An overview on silica aerogels synthesis and different mechanical reinforcing strategies
Silica aerogels are lightweight and highly porous materials, with a three-dimensional network of silica particles, which are obtained by extracting the liquid phase of silica gels under supercritical conditions. Due to their outstanding characteristics, such as extremely low thermal conductivity, lo...
Saved in:
| Published in: | Journal of non-crystalline solids Vol. 385; pp. 55 - 74 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Elsevier B.V
01.02.2014
Elsevier |
| Subjects: | |
| ISSN: | 0022-3093, 1873-4812 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Silica aerogels are lightweight and highly porous materials, with a three-dimensional network of silica particles, which are obtained by extracting the liquid phase of silica gels under supercritical conditions. Due to their outstanding characteristics, such as extremely low thermal conductivity, low density, high porosity and high specific surface area, they have found excellent potential application for thermal insulation systems in aeronautical/aerospace and earthly domains, for environment clean up and protection, heat storage devices, transparent windows systems, thickening agents in paints, etc. However, native silica aerogels are fragile and sensitive at relatively low stresses, which limit their application. More durable aerogels, with higher strength and stiffness, can be obtained by proper selection of the silane precursors, and constructing the silica inorganic networks by compounding them with different organic polymers or different fiber networks. Recent studies showed that adding flexible organic polymers to the hydroxyl groups on the silica gel surface would be an effective mechanical reinforcing method of silica aerogels. More versatile polymer reinforcement approach can be readily achieved if proper functional groups are introduced on the surface of silica aerogels and then co-polymerized with appropriate organic monomers. The mechanical reinforced silica aerogels, with their very open texture, can be an outstanding thermal insulator material for different industrial and aerospace applications.
This paper presents a review of the literature on the methods for mechanical reinforcing of silica aerogels and discusses the recent achievements in improving the strength and elastic response of native silica aerogels along with cost effectiveness of each methodology.
•Overview on chemistry and synthesis/drying methods of silica aerogels is given.•Literature survey on methods for structural reinforcement of silica aerogels•Literature survey on strategies for silica aerogels reinforcement with polymers•Mechanical reinforcement of silica aerogels by incorporation of fibers is described. |
|---|---|
| AbstractList | Silica aerogels are lightweight and highly porous materials, with a three-dimensional network of silica particles, which are obtained by extracting the liquid phase of silica gels under supercritical conditions. Due to their outstanding characteristics, such as extremely low thermal conductivity, low density, high porosity and high specific surface area, they have found excellent potential application for thermal insulation systems in aeronautical/aerospace and earthly domains, for environment clean up and protection, heat storage devices, transparent windows systems, thickening agents in paints, etc. However, native silica aerogels are fragile and sensitive at relatively low stresses, which limit their application. More durable aerogels, with higher strength and stiffness, can be obtained by proper selection of the silane precursors, and constructing the silica inorganic networks by compounding them with different organic polymers or different fiber networks. Recent studies showed that adding flexible organic polymers to the hydroxyl groups on the silica gel surface would be an effective mechanical reinforcing method of silica aerogels. More versatile polymer reinforcement approach can be readily achieved if proper functional groups are introduced on the surface of silica aerogels and then co-polymerized with appropriate organic monomers. The mechanical reinforced silica aerogels, with their very open texture, can be an outstanding thermal insulator material for different industrial and aerospace applications.
This paper presents a review of the literature on the methods for mechanical reinforcing of silica aerogels and discusses the recent achievements in improving the strength and elastic response of native silica aerogels along with cost effectiveness of each methodology.
•Overview on chemistry and synthesis/drying methods of silica aerogels is given.•Literature survey on methods for structural reinforcement of silica aerogels•Literature survey on strategies for silica aerogels reinforcement with polymers•Mechanical reinforcement of silica aerogels by incorporation of fibers is described. |
| Author | Durães, Luisa Maleki, Hajar Portugal, António |
| Author_xml | – sequence: 1 givenname: Hajar surname: Maleki fullname: Maleki, Hajar email: hajar@eq.uc.pt – sequence: 2 givenname: Luisa surname: Durães fullname: Durães, Luisa – sequence: 3 givenname: António orcidid: 0000-0002-7520-4767 surname: Portugal fullname: Portugal, António |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28180729$$DView record in Pascal Francis |
| BookMark | eNqNkE1LAzEQhoNUsK3-h1w8bs3HdrN7EWrxCwpeFLyFdDLbpmyTkiyV_ntTqghedC4DM--88_KMyMAHj4RQziac8epmM9nkCcRDCt1EMC7zeMK4OiNDXitZlDUXAzJkTIhCskZekFFKG5ZLyXpI3meehj3GvcMPGjxNrnNgqMEYVtglmg6-X2NyiRpvqXVtixF9T7cIa-OztKMRnW9DBOdXNPXR9LhymC7JeWu6hFdffUzeHu5f50_F4uXxeT5bFFBWZV-AqJYITMhKWNMATKvGCFs3CgxTHI3iXCpTlkspwFZ2WhupGMOybUq0cglyTK5PvjuTcpo2Gg8u6V10WxMPWtS8Zko0WXd70kEMKUVsNbje9C74HNl1mjN95Kk3-oenPvI8bjLPbFD_Mvj-8Y_Tu9NpJoqZdNQJHHpA6yJCr21wf5t8Au1am3M |
| CODEN | JNCSBJ |
| CitedBy_id | crossref_primary_10_1002_adfm_202103410 crossref_primary_10_1016_j_apmt_2024_102483 crossref_primary_10_1007_s10853_023_08214_y crossref_primary_10_1002_mame_202300169 crossref_primary_10_1016_j_compstruct_2021_114855 crossref_primary_10_1016_j_micromeso_2020_110838 crossref_primary_10_1016_j_mseb_2023_117062 crossref_primary_10_3390_gels10120844 crossref_primary_10_1002_app_44521 crossref_primary_10_3390_biomedicines10030662 crossref_primary_10_1016_j_colsurfa_2017_02_018 crossref_primary_10_1016_j_supflu_2020_104997 crossref_primary_10_1007_s11051_019_4624_0 crossref_primary_10_1039_D2NR06984A crossref_primary_10_3390_molecules27207127 crossref_primary_10_1007_s10853_016_9965_9 crossref_primary_10_3390_gels2010001 crossref_primary_10_1016_j_jnoncrysol_2025_123462 crossref_primary_10_1515_nanoph_2023_0894 crossref_primary_10_1016_j_polymer_2020_123125 crossref_primary_10_1038_s41598_024_57257_x crossref_primary_10_3390_gels11040268 crossref_primary_10_1016_j_cej_2023_141579 crossref_primary_10_1016_j_polymer_2024_127600 crossref_primary_10_1007_s42765_022_00175_2 crossref_primary_10_1016_j_enbuild_2022_112719 crossref_primary_10_3390_molecules29102223 crossref_primary_10_1016_j_jcis_2017_10_035 crossref_primary_10_1016_j_ijthermalsci_2023_108850 crossref_primary_10_1016_j_mtcomm_2022_104261 crossref_primary_10_1016_j_cej_2020_128304 crossref_primary_10_1016_j_msea_2014_12_007 crossref_primary_10_1002_pc_22949 crossref_primary_10_1016_j_jece_2025_115906 crossref_primary_10_1016_j_eurpolymj_2016_02_019 crossref_primary_10_1016_j_apsusc_2019_05_017 crossref_primary_10_1016_j_polymer_2018_01_067 crossref_primary_10_3390_molecules28145534 crossref_primary_10_1016_j_heliyon_2021_e07675 crossref_primary_10_1007_s10971_021_05720_w crossref_primary_10_1016_j_jnoncrysol_2022_121887 crossref_primary_10_1007_s10934_025_01769_y crossref_primary_10_3390_w15091724 crossref_primary_10_3390_gels10110702 crossref_primary_10_1016_j_ceramint_2024_09_135 crossref_primary_10_1016_j_solidstatesciences_2015_08_005 crossref_primary_10_3390_ma14216646 crossref_primary_10_1039_D0QM00234H crossref_primary_10_1002_adma_202005569 crossref_primary_10_1016_j_jnoncrysol_2016_10_015 crossref_primary_10_1680_jmacr_17_00234 crossref_primary_10_1007_s10853_021_05997_w crossref_primary_10_1016_j_colsurfa_2021_126331 crossref_primary_10_1016_j_jcis_2021_09_128 crossref_primary_10_1002_er_8377 crossref_primary_10_1016_j_matchemphys_2015_05_077 crossref_primary_10_1007_s10934_021_01136_7 crossref_primary_10_1016_j_matdes_2022_111065 crossref_primary_10_1007_s11595_016_1441_5 crossref_primary_10_1016_j_flatc_2022_100449 crossref_primary_10_3390_ijms20133213 crossref_primary_10_1007_s12633_020_00421_5 crossref_primary_10_1016_j_cej_2021_128604 crossref_primary_10_1002_slct_201703000 crossref_primary_10_1007_s11356_022_24689_9 crossref_primary_10_1016_j_coco_2023_101531 crossref_primary_10_1007_s10934_021_01091_3 crossref_primary_10_1016_j_cej_2019_123813 crossref_primary_10_1016_j_conbuildmat_2021_123289 crossref_primary_10_1002_adfm_202215168 crossref_primary_10_1002_smll_201902826 crossref_primary_10_3390_gels11090718 crossref_primary_10_1016_j_ceramint_2017_04_043 crossref_primary_10_3390_gels9030241 crossref_primary_10_1016_j_matdes_2020_108521 crossref_primary_10_3390_jfb9020030 crossref_primary_10_1007_s11814_020_0574_6 crossref_primary_10_1016_j_carbpol_2020_116079 crossref_primary_10_1016_j_jcis_2019_04_028 crossref_primary_10_1016_j_micromeso_2020_110759 crossref_primary_10_1063_5_0266767 crossref_primary_10_1088_2631_7990_aca44d crossref_primary_10_1016_j_ijbiomac_2025_143177 crossref_primary_10_1016_j_energy_2022_124768 crossref_primary_10_1002_admi_202001892 crossref_primary_10_1007_s10934_020_00929_6 crossref_primary_10_1016_j_cis_2016_08_009 crossref_primary_10_1007_s10934_021_01080_6 crossref_primary_10_1007_s10971_023_06110_0 crossref_primary_10_1007_s10971_023_06156_0 crossref_primary_10_1016_j_ijbiomac_2023_125928 crossref_primary_10_1016_j_carbpol_2024_122237 crossref_primary_10_1002_pen_26260 crossref_primary_10_3390_en16176244 crossref_primary_10_1016_j_micromeso_2016_06_025 crossref_primary_10_1016_j_diamond_2019_04_017 crossref_primary_10_1002_app_48196 crossref_primary_10_1007_s10934_025_01830_w crossref_primary_10_1016_j_actaastro_2019_07_030 crossref_primary_10_1016_j_matdes_2018_02_039 crossref_primary_10_1016_j_ceramint_2021_05_262 crossref_primary_10_3390_gels8070392 crossref_primary_10_1016_j_carbon_2016_07_060 crossref_primary_10_1063_1_5138928 crossref_primary_10_1016_j_jnoncrysol_2017_03_030 crossref_primary_10_1016_j_micromeso_2019_109575 crossref_primary_10_1016_j_conbuildmat_2023_132257 crossref_primary_10_1002_sstr_202400120 crossref_primary_10_1016_j_cej_2016_04_098 crossref_primary_10_1515_epoly_2022_0077 crossref_primary_10_1016_j_supflu_2017_11_017 crossref_primary_10_1080_01932691_2017_1382375 crossref_primary_10_3390_polym14132745 crossref_primary_10_1016_j_ces_2024_120826 crossref_primary_10_3390_gels5010006 crossref_primary_10_1016_j_applthermaleng_2025_125941 crossref_primary_10_1007_s10934_025_01841_7 crossref_primary_10_1016_j_nanoen_2023_109229 crossref_primary_10_1080_00222348_2018_1476440 crossref_primary_10_1007_s10934_021_01103_2 crossref_primary_10_1002_adfm_201404368 crossref_primary_10_1016_j_jnoncrysol_2016_09_003 crossref_primary_10_1016_j_est_2022_104324 crossref_primary_10_3390_gels8100617 crossref_primary_10_1016_j_cej_2020_127488 crossref_primary_10_1016_j_ijbiomac_2024_129800 crossref_primary_10_1186_s42825_021_00067_y crossref_primary_10_1007_s10971_017_4339_6 crossref_primary_10_1016_j_ceramint_2023_01_178 crossref_primary_10_3390_gels4010005 crossref_primary_10_1016_j_porgcoat_2020_106023 crossref_primary_10_3390_en15196982 crossref_primary_10_1002_marc_202200628 crossref_primary_10_1016_j_ijadhadh_2016_02_002 crossref_primary_10_1016_j_apcatb_2017_08_012 crossref_primary_10_1016_j_ceramint_2021_05_248 crossref_primary_10_1016_j_apsusc_2022_155348 crossref_primary_10_1063_1_5028479 crossref_primary_10_1111_ijac_13125 crossref_primary_10_1016_j_enbuild_2021_111661 crossref_primary_10_1016_j_eurpolymj_2014_06_012 crossref_primary_10_1016_j_eng_2025_08_029 crossref_primary_10_1007_s10853_021_06781_6 crossref_primary_10_1016_j_enbuild_2021_111058 crossref_primary_10_3390_gels9090749 crossref_primary_10_1007_s10971_024_06600_9 crossref_primary_10_1002_agt2_30 crossref_primary_10_1016_j_carbpol_2023_121476 crossref_primary_10_1002_adts_201900211 crossref_primary_10_3390_polym15102323 crossref_primary_10_1002_ange_201709014 crossref_primary_10_1016_j_micromeso_2015_07_019 crossref_primary_10_1134_S108765962460039X crossref_primary_10_3390_ma14071631 crossref_primary_10_1016_j_apenergy_2023_122027 crossref_primary_10_1002_adma_202102892 crossref_primary_10_1016_j_apmt_2025_102800 crossref_primary_10_3390_molecules30061212 crossref_primary_10_1007_s10971_024_06538_y crossref_primary_10_3390_polym15020262 crossref_primary_10_3390_gels11070511 crossref_primary_10_1016_j_apsusc_2017_07_134 crossref_primary_10_1016_j_cis_2016_05_011 crossref_primary_10_1002_app_43268 crossref_primary_10_1007_s10971_018_4885_6 crossref_primary_10_1016_j_enbuild_2019_03_033 crossref_primary_10_1016_j_ceramint_2025_02_117 crossref_primary_10_1016_j_compscitech_2018_12_027 crossref_primary_10_4028_www_scientific_net_JNanoR_62_31 crossref_primary_10_1016_j_jssc_2019_07_038 crossref_primary_10_3390_gels10010004 crossref_primary_10_1016_j_conbuildmat_2025_141698 crossref_primary_10_3390_en13061464 crossref_primary_10_1016_j_micromeso_2019_109781 crossref_primary_10_3390_molecules25122788 crossref_primary_10_1039_C9RA00970A crossref_primary_10_1007_s42765_020_00054_8 crossref_primary_10_1002_anie_201507328 crossref_primary_10_3390_ma15248811 crossref_primary_10_1016_j_jnoncrysol_2014_07_001 crossref_primary_10_1007_s10971_017_4326_y crossref_primary_10_1093_ijlct_ctad003 crossref_primary_10_1016_j_jenvman_2025_124668 crossref_primary_10_1016_j_nxmate_2024_100388 crossref_primary_10_3390_nano8020113 crossref_primary_10_1007_s10971_018_4645_7 crossref_primary_10_1186_s11671_017_2323_2 crossref_primary_10_1016_j_supflu_2018_07_002 crossref_primary_10_1016_j_supflu_2019_02_018 crossref_primary_10_1016_j_ceramint_2019_07_109 crossref_primary_10_1016_j_jnoncrysol_2023_122177 crossref_primary_10_1016_j_matdes_2015_07_041 crossref_primary_10_1007_s00339_014_8609_7 crossref_primary_10_1007_s10971_017_4359_2 crossref_primary_10_1016_j_jece_2023_109828 crossref_primary_10_1016_j_supflu_2019_02_010 crossref_primary_10_3390_safety9040080 crossref_primary_10_1016_j_colsurfa_2017_12_025 crossref_primary_10_1007_s10934_016_0280_2 crossref_primary_10_1016_j_enbuild_2019_06_027 crossref_primary_10_1007_s13369_020_04912_w crossref_primary_10_1007_s10971_017_4400_5 crossref_primary_10_1016_j_jtice_2020_07_008 crossref_primary_10_1016_j_matlet_2016_05_085 crossref_primary_10_1007_s10971_021_05701_z crossref_primary_10_1016_j_tsep_2022_101484 crossref_primary_10_1039_D4RA04976D crossref_primary_10_1016_j_bsecv_2023_03_001 crossref_primary_10_1016_j_ijhydene_2021_10_272 crossref_primary_10_1016_j_microc_2019_04_028 crossref_primary_10_1039_C7TA08959G crossref_primary_10_1016_j_conbuildmat_2023_134478 crossref_primary_10_1007_s10971_016_4137_6 crossref_primary_10_1016_j_commatsci_2020_110252 crossref_primary_10_1002_app_56823 crossref_primary_10_3390_gels7030122 crossref_primary_10_1016_j_expthermflusci_2017_01_021 crossref_primary_10_1016_j_colsurfa_2022_130502 crossref_primary_10_1177_0892705719876316 crossref_primary_10_1016_j_heliyon_2023_e23102 crossref_primary_10_1016_j_ijthermalsci_2022_107703 crossref_primary_10_1007_s10971_023_06088_9 crossref_primary_10_1016_j_applthermaleng_2021_116890 crossref_primary_10_1080_15567036_2024_2424915 crossref_primary_10_3390_gels7040264 crossref_primary_10_3390_ma17010027 crossref_primary_10_1007_s10853_021_06142_3 crossref_primary_10_1007_s10971_014_3575_2 crossref_primary_10_1016_j_cis_2020_102189 crossref_primary_10_3390_polym10060623 crossref_primary_10_1016_j_seppur_2021_120229 crossref_primary_10_1007_s10661_025_14292_z crossref_primary_10_1016_j_micromeso_2022_111682 crossref_primary_10_1007_s10934_018_0617_0 crossref_primary_10_1016_j_arabjc_2019_12_008 crossref_primary_10_1177_17442591251344836 crossref_primary_10_1016_j_cis_2021_102464 crossref_primary_10_1016_j_ijthermalsci_2017_07_014 crossref_primary_10_1016_j_micromeso_2019_109863 crossref_primary_10_1016_j_cej_2025_160590 crossref_primary_10_1016_j_jnoncrysol_2017_12_047 crossref_primary_10_1016_j_apsusc_2018_01_132 crossref_primary_10_1016_j_matlet_2015_03_058 crossref_primary_10_1016_j_surfin_2025_106788 crossref_primary_10_3390_nano13091498 crossref_primary_10_1007_s10971_020_05396_8 crossref_primary_10_1002_app_47945 crossref_primary_10_1016_j_ceramint_2018_06_213 crossref_primary_10_1007_s10570_023_05264_y crossref_primary_10_1016_j_micromeso_2023_112886 crossref_primary_10_1080_21650373_2024_2383943 crossref_primary_10_1134_S107036322312023X crossref_primary_10_1515_polyeng_2017_0402 crossref_primary_10_3390_ma14195592 crossref_primary_10_1016_j_jnoncrysol_2017_05_016 crossref_primary_10_1016_j_jallcom_2024_173990 crossref_primary_10_1016_j_optcom_2025_132426 crossref_primary_10_1177_0731684415578306 crossref_primary_10_1515_polyeng_2018_0089 crossref_primary_10_1016_j_matdes_2024_113091 crossref_primary_10_3390_ijms241210128 crossref_primary_10_1007_s10934_016_0305_x crossref_primary_10_1016_j_ijheatmasstransfer_2022_122618 crossref_primary_10_1016_j_apmt_2021_100964 crossref_primary_10_1016_j_apcatb_2018_04_044 crossref_primary_10_1016_j_enbuild_2021_111146 crossref_primary_10_1002_app_52385 crossref_primary_10_3390_molecules28247978 crossref_primary_10_1021_acsami_4c00065 crossref_primary_10_1038_s41467_024_48840_x crossref_primary_10_1007_s10934_021_01085_1 crossref_primary_10_1038_s41598_021_89634_1 crossref_primary_10_1016_j_scitotenv_2019_03_337 crossref_primary_10_1080_03067319_2021_1982921 crossref_primary_10_1134_S0036023624600576 crossref_primary_10_1016_j_conbuildmat_2021_122815 crossref_primary_10_1016_j_polymer_2019_03_050 crossref_primary_10_1016_j_micromeso_2017_09_016 crossref_primary_10_3390_nano10122406 crossref_primary_10_1002_adma_202412385 crossref_primary_10_1002_cssc_202402119 crossref_primary_10_1016_j_ceramint_2018_09_064 crossref_primary_10_1039_D5AN00182J crossref_primary_10_1007_s13367_022_00046_7 crossref_primary_10_1016_j_apsusc_2020_147677 crossref_primary_10_1016_j_conbuildmat_2024_139826 crossref_primary_10_1016_j_cej_2020_125937 crossref_primary_10_1016_j_egyr_2023_04_061 crossref_primary_10_1016_j_psep_2023_06_081 crossref_primary_10_1002_app_49892 crossref_primary_10_1016_j_mtchem_2022_101257 crossref_primary_10_1016_j_apt_2019_12_013 crossref_primary_10_1016_j_cej_2023_146589 crossref_primary_10_1007_s11164_017_3029_x crossref_primary_10_1002_ange_201507328 crossref_primary_10_3390_ma11091494 crossref_primary_10_1016_j_jechem_2022_10_009 crossref_primary_10_3390_nano15120901 crossref_primary_10_1016_j_mtla_2019_100527 crossref_primary_10_3390_molecules24091815 crossref_primary_10_1021_acsami_5c10776 crossref_primary_10_1007_s10570_023_05190_z crossref_primary_10_1002_app_52960 crossref_primary_10_1016_j_jnoncrysol_2017_01_037 crossref_primary_10_1070_RCR4932 crossref_primary_10_1016_j_biopha_2019_01_014 crossref_primary_10_1016_j_matchemphys_2016_11_064 crossref_primary_10_1016_j_micromeso_2020_110164 crossref_primary_10_1016_j_colsurfa_2021_128183 crossref_primary_10_1002_app_44193 crossref_primary_10_1002_pc_24412 crossref_primary_10_1007_s10971_016_4012_5 crossref_primary_10_1007_s10971_016_3968_5 crossref_primary_10_1080_1023666X_2016_1091541 crossref_primary_10_1016_j_matdes_2019_108333 crossref_primary_10_1016_j_apmt_2020_100843 crossref_primary_10_3390_gels10090554 crossref_primary_10_1002_adfm_202511831 crossref_primary_10_1016_j_porgcoat_2025_109114 crossref_primary_10_3390_gels8080485 crossref_primary_10_3390_nano12091522 crossref_primary_10_1016_j_compositesa_2017_09_018 crossref_primary_10_1002_adsu_202400184 crossref_primary_10_1016_j_jcis_2025_137926 crossref_primary_10_1007_s10934_020_00901_4 crossref_primary_10_1039_D0RA03472J crossref_primary_10_1007_s10570_018_2189_1 crossref_primary_10_1016_j_micromeso_2016_11_037 crossref_primary_10_1016_j_mtla_2019_100315 crossref_primary_10_1039_C8RA08646J crossref_primary_10_1016_j_micromeso_2014_06_003 crossref_primary_10_1007_s10971_015_3756_7 crossref_primary_10_1016_j_jcis_2020_03_118 crossref_primary_10_1016_j_cjche_2020_04_023 crossref_primary_10_3390_ma16103778 crossref_primary_10_1016_j_cis_2020_102101 crossref_primary_10_1016_j_micromeso_2021_111569 crossref_primary_10_3390_gels10050293 crossref_primary_10_1016_j_eurpolymj_2017_06_009 crossref_primary_10_1016_j_jnoncrysol_2017_07_032 crossref_primary_10_1007_s10934_017_0513_z crossref_primary_10_1007_s10934_021_01089_x crossref_primary_10_1016_j_matdes_2016_11_080 crossref_primary_10_1016_j_porgcoat_2019_02_030 crossref_primary_10_1016_j_enbuild_2016_08_053 crossref_primary_10_1007_s11814_025_00537_7 crossref_primary_10_1016_j_jnoncrysol_2018_09_029 crossref_primary_10_1016_j_tsep_2023_101808 crossref_primary_10_1016_j_matchemphys_2021_124252 crossref_primary_10_1016_j_micromeso_2020_110092 crossref_primary_10_1016_j_jnoncrysol_2023_122171 crossref_primary_10_1016_j_ceramint_2019_04_176 crossref_primary_10_1016_j_supflu_2024_106354 crossref_primary_10_1016_j_jnoncrysol_2021_120828 crossref_primary_10_3390_computation12020035 crossref_primary_10_1016_j_jeurceramsoc_2022_11_061 crossref_primary_10_1016_j_seppur_2021_119409 crossref_primary_10_3390_ma15041277 crossref_primary_10_1007_s10971_025_06831_4 crossref_primary_10_1016_j_diamond_2021_108474 crossref_primary_10_1007_s13399_023_04443_y crossref_primary_10_1016_j_jnoncrysol_2017_10_053 crossref_primary_10_1002_adfm_201705042 crossref_primary_10_3390_polym11111883 crossref_primary_10_1007_s10971_018_4640_z crossref_primary_10_1016_j_ceramint_2024_06_240 crossref_primary_10_1007_s00226_022_01412_y crossref_primary_10_1134_S0040579525600160 crossref_primary_10_1093_burnst_tkab019 crossref_primary_10_1016_j_polymer_2024_127274 crossref_primary_10_1016_j_jcis_2019_11_072 crossref_primary_10_1016_j_jnoncrysol_2023_122259 crossref_primary_10_1007_s10570_024_06074_6 crossref_primary_10_1016_j_matdes_2016_03_063 crossref_primary_10_1002_er_4423 crossref_primary_10_1007_s42114_024_00969_5 crossref_primary_10_1016_j_seppur_2023_124201 crossref_primary_10_3390_catal13091286 crossref_primary_10_1016_j_ijthermalsci_2020_106681 crossref_primary_10_1016_j_snb_2015_04_070 crossref_primary_10_1007_s10311_018_0723_x crossref_primary_10_1016_j_supflu_2015_06_020 crossref_primary_10_1039_D2RA01336C crossref_primary_10_1002_advs_202204681 crossref_primary_10_1007_s10971_022_05756_6 crossref_primary_10_1016_j_jnoncrysol_2020_120306 crossref_primary_10_1002_adfm_202108774 crossref_primary_10_1016_j_jssc_2019_120971 crossref_primary_10_1007_s10934_021_01066_4 crossref_primary_10_1007_s10971_016_4154_5 crossref_primary_10_1016_j_compscitech_2016_12_004 crossref_primary_10_1016_j_matchemphys_2018_05_019 crossref_primary_10_1007_s10973_018_7315_7 crossref_primary_10_1016_j_jiec_2020_05_019 crossref_primary_10_2478_aut_2019_0082 crossref_primary_10_1007_s10853_016_0514_3 crossref_primary_10_1002_ejic_201801512 crossref_primary_10_1016_j_ceramint_2018_09_223 crossref_primary_10_3390_nano14050469 crossref_primary_10_1007_s10971_021_05692_x crossref_primary_10_1016_j_micromeso_2022_111874 crossref_primary_10_1002_pen_26628 crossref_primary_10_1515_pac_2018_0706 crossref_primary_10_1016_j_apmt_2022_101670 crossref_primary_10_1016_j_foodhyd_2018_05_021 crossref_primary_10_1016_j_ceramint_2021_06_023 crossref_primary_10_1016_j_matdes_2025_113919 crossref_primary_10_1007_s10971_017_4373_4 crossref_primary_10_3390_nano12071086 crossref_primary_10_3390_ma11122589 crossref_primary_10_1016_j_jnoncrysol_2016_08_031 crossref_primary_10_3390_gels4020055 crossref_primary_10_1016_j_jnoncrysol_2017_09_005 crossref_primary_10_3390_ma12182878 crossref_primary_10_1002_pc_24814 crossref_primary_10_1016_j_tafmec_2018_08_007 crossref_primary_10_1007_s10934_019_00757_3 crossref_primary_10_1016_j_jnoncrysol_2015_06_013 crossref_primary_10_1007_s10965_016_0938_0 crossref_primary_10_1016_j_matchemphys_2021_124852 crossref_primary_10_1016_j_cej_2022_140818 crossref_primary_10_1016_j_matpr_2022_09_147 crossref_primary_10_1016_j_micromeso_2020_110206 crossref_primary_10_1016_j_ceramint_2022_07_238 crossref_primary_10_1016_j_ijbiomac_2019_10_037 crossref_primary_10_1016_j_jcis_2021_05_059 crossref_primary_10_3390_molecules26165023 crossref_primary_10_1002_ppsc_202200186 crossref_primary_10_1007_s40090_020_00209_x crossref_primary_10_1016_j_jnoncrysol_2020_120517 crossref_primary_10_3390_ma13122677 crossref_primary_10_1016_j_mspro_2015_11_081 crossref_primary_10_1016_j_compositesa_2024_108164 crossref_primary_10_1002_pen_25871 crossref_primary_10_1002_pat_5041 crossref_primary_10_1007_s00466_022_02150_5 crossref_primary_10_1007_s10971_019_04933_4 crossref_primary_10_1016_j_ijbiomac_2024_129460 crossref_primary_10_1007_s10971_019_05148_3 crossref_primary_10_1039_D3NR05895F crossref_primary_10_1016_j_polymdegradstab_2025_111484 crossref_primary_10_1016_j_compscitech_2020_107992 crossref_primary_10_1007_s13399_024_05715_x crossref_primary_10_1016_j_jnoncrysol_2021_120923 crossref_primary_10_1016_j_mspro_2015_11_072 crossref_primary_10_1016_j_carbpol_2016_03_048 crossref_primary_10_1016_j_scriptamat_2017_09_028 crossref_primary_10_1007_s11947_020_02432_x crossref_primary_10_1039_D1EN00026H crossref_primary_10_1016_j_ceramint_2024_04_346 crossref_primary_10_3390_gels9120967 crossref_primary_10_1080_10426507_2021_2017434 crossref_primary_10_1016_j_supflu_2015_07_015 crossref_primary_10_3390_ijms25021309 crossref_primary_10_1016_j_jtice_2025_106143 crossref_primary_10_1016_j_supflu_2015_07_018 crossref_primary_10_1016_j_susmat_2020_e00240 crossref_primary_10_3390_ma14133559 crossref_primary_10_1155_2017_2102467 crossref_primary_10_1016_j_ceramint_2018_10_038 crossref_primary_10_1016_j_eurpolymj_2019_03_033 crossref_primary_10_1016_j_rser_2018_12_040 crossref_primary_10_1039_D2RA01511K crossref_primary_10_1002_smll_202502291 crossref_primary_10_1016_j_addma_2023_103583 crossref_primary_10_3390_ma14082046 crossref_primary_10_1016_j_ceramint_2018_05_199 crossref_primary_10_1002_adfm_202407547 crossref_primary_10_3390_gels10060380 crossref_primary_10_1007_s11705_022_2222_7 crossref_primary_10_1016_j_scriptamat_2019_10_010 crossref_primary_10_3390_polym12102417 crossref_primary_10_1002_mame_202000612 crossref_primary_10_1016_j_biombioe_2022_106424 crossref_primary_10_1016_j_ijbiomac_2020_08_066 crossref_primary_10_3390_gels9070535 crossref_primary_10_1016_j_jcomc_2025_100573 crossref_primary_10_3390_molecules25194417 crossref_primary_10_1002_anie_201709014 crossref_primary_10_3390_gels9020160 crossref_primary_10_1016_j_matdes_2017_06_036 crossref_primary_10_1016_j_ceramint_2020_07_278 crossref_primary_10_1111_jace_20401 crossref_primary_10_1016_j_jnoncrysol_2023_122322 crossref_primary_10_1007_s10971_017_4470_4 crossref_primary_10_3390_polym12061278 crossref_primary_10_1039_C9NR07035D crossref_primary_10_1016_j_eti_2020_100642 crossref_primary_10_1016_j_micromeso_2020_110456 crossref_primary_10_1134_S1061933X20040043 crossref_primary_10_1016_j_conbuildmat_2019_04_102 crossref_primary_10_1016_j_jtice_2016_05_030 crossref_primary_10_1080_09593330_2017_1397766 crossref_primary_10_1007_s10971_021_05499_w crossref_primary_10_1002_admi_202300109 crossref_primary_10_1016_j_cej_2019_122421 crossref_primary_10_1007_s10570_025_06647_z crossref_primary_10_1002_cctc_202301118 crossref_primary_10_1016_j_micromeso_2021_110895 crossref_primary_10_3390_molecules29112675 crossref_primary_10_1016_j_ceramint_2018_11_089 crossref_primary_10_1016_j_jcis_2020_01_110 crossref_primary_10_1557_adv_2017_375 crossref_primary_10_1111_jace_17465 crossref_primary_10_3390_molecules28041691 crossref_primary_10_1016_j_ijbiomac_2021_01_098 crossref_primary_10_1080_10407790_2023_2217340 crossref_primary_10_1016_j_cej_2025_167640 crossref_primary_10_1016_j_trac_2021_116497 |
| Cites_doi | 10.1007/s10934-007-9104-8 10.1016/S0022-3093(01)00697-4 10.1007/s10971-006-0513-y 10.1038/374439a0 10.1007/s10971-005-1372-7 10.1039/b916355g 10.1007/s10971-008-1830-0 10.1007/s10971-005-5288-z 10.1016/S0022-3093(00)00257-X 10.1021/cm703381e 10.1016/0167-577X(85)90077-1 10.1016/j.jallcom.2007.12.019 10.1557/PROC-271-567 10.1007/s10971-011-2604-7 10.1021/j150331a003 10.1021/ar600033s 10.1039/b800602d 10.1016/0022-3093(90)90106-V 10.1016/j.jnoncrysol.2004.07.074 10.1016/j.polymer.2006.05.073 10.1023/A:1021576104859 10.1021/am8001617 10.1016/j.micromeso.2004.03.021 10.1016/S0022-3093(01)00473-2 10.1007/s10971-006-7762-7 10.1557/PROC-435-295 10.1080/10601320600934792 10.1021/cm950067z 10.1016/S0022-3093(98)00054-4 10.1016/j.jcis.2006.09.025 10.1016/S0022-3093(98)00405-0 10.1039/b604323b 10.1023/A:1023765030983 10.1021/ie00041a001 10.1002/anie.201105730 10.1039/c0cs00136h 10.1016/0022-3093(95)00049-6 10.1007/s10971-008-1861-6 10.1021/nl025690e 10.1021/cm800963h 10.1016/S0022-3093(05)80462-4 10.1021/ma3001719 10.1002/anie.200460587 10.1021/cm00039a006 10.1016/j.solidstatesciences.2004.04.010 10.1002/adma.200700079 10.1021/cm011060m 10.1016/j.micromeso.2008.08.025 10.1023/A:1008774827602 10.1016/j.jnoncrysol.2011.06.017 10.1021/am900451x 10.1016/j.matlet.2012.01.114 10.1016/S0022-3093(98)00747-9 10.1016/S0022-3093(98)00003-9 10.1016/0022-3093(90)90160-N 10.1007/BF02706890 10.1039/b509097k 10.1016/j.jmatprotec.2007.10.060 10.4028/www.scientific.net/AST.63.41 10.1021/cr0101306 10.1166/jnn.2012.4560 10.1016/0022-3093(95)00059-3 10.1016/j.jnoncrysol.2004.06.041 10.1021/am900014z 10.1016/S0022-3093(98)00135-5 10.1021/j100054a043 10.1021/am900240h 10.1016/j.jnoncrysol.2007.05.183 10.1021/am101123h 10.1021/cr00037a013 10.1023/A:1008648925228 10.1007/s10971-006-1505-7 10.1007/s10934-010-9366-4 10.1038/127741a0 10.1063/1.95334 10.1039/a805081c 10.1016/0022-3093(86)90045-1 10.1007/s10971-008-1828-7 10.1021/cm301345r 10.1016/S0022-3093(00)00231-3 10.1016/j.jnoncrysol.2004.06.034 10.1081/DRT-120019055 10.1021/ar000109b 10.1016/S1387-1811(99)00037-2 10.1016/0022-3093(90)90132-6 10.1016/0022-3093(95)00074-7 10.1016/j.jnoncrysol.2007.06.024 10.1080/00323910500402961 10.1016/0022-3093(88)90014-2 10.1038/nnano.2010.155 10.1021/am100422x 10.1007/BF00402691 10.1007/s00396-002-0814-9 10.1021/cm903662a 10.1016/S0022-3093(86)80078-3 10.1023/A:1015309014546 10.1039/a805538f 10.1016/S0022-3093(03)00007-3 10.1021/cm070102p 10.1016/S0168-9002(00)00452-6 10.1115/1.1611885 10.1016/0022-3093(95)00065-8 10.1016/j.solidstatesciences.2007.04.020 10.1016/j.jnoncrysol.2006.02.159 10.1016/j.supflu.2009.11.004 10.1021/ie0705406 10.1002/(SICI)1097-4628(19991003)74:1<133::AID-APP16>3.0.CO;2-N 10.1016/S0079-6425(01)00009-3 10.1016/j.snb.2004.10.034 10.1016/0022-3093(95)00016-X 10.1002/1099-0488(20000701)38:13<1699::AID-POLB30>3.0.CO;2-L 10.1007/s10853-005-4417-y 10.1016/S0022-3093(01)00423-9 10.1016/0022-3093(95)00039-9 10.1016/0022-3093(90)90141-8 10.1016/j.jcis.2012.04.062 10.1016/S0021-9673(03)00510-7 10.1002/adma.200602457 10.1023/A:1008717219952 10.1016/0022-3093(84)90385-5 10.1021/cm048063u 10.1016/S0022-3093(00)00288-X 10.1039/c0jm01448f 10.1021/ma00172a026 10.1007/BF00541574 10.1016/0022-3093(95)00191-3 10.1016/S0254-0584(97)02055-5 10.1016/S0022-3093(97)00430-4 10.1016/0965-9773(95)00206-5 10.1016/j.jnoncrysol.2006.03.054 10.1016/0022-3093(86)90133-X 10.1002/(SICI)1097-4628(19960919)61:12<2173::AID-APP16>3.0.CO;2-8 10.1021/cr068035q 10.1016/j.jnoncrysol.2008.03.039 10.1021/am200007n 10.1016/0022-3093(85)90388-6 10.1021/cm0513841 10.1149/1.1391177 10.1246/bcsj.73.765 10.1021/am100081a 10.1016/j.apsusc.2006.12.117 10.1002/app.11152 10.1016/j.solmat.2005.01.016 10.1016/S0022-3093(01)00462-8 10.1023/A:1008663908431 10.1016/S0021-9673(00)01184-5 10.1016/j.jcis.2006.03.044 10.1016/j.apsusc.2005.07.006 10.1016/0022-3093(95)00072-0 10.1021/cm011074s 10.1016/j.micromeso.2007.01.007 10.1016/S0022-3093(98)00102-1 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier B.V. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1016/j.jnoncrysol.2013.10.017 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Physics |
| EISSN | 1873-4812 |
| EndPage | 74 |
| ExternalDocumentID | 28180729 10_1016_j_jnoncrysol_2013_10_017 S002230931300522X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~02 ~G- 29L 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SMS VH1 WUQ ~HD BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c464t-c26bec02362da9cc569a2d897ca071ea71137a44b32cd6d58a3700e4f94ed3bc3 |
| ISICitedReferencesCount | 611 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331662500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-3093 |
| IngestDate | Wed Apr 02 07:37:52 EDT 2025 Tue Nov 18 22:27:34 EST 2025 Sat Nov 29 07:27:59 EST 2025 Fri Feb 23 02:24:48 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Silica aerogels Sol–gel Mechanical reinforcement Hybrid materials High density Industrial application Hybrid material Porous materials Specific surface area Precursor Silica Texture Monomers Fibers Hydroxyl group Thermal conductivity Stress effects Stiffness Sol-gel process Silanes Liquid state Sol-gel Organic polymers Supercritical state Reviews Porosity |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c464t-c26bec02362da9cc569a2d897ca071ea71137a44b32cd6d58a3700e4f94ed3bc3 |
| ORCID | 0000-0002-7520-4767 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S002230931300522X |
| PageCount | 20 |
| ParticipantIDs | pascalfrancis_primary_28180729 crossref_citationtrail_10_1016_j_jnoncrysol_2013_10_017 crossref_primary_10_1016_j_jnoncrysol_2013_10_017 elsevier_sciencedirect_doi_10_1016_j_jnoncrysol_2013_10_017 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-02-01 |
| PublicationDateYYYYMMDD | 2014-02-01 |
| PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Journal of non-crystalline solids |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Lucas (10.1016/j.jnoncrysol.2013.10.017_bb0615) 2004; 350 Ye (10.1016/j.jnoncrysol.2013.10.017_bb0840) 2012; 24 Pekala (10.1016/j.jnoncrysol.2013.10.017_bb0185) 1990 Rao (10.1016/j.jnoncrysol.2013.10.017_bb0410) 2007; 305 Choy (10.1016/j.jnoncrysol.2013.10.017_bb0830) 2003; 48 Hwang (10.1016/j.jnoncrysol.2013.10.017_bb0545) 2007; 41 Kirkbir (10.1016/j.jnoncrysol.2013.10.017_bb0590) 1998; 225 Rao (10.1016/j.jnoncrysol.2013.10.017_bb0565) 2007; 253 Hegde (10.1016/j.jnoncrysol.2013.10.017_bb0535) 2007; 42 Gross (10.1016/j.jnoncrysol.2013.10.017_bb0195) 1995; 6 Rao (10.1016/j.jnoncrysol.2013.10.017_bb0380) 2004; 350 Paul (10.1016/j.jnoncrysol.2013.10.017_bb0060) 2003; 125 Rao (10.1016/j.jnoncrysol.2013.10.017_bb0350) 2008; 15 Wang (10.1016/j.jnoncrysol.2013.10.017_bb0515) 2004; 71 Wittwer (10.1016/j.jnoncrysol.2013.10.017_bb0020) 1992; 145 Leventis (10.1016/j.jnoncrysol.2013.10.017_bb0110) 2010; 22 Boday (10.1016/j.jnoncrysol.2013.10.017_bb0120) 2010; 20 Nadargi (10.1016/j.jnoncrysol.2013.10.017_bb0100) 2009; 117 Zhang (10.1016/j.jnoncrysol.2013.10.017_bb0420) 2004; 350 10.1016/j.jnoncrysol.2013.10.017_bb0850 Lu (10.1016/j.jnoncrysol.2013.10.017_bb0635) 1995; 188 Guo (10.1016/j.jnoncrysol.2013.10.017_bb0815) 2011; 3 Einasrud (10.1016/j.jnoncrysol.2013.10.017_bb0435) 1995; 186 Einarsrud (10.1016/j.jnoncrysol.2013.10.017_bb0450) 2001; 285 Meixner (10.1016/j.jnoncrysol.2013.10.017_bb0505) 1999; 14 Nicolaon (10.1016/j.jnoncrysol.2013.10.017_bb0325) 1968; 5 Sanchez (10.1016/j.jnoncrysol.2013.10.017_bb0705) 2005; 15 10.1016/j.jnoncrysol.2013.10.017_bb0280 Vivod (10.1016/j.jnoncrysol.2013.10.017_bb0165) 2009; 50 Alié (10.1016/j.jnoncrysol.2013.10.017_bb0490) 2006; 352 Schottner (10.1016/j.jnoncrysol.2013.10.017_bb0405) 2001; 13 Prakash (10.1016/j.jnoncrysol.2013.10.017_bb0530) 1995; 374 Rao (10.1016/j.jnoncrysol.2013.10.017_bb0640) 2003; 27 Shea (10.1016/j.jnoncrysol.2013.10.017_bb0415) 2001; 13 Olsson (10.1016/j.jnoncrysol.2013.10.017_bb0880) 2010; 5 Bhagat (10.1016/j.jnoncrysol.2013.10.017_bb0555) 2007; 9 Pajonk (10.1016/j.jnoncrysol.2013.10.017_bb0475) 1990; 121 Kramer (10.1016/j.jnoncrysol.2013.10.017_bb0170) 1996; 435 Gould (10.1016/j.jnoncrysol.2013.10.017_bb0725) 2008; 49 Finlay (10.1016/j.jnoncrysol.2013.10.017_bb0870) 2008; 47 Nguyen (10.1016/j.jnoncrysol.2013.10.017_bb0835) 2010; 2 Long (10.1016/j.jnoncrysol.2013.10.017_bb0030) 2000; 3 (10.1016/j.jnoncrysol.2013.10.017_bb0160) 2010 Nass (10.1016/j.jnoncrysol.2013.10.017_bb0680) 1990; 121 Parmenter (10.1016/j.jnoncrysol.2013.10.017_bb0860) 1998; 223 Leventis (10.1016/j.jnoncrysol.2013.10.017_bb0140) 2002; 2 Tretyakov (10.1016/j.jnoncrysol.2013.10.017_bb0470) 1999; 9 Ilhan (10.1016/j.jnoncrysol.2013.10.017_bb0265) 2006; 16 She (10.1016/j.jnoncrysol.2013.10.017_bb0600) 2002; 31 Yim (10.1016/j.jnoncrysol.2013.10.017_bb0625) 2002; 19 Katti (10.1016/j.jnoncrysol.2013.10.017_bb0800) 2006; 18 Perdigoto (10.1016/j.jnoncrysol.2013.10.017_bb0045) 2012; 380 Ward (10.1016/j.jnoncrysol.2013.10.017_bb0035) 1995; 34 Moner-Girona (10.1016/j.jnoncrysol.2013.10.017_bb0085) 2001; 285 Bommel (10.1016/j.jnoncrysol.2013.10.017_bb0585) 1995; 186 Zou (10.1016/j.jnoncrysol.2013.10.017_bb0795) 2008; 108 Meador (10.1016/j.jnoncrysol.2013.10.017_bb0115) 2007; 19 (10.1016/j.jnoncrysol.2013.10.017_bb0305) 2010 Kanamori (10.1016/j.jnoncrysol.2013.10.017_bb0645) 2007; 19 Duffours (10.1016/j.jnoncrysol.2013.10.017_bb0500) 1995; 186 Guise (10.1016/j.jnoncrysol.2013.10.017_bb0070) 1995; 285 Li (10.1016/j.jnoncrysol.2013.10.017_bb0275) 2009; 1 Iwashita (10.1016/j.jnoncrysol.2013.10.017_bb0750) 1996; 61 Durães (10.1016/j.jnoncrysol.2013.10.017_bb0395) 2008 Loy (10.1016/j.jnoncrysol.2013.10.017_bb0175) 1995; 95 Estella (10.1016/j.jnoncrysol.2013.10.017_bb0440) 2007; 102 Shea (10.1016/j.jnoncrysol.2013.10.017_bb0695) 2001; 34 Aravind (10.1016/j.jnoncrysol.2013.10.017_bb0655) 2011; 18 Karout (10.1016/j.jnoncrysol.2013.10.017_bb0290) 2005; 36 Lin (10.1016/j.jnoncrysol.2013.10.017_bb0760) 2000; 38 Karout (10.1016/j.jnoncrysol.2013.10.017_bb0520) 2007; 353 Holmes (10.1016/j.jnoncrysol.2013.10.017_bb0150) 1984; 45 Bisson (10.1016/j.jnoncrysol.2013.10.017_bb0465) 2003; 21 Tewari (10.1016/j.jnoncrysol.2013.10.017_bb0580) 1985; 63 Gibiat (10.1016/j.jnoncrysol.2013.10.017_bb0025) 1995; 186 Novak (10.1016/j.jnoncrysol.2013.10.017_bb0720) 1994; 6 Adachi (10.1016/j.jnoncrysol.2013.10.017_bb0570) 1986; 79 Tang (10.1016/j.jnoncrysol.2013.10.017_bb0055) 2006 Rao (10.1016/j.jnoncrysol.2013.10.017_bb0660) 2004; 6 Carraher (10.1016/j.jnoncrysol.2013.10.017_bb0005) 2005; 30 Nadargi (10.1016/j.jnoncrysol.2013.10.017_bb0650) 2009; 467 (10.1016/j.jnoncrysol.2013.10.017_bb0390) 2010 Chandradass (10.1016/j.jnoncrysol.2013.10.017_bb0890) 2008; 354 Meador (10.1016/j.jnoncrysol.2013.10.017_bb0690) 2009; 1 Alié (10.1016/j.jnoncrysol.2013.10.017_bb0335) 2001; 289 Knez (10.1016/j.jnoncrysol.2013.10.017_bb0825) 2007; 19 Matyjaszewski (10.1016/j.jnoncrysol.2013.10.017_bb0845) 2012; 45 Einarsrud (10.1016/j.jnoncrysol.2013.10.017_bb0485) 1998; 231 Kistler (10.1016/j.jnoncrysol.2013.10.017_bb0310) 1931; 127 Zhang (10.1016/j.jnoncrysol.2013.10.017_bb0345) 2001; 910 Fragiadakis (10.1016/j.jnoncrysol.2013.10.017_bb0780) 2007; 353 Meador (10.1016/j.jnoncrysol.2013.10.017_bb0240) 2005; 17 Schmidt (10.1016/j.jnoncrysol.2013.10.017_bb0080) 1998; 225 Lee (10.1016/j.jnoncrysol.2013.10.017_bb0320) 2002; 37 Fragiadakis (10.1016/j.jnoncrysol.2013.10.017_bb0775) 2006; 352 Guo (10.1016/j.jnoncrysol.2013.10.017_bb0105) 2009; 19 Leventis (10.1016/j.jnoncrysol.2013.10.017_bb0595) 2010 Yang (10.1016/j.jnoncrysol.2013.10.017_bb0810) 2011; 357 Kirkbir (10.1016/j.jnoncrysol.2013.10.017_bb0340) 1996; 6 Jitianu (10.1016/j.jnoncrysol.2013.10.017_bb0385) 2003; 319 Kartal (10.1016/j.jnoncrysol.2013.10.017_bb0560) 2010; 53 Nakane (10.1016/j.jnoncrysol.2013.10.017_bb0765) 1999; 74 Meador (10.1016/j.jnoncrysol.2013.10.017_bb0245) 2010; 2 Ravaine (10.1016/j.jnoncrysol.2013.10.017_bb0670) 1986; 82 Pierre (10.1016/j.jnoncrysol.2013.10.017_bb0205) 1998 Nadargi (10.1016/j.jnoncrysol.2013.10.017_bb0460) 2009; 49 Boday (10.1016/j.jnoncrysol.2013.10.017_bb0820) 2008; 20 Meador (10.1016/j.jnoncrysol.2013.10.017_bb0135) 2008; 18 Hdach (10.1016/j.jnoncrysol.2013.10.017_bb0455) 1990; 121 Schwertfeger (10.1016/j.jnoncrysol.2013.10.017_bb0480) 1998; 225 Siouffi (10.1016/j.jnoncrysol.2013.10.017_bb0365) 2003; 1000 Wagh (10.1016/j.jnoncrysol.2013.10.017_bb0370) 1998; 5 Wu (10.1016/j.jnoncrysol.2013.10.017_bb0330) 2000; 275 Leventis (10.1016/j.jnoncrysol.2013.10.017_bb0785) 2005; 35 Brinker (10.1016/j.jnoncrysol.2013.10.017_bb0210) 1990 Mascia (10.1016/j.jnoncrysol.2013.10.017_bb0675) 1995; 3 Reisfeld (10.1016/j.jnoncrysol.2013.10.017_bb0730) 1990; 121 Mckiernan (10.1016/j.jnoncrysol.2013.10.017_bb0735) 1994; 98 Kocon (10.1016/j.jnoncrysol.2013.10.017_bb0225) 2005; AF196 Bhagat (10.1016/j.jnoncrysol.2013.10.017_bb0375) 2006; 252 Kistler (10.1016/j.jnoncrysol.2013.10.017_bb0315) 1932; 36 Bandyopadhyay (10.1016/j.jnoncrysol.2013.10.017_bb0770) 2005; 40 Jones (10.1016/j.jnoncrysol.2013.10.017_bb0050) 2006; 40 Randall (10.1016/j.jnoncrysol.2013.10.017_bb0145) 2011; 3 Durães (10.1016/j.jnoncrysol.2013.10.017_bb0360) 2010; 63 Hu (10.1016/j.jnoncrysol.2013.10.017_bb0790) 1992; 27 Woignier (10.1016/j.jnoncrysol.2013.10.017_bb0200) 1998; 241 Kim (10.1016/j.jnoncrysol.2013.10.017_bb0550) 2009; 49 Zhihua (10.1016/j.jnoncrysol.2013.10.017_bb0295) 2008 Lee (10.1016/j.jnoncrysol.2013.10.017_bb0250) 2009; 49 Capadona (10.1016/j.jnoncrysol.2013.10.017_bb0255) 2006; 47 (10.1016/j.jnoncrysol.2013.10.017_bb0270) 2010 Ochoa (10.1016/j.jnoncrysol.2013.10.017_bb0400) 2012; 61 Fricke (10.1016/j.jnoncrysol.2013.10.017_bb0190) 1998; 13 Rao (10.1016/j.jnoncrysol.2013.10.017_bb0095) 2006; 300 Durães (10.1016/j.jnoncrysol.2013.10.017_bb0495) 2012; 12 Sanchez (10.1016/j.jnoncrysol.2013.10.017_bb0715) 2011; 40 Rao (10.1016/j.jnoncrysol.2013.10.017_bb0090) 1999; 30 Leventis (10.1016/j.jnoncrysol.2013.10.017_bb0130) 2007; 40 Yuan (10.1016/j.jnoncrysol.2013.10.017_bb0630) 2012; 75 Loy (10.1016/j.jnoncrysol.2013.10.017_bb0685) 1996; 8 Mulik (10.1016/j.jnoncrysol.2013.10.017_bb0805) 2008; 20 Soleimani Dorcheh (10.1016/j.jnoncrysol.2013.10.017_bb0235) 2008; 199 Vivod (10.1016/j.jnoncrysol.2013.10.017_bb0700) 2008 Pierre (10.1016/j.jnoncrysol.2013.10.017_bb0215) 2002; 102 Zhang (10.1016/j.jnoncrysol.2013.10.017_bb0285) 2006; 43 Karmakar (10.1016/j.jnoncrysol.2013.10.017_bb0355) 2000; 272 Wang (10.1016/j.jnoncrysol.2013.10.017_bb0040) 2005; 107 Nguyen (10.1016/j.jnoncrysol.2013.10.017_bb0260) 2009; 1 Brinker (10.1016/j.jnoncrysol.2013.10.017_bb0430) 1984; 63 Schmidt (10.1016/j.jnoncrysol.2013.10.017_bb0665) 1985; 73 Tong (10.1016/j.jnoncrysol.2013.10.017_bb0755) 2002; 86 Hrubesh (10.1016/j.jnoncrysol.2013.10.017_bb0075) 1998; 225 Hæreid (10.1016/j.jnoncrysol.2013.10.017_bb0610) 1995; 185 Scherer (10.1016/j.jnoncrysol.2013.10.017_bb0525) 1995; 186 Park (10.1016/j.jnoncrysol.2013.10.017_bb0740) 2000; 16 Schultz (10.1016/j.jnoncrysol.2013.10.017_bb0010) 2005; 89 Boday (10.1016/j.jnoncrysol.2013.10.017_bb0125) 2009; 1 Park (10.1016/j.jnoncrysol.2013.10.017_bb0510) 1998; 12 Dullien (10.1016/j.jnoncrysol.2013.10.017_bb0575) 1992 Smith (10.1016/j.jnoncrysol.2013.10.017_bb0540) 1992; 271 Strom (10.1016/j.jnoncrysol.2013.10.017_bb0445) 2007; 41 Klemm (10.1016/j.jnoncrysol.2013.10.017_bb0865) 2005; 44 (10.1016/j.jnoncrysol.2013.10.017_bb0885) 2010 Takahashi (10.1016/j.jnoncrysol.2013.10.017_bb0745) 2000; 73 Cai (10.1016/j.jnoncrysol.2013.10.017_bb0875) 2012; 51 Pajonk (10.1016/j.jnoncrysol.2013.10.017_bb0230) 2003; 281 Pope (10.1016/j.jnoncrysol.2013.10.017_bb0425) 1986; 87 Del Corso (10.1016/j.jnoncrysol.2013.10.017_bb0065) 2009 da Cunha (10.1016/j.jnoncrysol.2013.10.017_bb0015) 2000; 452 Ma (10.1016/j.jnoncrysol.2013.10.017_bb0605) 2000; 277 Fricke (10.1016/j.jnoncrysol.2013.10.017_bb0180) 1988; 100 Tsou (10.1016/j.jnoncrysol.2013.10.017_bb0155) 1995; 186 10.1016/j.jnoncrysol.2013.10.017_bb0300 Sanchez (10.1016/j.jnoncrysol.2013.10.017_bb0710) 1999; 9 Ambekar (10.1016/j.jnoncrysol.2013.10.017_bb0220) 2006; 51 Huang (10.1016/j.jnoncrysol.2013.10.017_bb0620) 1987; 20 |
| References_xml | – volume: 15 start-page: 507 year: 2008 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0350 article-title: Effect of protic solvents on the physical properties of the ambient pressure dried hydrophobic silica aerogels using sodium silicate precursor publication-title: J. Porous. Mater. doi: 10.1007/s10934-007-9104-8 – volume: 289 start-page: 88 year: 2001 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0335 article-title: Preparation of low-density xerogels by incorporation of additives during synthesis publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(01)00697-4 – volume: 41 start-page: 139 year: 2007 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0545 article-title: Effective preparation of crack-free silica aerogels via ambient drying publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-006-0513-y – ident: 10.1016/j.jnoncrysol.2013.10.017_bb0850 – volume: 374 start-page: 439 year: 1995 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0530 article-title: Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage publication-title: Nature doi: 10.1038/374439a0 – volume: 35 start-page: 99 year: 2005 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0785 article-title: Nanoengineered silica-polymer composite aerogels with no need for supercritical fluid drying publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-005-1372-7 – volume: 19 start-page: 9054 year: 2009 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0105 article-title: Elastic low density aerogels derived from bis[3-(triethoxysilyl)propyl]disulfide, tetramethylorthosilicate and vinyltrimethoxysilane via a two-step process publication-title: J. Mater. Chem. doi: 10.1039/b916355g – volume: 49 start-page: 53 year: 2009 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0460 article-title: Effect of post-treatment (gel aging) on the properties of methyltrimethoxysilane based silica aerogels prepared by two-step sol–gel process publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-008-1830-0 – volume: 36 start-page: 163 year: 2005 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0290 article-title: Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-005-5288-z – volume: 275 start-page: 169 year: 2000 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0330 article-title: Properties of sol–gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(00)00257-X – volume: 20 start-page: 2845 year: 2008 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0820 article-title: Formation of polycyanoacrylate-silica nanocomposites by chemical vapor deposition of cyanoacrylates on aerogels publication-title: Chem. Mater. doi: 10.1021/cm703381e – volume: 63 start-page: 363 year: 1985 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0580 article-title: Ambient-temperature supercritical drying of transparent silica aerogels publication-title: Mater. Lett. doi: 10.1016/0167-577X(85)90077-1 – volume: 467 start-page: 397 year: 2009 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0650 article-title: Methyltriethoxysilane: new precursor for synthesizing silica aerogels publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2007.12.019 – volume: 271 start-page: 567 year: 1992 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0540 article-title: Preparation of low-density aerogels at ambient pressure publication-title: Mater. Res. Soc. Symp. Proc. doi: 10.1557/PROC-271-567 – volume: 61 start-page: 151 year: 2012 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0400 article-title: Study of the suitability of silica based xerogels synthesized using ethyltrimethoxysilane and/or methyltrimethoxysilane precursors for aerospace applications publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-011-2604-7 – volume: 36 start-page: 52 year: 1932 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0315 article-title: Coherent expanded aerogels publication-title: J. Phys. Chem. doi: 10.1021/j150331a003 – volume: 40 start-page: 874 year: 2007 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0130 article-title: Three dimensional core-shell superstructures: mechanically strong aerogels publication-title: Acc. Chem. Res. doi: 10.1021/ar600033s – volume: 18 start-page: 1843 year: 2008 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0135 article-title: Reinforcing polymer cross-linked aerogels with carbon nanofibers publication-title: J. Mater. Chem. doi: 10.1039/b800602d – volume: 121 start-page: 66 year: 1990 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0475 article-title: From sol–gel to aerogels and cryogels publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(90)90106-V – volume: 350 start-page: 244 year: 2004 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0615 article-title: Silica aerogels with enhanced durability, 30-nm mean pore-size, and improved immersibility in liquids publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2004.07.074 – volume: 47 start-page: 5754 year: 2006 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0255 article-title: Effect of processing conditions on chemical make-up of di-isocyanate crosslinked silica aerogels publication-title: Polymer doi: 10.1016/j.polymer.2006.05.073 – volume: 31 start-page: 1833 year: 2002 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0600 article-title: Porous mullite ceramics with high strength publication-title: J. Mater. Sci. Lett. doi: 10.1023/A:1021576104859 – volume: 1 start-page: 621 year: 2009 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0260 article-title: Tailoring elastic properties of silica aerogels cross-linked with polystyrene publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am8001617 – volume: 71 start-page: 87 year: 2004 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0515 article-title: Effects of ammonia/silica molar ratio on the synthesis and structure of bimodal mesopore silica xerogel publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2004.03.021 – year: 2010 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0885 – volume: 285 start-page: 317 year: 1995 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0070 article-title: An experimental investigation of aerosol collection utilizing packed beds of silica aerogel microspheres publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(01)00473-2 – volume: 40 start-page: 351 year: 2006 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0050 article-title: Aerogel: space exploration applications publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-006-7762-7 – volume: 435 start-page: 295 year: 1996 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0170 article-title: Organically modified silicate aerogels, “Aeromosils” publication-title: Mater. Res. Soc. Symp. Proc. doi: 10.1557/PROC-435-295 – volume: 43 start-page: 1663 year: 2006 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0285 article-title: Hydrophobic silica aerogels strengthened with nonwoven fibers publication-title: Macromol. Sci. A doi: 10.1080/10601320600934792 – volume: 8 start-page: 656 year: 1996 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0685 article-title: Sol–gel synthesis of hybrid organic–inorganic materials. Hexylene- and phenylene-bridged polysiloxanes publication-title: Chem. Mater. doi: 10.1021/cm950067z – volume: 225 start-page: 364 year: 1998 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0080 article-title: Applications for silica aerogel products publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(98)00054-4 – volume: 305 start-page: 124 year: 2007 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0410 article-title: Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.09.025 – year: 1990 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0185 – year: 1992 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0575 – volume: 231 start-page: 10 year: 1998 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0485 article-title: Structural development of silica gels aged in TEOS publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(98)00405-0 – volume: 16 start-page: 3046 year: 2006 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0265 article-title: Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica publication-title: J. Mater. Chem. doi: 10.1039/b604323b – volume: 27 start-page: 103 year: 2003 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0640 article-title: Synthesis and characterization of hydrophobic silica aerogels using trimethylethoxysilane as a co-precursor publication-title: J. Sol-Gel Sci. Technol. doi: 10.1023/A:1023765030983 – volume: 50 start-page: 119 year: 2009 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0165 article-title: Flexible di-isocyanate cross-linked silica aerogels with 1,6-bis(trimethoxysilyl)hexane incorporated in the underlying silica backbone publication-title: Polym. Prepr. – volume: 34 start-page: 421 year: 1995 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0035 article-title: Preparing catalytic materials by the sol–gel method publication-title: J. Ind. Eng. Chem. Res. doi: 10.1021/ie00041a001 – volume: 51 start-page: 2076 year: 2012 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0875 article-title: Cellulose–silica nanocomposite aerogels by in situ formation of silica in cellulose gel publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201105730 – ident: 10.1016/j.jnoncrysol.2013.10.017_bb0280 – volume: 40 start-page: 696 year: 2011 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0715 article-title: Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00136h – volume: 186 start-page: 244 year: 1995 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0025 article-title: Acoustic properties and potential applications of silica aerogels publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(95)00049-6 – volume: 49 start-page: 209 year: 2009 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0250 article-title: Polyurea based aerogel for a high performance thermal insulation material publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-008-1861-6 – start-page: 79 year: 2010 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0390 – volume: 2 start-page: 957 year: 2002 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0140 article-title: Nanoengineering strong silica aerogels publication-title: Nano Lett. doi: 10.1021/nl025690e – volume: 20 start-page: 5035 year: 2008 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0805 article-title: Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization publication-title: Chem. Mater. doi: 10.1021/cm800963h – volume: 145 start-page: 233 year: 1992 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0020 article-title: Development of aerogel windows publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(05)80462-4 – volume: 45 start-page: 4015 year: 2012 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0845 article-title: Atom Transfer Radical Polymerization (ATRP): current status and future perspectives publication-title: Macromolecules doi: 10.1021/ma3001719 – volume: 44 start-page: 3358 year: 2005 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0865 article-title: Cellulose: fascinating biopolymer and sustainable raw material publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.200460587 – volume: 6 start-page: 282 year: 1994 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0720 article-title: Low-density, mutually interpenetrating organic–inorganic composite materials via supercritically drying techniques publication-title: Chem. Mater. doi: 10.1021/cm00039a006 – volume: 6 start-page: 945 year: 2004 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0660 article-title: Synthesis and physical properties of TEOS based silica aerogels prepared by two step (acid–base) sol–gel process publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2004.04.010 – volume: 19 start-page: 3425 year: 2007 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0825 article-title: Synthesis and surface engineering of complex nanostructures by atomic layer deposition publication-title: Adv. Mater. doi: 10.1002/adma.200700079 – volume: 13 start-page: 3422 year: 2001 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0405 article-title: Hybrid sol–gel-derived polymers: applications of multifunctional materials publication-title: Chem. Mater. doi: 10.1021/cm011060m – volume: 117 start-page: 617 year: 2009 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0100 article-title: Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2008.08.025 – volume: 14 start-page: 223 year: 1999 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0505 article-title: Influence of sol–gel synthesis parameters on the microstructure of particulate silica xerogels publication-title: J. Sol-Gel Sci. Technol. doi: 10.1023/A:1008774827602 – volume: 357 start-page: 3447 year: 2011 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0810 article-title: Mechanical properties of polymer-modified silica aerogels dried under ambient pressure publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2011.06.017 – volume: 1 start-page: 2491 year: 2009 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0275 article-title: Flexible nanofiber reinforced aerogel (xerogel): synthesis, manufacture and characterization publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am900451x – volume: 75 start-page: 204 year: 2012 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0630 article-title: Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.01.114 – start-page: 21 year: 2010 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0305 – volume: 241 start-page: 45 year: 1998 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0200 article-title: Different kinds of structure in aerogels: relationships with the mechanical properties publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(98)00747-9 – ident: 10.1016/j.jnoncrysol.2013.10.017_bb0300 – volume: 225 start-page: 14 year: 1998 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0590 article-title: Drying of aerogels in different solvents between atmospheric and supercritical pressures publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(98)00003-9 – volume: 121 start-page: 370 year: 1990 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0680 article-title: Modelling of ORMOCER coatings by processing publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(90)90160-N – volume: 19 start-page: 159 year: 2002 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0625 article-title: Fabrication and thermophysical characterization of nano-porous silicapolyurethane hybrid aerogels by sol–gel processing and supercritical solvent drying technique publication-title: Korean J. Chem. Eng. doi: 10.1007/BF02706890 – volume: 15 start-page: 3559 year: 2005 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0705 article-title: Applications of hybrid organic–inorganic nanocomposites publication-title: J. Mater. Chem. doi: 10.1039/b509097k – volume: 199 start-page: 10 year: 2008 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0235 article-title: Silica aerogel; synthesis, properties and characterization publication-title: J. Mater. Proc. Technol. doi: 10.1016/j.jmatprotec.2007.10.060 – volume: 63 start-page: 41 year: 2010 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0360 article-title: Tailored silica based xerogels and aerogels for insulation in space environments publication-title: Adv. Sci. Technol. doi: 10.4028/www.scientific.net/AST.63.41 – volume: 102 start-page: 4243 year: 2002 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0215 article-title: Aerogels and their applications publication-title: Chem. Rev. doi: 10.1021/cr0101306 – volume: 12 start-page: 6828 year: 2012 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0495 article-title: Effect of the drying conditions on the microstructure of silica based xerogels and aerogels publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2012.4560 – volume: 186 start-page: 321 year: 1995 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0500 article-title: Plastic behavior of aerogels under isostatic pressure publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(95)00059-3 – volume: 350 start-page: 152 year: 2004 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0420 article-title: Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2004.06.041 – volume: 1 start-page: 894 year: 2009 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0690 article-title: Structure–property relationships in porous 3D nanostructures: epoxy-cross-linked silica aerogels produced using ethanol as the solvent publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am900014z – volume: 225 start-page: 335 year: 1998 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0075 article-title: Aerogel applications publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(98)00135-5 – volume: 98 start-page: 1006 year: 1994 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0735 article-title: Proton diffusion in the pores of silicate sol–gel glasses publication-title: J. Phys. Chem. doi: 10.1021/j100054a043 – volume: 1 start-page: 1364 year: 2009 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0125 article-title: Strong, low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am900240h – volume: 353 start-page: 4344 year: 2007 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0780 article-title: Glass transition and segmental dynamics in poly(dimethylsiloxane)/silica nanocomposites studied by various techniques publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2007.05.183 – volume: 3 start-page: 546 year: 2011 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0815 article-title: Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am101123h – volume: 95 start-page: 1431 year: 1995 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0175 article-title: Bridged polysilsesquioxanes: highly porous hybrid organic–inorganic materials publication-title: Chem. Rev. doi: 10.1021/cr00037a013 – volume: 12 start-page: 15 year: 1998 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0510 article-title: Ethanol washing effect on textural properties of the sodium-silicate derived silica xerogel publication-title: J. Sol-Gel Sci. Technol. doi: 10.1023/A:1008648925228 – volume: 41 start-page: 291 year: 2007 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0445 article-title: Strengthening and aging of wet silica gels for up-scaling of aerogel preparation publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-006-1505-7 – volume: 18 start-page: 159 year: 2011 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0655 article-title: High surface area methyltriethoxysilane-derived aerogels by ambient pressure drying publication-title: J. Porous. Mater. doi: 10.1007/s10934-010-9366-4 – volume: 127 start-page: 741-741 year: 1931 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0310 article-title: Coherent expanded aerogels and jellies publication-title: Nature doi: 10.1038/127741a0 – volume: 45 start-page: 626 year: 1984 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0150 article-title: Silica at ultrahigh temperature and expanded volume publication-title: Appl. Phys. Lett. doi: 10.1063/1.95334 – volume: 9 start-page: 19 year: 1999 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0470 article-title: Recent progress in cryochemical synthesis of oxide materials publication-title: J. Mater. Chem. doi: 10.1039/a805081c – volume: 79 start-page: 177 year: 1986 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0570 article-title: Effect of formamide additive on the chemistry of silica sol–gels: part I: NMR of silica hydrolysis publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(86)90045-1 – year: 1990 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0210 – volume: 49 start-page: 47 year: 2009 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0550 article-title: Synthesis of nanoporous silica aerogel by ambient pressure drying publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-008-1828-7 – volume: 24 start-page: 2987 year: 2012 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0840 article-title: Versatile grafting approaches to functionalizing individually dispersed graphene nanosheets using RAFT polymerization and click chemistry publication-title: Chem. Mater. doi: 10.1021/cm301345r – year: 1998 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0205 – volume: AF196 year: 2005 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0225 article-title: Aerogels. Material aspect Techniques de l'Ingenieur publication-title: Sci. Fondam. – volume: 272 start-page: 119 year: 2000 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0355 article-title: Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(00)00231-3 – volume: 350 start-page: 216 year: 2004 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0380 article-title: Comparative studies on the surface chemical modification of silica aerogels based on various organosilane compounds of the type RnSiX4−n publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2004.06.034 – volume: 21 start-page: 593 year: 2003 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0465 article-title: Drying of silica gels to obtain aerogels: phenomenology and basic techniques publication-title: Dry. Technol. doi: 10.1081/DRT-120019055 – start-page: 563 year: 2008 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0395 article-title: Flexible silica based xerogels and aerogels for spatial applications – volume: 3 start-page: 61 year: 1995 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0675 article-title: Developments in organic–inorganic polymeric hybrids: ceramers publication-title: Trends Polym. Sci. – volume: 49 start-page: 534 year: 2008 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0725 article-title: Highly-transparent polymer modified silica aerogels publication-title: Polym. Prepr. – volume: 34 start-page: 707 year: 2001 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0695 article-title: A mechanistic investigation of gelation. The sol–gel polymerization of precursors to bridged polysilsesquioxanes publication-title: Acc. Chem. Res. doi: 10.1021/ar000109b – volume: 42 start-page: 6965 year: 2007 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0535 article-title: Physical properties of methyltrimethoxysilane based elastic silica aerogels prepared by the two-stage sol–gel process publication-title: J. Mater. Sci. Lett. – volume: 30 start-page: 267 year: 1999 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0090 article-title: Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels publication-title: Microporous Mesoporous Mater. doi: 10.1016/S1387-1811(99)00037-2 – volume: 121 start-page: 202 year: 1990 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0455 article-title: Effect of aging and pH on the modulus of aerogels publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(90)90132-6 – volume: 186 start-page: 316 year: 1995 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0525 article-title: Compression of aerogels publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(95)00074-7 – volume: 353 start-page: 2900 year: 2007 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0520 article-title: Silica xerogels and aerogels synthesized with ionic liquids publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2007.06.024 – volume: 30 start-page: 386 year: 2005 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0005 article-title: General topics: silica aerogels—properties and uses publication-title: Polym. News doi: 10.1080/00323910500402961 – volume: 100 start-page: 169 year: 1988 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0180 article-title: Aerogels — highly tenuous solids with fascinating properties publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(88)90014-2 – volume: 5 start-page: 584 year: 2010 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0880 article-title: Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils templates publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.155 – volume: 2 start-page: 2162 year: 2010 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0245 article-title: Epoxy reinforced aerogels made using a streamlined process publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am100422x – volume: 6 start-page: 203 year: 1996 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0340 article-title: Drying and sintering of sol–gel derived large SiO2 monoliths publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/BF00402691 – volume: 281 start-page: 637 year: 2003 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0230 article-title: Some applications of silica aerogels publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-002-0814-9 – volume: 22 start-page: 2790 year: 2010 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0110 article-title: Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks publication-title: Chem. Mater. doi: 10.1021/cm903662a – volume: 87 start-page: 185 year: 1986 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0425 article-title: Structural studies of silica-aerogel — a mass–fractal model system publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(86)80078-3 – volume: 37 start-page: 2237 year: 2002 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0320 article-title: Synthesis of silica aerogels from waterglass via new modified ambient drying publication-title: J. Mater. Sci. doi: 10.1023/A:1015309014546 – volume: 5 start-page: 1900 year: 1968 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0325 article-title: New preparation process for silica xerogels and aerogels, and their textural properties publication-title: Bull. Soc. Chim. Fr. – volume: 51 start-page: 96 year: 2006 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0220 article-title: A review on: “aerogel — world's lightest solid” publication-title: Pop. Plast. Packag. – volume: 9 start-page: 35 year: 1999 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0710 article-title: Molecular design of hybrid organic–inorganic nanocomposites synthesized via sol–gel chemistry publication-title: J. Mater. Chem. doi: 10.1039/a805538f – start-page: 371 year: 2008 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0295 article-title: Mechanical reinforcement of silica aerogel insulation with ceramic fibers – volume: 319 start-page: 263 year: 2003 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0385 article-title: Comparative study of the sol–gel processes starting with different substituted Si-alkoxides publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(03)00007-3 – volume: 19 start-page: 2247 year: 2007 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0115 article-title: Structure–property relationships in porous 3D nanostructures as a function of preparation conditions: isocyanate cross-linked silica aerogels publication-title: Chem. Mater. doi: 10.1021/cm070102p – volume: 452 start-page: 401 year: 2000 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0015 article-title: On the reconstruction of Cherenkov rings from aerogel radiators publication-title: Nucl. Instrum. Methods A doi: 10.1016/S0168-9002(00)00452-6 – volume: 125 start-page: 639 year: 2003 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0060 article-title: Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 2: mechanisms for the pathogenesis of syringomyelia publication-title: J. Biomech. Eng. doi: 10.1115/1.1611885 – start-page: 252 year: 2010 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0270 – volume: 186 start-page: 415 year: 1995 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0155 article-title: Silica aerogel captures cosmic dust intact publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(95)00065-8 – volume: 9 start-page: 628 year: 2007 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0555 article-title: A cost-effective and fast synthesis of nanoporous SiO2 aerogel powders using water-glass via ambient pressure drying route publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2007.04.020 – volume: 352 start-page: 4969 year: 2006 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0775 article-title: Modified chain dynamics in poly(dimethylsiloxane)/silica nanocomposites publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2006.02.159 – volume: 53 start-page: 115 year: 2010 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0560 article-title: Surface modification of silica aerogels by hexamethyldisilazane–carbon dioxide mixtures and their phase behavior publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2009.11.004 – volume: 47 start-page: 615 year: 2008 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0870 article-title: Biologically based fiber-reinforced/clay aerogel composites publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0705406 – volume: 74 start-page: 133 year: 1999 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0765 article-title: Properties and structure of poly(vinyl alcohol)/silica composites publication-title: J. Appl. Polym. Sci. doi: 10.1002/(SICI)1097-4628(19991003)74:1<133::AID-APP16>3.0.CO;2-N – volume: 48 start-page: 57 year: 2003 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0830 article-title: Chemical vapour deposition of coatings publication-title: Prog. Mater. Sci. doi: 10.1016/S0079-6425(01)00009-3 – volume: 107 start-page: 402 year: 2005 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0040 article-title: Humidity sensors based on silica nanoparticle aerogel thin films publication-title: Sens. Actuators B doi: 10.1016/j.snb.2004.10.034 – volume: 185 start-page: 221 year: 1995 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0610 article-title: Thermal and temporal aging of TMOS based aerogel precursors in water publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(95)00016-X – volume: 38 start-page: 1699 year: 2000 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0760 article-title: Thermal, mechanical and morphological properties of phenolic resin/silica hybrid ceramers publication-title: J. Polym. Sci. B Polym. Phys. doi: 10.1002/1099-0488(20000701)38:13<1699::AID-POLB30>3.0.CO;2-L – volume: 40 start-page: 5233 year: 2005 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0770 article-title: Poly(vinyl alcohol)/silica hybrid nanocomposites by sol–gel technique: synthesis and properties publication-title: J. Mater. Sci. doi: 10.1007/s10853-005-4417-y – volume: 285 start-page: 1 year: 2001 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0450 article-title: Strengthening of silica gels and aerogels by washing and aging processes publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(01)00423-9 – volume: 186 start-page: 96 year: 1995 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0435 article-title: Preparation and properties of monolithic silica xerogels from TEOS-based alcogels aged in silane solutions publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(95)00039-9 – volume: 121 start-page: 254 year: 1990 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0730 article-title: Spectroscopy and applications of molecules in glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(90)90141-8 – volume: 380 start-page: 134 year: 2012 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0045 article-title: Application of hydrophobic silica based aerogels and xerogels for removal of toxic organic compounds from aqueous solutions publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.04.062 – volume: 1000 start-page: 801 year: 2003 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0365 article-title: Silica gel-based monoliths prepared by the sol–gel method: facts and figures publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(03)00510-7 – start-page: 56 year: 2010 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0595 – volume: 19 start-page: 1589 year: 2007 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0645 article-title: New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties publication-title: Adv. Mater. doi: 10.1002/adma.200602457 – volume: 16 start-page: 235 year: 2000 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0740 article-title: Preparation and optical properties of silica–poly(ethylene oxide) hybrid materials publication-title: J. Sol–Gel Sci. Technol. doi: 10.1023/A:1008717219952 – volume: 63 start-page: 45 year: 1984 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0430 article-title: Sol–gel transition in simple silicates publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(84)90385-5 – start-page: 2235 year: 2006 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0055 – volume: 17 start-page: 1085 year: 2005 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0240 article-title: Crosslinking amine modified silica aerogels with epoxies: mechanically strong lightweight porous materials publication-title: Chem. Mater. doi: 10.1021/cm048063u – volume: 277 start-page: 127 year: 2000 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0605 article-title: Mechanical structure–property relationship of aerogels publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(00)00288-X – volume: 20 start-page: 6863 year: 2010 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0120 article-title: Mechanically reinforced silica aerogel nanocomposites via surface initiated atom transfer radical polymerizations publication-title: J. Mater. Chem. doi: 10.1039/c0jm01448f – volume: 20 start-page: 1322 year: 1987 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0620 article-title: Structure-property behavior of new hybrid materials incorporating oligomeric species into sol-gel glasses. 3. Effect of acid content, tetraethoxysilane content, and molecular weight of poly(dimethylsiloxane) publication-title: Macromolecules doi: 10.1021/ma00172a026 – year: 2008 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0700 article-title: Di-isocyanate crosslinked aerogels with 1,6-bis(trimethoxysilyl)hexane incorporated in silica backbon – volume: 27 start-page: 4415 year: 1992 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0790 article-title: Rubber-like elasticity of organically modified silicates publication-title: J. Mater. Sci. doi: 10.1007/BF00541574 – volume: 188 start-page: 226 year: 1995 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0635 article-title: Correlation between structure and thermal conductivity of organic aerogels publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(95)00191-3 – volume: 5 start-page: 41 year: 1998 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0370 article-title: Influence of molar ratios of precursor, solvent and water on physical properties of citric acid catalyzed TEOS silica aerogels publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(97)02055-5 – volume: 223 start-page: 179 year: 1998 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0860 article-title: Mechanical properties of silica aerogels publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(97)00430-4 – volume: 6 start-page: 905 year: 1995 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0195 article-title: Scaling of elastic properties in highly porous nanostructured aerogels publication-title: J. Nanostruct. Mater. doi: 10.1016/0965-9773(95)00206-5 – volume: 352 start-page: 2763 year: 2006 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0490 article-title: Multigram scale synthesis and characterization of low-density silica xerogels publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2006.03.054 – volume: 82 start-page: 210 year: 1986 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0670 article-title: A new family of organically modified silicates prepared from gels publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(86)90133-X – volume: 61 start-page: 2173 year: 1996 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0750 article-title: Water permeation properties of SiO2–RSiO3/2 (R=methyl, vinyl, phenyl) thin films prepared by sol–gel method on nylon-6 substrate publication-title: J. Appl. Polym. Sci. doi: 10.1002/(SICI)1097-4628(19960919)61:12<2173::AID-APP16>3.0.CO;2-8 – volume: 108 start-page: 3893 year: 2008 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0795 article-title: Polymer/silica nanocomposites: preparation, characterization, properties, and applications publication-title: Chem. Rev. doi: 10.1021/cr068035q – volume: 354 start-page: 4115 year: 2008 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0890 article-title: Synthesis of silica aerogel blanket by ambient drying method using water glass based precursor and glass wool modified by alumina sol publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2008.03.039 – volume: 3 start-page: 613 year: 2011 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0145 article-title: Tailoring mechanical properties of aerogels for aerospace applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am200007n – start-page: 2009 year: 2009 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0065 – volume: 73 start-page: 681 year: 1985 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0665 article-title: New type of non-crystalline solids between inorganic and organic materials publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(85)90388-6 – volume: 18 start-page: 285 year: 2006 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0800 article-title: Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels publication-title: Chem. Mater. doi: 10.1021/cm0513841 – volume: 3 start-page: 453 year: 2000 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0030 article-title: Design of pore and matter architectures in manganese oxide charge-storage materials publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1391177 – volume: 73 start-page: 765 year: 2000 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0745 article-title: Preparation of microporous silica gel by sol–gel process in the presence of ethylene glycol oligomers publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.73.765 – volume: 2 start-page: 1430 year: 2010 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0835 article-title: Elastic behavior of methyltrimethoxysilane based aerogels reinforced with tri-isocyanate publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am100081a – start-page: 315 year: 2010 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0160 – volume: 253 start-page: 6032 year: 2007 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0565 article-title: Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2006.12.117 – volume: 86 start-page: 3532 year: 2002 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0755 article-title: Preparation of polymer/silica hybrid through sol–gel method involving emulsion polymers: II. poly(ethyl acrylate)/SiO2 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.11152 – volume: 89 start-page: 275 year: 2005 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0010 article-title: Super insulating aerogel glazing publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2005.01.016 – volume: 285 start-page: 1 year: 2001 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0085 article-title: Sol–gel processing parameters and carbon addition publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(01)00462-8 – volume: 13 start-page: 299 year: 1998 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0190 article-title: Aerogels—recent progress in production techniques and novel applications publication-title: J. Sol-Gel Sci. Technol. doi: 10.1023/A:1008663908431 – volume: 910 start-page: 13 year: 2001 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0345 article-title: Single step on-column frit making for capillary high-performance liquid chromatography using sol–gel technology publication-title: J. Chromatogr. doi: 10.1016/S0021-9673(00)01184-5 – volume: 300 start-page: 279 year: 2006 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0095 article-title: Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.03.044 – volume: 252 start-page: 4289 year: 2006 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0375 article-title: Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid–base) sol–gel process publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2005.07.006 – volume: 186 start-page: 78 year: 1995 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0585 article-title: Drying of silica aerogel with supercritical carbon dioxide publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(95)00072-0 – volume: 13 start-page: 3306 year: 2001 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0415 article-title: Bridged polysilsesquioxanes. Molecular-engineered hybrid organic–inorganic materials publication-title: Chem. Mater. doi: 10.1021/cm011074s – volume: 102 start-page: 274 year: 2007 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0440 article-title: Effects of aging and drying conditions on the structural and textural properties of silica gels publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2007.01.007 – volume: 225 start-page: 24 year: 1998 ident: 10.1016/j.jnoncrysol.2013.10.017_bb0480 article-title: Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(98)00102-1 |
| SSID | ssj0000738 |
| Score | 2.609024 |
| Snippet | Silica aerogels are lightweight and highly porous materials, with a three-dimensional network of silica particles, which are obtained by extracting the liquid... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 55 |
| SubjectTerms | Cross-disciplinary physics: materials science; rheology Exact sciences and technology Hybrid materials Materials science Materials synthesis; materials processing Mechanical reinforcement Physics Porous materials; granular materials Silica aerogels Sol–gel Specific materials |
| Title | An overview on silica aerogels synthesis and different mechanical reinforcing strategies |
| URI | https://dx.doi.org/10.1016/j.jnoncrysol.2013.10.017 |
| Volume | 385 |
| WOSCitedRecordID | wos000331662500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4812 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000738 issn: 0022-3093 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKBgKEEBQQ48fkB96qTEnsxIl4CqPAoIxpaqW-RY7tolYlrZKuGg_875zjOMmAifLAS1SlTRPn-3J3utx9h9CrwJfK4xl3QilDh9JYOhwci8MUyahPI5q5VaPwiJ2eRtNpfNbr_bC9MNsly_Po8jJe_1eoYR-ArVtn_wHu5k9hB3wG0GELsMN2J-ATCAC32gLojpR8UM51Wm7AVbH6Cn5QSxRAzKdlSHTK3M5H2Qy-Kd0DXEFWqEpOVZhUg9WSuCaMzVe5I4rvEGQuq4gVFjeXTaD-ORkNP51U_o0veFMI_HZyngyrosHRxbxsPMPZl_Px5H0yqlUN9Ev8NyQ3lWI2NeFRW81s82W1c-_aX9074JqZiNb-kijoWFAj2lv7YjPA5zcrbxIOi6MFLFGvcKXfIXnkSJfpmU7Qq8Lavzi8pgxRK2Fp5fQbaN9nQQxGcT85GU4_tq6ckaiRm4fLrkvBTIHgn89-XXxzb81LgHBmxqV0YpjxA3S_Rg0nhjQPUU_lfXT72M7866O7HXnKPrpVlQeL8hGaJjm2pMKrHBtSYUsq3JAKA6lwQyrckgp3SIVbUj1Gk3fD8fEHp57J4Qga0o0j_BCeej12wJc8FiIIY-7LKGaCQ7CqOPM8wjilGfGFDGUQccJcV9FZTJUkmSBP0B7cN_UU4Rnzskhy4rtRRl2ZRYEgNCDxjDNXUkkPELN3MhW1YL2em7JMbWXiIm0xSDUG-hvA4AB5zZFrI9qywzGvLVhpHXyaoDIF1u1w9OEVfJvTWoo9-9sPnqM77SP0Au1tigv1Et0U2828LA5rYv4Eofy0kA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+overview+on+silica+aerogels+synthesis+and+different+mechanical+reinforcing+strategies&rft.jtitle=Journal+of+non-crystalline+solids&rft.au=MALEKI%2C+Hajar&rft.au=DURAES%2C+Luisa&rft.au=PORTUGAL%2C+Ant%C3%B3nio&rft.date=2014-02-01&rft.pub=Elsevier&rft.issn=0022-3093&rft.volume=385&rft.spage=55&rft.epage=74&rft_id=info:doi/10.1016%2Fj.jnoncrysol.2013.10.017&rft.externalDBID=n%2Fa&rft.externalDocID=28180729 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3093&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3093&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3093&client=summon |