence and Neuroscience
– start-page: 233
  year: 2017
  end-page: 242
  ident: b6
  article-title: A closer look at memorization in deep networks
  publication-title: International Conference on Machine Learning
– volume: 22
  start-page: 4238
  year: 2022
  ident: b255
  article-title: Adaptive contrastive learning with label consistency for source data free unsupervised domain adaptation
  publication-title: Sensors
– volume: 3
  start-page: 1
  year: 2011
  end-page: 122
  ident: b17
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends® in Machine Learning
– reference: Fang, C., Xu, Y., & Rockmore, D. N. (2013). Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias. In
– reference: (pp. 8003–8013).
– reference: .
– reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception architecture for computer vision. In
– year: 2022
  ident: b62
  article-title: Source-free unsupervised domain adaptation for cross-modality abdominal multi-organ segmentation
  publication-title: Knowledge-Based Systems
– start-page: 1
  year: 2022
  end-page: 10
  ident: b39
  article-title: Generating privacy preserving synthetic medical data
  publication-title: 2022 IEEE 9th International Conference on Data Science and Advanced Analytics
– reference: (pp. 9729–9738).
– reference: Chen, P., & Ma, A. J. (2022). Source-free Temporal Attentive Domain Adaptation for Video Action Recognition. In
– volume: 36
  start-page: 606
  year: 2021
  end-page: 616
  ident: b187
  article-title: Source-free unsupervised domain adaptation with sample transport learning
  publication-title: Journal of Computer Science and Technology
– reference: (pp. 1175–1191).
– volume: 20
  start-page: 2787
  year: 2023
  end-page: 2798
  ident: b254
  article-title: Source-free domain adaptation for privacy-preserving seizure prediction
  publication-title: IEEE Transactions on Industrial Informatics
– reference: Kang, G., Jiang, L., Yang, Y., & Hauptmann, A. G. (2019). Contrastive adaptation network for unsupervised domain adaptation. In
– reference: Kurmi, V. K., Subramanian, V. K., & Namboodiri, V. P. (2021). Domain impression: A source data free domain adaptation method. In
– reference: (pp. 10285–10295).
– volume: 191
  year: 2023
  ident: b249
  article-title: Universal source-free domain adaptation method for cross-domain fault diagnosis of machines
  publication-title: Mechanical Systems and Signal Processing
– reference: Ke, Z., Wang, D., Yan, Q., Ren, J., & Lau, R. W. (2019). Dual student: Breaking the limits of the teacher in semi-supervised learning. In
– volume: 124
  year: 2022
  ident: b212
  article-title: Source data-free domain adaptation for a faster R-CNN
  publication-title: Pattern Recognition
– reference: (pp. 6645–6654).
– year: 2020
  ident: b248
  article-title: Unsupervised domain expansion from multiple sources
– start-page: 430
  year: 2020
  end-page: 446
  ident: b27
  article-title: Unsupervised image classification for deep representation learning
  publication-title: European Conference on Computer Vision
– year: 2021
  ident: b136
  article-title: Semi-supervised hypothesis transfer for source-free domain adaptation
– year: 2016
  ident: b8
  article-title: Layer normalization
– year: 2022
  ident: b197
  article-title: Target and task specific source-free domain adaptive image segmentation
– start-page: 192
  year: 2014
  end-page: 211
  ident: b18
  article-title: ImageCLEF 2014: Overview and analysis of the results
  publication-title: International Conference of the Cross-Language Evaluation Forum for European Languages
– volume: 17
  start-page: 716
  year: 2022
  end-page: 731
  ident: b226
  article-title: Revealing task-relevant model memorization for source-protected unsupervised domain adaptation
  publication-title: IEEE Transactions on Information Forensics and Security
– volume: 30
  start-page: 8008
  year: 2021
  end-page: 8018
  ident: b258
  article-title: Domain adaptive ensemble learning
  publication-title: IEEE Transactions on Image Processing
– reference: (pp. 8978–8987).
– reference: Fleuret, F., et al. (2021). Uncertainty reduction for model adaptation in semantic segmentation. In
– reference: Chang, W. G., You, T., Seo, S., Kwak, S., & Han, B. (2019). Domain-specific batch normalization for unsupervised domain adaptation. In
– reference: (pp. 451–460).
– start-page: 739
  year: 2019
  end-page: 753
  ident: b142
  article-title: Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning
  publication-title: 2019 IEEE Symposium on Security and Privacy
– reference: Lekhtman, E., Ziser, Y., & Reichart, R. (2021). DILBERT: Customized pre-training for domain adaptation with category shift, with an application to aspect extraction. In
– start-page: 1597
  year: 2020
  end-page: 1607
  ident: b21
  article-title: A simple framework for contrastive learning of visual representations
  publication-title: International Conference on Machine Learning
– reference: (pp. 5018–5027).
– year: 2020
  ident: b35
  article-title: An image is worth 16
– reference: Bang, D., & Shim, H. (2021). MGGAN: Solving mode collapse using manifold-guided training. In
– reference: (pp. 8344–8353).
– volume: 37
  start-page: 50
  year: 2020
  end-page: 60
  ident: b109
  article-title: Federated learning: Challenges, methods, and future directions
  publication-title: IEEE Signal Processing Magazine
– start-page: 511
  year: 2022
  end-page: 528
  ident: b122
  article-title: Source-free domain adaptation with contrastive domain alignment and self-supervised exploration for face anti-spoofing
  publication-title: European Conference on Computer Vision
– volume: 32
  year: 2019
  ident: b140
  article-title: When does label smoothing help?
  publication-title: Advances in Neural Information Processing Systems
– year: 2021
  ident: b153
  article-title: S4T: Source-free domain adaptation for semantic segmentation via self-supervised selective self-training
– reference: (pp. 3752–3761).
– reference: (pp. 3274–3283).
– volume: 14
  start-page: 1
  year: 2022
  end-page: 17
  ident: b188
  article-title: Source-free unsupervised domain adaptation with trusted pseudo samples
  publication-title: ACM Transactions on Intelligent Systems and Technology
– reference: Yan, H., Guo, Y., & Yang, C. (2021). Augmented self-labeling for source-free unsupervised domain adaptation. In
– reference: He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. In
– reference: (pp. 9641–9650).
– year: 2021
  ident: b37
  article-title: Source-free adaptation to measurement shift via bottom-up feature restoration
– reference: (pp. 2009–2018).
– reference: Venkateswara, H., Eusebio, J., Chakraborty, S., & Panchanathan, S. (2017). Deep hashing network for unsupervised domain adaptation. In
– reference: (pp. 8715–8724).
– volume: 40
  start-page: 2935
  year: 2017
  end-page: 2947
  ident: b105
  article-title: Learning without forgetting
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: vol. 32
  year: 2018
  ident: b79
  article-title: Measuring catastrophic forgetting in neural networks
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 19
  start-page: 221
  year: 2017
  ident: b170
  article-title: Deep learning in medical image analysis
  publication-title: Annual Review of Biomedical Engineering
– year: 2020
  ident: b203
  article-title: Tent: Fully test-time adaptation by entropy minimization
– reference: (pp. 24120–24131).
– volume: 30
  start-page: 205
  year: 2022
  end-page: 216
  ident: b40
  article-title: Unsupervised domain adaptation by statistics alignment for deep sleep staging networks
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– start-page: 1
  year: 2020
  end-page: 8
  ident: b250
  article-title: Discriminative joint probability maximum mean discrepancy (DJP-MMD) for domain adaptation
  publication-title: 2020 International Joint Conference on Neural Networks
– start-page: 1
  year: 2023
  end-page: 8
  ident: b111
  article-title: Transformer-based multi-source domain adaptation without source data
  publication-title: 2023 International Joint Conference on Neural Networks
– reference: Liang, J., Hu, D., Feng, J., & He, R. (2022). DINE: Domain adaptation from single and multiple black-box predictors. In
– reference: (pp. 1424–1433).
– year: 2022
  ident: b219
  article-title: EXTERN: Leveraging endo-temporal regularization for black-box video domain adaptation
– reference: (pp. 9613–9623).
– year: 2021
  ident: b130
  article-title: Data-free knowledge transfer: A survey
– reference: Wang, Q., Fink, O., Van Gool, L., & Dai, D. (2022). Continual test-time domain adaptation. In
– volume: 16
  year: 2021
  ident: b72
  article-title: Unsupervised multi-source domain adaptation with no observable source data
  publication-title: PLoS One
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b175
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– volume: 72
  year: 2021
  ident: b58
  article-title: Autoencoder based self-supervised test-time adaptation for medical image analysis
  publication-title: Medical Image Analysis
– reference: (pp. 7151–7160).
– start-page: 3
  year: 2021
  end-page: 13
  ident: b214
  article-title: Noisy labels are treasure: Mean-teacher-assisted confident learning for hepatic vessel segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: (pp. 5542–5550).
– reference: (pp. 3049–3059).
– volume: 34
  start-page: 9587
  year: 2023
  end-page: 9603
  ident: b180
  article-title: Towards personalized federated learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: (pp. 1657–1664).
– start-page: 771
  year: 2020
  end-page: 780
  ident: b167
  article-title: SF-UDA
  publication-title: 2020 International Conference on 3D Vision
– start-page: 5679
  year: 2021
  end-page: 5685
  ident: b181
  article-title: Model adaptation through hypothesis transfer with gradual knowledge distillation
  publication-title: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
– volume: 30
  year: 2017
  ident: b132
  article-title: Gradient episodic memory for continual learning
  publication-title: Advances in Neural Information Processing Systems
– year: 2021
  ident: b176
  article-title: Privacy preserving domain adaptation for semantic segmentation of medical images
– reference: (pp. 1652–1660).
– year: 2022
  ident: b54
  article-title: Polycentric clustering and structural regularization for source-free unsupervised domain adaptation
– reference: Kim, K., Ji, B., Yoon, D., & Hwang, S. (2021). Self-knowledge distillation with progressive refinement of targets. In
– reference: (pp. 4544–4553).
– reference: (pp. 1406–1415).
– reference: (pp. 3520–3530).
– reference: Ye, M., Zhang, J., Ouyang, J., & Yuan, D. (2021). Source data-free unsupervised domain adaptation for semantic segmentation. In
– start-page: 177
  year: 2022
  end-page: 194
  ident: b88
  article-title: Concurrent subsidiary supervision for unsupervised source-free domain adaptation
  publication-title: European Conference on Computer Vision
– start-page: 10185
  year: 2022
  end-page: 10192
  ident: b23
  article-title: Self-supervised noisy label learning for source-free unsupervised domain adaptation
  publication-title: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
– start-page: 1
  year: 2023
  end-page: 77
  ident: b50
  article-title: A survey of uncertainty in deep neural networks
  publication-title: Artificial Intelligence Review
– start-page: 448
  year: 2015
  end-page: 456
  ident: b69
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: International Conference on Machine Learning
– volume: vol. 12032
  start-page: 255
  year: 2022
  end-page: 260
  ident: b126
  article-title: Unsupervised domain adaptation for segmentation with black-box source model
  publication-title: Medical Imaging 2022: Image Processing
– reference: Yao, H., Guo, Y., & Yang, C. (2021). Source-free unsupervised domain adaptation with surrogate data generation. In
– volume: 32
  start-page: 7019
  year: 2022
  end-page: 7032
  ident: b256
  article-title: Source-free open compound domain adaptation in semantic segmentation
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– reference: Huang, Y., Yang, X., Zhang, J., & Xu, C. (2022). Relative Alignment Network for Source-Free Multimodal Video Domain Adaptation. In
– volume: 31
  start-page: 3359
  year: 2022
  end-page: 3370
  ident: b173
  article-title: Spot-adaptive knowledge distillation
  publication-title: IEEE Transactions on Image Processing
– reference: (pp. 615–625).
– year: 2023
  ident: b230
  article-title: Casting a BAIT for offline and online source-free domain adaptation
  publication-title: Computer Vision and Image Understanding
– volume: 68
  year: 2021
  ident: b76
  article-title: Test-time adaptable neural networks for robust medical image segmentation
  publication-title: Medical Image Analysis
– start-page: 214
  year: 2022
  end-page: 224
  ident: b215
  article-title: Denoising for relaxing: Unsupervised domain adaptive fundus image segmentation without source data
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 313
  year: 2022
  end-page: 323
  ident: b137
  article-title: Test-time adaptation with calibration of medical image classification nets for label distribution shift
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: Yang, S., Wang, Y., van de Weijer, J., Herranz, L., & Jui, S. (2021). Generalized source-free domain adaptation. In
– year: 2016
  ident: b110
  article-title: Revisiting batch normalization for practical domain adaptation
– reference: Shenaj, D., Fanì, E., Toldo, M., Caldarola, D., Tavera, A., Michieli, U., et al. (2023). Learning Across Domains and Devices: Style-Driven Source-Free Domain Adaptation in Clustered Federated Learning. In
– reference: Agarwal, P., Paudel, D. P., Zaech, J. N., & Van Gool, L. (2022). Unsupervised Robust Domain Adaptation without Source Data. In
– volume: 2
  start-page: 508
  year: 2021
  end-page: 518
  ident: b81
  article-title: Domain adaptation without source data
  publication-title: IEEE Transactions on Artificial Intelligence
– volume: 30
  year: 2017
  ident: b185
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
  publication-title: Advances in Neural Information Processing Systems
– start-page: 213
  year: 2010
  end-page: 226
  ident: b163
  article-title: Adapting visual category models to new domains
  publication-title: European Conference on Computer Vision
– start-page: 299
  year: 2020
  end-page: 315
  ident: b233
  article-title: MutualNet: Adaptive convnet via mutual learning from network width and resolution
  publication-title: European Conference on Computer Vision
– reference: (pp. 13824–13833).
– start-page: 140
  year: 2018
  end-page: 145
  ident: b144
  article-title: Source free domain adaptation using an off-the-shelf classifier
  publication-title: 2018 IEEE International Conference on Big Data (Big Data)
– volume: 33
  start-page: 16282
  year: 2020
  end-page: 16292
  ident: b164
  article-title: Universal domain adaptation through self supervision
  publication-title: Advances in Neural Information Processing Systems
– start-page: 111
  year: 2022
  end-page: 127
  ident: b3
  article-title: Cross-modal knowledge transfer without task-relevant source data
  publication-title: European Conference on Computer Vision
– volume: 34
  start-page: 2848
  year: 2021
  end-page: 2860
  ident: b34
  article-title: Confident anchor-induced multi-source free domain adaptation
  publication-title: Advances in Neural Information Processing Systems
– reference: Hou, Y., & Zheng, L. (2021). Visualizing adapted knowledge in domain transfer. In
– year: 2021
  ident: b99
  article-title: The power of scale for parameter-efficient prompt tuning
– reference: (pp. 1–8).
– reference: (pp. 2868–2877).
– reference: Kundu, J. N., Venkat, N., Babu, R. V., et al. (2020). Universal source-free domain adaptation. In
– year: 2016
  ident: b191
  article-title: Instance normalization: The missing ingredient for fast stylization
– volume: 32
  start-page: 3749
  year: 2021
  end-page: 3760
  ident: b189
  article-title: VDM-DA: Virtual domain modeling for source data-free domain adaptation
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– volume: 54
  start-page: 1
  year: 2021
  end-page: 34
  ident: b161
  article-title: A comprehensive survey of neural architecture search: Challenges and solutions
  publication-title: ACM Computing Surveys
– volume: 25
  start-page: 1665
  year: 2022
  end-page: 1673
  ident: b204
  article-title: Cross-domain contrastive learning for unsupervised domain adaptation
  publication-title: IEEE Transactions on Multimedia
– year: 2021
  ident: b206
  article-title: Learning invariant representation with consistency and diversity for semi-supervised source hypothesis transfer
– start-page: 1
  year: 2022
  end-page: 8
  ident: b107
  article-title: Source-free multi-domain adaptation with generally auxiliary model training
  publication-title: 2022 International Joint Conference on Neural Networks
– start-page: 248
  year: 2009
  end-page: 255
  ident: b30
  article-title: ImageNet: A large-scale hierarchical image database
  publication-title: 2009 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 32
  start-page: 4309
  year: 2020
  end-page: 4322
  ident: b41
  article-title: Open set domain adaptation: Theoretical bound and algorithm
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2016
  ident: b94
  article-title: Temporal ensembling for semi-supervised learning
– year: 2023
  ident: b108
  article-title: Source-free multi-domain adaptation with fuzzy rule-based deep neural networks
  publication-title: IEEE Transactions on Fuzzy Systems
– start-page: 3606
  year: 2022
  end-page: 3610
  ident: b196
  article-title: Mixture of teacher experts for source-free domain adaptive object detection
  publication-title: 2022 IEEE International Conference on Image Processing
– volume: 642
  year: 2023
  ident: b114
  article-title: Dynamic data-free knowledge distillation by easy-to-hard learning strategy
  publication-title: Information Sciences
– reference: Yeh, H. W., Yang, B., Yuen, P. C., & Harada, T. (2021). SoFA: Source-data-free feature alignment for unsupervised domain adaptation. In
– reference: Karim, N., Mithun, N. C., Rajvanshi, A., Chiu, H. p., Samarasekera, S., & Rahnavard, N. (2023). C-SFDA: A Curriculum Learning Aided Self-Training Framework for Efficient Source Free Domain Adaptation. In
– reference: Li, R., Jiao, Q., Cao, W., Wong, H.-S., & Wu, S. (2020). Model adaptation: Unsupervised domain adaptation without source data. In
– year: 2021
  ident: b36
  article-title: Generation, augmentation, and alignment: A pseudo-source domain based method for source-free domain adaptation
– volume: 54
  start-page: 1
  year: 2022
  end-page: 37
  ident: b65
  article-title: Membership inference attacks on machine learning: A survey
  publication-title: ACM Computing Surveys
– reference: Yao, C. H., Gong, B., Qi, H., Cui, Y., Zhu, Y., & Yang, M. H. (2022). Federated multi-target domain adaptation. In
– reference: (pp. 6728–6736).
– reference: (pp. 3723–3732).
– volume: 283
  year: 2024
  ident: b157
  article-title: Source-free style-diversity adversarial domain adaptation with privacy-preservation for person re-identification
  publication-title: Knowledge-Based Systems
– start-page: 2593
  year: 2021
  end-page: 2601
  ident: b177
  article-title: Unsupervised model adaptation for continual semantic segmentation
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– reference: VS, V., Oza, P., & Patel, V. M. (2023b). Towards online domain adaptive object detection. In
– volume: 31
  start-page: 77
  year: 2016
  end-page: 87
  ident: b260
  article-title: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI
  publication-title: Medical Image Analysis
– year: 2022
  ident: b227
  article-title: Divide to adapt: Mitigating confirmation bias for domain adaptation of black-box predictors
– volume: 34
  start-page: 3082
  year: 2021
  end-page: 3096
  ident: b44
  article-title: Globally localized multisource domain adaptation for cross-domain fault diagnosis with category shift
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: Feng, H., You, Z., Chen, M., Zhang, T., Zhu, M., Wu, F., et al. (2021). KD3A: Unsupervised Multi-Source Decentralized Domain Adaptation via Knowledge Distillation. In
– start-page: 1
  year: 2022
  end-page: 15
  ident: b154
  article-title: Uncertainty-aware aggregation for federated open set domain adaptation
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: Sankaranarayanan, S., Balaji, Y., Jain, A., Lim, S. N., & Chellappa, R. (2018). Learning from synthetic data: Addressing domain shift for semantic segmentation. In
– volume: 32
  start-page: 604
  year: 2020
  end-page: 624
  ident: b146
  article-title: A survey of the usages of deep learning for natural language processing
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: Zhang, D., Ye, M., Xiong, L., Li, S., & Li, X. (2021). Source-Style Transferred Mean Teacher for Source-data Free Object Detection. In
– reference: Wang, F., Han, Z., Gong, Y., & Yin, Y. (2022). Exploring Domain-Invariant Parameters for Source Free Domain Adaptation. In
– reference: (pp. 2233–2242).
– year: 2019
  ident: b151
  article-title: Federated adversarial domain adaptation
– reference: (pp. 10534–10543).
– year: 2020
  ident: b13
  article-title: YOLOv4: Optimal speed and accuracy of object detection
– year: 2021
  ident: b117
  article-title: UMAD: Universal model adaptation under domain and category shift
– reference: (pp. 1215–1224).
– reference: (pp. 7212–7222).
– year: 2022
  ident: b231
  article-title: Attracting and dispersing: A simple approach for source-free domain adaptation
– start-page: 437
  year: 2020
  end-page: 446
  ident: b57
  article-title: Self domain adapted network
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: Kundu, J. N., Venkat, N., Revanur, A., Babu, R. V., et al. (2020). Towards inheritable models for open-set domain adaptation. In
– reference: Raychaudhuri, D. S., Ta, C. K., Dutta, A., Lal, R., & Roy-Chowdhury, A. K. (2023). Prior-guided Source-free Domain Adaptation for Human Pose Estimation. In
– reference: Lee, C. Y., Batra, T., Baig, M. H., & Ulbricht, D. (2019). Sliced wasserstein discrepancy for unsupervised domain adaptation. In
– volume: 35
  start-page: 17173
  year: 2022
  end-page: 17187
  ident: b73
  article-title: Variational model perturbation for source-free domain adaptation
  publication-title: Advances in Neural Information Processing Systems
– start-page: 225
  year: 2021
  end-page: 235
  ident: b24
  article-title: Source-free domain adaptive fundus image segmentation with denoised pseudo-labeling
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 1
  year: 2022
  end-page: 6
  ident: b225
  article-title: Source free domain adaptation for semantic segmentation via distribution transfer and adaptive class-balanced self-training
  publication-title: 2022 IEEE International Conference on Multimedia and Expo
– start-page: 312
  year: 2019
  end-page: 321
  ident: b5
  article-title: Unsupervised label noise modeling and loss correction
  publication-title: International Conference on Machine Learning
– year: 2022
  ident: b86
  article-title: DistillAdapt: Source-free active visual domain adaptation
– reference: Ding, N., Xu, Y., Tang, Y., Xu, C., Wang, Y., & Tao, D. (2022). Source-Free Domain Adaptation via Distribution Estimation. In
– reference: (pp. 2347–2356).
– reference: (pp. 2975–2984).
– volume: 44
  start-page: 3366
  year: 2021
  end-page: 3385
  ident: b29
  article-title: A continual learning survey: Defying forgetting in classification tasks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Hu, X., Zhang, K., Xia, L., Chen, A., Luo, J., Sun, Y., et al. (2024). ReCLIP: Refine contrastive language image pre-training with source free domain adaptation. In
– volume: 30
  year: 2017
  ident: 10.1016/j.neunet.2024.106230_b132
  article-title: Gradient episodic memory for continual learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 36
  start-page: 3746
  issue: 8
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b211
  article-title: Source data-free domain adaptation of object detector through domain-specific perturbation
  publication-title: International Journal of Intelligent Systems
  doi: 10.1002/int.22434
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b156
– start-page: 549
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b124
  article-title: Adapting off-the-shelf source segmenter for target medical image segmentation
– volume: 54
  start-page: 1
  issue: 11s
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b65
  article-title: Membership inference attacks on machine learning: A survey
  publication-title: ACM Computing Surveys
  doi: 10.1145/3523273
– ident: 10.1016/j.neunet.2024.106230_b78
  doi: 10.1109/ICCV.2019.00683
– ident: 10.1016/j.neunet.2024.106230_b194
  doi: 10.1109/CVPR52729.2023.00343
– year: 2020
  ident: 10.1016/j.neunet.2024.106230_b56
– start-page: 177
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b88
  article-title: Concurrent subsidiary supervision for unsupervised source-free domain adaptation
– ident: 10.1016/j.neunet.2024.106230_b200
  doi: 10.1109/CVPR52688.2022.00701
– start-page: 8748
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b158
  article-title: Learning transferable visual models from natural language supervision
– volume: 8
  start-page: 143233
  year: 2020
  ident: 10.1016/j.neunet.2024.106230_b174
  article-title: Privacy-preserving unsupervised domain adaptation in federated setting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3014264
– start-page: 511
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b122
  article-title: Source-free domain adaptation with contrastive domain alignment and self-supervised exploration for face anti-spoofing
– volume: 43
  start-page: 2971
  issue: 9
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b133
  article-title: Neural architecture transfer
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2021.3052758
– volume: 37
  start-page: 50
  issue: 3
  year: 2020
  ident: 10.1016/j.neunet.2024.106230_b109
  article-title: Federated learning: Challenges, methods, and future directions
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2020.2975749
– volume: 82
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b10
  article-title: Source-free domain adaptation for image segmentation
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2022.102617
– volume: 13
  start-page: 55
  issue: 3
  year: 2018
  ident: 10.1016/j.neunet.2024.106230_b242
  article-title: Recent trends in deep learning based natural language processing
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2018.2840738
– volume: 2
  start-page: 508
  issue: 6
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b81
  article-title: Domain adaptation without source data
  publication-title: IEEE Transactions on Artificial Intelligence
  doi: 10.1109/TAI.2021.3110179
– start-page: 430
  year: 2020
  ident: 10.1016/j.neunet.2024.106230_b27
  article-title: Unsupervised image classification for deep representation learning
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.neunet.2024.106230_b175
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– volume: 312
  start-page: 135
  year: 2018
  ident: 10.1016/j.neunet.2024.106230_b198
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
– ident: 10.1016/j.neunet.2024.106230_b149
  doi: 10.1109/ICCV.2019.00149
– ident: 10.1016/j.neunet.2024.106230_b59
  doi: 10.1109/CVPR42600.2020.00975
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b202
– year: 2016
  ident: 10.1016/j.neunet.2024.106230_b8
– volume: 32
  year: 2019
  ident: 10.1016/j.neunet.2024.106230_b155
  article-title: PointDAN: A multi-scale 3D domain adaption network for point cloud representation
  publication-title: Advances in Neural Information Processing Systems
– volume: 25
  start-page: 1665
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b204
  article-title: Cross-domain contrastive learning for unsupervised domain adaptation
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2022.3146744
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b117
– ident: 10.1016/j.neunet.2024.106230_b165
  doi: 10.1109/ICCV48922.2021.00887
– volume: 19
  start-page: 221
  year: 2017
  ident: 10.1016/j.neunet.2024.106230_b170
  article-title: Deep learning in medical image analysis
  publication-title: Annual Review of Biomedical Engineering
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 33
  start-page: 6840
  year: 2020
  ident: 10.1016/j.neunet.2024.106230_b61
  article-title: Denoising diffusion probabilistic models
  publication-title: Advances in Neural Information Processing Systems
– ident: 10.1016/j.neunet.2024.106230_b26
  doi: 10.1145/3512527.3531392
– ident: 10.1016/j.neunet.2024.106230_b85
  doi: 10.1109/ICCVW54120.2021.00339
– ident: 10.1016/j.neunet.2024.106230_b236
  doi: 10.1109/CVPRW56347.2022.00324
– volume: 44
  start-page: 8196
  issue: 11
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b104
  article-title: Divergence-agnostic unsupervised domain adaptation by adversarial attacks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2021.3109287
– volume: 15
  issue: 2
  year: 2023
  ident: 10.1016/j.neunet.2024.106230_b251
  article-title: Lightweight source-free transfer for privacy-preserving motor imagery classification
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2022.3193731
– volume: 31
  start-page: 77
  year: 2016
  ident: 10.1016/j.neunet.2024.106230_b260
  article-title: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2016.02.006
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b153
– ident: 10.1016/j.neunet.2024.106230_b106
  doi: 10.1109/CVPR42600.2020.00966
– volume: 642
  year: 2023
  ident: 10.1016/j.neunet.2024.106230_b114
  article-title: Dynamic data-free knowledge distillation by easy-to-hard learning strategy
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2023.119202
– year: 2023
  ident: 10.1016/j.neunet.2024.106230_b230
  article-title: Casting a BAIT for offline and online source-free domain adaptation
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2023.103747
– start-page: 1
  year: 2023
  ident: 10.1016/j.neunet.2024.106230_b50
  article-title: A survey of uncertainty in deep neural networks
  publication-title: Artificial Intelligence Review
– start-page: 12365
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b96
  article-title: Confidence score for source-free unsupervised domain adaptation
– start-page: 76
  year: 2023
  ident: 10.1016/j.neunet.2024.106230_b113
  article-title: Target-discriminability-induced multi-source-free domain adaptation
– volume: 32
  year: 2019
  ident: 10.1016/j.neunet.2024.106230_b140
  article-title: When does label smoothing help?
  publication-title: Advances in Neural Information Processing Systems
– ident: 10.1016/j.neunet.2024.106230_b118
  doi: 10.1109/CVPR52688.2022.00784
– ident: 10.1016/j.neunet.2024.106230_b9
  doi: 10.1109/ICCVW54120.2021.00266
– volume: 29
  year: 2016
  ident: 10.1016/j.neunet.2024.106230_b172
  article-title: Improved deep metric learning with multi-class N-pair loss objective
  publication-title: Advances in Neural Information Processing Systems
– volume: 32
  start-page: 7019
  issue: 10
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b256
  article-title: Source-free open compound domain adaptation in semantic segmentation
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2022.3179021
– ident: 10.1016/j.neunet.2024.106230_b77
  doi: 10.1109/CVPR52729.2023.02310
– volume: 30
  year: 2017
  ident: 10.1016/j.neunet.2024.106230_b80
  article-title: What uncertainties do we need in bayesian deep learning for computer vision?
  publication-title: Advances in Neural Information Processing Systems
– volume: 16
  issue: 7
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b72
  article-title: Unsupervised multi-source domain adaptation with no observable source data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0253415
– ident: 10.1016/j.neunet.2024.106230_b93
  doi: 10.1109/WACV48630.2021.00066
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b120
  article-title: Source data-absent unsupervised domain adaptation through hypothesis transfer and labeling transfer
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2021.3103390
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b136
– volume: 44
  start-page: 8465
  issue: 11
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b143
  article-title: Mining data impressions from deep models as substitute for the unavailable training data
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 225
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b24
  article-title: Source-free domain adaptive fundus image segmentation with denoised pseudo-labeling
– ident: 10.1016/j.neunet.2024.106230_b199
  doi: 10.1109/CVPR52688.2022.00706
– year: 2019
  ident: 10.1016/j.neunet.2024.106230_b207
– volume: 40
  start-page: 2935
  issue: 12
  year: 2017
  ident: 10.1016/j.neunet.2024.106230_b105
  article-title: Learning without forgetting
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2017.2773081
– year: 2016
  ident: 10.1016/j.neunet.2024.106230_b94
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b128
– volume: 34
  start-page: 2427
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b71
  article-title: Test-time classifier adjustment module for model-agnostic domain generalization
  publication-title: Advances in Neural Information Processing Systems
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b147
– start-page: 739
  year: 2019
  ident: 10.1016/j.neunet.2024.106230_b142
  article-title: Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning
– start-page: 1050
  year: 2016
  ident: 10.1016/j.neunet.2024.106230_b47
  article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning
– year: 2003
  ident: 10.1016/j.neunet.2024.106230_b138
– ident: 10.1016/j.neunet.2024.106230_b179
  doi: 10.1109/CVPR.2016.308
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b119
– start-page: 192
  year: 2014
  ident: 10.1016/j.neunet.2024.106230_b18
  article-title: ImageCLEF 2014: Overview and analysis of the results
– ident: 10.1016/j.neunet.2024.106230_b66
  doi: 10.1109/WACV57701.2024.00297
– start-page: 214
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b215
  article-title: Denoising for relaxing: Unsupervised domain adaptive fundus image segmentation without source data
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b130
– start-page: 3
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b214
  article-title: Noisy labels are treasure: Mean-teacher-assisted confident learning for hepatic vessel segmentation
– start-page: 313
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b137
  article-title: Test-time adaptation with calibration of medical image classification nets for label distribution shift
– ident: 10.1016/j.neunet.2024.106230_b4
  doi: 10.1109/CVPR46437.2021.00997
– ident: 10.1016/j.neunet.2024.106230_b15
  doi: 10.1145/3133956.3133982
– ident: 10.1016/j.neunet.2024.106230_b160
  doi: 10.1109/ICCV51070.2023.01377
– year: 2022
  ident: 10.1016/j.neunet.2024.106230_b54
– start-page: 771
  year: 2020
  ident: 10.1016/j.neunet.2024.106230_b167
  article-title: SF-UDA3D: Source-free unsupervised domain adaptation for LiDAR-based 3D object detection
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b60
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b253
– ident: 10.1016/j.neunet.2024.106230_b229
  doi: 10.1109/ICCV48922.2021.00885
– year: 2022
  ident: 10.1016/j.neunet.2024.106230_b197
– volume: 34
  start-page: 29393
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b223
  article-title: Exploiting the intrinsic neighborhood structure for source-free domain adaptation
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1597
  year: 2020
  ident: 10.1016/j.neunet.2024.106230_b21
  article-title: A simple framework for contrastive learning of visual representations
– start-page: 10185
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b23
  article-title: Self-supervised noisy label learning for source-free unsupervised domain adaptation
– ident: 10.1016/j.neunet.2024.106230_b195
  doi: 10.1109/WACV56688.2023.00055
– volume: 33
  start-page: 3860
  issue: 8
  year: 2023
  ident: 10.1016/j.neunet.2024.106230_b218
  article-title: Multi-source video domain adaptation with temporal attentive moment alignment network
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2023.3234307
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b70
– ident: 10.1016/j.neunet.2024.106230_b246
  doi: 10.1109/ICCV51070.2023.00946
– volume: 32
  start-page: 2033
  year: 2023
  ident: 10.1016/j.neunet.2024.106230_b148
  article-title: Uncertainty-induced transferability representation for source-free unsupervised domain adaptation
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2023.3258753
– start-page: 312
  year: 2019
  ident: 10.1016/j.neunet.2024.106230_b5
  article-title: Unsupervised label noise modeling and loss correction
– ident: 10.1016/j.neunet.2024.106230_b20
  doi: 10.1109/ICCV.2019.00642
– year: 2017
  ident: 10.1016/j.neunet.2024.106230_b247
– ident: 10.1016/j.neunet.2024.106230_b192
  doi: 10.1109/CVPR.2017.572
– year: 2022
  ident: 10.1016/j.neunet.2024.106230_b150
– start-page: 1
  year: 2023
  ident: 10.1016/j.neunet.2024.106230_b111
  article-title: Transformer-based multi-source domain adaptation without source data
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b37
– year: 2022
  ident: 10.1016/j.neunet.2024.106230_b220
– year: 2020
  ident: 10.1016/j.neunet.2024.106230_b13
– volume: 114
  start-page: 3521
  issue: 13
  year: 2017
  ident: 10.1016/j.neunet.2024.106230_b83
  article-title: Overcoming catastrophic forgetting in neural networks
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1611835114
– start-page: 213
  year: 2010
  ident: 10.1016/j.neunet.2024.106230_b163
  article-title: Adapting visual category models to new domains
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b208
– year: 2022
  ident: 10.1016/j.neunet.2024.106230_b62
  article-title: Source-free unsupervised domain adaptation for cross-modality abdominal multi-organ segmentation
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.109155
– year: 2019
  ident: 10.1016/j.neunet.2024.106230_b25
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b176
– ident: 10.1016/j.neunet.2024.106230_b221
  doi: 10.5244/C.35.324
– year: 2022
  ident: 10.1016/j.neunet.2024.106230_b227
– ident: 10.1016/j.neunet.2024.106230_b237
  doi: 10.1145/3474085.3475384
– start-page: 140
  year: 2018
  ident: 10.1016/j.neunet.2024.106230_b144
  article-title: Source free domain adaptation using an off-the-shelf classifier
– volume: 36
  start-page: 606
  issue: 3
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b187
  article-title: Source-free unsupervised domain adaptation with sample transport learning
  publication-title: Journal of Computer Science and Technology
  doi: 10.1007/s11390-021-1106-5
– start-page: 3
  year: 2023
  ident: 10.1016/j.neunet.2024.106230_b245
  article-title: Source-free domain adaptation for medical image segmentation via prototype-anchored feature alignment and contrastive learning
– start-page: 2593
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b177
  article-title: Unsupervised model adaptation for continual semantic segmentation
– volume: 34
  start-page: 3082
  issue: 6
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b44
  article-title: Globally localized multisource domain adaptation for cross-domain fault diagnosis with category shift
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3111732
– year: 2023
  ident: 10.1016/j.neunet.2024.106230_b108
  article-title: Source-free multi-domain adaptation with fuzzy rule-based deep neural networks
  publication-title: IEEE Transactions on Fuzzy Systems
– ident: 10.1016/j.neunet.2024.106230_b87
  doi: 10.1109/WACV56688.2023.00416
– start-page: 537
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b162
  article-title: Uncertainty-guided source-free domain adaptation
– volume: 30
  start-page: 205
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b40
  article-title: Unsupervised domain adaptation by statistics alignment for deep sleep staging networks
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2022.3144169
– volume: 30
  year: 2017
  ident: 10.1016/j.neunet.2024.106230_b185
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
  publication-title: Advances in Neural Information Processing Systems
– year: 2023
  ident: 10.1016/j.neunet.2024.106230_b184
– year: 2022
  ident: 10.1016/j.neunet.2024.106230_b201
– volume: 31
  start-page: 419
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b232
  article-title: Model-induced generalization error bound for information-theoretic representation learning in source-data-free unsupervised domain adaptation
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2021.3130530
– start-page: 147
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b217
  article-title: Source-free video domain adaptation by learning temporal consistency for action recognition
– volume: 283
  year: 2024
  ident: 10.1016/j.neunet.2024.106230_b157
  article-title: Source-free style-diversity adversarial domain adaptation with privacy-preservation for person re-identification
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2023.111150
– year: 2023
  ident: 10.1016/j.neunet.2024.106230_b178
  article-title: Generating synthetic personal health data using conditional generative adversarial networks combining with differential privacy
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2023.104404
– volume: 20
  start-page: 2787
  issue: 2
  year: 2023
  ident: 10.1016/j.neunet.2024.106230_b254
  article-title: Source-free domain adaptation for privacy-preserving seizure prediction
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2023.3297323
– start-page: 3576
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b216
  article-title: Source-free domain adaptation for cross-scene hyperspectral image classification
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.neunet.2024.106230_b121
  article-title: A survey on deep learning in medical image analysis
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2017.07.005
– volume: 30
  start-page: 8008
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b258
  article-title: Domain adaptive ensemble learning
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2021.3112012
– start-page: 341
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b125
  article-title: Unsupervised black-box model domain adaptation for brain tumor segmentation
  publication-title: Frontiers in Neuroscience
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b141
– volume: vol. 37
  start-page: 7811
  year: 2023
  ident: 10.1016/j.neunet.2024.106230_b55
  article-title: Discriminability and transferability estimation: A Bayesian source importance estimation approach for multi-source-free domain adaptation
– ident: 10.1016/j.neunet.2024.106230_b238
  doi: 10.1109/ICCVW60793.2023.00466
– ident: 10.1016/j.neunet.2024.106230_b75
  doi: 10.1109/CVPR.2019.00503
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b228
– ident: 10.1016/j.neunet.2024.106230_b91
– volume: vol. 12032
  start-page: 255
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b126
  article-title: Unsupervised domain adaptation for segmentation with black-box source model
– volume: 1
  start-page: 374
  year: 2019
  ident: 10.1016/j.neunet.2024.106230_b14
  article-title: Towards federated learning at scale: System design
  publication-title: Proceedings of Machine Learning and Systems
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b241
– start-page: 437
  year: 2020
  ident: 10.1016/j.neunet.2024.106230_b57
  article-title: Self domain adapted network
– start-page: 3606
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b196
  article-title: Mixture of teacher experts for source-free domain adaptive object detection
– volume: 79
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b224
  article-title: Source free domain adaptation for medical image segmentation with fourier style mining
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2022.102457
– start-page: 1
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b225
  article-title: Source free domain adaptation for semantic segmentation via distribution transfer and adaptive class-balanced self-training
– start-page: 2066
  year: 2012
  ident: 10.1016/j.neunet.2024.106230_b51
  article-title: Geodesic flow kernel for unsupervised domain adaptation
– year: 2023
  ident: 10.1016/j.neunet.2024.106230_b135
  article-title: Source-free progressive graph learning for open-set domain adaptation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2023.3270288
– volume: 34
  start-page: 1993
  issue: 10
  year: 2014
  ident: 10.1016/j.neunet.2024.106230_b139
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: vol. 35
  start-page: 2665
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b182
  article-title: Gradient regularized contrastive learning for continual domain adaptation
– start-page: 490
  year: 2020
  ident: 10.1016/j.neunet.2024.106230_b11
  article-title: Source-relaxed domain adaptation for image segmentation
– year: 2016
  ident: 10.1016/j.neunet.2024.106230_b191
– ident: 10.1016/j.neunet.2024.106230_b234
  doi: 10.1109/WACV51458.2022.00115
– year: 2020
  ident: 10.1016/j.neunet.2024.106230_b248
– start-page: 5679
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b181
  article-title: Model adaptation through hypothesis transfer with gradual knowledge distillation
– volume: 22
  start-page: 4238
  issue: 11
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b255
  article-title: Adaptive contrastive learning with label consistency for source data free unsupervised domain adaptation
  publication-title: Sensors
  doi: 10.3390/s22114238
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b186
– volume: 34
  start-page: 2848
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b34
  article-title: Confident anchor-induced multi-source free domain adaptation
  publication-title: Advances in Neural Information Processing Systems
– year: 2022
  ident: 10.1016/j.neunet.2024.106230_b74
  article-title: Privacy-preserving federated adversarial domain adaptation over feature groups for interpretability
  publication-title: IEEE Transactions on Big Data
– start-page: 11710
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b89
  article-title: Balancing discriminability and transferability for source-free domain adaptation
– volume: 167
  start-page: 92
  year: 2023
  ident: 10.1016/j.neunet.2024.106230_b31
  article-title: ProxyMix: Proxy-based mixup training with label refinery for source-free domain adaptation
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.08.005
– ident: 10.1016/j.neunet.2024.106230_b32
  doi: 10.1109/CVPR52688.2022.00707
– volume: 35
  start-page: 17173
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b73
  article-title: Variational model perturbation for source-free domain adaptation
  publication-title: Advances in Neural Information Processing Systems
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b99
– ident: 10.1016/j.neunet.2024.106230_b28
  doi: 10.1145/2939672.2939716
– volume: vol. 32
  year: 2018
  ident: 10.1016/j.neunet.2024.106230_b79
  article-title: Measuring catastrophic forgetting in neural networks
– ident: 10.1016/j.neunet.2024.106230_b239
  doi: 10.1109/WACV48630.2021.00052
– start-page: 299
  year: 2020
  ident: 10.1016/j.neunet.2024.106230_b233
  article-title: MutualNet: Adaptive convnet via mutual learning from network width and resolution
– volume: 17
  start-page: 716
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b226
  article-title: Revealing task-relevant model memorization for source-protected unsupervised domain adaptation
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2022.3149397
– start-page: 1597
  year: 2020
  ident: 10.1016/j.neunet.2024.106230_b22
  article-title: A simple framework for contrastive learning of visual representations
– volume: 17
  year: 2004
  ident: 10.1016/j.neunet.2024.106230_b52
  article-title: Semi-supervised learning by entropy minimization
  publication-title: Advances in Neural Information Processing Systems
– volume: vol. 35
  start-page: 8474
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b102
  article-title: A free lunch for unsupervised domain adaptive object detection without source data
– ident: 10.1016/j.neunet.2024.106230_b45
– ident: 10.1016/j.neunet.2024.106230_b171
  doi: 10.1109/WACV56688.2023.00052
– year: 2020
  ident: 10.1016/j.neunet.2024.106230_b203
– start-page: 6028
  year: 2020
  ident: 10.1016/j.neunet.2024.106230_b116
  article-title: Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation
– ident: 10.1016/j.neunet.2024.106230_b166
  doi: 10.1109/CVPR.2018.00392
– volume: 44
  start-page: 3366
  issue: 7
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b29
  article-title: A continual learning survey: Defying forgetting in classification tasks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: 10.1016/j.neunet.2024.106230_b64
  doi: 10.1109/CVPR46437.2021.01361
– ident: 10.1016/j.neunet.2024.106230_b84
  doi: 10.1109/WACVW54805.2022.00027
– start-page: 233
  year: 2017
  ident: 10.1016/j.neunet.2024.106230_b6
  article-title: A closer look at memorization in deep networks
– ident: 10.1016/j.neunet.2024.106230_b98
  doi: 10.18653/v1/2021.emnlp-main.20
– volume: 14
  start-page: 1
  issue: 2
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b188
  article-title: Source-free unsupervised domain adaptation with trusted pseudo samples
  publication-title: ACM Transactions on Intelligent Systems and Technology
– volume: 124
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b212
  article-title: Source data-free domain adaptation for a faster R-CNN
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2021.108436
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b183
– ident: 10.1016/j.neunet.2024.106230_b19
  doi: 10.1109/CVPR.2019.00753
– ident: 10.1016/j.neunet.2024.106230_b68
  doi: 10.1145/3503161.3548009
– volume: 30
  year: 2017
  ident: 10.1016/j.neunet.2024.106230_b48
  article-title: Concrete dropout
  publication-title: Advances in Neural Information Processing Systems
– volume: 32
  year: 2019
  ident: 10.1016/j.neunet.2024.106230_b259
  article-title: Deep leakage from gradients
  publication-title: Advances in Neural Information Processing Systems
– volume: 34
  start-page: 3635
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b67
  article-title: Model adaptation: Historical contrastive learning for unsupervised domain adaptation without source data
  publication-title: Advances in Neural Information Processing Systems
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b134
– volume: 41
  start-page: 3575
  issue: 12
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b222
  article-title: DLTTA: Dynamic learning rate for test-time adaptation on cross-domain medical images
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2022.3191535
– ident: 10.1016/j.neunet.2024.106230_b252
  doi: 10.1145/3469877.3490584
– year: 2023
  ident: 10.1016/j.neunet.2024.106230_b205
– ident: 10.1016/j.neunet.2024.106230_b131
  doi: 10.1109/CVPR52729.2023.01015
– start-page: 1
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b154
  article-title: Uncertainty-aware aggregation for federated open set domain adaptation
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 32
  start-page: 3749
  issue: 6
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b189
  article-title: VDM-DA: Virtual domain modeling for source data-free domain adaptation
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2021.3111034
– start-page: 1
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b107
  article-title: Source-free multi-domain adaptation with generally auxiliary model training
– volume: 68
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b76
  article-title: Test-time adaptable neural networks for robust medical image segmentation
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101907
– volume: 81
  start-page: 82
  issue: 393
  year: 1986
  ident: 10.1016/j.neunet.2024.106230_b190
  article-title: Accurate approximations for posterior moments and marginal densities
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1986.10478240
– year: 2022
  ident: 10.1016/j.neunet.2024.106230_b100
– ident: 10.1016/j.neunet.2024.106230_b16
  doi: 10.1109/CVPR52688.2022.00816
– year: 2022
  ident: 10.1016/j.neunet.2024.106230_b231
– ident: 10.1016/j.neunet.2024.106230_b243
  doi: 10.1145/3503161.3548410
– volume: 26
  start-page: 4230
  year: 2023
  ident: 10.1016/j.neunet.2024.106230_b159
  article-title: Parameter-efficient and student-friendly knowledge distillation
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2023.3321480
– ident: 10.1016/j.neunet.2024.106230_b43
  doi: 10.1109/ICCV.2013.208
– start-page: 1
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b1
  article-title: VirtualGAN: Reducing mode collapse in generative adversarial networks using virtual mapping
– year: 2022
  ident: 10.1016/j.neunet.2024.106230_b103
– volume: 70
  start-page: 1373
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b145
  article-title: Confident learning: Estimating uncertainty in dataset labels
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1.12125
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.neunet.2024.106230_b17
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends® in Machine Learning
  doi: 10.1561/2200000016
– year: 2016
  ident: 10.1016/j.neunet.2024.106230_b110
– volume: 69
  start-page: 1173
  issue: 3
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b53
  article-title: Domain adaptation for medical image analysis: A survey
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2021.3117407
– ident: 10.1016/j.neunet.2024.106230_b90
  doi: 10.1109/ICCV48922.2021.00696
– volume: 33
  start-page: 16282
  year: 2020
  ident: 10.1016/j.neunet.2024.106230_b164
  article-title: Universal domain adaptation through self supervision
  publication-title: Advances in Neural Information Processing Systems
– year: 2020
  ident: 10.1016/j.neunet.2024.106230_b35
– year: 2022
  ident: 10.1016/j.neunet.2024.106230_b86
– volume: 161
  start-page: 682
  year: 2023
  ident: 10.1016/j.neunet.2024.106230_b97
  article-title: Feature alignment by uncertainty and self-training for source-free unsupervised domain adaptation
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.02.009
– start-page: 1091
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b101
  article-title: Adaptive pseudo labeling for source-free domain adaptation in medical image segmentation
– ident: 10.1016/j.neunet.2024.106230_b82
  doi: 10.1109/ICCV48922.2021.00650
– year: 2017
  ident: 10.1016/j.neunet.2024.106230_b152
– ident: 10.1016/j.neunet.2024.106230_b129
  doi: 10.1109/CVPR46437.2021.00127
– ident: 10.1016/j.neunet.2024.106230_b46
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b206
– volume: 46
  start-page: 1664
  issue: 3
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b33
  article-title: Where and how to transfer: Knowledge aggregation-induced transferability perception for unsupervised domain adaptation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2021.3128560
– volume: 72
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b58
  article-title: Autoencoder based self-supervised test-time adaptation for medical image analysis
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2021.102136
– year: 2022
  ident: 10.1016/j.neunet.2024.106230_b123
– volume: 56
  start-page: 149
  issue: 1
  year: 2005
  ident: 10.1016/j.neunet.2024.106230_b7
  article-title: Human category learning
  publication-title: Annual Review of Psychology
  doi: 10.1146/annurev.psych.56.091103.070217
– year: 2022
  ident: 10.1016/j.neunet.2024.106230_b219
– ident: 10.1016/j.neunet.2024.106230_b209
  doi: 10.1109/ICCV48922.2021.00888
– ident: 10.1016/j.neunet.2024.106230_b240
  doi: 10.1109/CVPR42600.2020.00874
– start-page: 1
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b39
  article-title: Generating privacy preserving synthetic medical data
– year: 2020
  ident: 10.1016/j.neunet.2024.106230_b63
– year: 2022
  ident: 10.1016/j.neunet.2024.106230_b42
  article-title: Unsupervised cross-domain functional MRI adaptation for automated major depressive disorder identification
  publication-title: Medical Image Analysis
– start-page: 448
  year: 2015
  ident: 10.1016/j.neunet.2024.106230_b69
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– year: 2019
  ident: 10.1016/j.neunet.2024.106230_b151
– year: 2023
  ident: 10.1016/j.neunet.2024.106230_b244
– ident: 10.1016/j.neunet.2024.106230_b115
  doi: 10.1109/CVPR.2019.00309
– ident: 10.1016/j.neunet.2024.106230_b95
  doi: 10.1109/CVPR.2019.01053
– volume: 54
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.neunet.2024.106230_b161
  article-title: A comprehensive survey of neural architecture search: Challenges and solutions
  publication-title: ACM Computing Surveys
  doi: 10.1145/3447582
– start-page: 248
  year: 2009
  ident: 10.1016/j.neunet.2024.106230_b30
  article-title: ImageNet: A large-scale hierarchical image database
– ident: 10.1016/j.neunet.2024.106230_b213
  doi: 10.1109/CVPR.2018.00417
– ident: 10.1016/j.neunet.2024.106230_b235
– start-page: 111
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b3
  article-title: Cross-modal knowledge transfer without task-relevant source data
– year: 2021
  ident: 10.1016/j.neunet.2024.106230_b36
– volume: 32
  start-page: 4309
  issue: 10
  year: 2020
  ident: 10.1016/j.neunet.2024.106230_b41
  article-title: Open set domain adaptation: Theoretical bound and algorithm
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.3017213
– volume: 34
  start-page: 9587
  issue: 12
  year: 2023
  ident: 10.1016/j.neunet.2024.106230_b180
  article-title: Towards personalized federated learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2022.3160699
– start-page: 30976
  year: 2023
  ident: 10.1016/j.neunet.2024.106230_b169
  article-title: On balancing bias and variance in unsupervised multi-source-free domain adaptation
– ident: 10.1016/j.neunet.2024.106230_b2
  doi: 10.1109/WACV51458.2022.00286
– volume: 2018
  year: 2018
  ident: 10.1016/j.neunet.2024.106230_b193
  article-title: Deep learning for computer vision: A brief review
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2018/7068349
– start-page: 2681
  year: 2023
  ident: 10.1016/j.neunet.2024.106230_b210
  article-title: Adversarially robust source-free domain adaptation with relaxed adversarial training
– volume: 32
  start-page: 604
  issue: 2
  year: 2020
  ident: 10.1016/j.neunet.2024.106230_b146
  article-title: A survey of the usages of deep learning for natural language processing
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.2979670
– volume: 191
  year: 2023
  ident: 10.1016/j.neunet.2024.106230_b249
  article-title: Universal source-free domain adaptation method for cross-domain fault diagnosis of machines
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2023.110159
– volume: 32
  year: 2019
  ident: 10.1016/j.neunet.2024.106230_b12
  article-title: MixMatch: A holistic approach to semi-supervised learning
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1180
  year: 2015
  ident: 10.1016/j.neunet.2024.106230_b49
  article-title: Unsupervised domain adaptation by backpropagation
– start-page: 1
  year: 2020
  ident: 10.1016/j.neunet.2024.106230_b250
  article-title: Discriminative joint probability maximum mean discrepancy (DJP-MMD) for domain adaptation
– volume: 20
  start-page: 1997
  issue: 1
  year: 2019
  ident: 10.1016/j.neunet.2024.106230_b38
  article-title: Neural architecture search: A survey
  publication-title: Journal of Machine Learning Research
– volume: 31
  start-page: 3359
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b173
  article-title: Spot-adaptive knowledge distillation
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2022.3170728
– ident: 10.1016/j.neunet.2024.106230_b168
  doi: 10.1109/CVPR.2018.00395
– ident: 10.1016/j.neunet.2024.106230_b92
– ident: 10.1016/j.neunet.2024.106230_b112
  doi: 10.1109/ICCV.2017.591
– volume: 45
  start-page: 4396
  issue: 4
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b257
  article-title: Domain generalization: A survey
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 41
  start-page: 1897
  issue: 7
  year: 2022
  ident: 10.1016/j.neunet.2024.106230_b127
  article-title: A source-free domain adaptive polyp detection framework with style diversification flow
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2022.3150435
SSID ssj0006843
Score 2.6611567
SecondaryResourceType review_article
Snippet Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106230
SubjectTerms Deep Learning
Domain adaptation
Humans
Neural Networks, Computer
Source-free
Survey
Unsupervised learning
Unsupervised Machine Learning
Title Source-free unsupervised domain adaptation: A survey
URI https://dx.doi.org/10.1016/j.neunet.2024.106230
https://www.ncbi.nlm.nih.gov/pubmed/38490115
https://www.proquest.com/docview/2958299422
https://pubmed.ncbi.nlm.nih.gov/PMC11015964
Volume 174
WOSCitedRecordID wos001216450500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdYh9BexjeUjylIvFWuMtuJbd6qaQjQmCZRROElchNnzbS5oWm2_flc4jhNV6EBEi9R5dqtfb9fzmf7fIfQW83AhtbSx5pohllAOZapSLAitNJ-IpS6RvqIHx-LyUSeNO62RZ1OgBsjrq9l_l-hhjIAu7o6-xdwtz8KBfAZQIcnwA7PPwL-S70dj9OF1oPSFGVeaYMC7MpkfqEyM1CJypetT8doUJSLy_XD3SpgByBnrIf46oJIs7X8vfyZtcpC5dbL9wqPZx2mHdnQBN90dt7W_TEr64lubk6XZXe3gbCVV5RTSpLi0LfZl4baKk3BJSZcrGtVzjp6ERaepDl_0TcKNnS43U44GxpdwkCHVS-Gm9VBRPlFDSEVrLo_G6xmtNbP8OTzAZg3YLGFbAttEx5I0UPbo4-Hk0_tdB0K61rpBubuV9ZOgJt92EH33B_-zpTZXKrc9LjtmDDjB2i3WXt4I8uZh-iONo_QfZfXw2vU_GPEOhTyuhTyLIW8FYXeeSPPEugJ-vr-cHzwATfZNXDMQrbEMU2lIGrKqVZTFTDGUyqF2lecMUlUGIcClrZiGvB9zWIC77IvaapSmsIkqsOEPkU9Mzf6OfJSxRQJppoKIlmikmlCfEVFkOpA-2ni9xF1goriJvR8lQHlPHI-hmeRlXRUSTqyku4j3LbKbeiVW-pzh0HUmI_WLIyAWbe0fOMgi0C7Vkdmyuh5WUREBjAmyQjpo2cWwrYvjgZ9JNbAbStUkdvXvzHZrI7g7kj54t-bvkQ7q_fzFeotF6V-je7Gl8usWOyhLT4Rew3VfwFEb71T
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Source-free+unsupervised+domain+adaptation%3A+A+survey&rft.jtitle=Neural+networks&rft.au=Fang%2C+Yuqi&rft.au=Yap%2C+Pew-Thian&rft.au=Lin%2C+Weili&rft.au=Zhu%2C+Hongtu&rft.date=2024-06-01&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=174&rft.spage=106230&rft.epage=106230&rft_id=info:doi/10.1016%2Fj.neunet.2024.106230&rft_id=info%3Apmid%2F38490115&rft.externalDocID=PMC11015964
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon