Time series behavior modeling with digital twin for Internet of Vehicles
Electric vehicle (EV) is considered eco-friendly with low carbon emission and maintenance costs. Given the current battery and charging technology, driving experience of EVs relies heavily on the availability and reachability of EV charging infrastructure. As the number of charging piles increases,...
Saved in:
| Published in: | EURASIP journal on wireless communications and networking Vol. 2019; no. 1; pp. 1 - 11 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
16.12.2019
Springer Nature B.V SpringerOpen |
| Subjects: | |
| ISSN: | 1687-1499, 1687-1472, 1687-1499 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Electric vehicle (EV) is considered eco-friendly with low carbon emission and maintenance costs. Given the current battery and charging technology, driving experience of EVs relies heavily on the availability and reachability of EV charging infrastructure. As the number of charging piles increases, carefully designed arrangement of resources and efficient utilization of the infrastructure is essential to the future development of EV industry. The mobility and distribution of EVs determine the charging demand and the load of power distribution grid. Then, dynamic traffic pattern of numerous interconnected EVs poses great impact on charging plans and charging infrastructure.
In this paper, we introduce the digital twin of a real-world EV by modeling the mobility based on a time series behaviors of EVs to evaluate the charging algorithm and pile arrangement policy. The introduced digital twin EV is a virtually simulated equivalence with same traffic behaviors and charging activities as the EV in real world. The behavior and route choice of EVs is dynamically simulated base on the time-varying driving operations, travel intent, and charging plan in a simulated large-scale charging scenario composed of concurrently moving EVs and correspondingly equipped charging piles. Different EV navigation algorithms and charging algorithms of Internet of Vehicle can be exactly evaluated in the dynamic simulation of the digital twins of the moving EVs and charging infrastructure. Then we analyze the collected data such as energy consumption, charging capacity, charging frequency, and waiting time in queue on both the EV side and the charging pile side to evaluate the charging efficiency. The simulation is used to study the relations between the scheduled charging operation of EVs and the deployment of piles. The proposed model helps evaluate and validate the design of the charging recommendation and the deployment plan regarding to the arrangement and distribution of charging piles. |
|---|---|
| AbstractList | Electric vehicle (EV) is considered eco-friendly with low carbon emission and maintenance costs. Given the current battery and charging technology, driving experience of EVs relies heavily on the availability and reachability of EV charging infrastructure. As the number of charging piles increases, carefully designed arrangement of resources and efficient utilization of the infrastructure is essential to the future development of EV industry. The mobility and distribution of EVs determine the charging demand and the load of power distribution grid. Then, dynamic traffic pattern of numerous interconnected EVs poses great impact on charging plans and charging infrastructure.
In this paper, we introduce the digital twin of a real-world EV by modeling the mobility based on a time series behaviors of EVs to evaluate the charging algorithm and pile arrangement policy. The introduced digital twin EV is a virtually simulated equivalence with same traffic behaviors and charging activities as the EV in real world. The behavior and route choice of EVs is dynamically simulated base on the time-varying driving operations, travel intent, and charging plan in a simulated large-scale charging scenario composed of concurrently moving EVs and correspondingly equipped charging piles. Different EV navigation algorithms and charging algorithms of Internet of Vehicle can be exactly evaluated in the dynamic simulation of the digital twins of the moving EVs and charging infrastructure. Then we analyze the collected data such as energy consumption, charging capacity, charging frequency, and waiting time in queue on both the EV side and the charging pile side to evaluate the charging efficiency. The simulation is used to study the relations between the scheduled charging operation of EVs and the deployment of piles. The proposed model helps evaluate and validate the design of the charging recommendation and the deployment plan regarding to the arrangement and distribution of charging piles. Abstract Electric vehicle (EV) is considered eco-friendly with low carbon emission and maintenance costs. Given the current battery and charging technology, driving experience of EVs relies heavily on the availability and reachability of EV charging infrastructure. As the number of charging piles increases, carefully designed arrangement of resources and efficient utilization of the infrastructure is essential to the future development of EV industry. The mobility and distribution of EVs determine the charging demand and the load of power distribution grid. Then, dynamic traffic pattern of numerous interconnected EVs poses great impact on charging plans and charging infrastructure. In this paper, we introduce the digital twin of a real-world EV by modeling the mobility based on a time series behaviors of EVs to evaluate the charging algorithm and pile arrangement policy. The introduced digital twin EV is a virtually simulated equivalence with same traffic behaviors and charging activities as the EV in real world. The behavior and route choice of EVs is dynamically simulated base on the time-varying driving operations, travel intent, and charging plan in a simulated large-scale charging scenario composed of concurrently moving EVs and correspondingly equipped charging piles. Different EV navigation algorithms and charging algorithms of Internet of Vehicle can be exactly evaluated in the dynamic simulation of the digital twins of the moving EVs and charging infrastructure. Then we analyze the collected data such as energy consumption, charging capacity, charging frequency, and waiting time in queue on both the EV side and the charging pile side to evaluate the charging efficiency. The simulation is used to study the relations between the scheduled charging operation of EVs and the deployment of piles. The proposed model helps evaluate and validate the design of the charging recommendation and the deployment plan regarding to the arrangement and distribution of charging piles. Electric vehicle (EV) is considered eco-friendly with low carbon emission and maintenance costs. Given the current battery and charging technology, driving experience of EVs relies heavily on the availability and reachability of EV charging infrastructure. As the number of charging piles increases, carefully designed arrangement of resources and efficient utilization of the infrastructure is essential to the future development of EV industry. The mobility and distribution of EVs determine the charging demand and the load of power distribution grid. Then, dynamic traffic pattern of numerous interconnected EVs poses great impact on charging plans and charging infrastructure.In this paper, we introduce the digital twin of a real-world EV by modeling the mobility based on a time series behaviors of EVs to evaluate the charging algorithm and pile arrangement policy. The introduced digital twin EV is a virtually simulated equivalence with same traffic behaviors and charging activities as the EV in real world. The behavior and route choice of EVs is dynamically simulated base on the time-varying driving operations, travel intent, and charging plan in a simulated large-scale charging scenario composed of concurrently moving EVs and correspondingly equipped charging piles. Different EV navigation algorithms and charging algorithms of Internet of Vehicle can be exactly evaluated in the dynamic simulation of the digital twins of the moving EVs and charging infrastructure. Then we analyze the collected data such as energy consumption, charging capacity, charging frequency, and waiting time in queue on both the EV side and the charging pile side to evaluate the charging efficiency. The simulation is used to study the relations between the scheduled charging operation of EVs and the deployment of piles. The proposed model helps evaluate and validate the design of the charging recommendation and the deployment plan regarding to the arrangement and distribution of charging piles. |
| ArticleNumber | 271 |
| Author | Dong, Fuqiang Zhang, Tianle Liu, Xiangtao Luo, Zongwei Jiang, Yu |
| Author_xml | – sequence: 1 givenname: Tianle surname: Zhang fullname: Zhang, Tianle organization: Cyberspace Institute of Advanced Technology, Guangzhou University – sequence: 2 givenname: Xiangtao surname: Liu fullname: Liu, Xiangtao organization: Cyberspace Institute of Advanced Technology, Guangzhou University – sequence: 3 givenname: Zongwei surname: Luo fullname: Luo, Zongwei organization: Southern University of Science and Technology – sequence: 4 givenname: Fuqiang surname: Dong fullname: Dong, Fuqiang organization: Cyberspace Security Research Center, Peng Cheng Laboratory – sequence: 5 givenname: Yu orcidid: 0000-0002-6949-4876 surname: Jiang fullname: Jiang, Yu email: jiangyu@gzhu.edu.cn organization: Cyberspace Institute of Advanced Technology, Guangzhou University |
| BookMark | eNp9kMtuFDEQRS2USOT1AdlZYt3gV_uxRBGQkSJlE9ha7nZ5xqMeO9gOEX-Ph0YQIcGqSlV1b12dc3SScgKEril5S6mW7yrlkuuBUDPQUZtBv0JnVGo1UGHMyYv-NTqvdU8I58KwM3T7EA-AK5QIFU-wc99iLviQPSwxbfFzbDvs4zY2t-D2HBMOfb1JDUqChnPAX2AX5wXqJToNbqlw9ateoM8fPzzc3A539582N-_vhllI0YaZe2oCmSYXJi210TNhowcmmA_MaCm9A89U4MBhpL2DUU2SKw2UOykUv0Cb1ddnt7ePJR5c-W6zi_bnIJetdaUdI1nGSZi5ZKPhQZiJGTYBI04rENorprvXm9XrseSvT1Cb3eenknr8rmWKUcEN71d0vZpLrrVA-P2VEnuEb1f4tsO3R_j26Kz-0swdYYs5teLi8l8lW5W1f0lbKH8y_Vv0A7dNmbI |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3120843 crossref_primary_10_1016_j_egyr_2022_02_305 crossref_primary_10_1186_s12544_025_00713_0 crossref_primary_10_3390_bdcc6040115 crossref_primary_10_1109_JIOT_2024_3420439 crossref_primary_10_3390_bdcc8030027 crossref_primary_10_1016_j_compind_2020_103316 crossref_primary_10_1109_TII_2024_3465600 crossref_primary_10_1007_s00607_020_00832_7 crossref_primary_10_1016_j_aei_2023_102148 crossref_primary_10_3390_app13105871 crossref_primary_10_1016_j_rser_2021_110801 crossref_primary_10_1016_j_jmsy_2022_06_015 crossref_primary_10_3390_su141710725 crossref_primary_10_1002_est2_242 crossref_primary_10_1016_j_geits_2022_100014 crossref_primary_10_1016_j_ecmx_2025_100949 crossref_primary_10_1109_ACCESS_2024_3506660 crossref_primary_10_1155_2022_3929958 crossref_primary_10_12688_digitaltwin_17807_2 crossref_primary_10_1109_TITS_2022_3183379 crossref_primary_10_3390_asi5030056 crossref_primary_10_1016_j_mfglet_2023_08_014 |
| Cites_doi | 10.1016/j.comcom.2007.04.009 10.1016/j.ins.2019.04.011 10.1109/ISGTEUROPE.2010.5638947 10.1145/1161064.1161084 10.1016/j.adhoc.2006.05.012 10.1109/TII.2019.2938778 10.1109/MCOM.2007.4378332 10.1109/MWC.2008.4599222 10.1109/ITEC.2014.6861812 10.1109/TWC.2009.060598 10.1109/TVT.2019.2910217 10.1007/978-3-642-28487-8_21 10.3390/app9030437 10.1109/TPWRS.2009.2036481 10.1109/JIOT.2018.2846624 10.1109/TPWRD.2012.2236364 10.1109/JPROC.2010.2066250 10.1155/2018/7943586 10.1109/ACCESS.2018.2846590 10.1109/APEC.2011.5744627 10.3390/s18124486 10.1007/s11042-018-6938-9 10.1109/ACCESS.2018.2881422 10.1155/2018/5823439 10.1016/j.future.2018.12.054 10.1109/TII.2019.2907754 10.1109/DSC.2018.00137 10.3390/s18082440 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2019 EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s). 2019 – notice: EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.1186/s13638-019-1589-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1687-1499 |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_230fc362593f49b292be20a87e48d728 10_1186_s13638_019_1589_8 |
| GrantInformation_xml | – fundername: the National Natural Science Foundation of China grantid: U1636215, 61871140, 61572153, 61572492, 61672020 – fundername: the National Key research and Development Plan grantid: 2018YFB0803504 – fundername: the Guangdong Province Key Research and Development Plan grantid: 2019B010137004 |
| GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABDBF ABEEZ ABFTD ABUWG ACACY ACGFS ACUHS ACULB ADBBV ADDVE ADINQ ADMLS AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DU5 DWQXO E3Z EAD EAP EAS EBLON EBS EDO EJD EMK ESX GNUQQ GROUPED_DOAJ HCIFZ HZ~ I-F K6V K7- KQ8 M0N M~E OK1 P2P P62 PIMPY PQQKQ PROAC Q2X RHU RNS RSV SEG SOJ TUS U2A XSB AASML AAYXX CITATION OVT 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c464t-c3d19f0bbafb86898c025de242df29866daed27f3e3e51d27e57b6378e13a6473 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510406900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1687-1499 1687-1472 |
| IngestDate | Tue Oct 14 19:05:13 EDT 2025 Sat Oct 11 05:45:04 EDT 2025 Tue Nov 18 20:44:37 EST 2025 Sat Nov 29 01:43:53 EST 2025 Fri Feb 21 02:35:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Mobility Electric vehicle Digital twin Charging scheduling Time series Internet of Vehicles |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c464t-c3d19f0bbafb86898c025de242df29866daed27f3e3e51d27e57b6378e13a6473 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6949-4876 |
| OpenAccessLink | https://www.proquest.com/docview/2327214393?pq-origsite=%requestingapplication% |
| PQID | 2327214393 |
| PQPubID | 237293 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_230fc362593f49b292be20a87e48d728 proquest_journals_2327214393 crossref_primary_10_1186_s13638_019_1589_8 crossref_citationtrail_10_1186_s13638_019_1589_8 springer_journals_10_1186_s13638_019_1589_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-16 |
| PublicationDateYYYYMMDD | 2019-12-16 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: New York |
| PublicationTitle | EURASIP journal on wireless communications and networking |
| PublicationTitleAbbrev | J Wireless Com Network |
| PublicationYear | 2019 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | TianZhihongCuiYuAnLunSuShenYinXiaoxiaYinLihuaCuiXiangA Real-Time Correlation of Host-Level Events in Cyber Range Service for Smart CampusIEEE Access20186353553536410.1109/ACCESS.2018.2846590 Chunyuan Kang, Tianle Zhang. Realistic traffic data based mobility modeling and simulation of smart EV. In the 3rd IEEE International Conference on Data Science in Cyberspace (DSC), 2018, pp. 854-857. DuXChenHHSecurity in wireless sensor networksIEEE Wireless Commun Mag2008154606610.1109/MWC.2008.4599222Aug. TanQGaoYShiJWangXFangBTianZToward a comprehensive insight into the eclipse attacks of tor hidden servicesIEEE Internet Things J2019621584159310.1109/JIOT.2018.2846624April S. Babaei, D. Steen, T.A. Le, O. Carlson and L. Bertling. Effects of plug-in electric vehicles on distribution systems: a real case of Gothenburg. Innovative Smart Grid Technologies Conference Europe (ISGT Europe), IEEE, 11-13 Oct. 2010. M. J. Rutherford and V. Yousefzadeh. The impact of electric vehicle battery charging on distribution transformers. In Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE, 2011, pp. 396-400. YuXiangTianZhihongQiuJingJiangFengA Data Leakage Prevention Method Based on the Reduction of Confidential and Context Terms for Smart Mobile DevicesWireless Communications and Mobile Computing20182018111 TianZGaoXSuSQiuJDuXGuizaniMEvaluating reputation management schemes of Internet of Vehicles based on evolutionary game theoryIEEE Trans Vehicular Technol20196865971598010.1109/TVT.2019.2910217 Wang, Z.-P & Sun, F.-C & Lin, C. (2006). Computing method of energy consumption in EV typical driving mode. 26. 69-72. Toepfer, C.: SAE electric vehicle conductive charge coupler, SAE J1772. Society of Automotive Engineers (2009) XiaoYRayiVSunBDuXHuFGallowayMA survey of key management schemes in wireless sensor networksJ Comput Commun20073011-122314234110.1016/j.comcom.2007.04.009Sept. Tirez, A.; Luickx, P.; He, X.; Rious, V. Optimal charging schedule of an electric vehicle fleet, 7th International Conference on the European Energy Market (EEM), pp.1-6, 23-25 June 2010. QiuJChaiYLiuYGuZLiSTianZAutomatic non-taxonomic relation extraction from big data in smart cityIEEE Access20186748547486410.1109/ACCESS.2018.2881422 RolinkJRehtanzCLarge-scale modeling of grid-connected electric vehiclesIEEE Transact Power Delivery201328289490210.1109/TPWRD.2012.2236364 Christoph Aldejohann, Jonas Maasmann, Willi Horenkamp, Fritz Rettberg, Christian Rehtanz. Testing environment for vehicle to grid (V2G) applications for investigating a voltage stability support method. In IEEE Transportation and Electrification Conference and Expo (ITEC), Dearborn 2014 LeeJunghoonKimHye-JinParkGyung-LeenJeonHongbeomGenetic Algorithm-Based Charging Task Scheduler for Electric Vehicles in Smart TransportationIntelligent Information and Database Systems2012Berlin, HeidelbergSpringer Berlin Heidelberg20821710.1007/978-3-642-28487-8_21 X. Du, Y. Xiao, M. Guizani, and H. H. Chen. An effective key management scheme for heterogeneous sensor networks. Ad Hoc Networks, Elsevier, Vol. 5, Issue 1, pp 24–34, Jan. 2007. LiMohanSunYanbinJiangYuTianZhihongAnswering the Min-Cost Quality-Aware Query on Multi-Sources in Sensor-Cloud SystemsSensors20181812448610.3390/s18124486 TianZLiMQiuMSunYSuSBlock-DEF: a secure digital evidence framework using blockchainInform Sci201949115116510.1016/j.ins.2019.04.011 DuXGuizaniMXiaoYChenHHA routing-driven elliptic curve cryptography based key management scheme for heterogeneous sensor networksIEEE Trans Wireless Commun2009831223122910.1109/TWC.2009.060598March Z. Tian, C. Luo, J. Qiu, X. Du and M. Guizani. A distributed deep learning system for web attack detection on edge devices. IEEE Transactions on Industrial Informatics. 2019. DOI: https://doi.org/10.1109/TII.2019.2938778. ClementKHaesenEDriesenJThe impact of charging plug-in hybrid electric vehicles on the distribution grid[J]IEEE Transact Power Systems201025137138010.1109/TPWRS.2009.2036481 WangZiHanLiuChaoGeQiuJingTianZhiHongCuiXiangSuShenAutomatically Traceback RDP-Based Targeted Ransomware AttacksWireless Communications and Mobile Computing20182018113 J. Haerri, M. Fiore, F. Filali, and C. Bonnet. Vanetmobisim: generating realistic mobility patterns for vanets. In ACM Workshop on Vehicular Ad Hoc Networks (VANET 2006), Los Angeles, California, September 2006. XiaoYDuXZhangJGuizaniSInternet protocol television (IPTV): the killer application for the next generation internetIEEE Commun Mag2007451112613410.1109/MCOM.2007.4378332Nov. TianZSuSShiWDuXGuizaniMYuXA data-driven model for future Internet route decision modelingFuture Generation Comput Syst20199521222010.1016/j.future.2018.12.054 M. Sanchez and P. Manzoni. A java-based ad hoc networks simulator. In Proc. of the SCS Western Multiconference Web-based Simulation Track, Jan. 1999 HanWeihongTianZhihongHuangZizhongLiShudongJiaYanBidirectional self-adaptive resampling in internet of things big data learningMultimedia Tools and Applications20187821301113012610.1007/s11042-018-6938-9 SuSSunYGaoXQiuJTianZA correlation-change based feature selection method for IoT equipment anomaly detectionAppl Sci20199343710.3390/app9030437https://doi.org/10.3390/app9030437 Road vehicles - Vehicle to grid communication interface - Part 1: General information and use-case definition, ISO 15118-1, 2013. WangYTianZZhangHSuSShiWA privacy preserving scheme for nearest neighbor querySensors.2018188244010.3390/s18082440https://doi.org/10.3390/ s18082440 TianZShiWWangYZhuCDuXSuSSunYGuizaniNReal time lateral movement detection based on evidence reasoning network for edge computing environmentIEEE Trans Ind Inform20191574285429410.1109/TII.2019.2907754 J. Lopes, F. Soares, P. Almeida, Integration of electric vehicles in the electric power system. Proc IEEE 168–183 (2011) Xiang Yu (1589_CR12) 2018; 2018 1589_CR18 Z Tian (1589_CR28) 2019; 68 S Su (1589_CR19) 2019; 9 K Clement (1589_CR5) 2010; 25 J Qiu (1589_CR16) 2018; 6 Y Xiao (1589_CR31) 2007; 45 X Du (1589_CR32) 2008; 15 Q Tan (1589_CR11) 2019; 6 J Rolink (1589_CR21) 2013; 28 Z Tian (1589_CR26) 2019; 15 Z Tian (1589_CR2) 2019; 95 1589_CR30 Junghoon Lee (1589_CR4) 2012 1589_CR10 Zhihong Tian (1589_CR13) 2018; 6 X Du (1589_CR33) 2009; 8 Weihong Han (1589_CR15) 2018; 78 1589_CR3 Y Wang (1589_CR17) 2018; 18 1589_CR1 Y Xiao (1589_CR29) 2007; 30 1589_CR7 1589_CR8 Z Tian (1589_CR27) 2019; 491 1589_CR6 1589_CR9 ZiHan Wang (1589_CR20) 2018; 2018 1589_CR24 1589_CR23 1589_CR22 Mohan Li (1589_CR14) 2018; 18 1589_CR25 |
| References_xml | – reference: DuXChenHHSecurity in wireless sensor networksIEEE Wireless Commun Mag2008154606610.1109/MWC.2008.4599222Aug. – reference: YuXiangTianZhihongQiuJingJiangFengA Data Leakage Prevention Method Based on the Reduction of Confidential and Context Terms for Smart Mobile DevicesWireless Communications and Mobile Computing20182018111 – reference: M. Sanchez and P. Manzoni. A java-based ad hoc networks simulator. In Proc. of the SCS Western Multiconference Web-based Simulation Track, Jan. 1999 – reference: HanWeihongTianZhihongHuangZizhongLiShudongJiaYanBidirectional self-adaptive resampling in internet of things big data learningMultimedia Tools and Applications20187821301113012610.1007/s11042-018-6938-9 – reference: TianZGaoXSuSQiuJDuXGuizaniMEvaluating reputation management schemes of Internet of Vehicles based on evolutionary game theoryIEEE Trans Vehicular Technol20196865971598010.1109/TVT.2019.2910217 – reference: Toepfer, C.: SAE electric vehicle conductive charge coupler, SAE J1772. Society of Automotive Engineers (2009) – reference: QiuJChaiYLiuYGuZLiSTianZAutomatic non-taxonomic relation extraction from big data in smart cityIEEE Access20186748547486410.1109/ACCESS.2018.2881422 – reference: SuSSunYGaoXQiuJTianZA correlation-change based feature selection method for IoT equipment anomaly detectionAppl Sci20199343710.3390/app9030437https://doi.org/10.3390/app9030437 – reference: Tirez, A.; Luickx, P.; He, X.; Rious, V. Optimal charging schedule of an electric vehicle fleet, 7th International Conference on the European Energy Market (EEM), pp.1-6, 23-25 June 2010. – reference: WangYTianZZhangHSuSShiWA privacy preserving scheme for nearest neighbor querySensors.2018188244010.3390/s18082440https://doi.org/10.3390/ s18082440 – reference: M. J. Rutherford and V. Yousefzadeh. The impact of electric vehicle battery charging on distribution transformers. In Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE, 2011, pp. 396-400. – reference: TianZShiWWangYZhuCDuXSuSSunYGuizaniNReal time lateral movement detection based on evidence reasoning network for edge computing environmentIEEE Trans Ind Inform20191574285429410.1109/TII.2019.2907754 – reference: S. Babaei, D. Steen, T.A. Le, O. Carlson and L. Bertling. Effects of plug-in electric vehicles on distribution systems: a real case of Gothenburg. Innovative Smart Grid Technologies Conference Europe (ISGT Europe), IEEE, 11-13 Oct. 2010. – reference: J. Haerri, M. Fiore, F. Filali, and C. Bonnet. Vanetmobisim: generating realistic mobility patterns for vanets. In ACM Workshop on Vehicular Ad Hoc Networks (VANET 2006), Los Angeles, California, September 2006. – reference: XiaoYDuXZhangJGuizaniSInternet protocol television (IPTV): the killer application for the next generation internetIEEE Commun Mag2007451112613410.1109/MCOM.2007.4378332Nov. – reference: LiMohanSunYanbinJiangYuTianZhihongAnswering the Min-Cost Quality-Aware Query on Multi-Sources in Sensor-Cloud SystemsSensors20181812448610.3390/s18124486 – reference: Chunyuan Kang, Tianle Zhang. Realistic traffic data based mobility modeling and simulation of smart EV. In the 3rd IEEE International Conference on Data Science in Cyberspace (DSC), 2018, pp. 854-857. – reference: RolinkJRehtanzCLarge-scale modeling of grid-connected electric vehiclesIEEE Transact Power Delivery201328289490210.1109/TPWRD.2012.2236364 – reference: XiaoYRayiVSunBDuXHuFGallowayMA survey of key management schemes in wireless sensor networksJ Comput Commun20073011-122314234110.1016/j.comcom.2007.04.009Sept. – reference: Road vehicles - Vehicle to grid communication interface - Part 1: General information and use-case definition, ISO 15118-1, 2013. – reference: ClementKHaesenEDriesenJThe impact of charging plug-in hybrid electric vehicles on the distribution grid[J]IEEE Transact Power Systems201025137138010.1109/TPWRS.2009.2036481 – reference: WangZiHanLiuChaoGeQiuJingTianZhiHongCuiXiangSuShenAutomatically Traceback RDP-Based Targeted Ransomware AttacksWireless Communications and Mobile Computing20182018113 – reference: TianZhihongCuiYuAnLunSuShenYinXiaoxiaYinLihuaCuiXiangA Real-Time Correlation of Host-Level Events in Cyber Range Service for Smart CampusIEEE Access20186353553536410.1109/ACCESS.2018.2846590 – reference: TanQGaoYShiJWangXFangBTianZToward a comprehensive insight into the eclipse attacks of tor hidden servicesIEEE Internet Things J2019621584159310.1109/JIOT.2018.2846624April – reference: J. Lopes, F. Soares, P. Almeida, Integration of electric vehicles in the electric power system. Proc IEEE 168–183 (2011) – reference: X. Du, Y. Xiao, M. Guizani, and H. H. Chen. An effective key management scheme for heterogeneous sensor networks. Ad Hoc Networks, Elsevier, Vol. 5, Issue 1, pp 24–34, Jan. 2007. – reference: TianZSuSShiWDuXGuizaniMYuXA data-driven model for future Internet route decision modelingFuture Generation Comput Syst20199521222010.1016/j.future.2018.12.054 – reference: LeeJunghoonKimHye-JinParkGyung-LeenJeonHongbeomGenetic Algorithm-Based Charging Task Scheduler for Electric Vehicles in Smart TransportationIntelligent Information and Database Systems2012Berlin, HeidelbergSpringer Berlin Heidelberg20821710.1007/978-3-642-28487-8_21 – reference: Z. Tian, C. Luo, J. Qiu, X. Du and M. Guizani. A distributed deep learning system for web attack detection on edge devices. IEEE Transactions on Industrial Informatics. 2019. DOI: https://doi.org/10.1109/TII.2019.2938778. – reference: DuXGuizaniMXiaoYChenHHA routing-driven elliptic curve cryptography based key management scheme for heterogeneous sensor networksIEEE Trans Wireless Commun2009831223122910.1109/TWC.2009.060598March – reference: Wang, Z.-P & Sun, F.-C & Lin, C. (2006). Computing method of energy consumption in EV typical driving mode. 26. 69-72. – reference: TianZLiMQiuMSunYSuSBlock-DEF: a secure digital evidence framework using blockchainInform Sci201949115116510.1016/j.ins.2019.04.011 – reference: Christoph Aldejohann, Jonas Maasmann, Willi Horenkamp, Fritz Rettberg, Christian Rehtanz. Testing environment for vehicle to grid (V2G) applications for investigating a voltage stability support method. In IEEE Transportation and Electrification Conference and Expo (ITEC), Dearborn 2014 – volume: 30 start-page: 2314 issue: 11-12 year: 2007 ident: 1589_CR29 publication-title: J Comput Commun doi: 10.1016/j.comcom.2007.04.009 – volume: 491 start-page: 151 year: 2019 ident: 1589_CR27 publication-title: Inform Sci doi: 10.1016/j.ins.2019.04.011 – ident: 1589_CR6 doi: 10.1109/ISGTEUROPE.2010.5638947 – ident: 1589_CR10 doi: 10.1145/1161064.1161084 – ident: 1589_CR30 doi: 10.1016/j.adhoc.2006.05.012 – ident: 1589_CR24 – ident: 1589_CR22 doi: 10.1109/TII.2019.2938778 – volume: 45 start-page: 126 issue: 11 year: 2007 ident: 1589_CR31 publication-title: IEEE Commun Mag doi: 10.1109/MCOM.2007.4378332 – volume: 15 start-page: 60 issue: 4 year: 2008 ident: 1589_CR32 publication-title: IEEE Wireless Commun Mag doi: 10.1109/MWC.2008.4599222 – ident: 1589_CR23 doi: 10.1109/ITEC.2014.6861812 – volume: 8 start-page: 1223 issue: 3 year: 2009 ident: 1589_CR33 publication-title: IEEE Trans Wireless Commun doi: 10.1109/TWC.2009.060598 – volume: 68 start-page: 5971 issue: 6 year: 2019 ident: 1589_CR28 publication-title: IEEE Trans Vehicular Technol doi: 10.1109/TVT.2019.2910217 – start-page: 208 volume-title: Intelligent Information and Database Systems year: 2012 ident: 1589_CR4 doi: 10.1007/978-3-642-28487-8_21 – volume: 9 start-page: 437 issue: 3 year: 2019 ident: 1589_CR19 publication-title: Appl Sci doi: 10.3390/app9030437 – volume: 25 start-page: 371 issue: 1 year: 2010 ident: 1589_CR5 publication-title: IEEE Transact Power Systems doi: 10.1109/TPWRS.2009.2036481 – volume: 6 start-page: 1584 issue: 2 year: 2019 ident: 1589_CR11 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2018.2846624 – volume: 28 start-page: 894 issue: 2 year: 2013 ident: 1589_CR21 publication-title: IEEE Transact Power Delivery doi: 10.1109/TPWRD.2012.2236364 – ident: 1589_CR1 doi: 10.1109/JPROC.2010.2066250 – ident: 1589_CR7 – volume: 2018 start-page: 1 year: 2018 ident: 1589_CR20 publication-title: Wireless Communications and Mobile Computing doi: 10.1155/2018/7943586 – ident: 1589_CR9 – volume: 6 start-page: 35355 year: 2018 ident: 1589_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2846590 – ident: 1589_CR25 doi: 10.1109/APEC.2011.5744627 – ident: 1589_CR3 – volume: 18 start-page: 4486 issue: 12 year: 2018 ident: 1589_CR14 publication-title: Sensors doi: 10.3390/s18124486 – volume: 78 start-page: 30111 issue: 21 year: 2018 ident: 1589_CR15 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-018-6938-9 – volume: 6 start-page: 74854 year: 2018 ident: 1589_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2881422 – volume: 2018 start-page: 1 year: 2018 ident: 1589_CR12 publication-title: Wireless Communications and Mobile Computing doi: 10.1155/2018/5823439 – volume: 95 start-page: 212 year: 2019 ident: 1589_CR2 publication-title: Future Generation Comput Syst doi: 10.1016/j.future.2018.12.054 – volume: 15 start-page: 4285 issue: 7 year: 2019 ident: 1589_CR26 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2019.2907754 – ident: 1589_CR18 doi: 10.1109/DSC.2018.00137 – volume: 18 start-page: 2440 issue: 8 year: 2018 ident: 1589_CR17 publication-title: Sensors. doi: 10.3390/s18082440 – ident: 1589_CR8 |
| SSID | ssj0033492 |
| Score | 2.3340766 |
| Snippet | Electric vehicle (EV) is considered eco-friendly with low carbon emission and maintenance costs. Given the current battery and charging technology, driving... Abstract Electric vehicle (EV) is considered eco-friendly with low carbon emission and maintenance costs. Given the current battery and charging technology,... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Behavior Charging scheduling Communications Engineering Computer simulation Data collection Digital twin Digital twins Driving Electric power distribution Electric vehicle Electric vehicle charging Electric vehicles Energy consumption Engineering Industrial development Information Systems Applications (incl.Internet) Infrastructure Internet of Vehicles Maintenance costs Mobility Modelling Multi-modal Sensor Data Fusion in Internet of Things Networks Queues Route selection Signal,Image and Speech Processing Stress concentration Time series Traffic planning |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSyUxEA4iHpzD4DLDPDdy8KQEO0tnOaoonsSDirfQnVScB8Nz8LX6962ku10GHC_emk4CofJ111dJ6itCdqPlJiCNZU6BZgqJEXNNwxlPtUi1iaY1sRSbMOfn9ubGXbwp9ZXvhPXywL3hDpAipyAzS5dJuVY40YKoGmtA2WhESfOtjBuDqf4fLLPm3nCGya0-mHOJOMOw2TFeW8fsOy9UxPrfMcx_DkWLrzldId8HkkgP-8mtkgWYrZFvb6QD18lZzt2gGT8wp2OuPS11bbCd5u1VGqe3uSQI7Z6mM4rklPbbf9DRu0Sv4Xe5EfeDXJ2eXB6fsaEqAgtKq44FGblLVds2qbXaOhuQtkRAVxuTcFbr2EAUJkmQUHN8gtq0WhoLXDZaGfmTLM7uZvCLUKuQbwVthKqdchDbIFyCOmCME1MV1IRUo5V8GCTDc-WKP76EDlb73rAeDeuzYb2dkL2XIX97vYz_dT7Kpn_pmKWuywsEgB8A4D8DwIRsjQvnh-9vjoMEhrZItuSE7I-L-dr84Yw2vmJGm2RZFKgJxvUWWezuH2CbLIXHbjq_3ylAfQZZzugR priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxQxDI5o4dAeeBXUpQvKoSdQ1M1j8jjSFVVPFQda9RbNJM6yEtqtdob27-NkZloWARLcRok9ihw7-ZzENiHH0XITEMYyp0AzhcCIubrmjKdKpMpE05hYik2Yiwt7fe0-D3Hc7fjafbySLCt1MWurT1ouUVfQ9XWMV9Yxu0MeV9y6_I5vnkMc-uVX5nR7w_Xlb9m2NqCSp38LXP5yH1q2mbNn_zXA5-TpgCrpx14NXpBHsHpJ9n_KNXhAznOwB80KBy0dg_NpKYSD_TSfx9K4XOQaIrS7W64oolnanxdCR9eJXsHX8oTuFbk8-_Rlfs6GMgosKK06FmTkLs2apk6N1dbZgDgnAu7NMQlntY41RGGSBAkVxy-oTKOlscBlrZWRr8nuar2CQ0KtQoAWtBGqcspBbIJwCaqATlFMs6AmZDbK1ochx3gudfHNF1_Dat8LyaOQfBaStxPy_p7lpk-w8Tfi0zxh94Q5N3ZpWG8WfjA1j05VCjL7dTIp1wgnGhCz2hpQNhqBP5mO0-0Hg22RSaAvjOhMTsiHcXofuv84ojf_RH1E9kTRD8G4npLdbvMd3pIn4bZbtpt3RY9_AAUT7C8 priority: 102 providerName: Springer Nature |
| Title | Time series behavior modeling with digital twin for Internet of Vehicles |
| URI | https://link.springer.com/article/10.1186/s13638-019-1589-8 https://www.proquest.com/docview/2327214393 https://doaj.org/article/230fc362593f49b292be20a87e48d728 |
| Volume | 2019 |
| WOSCitedRecordID | wos000510406900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: C24 dateStart: 20041201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6iLQc4sCMGysgHTiCr4yVeTohWrYoQowgBKlysxEs7EpopkwB_n2dP0lIkeuESRbFjWX7Pfovt7wN4EQzTHt1YamVUVKJjRG3TMMpSxVOlg251KGQTej43Jye2HhJu3XCsclwTy0IdVj7nyPfQ8mOwguZTvD7_TjNrVN5dHSg0tmAnoyRk6oa6-jquxCIj7-WAS-FEYlLzYVeTGbXXMYGah4G0pawylpordqnA91_xOf_aJi3W5-ju__b7HtwZ_E7yZqMo9-FGXD6A23-gET6E43wdhGSVjB0Zr--TQpWD5SRnbElYnGaWEdL_WiwJ-rtkk1GMPVkl8jmelUN2j-DT0eHHg2M6EC1QL5XsqReB2TRr2ya1RhlrPHpCIaL1Dolbo1RoYuA6iShixfAtVrpVQpvIRKOkFo9he7laxidAjEQXzivNZWWljaH13KZYeQybQpp5OYHZOMzODyjkmQzjmyvRiFFuIxmHknFZMs5M4OXFL-cbCI7rKu9n2V1UzOjZ5cNqfeqGyegw7Epe5MhPJGlbbnkb-awxOkoTNMdGdkdZumFKd-5SkBN4NWrDZfE_e_T0-saewS1etJBTpnZhu1__iM_hpv_ZL7r1FHb2D-f1hylsHXA5LQkDfL7TdFo0Hcvrt-_rL78BPGT-1A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQk4sKMOFPABLiCr4yVeDgixVVNNGXEoqDeTeCkjVTNlEqj4U_xGnrO0FIneeuAWxYmVxN9bPtt5H8DTYJj2mMZSK6OiEhMjasuSUZYKngoddKVDKzahZzOzv28_rsGv4V-YvK1y8Imtow5Ln-fItzDyI1nB8CleHX2jWTUqr64OEhodLKbx5zFStvrlzjsc32ecb7_fezuhvaoA9VLJhnoRmE3jqipTZZSxxmPYDxFDVUjcGqVCGQPXSUQRC4ZHsdCVEtpEJkoltcB-L8FlKYzOdjXVdPD8Ilf6ywRPoeEyqXm_isqM2qqZQKQjcbeUFcZScyYOtnIBZ3Lcv5Zl22i3ffN_-0634EafV5PXnSHchrW4uAPX_6i2eBcm-XcXkk0u1mQoT0BaKSBsJ3lGmoT5QVZRIc3xfEEwnyfdjGlsyDKRz_Fru4nwHny6kFe5D-uL5SJuADESU1SvNJeFlTaGynObYuGRFoY09nIE42FYne-rrGexj0PXsi2jXIcEh0hwGQnOjOD5yS1HXYmR8y5-k7FycmGuDt6eWK4OXO9sHNLK5EVmtiJJW3HLq8jHpdFRmqA5drI5YMf1Lqt2p8AZwYsBfafN_3yiB-d39gSuTvY-7Lrdndn0IVzjrQVwytQmrDer7_ERXPE_mnm9etzaEoEvFw3K384lViA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBSE4sCMGCvgAF5A14yVeDggBZdSqaDQHQBUXk3gpI6GZMglU_DV-Hc9ZWopEbz1wi2LHSuLvLZ_9_B7Ak2CY9ujGUiujohIdI2rLklGWCp4KHXSlQ1tsQs9mZn_fzjfg13AWJodVDjqxVdRh5fMa-RgtP5IVNJ9inPqwiPn29OXhN5orSOWd1qGcRgeRvfjzCOlb_WJ3G-f6KefTt-_f7NC-wgD1UsmGehGYTZOqKlNllLHGowsQIpqtkLg1SoUyBq6TiCIWDK9ioSsltIlMlEpqgeNegIsaOWYOJ5wXnwYrIHLWv0z2FAoxk5r3O6rMqHHNBKIeSbylrDCWmlM2sS0dcMrf_WuLtrV80-v_8z-7Add6f5u86gTkJmzE5S24-kcWxtuwk4_BkCyKsSZD2gLSlgjCdpJXqklYHOTqKqQ5WiwJ-vmkW0mNDVkl8jF-aYML78CHc_mUu7C5XC3jPSBGouvqleaysNLGUHluUyw80sWQJl6OYDJMsfN99vVcBOSra1mYUa5DhUNUuIwKZ0bw7PiRwy71yFmdX2fcHHfMWcPbG6v1geuVkEO6mbzIjFckaStueRX5pDQ6ShM0x0G2Bhy5XpXV7gREI3g-IPGk-Z9vdP_swR7DZcSie7c723sAV3grDJwytQWbzfp7fAiX_I9mUa8ftWJF4PN5Y_I3dgZfRA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+series+behavior+modeling+with+digital+twin+for+Internet+of+Vehicles&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Zhang%2C+Tianle&rft.au=Liu%2C+Xiangtao&rft.au=Luo%2C+Zongwei&rft.au=Dong%2C+Fuqiang&rft.date=2019-12-16&rft.pub=Springer+Nature+B.V&rft.issn=1687-1472&rft.eissn=1687-1499&rft.volume=2019&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1186%2Fs13638-019-1589-8&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon |