An overview on silica aerogels synthesis and different mechanical reinforcing strategies

Silica aerogels are lightweight and highly porous materials, with a three-dimensional network of silica particles, which are obtained by extracting the liquid phase of silica gels under supercritical conditions. Due to their outstanding characteristics, such as extremely low thermal conductivity, lo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of non-crystalline solids Vol. 385; pp. 55 - 74
Main Authors: Maleki, Hajar, Durães, Luisa, Portugal, António
Format: Journal Article
Language:English
Published: Oxford Elsevier B.V 01.02.2014
Elsevier
Subjects:
ISSN:0022-3093, 1873-4812
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Silica aerogels are lightweight and highly porous materials, with a three-dimensional network of silica particles, which are obtained by extracting the liquid phase of silica gels under supercritical conditions. Due to their outstanding characteristics, such as extremely low thermal conductivity, low density, high porosity and high specific surface area, they have found excellent potential application for thermal insulation systems in aeronautical/aerospace and earthly domains, for environment clean up and protection, heat storage devices, transparent windows systems, thickening agents in paints, etc. However, native silica aerogels are fragile and sensitive at relatively low stresses, which limit their application. More durable aerogels, with higher strength and stiffness, can be obtained by proper selection of the silane precursors, and constructing the silica inorganic networks by compounding them with different organic polymers or different fiber networks. Recent studies showed that adding flexible organic polymers to the hydroxyl groups on the silica gel surface would be an effective mechanical reinforcing method of silica aerogels. More versatile polymer reinforcement approach can be readily achieved if proper functional groups are introduced on the surface of silica aerogels and then co-polymerized with appropriate organic monomers. The mechanical reinforced silica aerogels, with their very open texture, can be an outstanding thermal insulator material for different industrial and aerospace applications. This paper presents a review of the literature on the methods for mechanical reinforcing of silica aerogels and discusses the recent achievements in improving the strength and elastic response of native silica aerogels along with cost effectiveness of each methodology. •Overview on chemistry and synthesis/drying methods of silica aerogels is given.•Literature survey on methods for structural reinforcement of silica aerogels•Literature survey on strategies for silica aerogels reinforcement with polymers•Mechanical reinforcement of silica aerogels by incorporation of fibers is described.
AbstractList Silica aerogels are lightweight and highly porous materials, with a three-dimensional network of silica particles, which are obtained by extracting the liquid phase of silica gels under supercritical conditions. Due to their outstanding characteristics, such as extremely low thermal conductivity, low density, high porosity and high specific surface area, they have found excellent potential application for thermal insulation systems in aeronautical/aerospace and earthly domains, for environment clean up and protection, heat storage devices, transparent windows systems, thickening agents in paints, etc. However, native silica aerogels are fragile and sensitive at relatively low stresses, which limit their application. More durable aerogels, with higher strength and stiffness, can be obtained by proper selection of the silane precursors, and constructing the silica inorganic networks by compounding them with different organic polymers or different fiber networks. Recent studies showed that adding flexible organic polymers to the hydroxyl groups on the silica gel surface would be an effective mechanical reinforcing method of silica aerogels. More versatile polymer reinforcement approach can be readily achieved if proper functional groups are introduced on the surface of silica aerogels and then co-polymerized with appropriate organic monomers. The mechanical reinforced silica aerogels, with their very open texture, can be an outstanding thermal insulator material for different industrial and aerospace applications. This paper presents a review of the literature on the methods for mechanical reinforcing of silica aerogels and discusses the recent achievements in improving the strength and elastic response of native silica aerogels along with cost effectiveness of each methodology. •Overview on chemistry and synthesis/drying methods of silica aerogels is given.•Literature survey on methods for structural reinforcement of silica aerogels•Literature survey on strategies for silica aerogels reinforcement with polymers•Mechanical reinforcement of silica aerogels by incorporation of fibers is described.
Author Durães, Luisa
Maleki, Hajar
Portugal, António
Author_xml – sequence: 1
  givenname: Hajar
  surname: Maleki
  fullname: Maleki, Hajar
  email: hajar@eq.uc.pt
– sequence: 2
  givenname: Luisa
  surname: Durães
  fullname: Durães, Luisa
– sequence: 3
  givenname: António
  orcidid: 0000-0002-7520-4767
  surname: Portugal
  fullname: Portugal, António
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28180729$$DView record in Pascal Francis
BookMark eNqNkE1LAzEQhoNUsK3-h1w8bs3HdrN7EWrxCwpeFLyFdDLbpmyTkiyV_ntTqghedC4DM--88_KMyMAHj4RQziac8epmM9nkCcRDCt1EMC7zeMK4OiNDXitZlDUXAzJkTIhCskZekFFKG5ZLyXpI3meehj3GvcMPGjxNrnNgqMEYVtglmg6-X2NyiRpvqXVtixF9T7cIa-OztKMRnW9DBOdXNPXR9LhymC7JeWu6hFdffUzeHu5f50_F4uXxeT5bFFBWZV-AqJYITMhKWNMATKvGCFs3CgxTHI3iXCpTlkspwFZ2WhupGMOybUq0cglyTK5PvjuTcpo2Gg8u6V10WxMPWtS8Zko0WXd70kEMKUVsNbje9C74HNl1mjN95Kk3-oenPvI8bjLPbFD_Mvj-8Y_Tu9NpJoqZdNQJHHpA6yJCr21wf5t8Au1am3M
CODEN JNCSBJ
CitedBy_id crossref_primary_10_1002_adfm_202103410
crossref_primary_10_1016_j_apmt_2024_102483
crossref_primary_10_1007_s10853_023_08214_y
crossref_primary_10_1002_mame_202300169
crossref_primary_10_1016_j_compstruct_2021_114855
crossref_primary_10_1016_j_micromeso_2020_110838
crossref_primary_10_1016_j_mseb_2023_117062
crossref_primary_10_3390_gels10120844
crossref_primary_10_1002_app_44521
crossref_primary_10_3390_biomedicines10030662
crossref_primary_10_1016_j_colsurfa_2017_02_018
crossref_primary_10_1016_j_supflu_2020_104997
crossref_primary_10_1007_s11051_019_4624_0
crossref_primary_10_1039_D2NR06984A
crossref_primary_10_3390_molecules27207127
crossref_primary_10_1007_s10853_016_9965_9
crossref_primary_10_3390_gels2010001
crossref_primary_10_1016_j_jnoncrysol_2025_123462
crossref_primary_10_1515_nanoph_2023_0894
crossref_primary_10_1016_j_polymer_2020_123125
crossref_primary_10_1038_s41598_024_57257_x
crossref_primary_10_3390_gels11040268
crossref_primary_10_1016_j_cej_2023_141579
crossref_primary_10_1016_j_polymer_2024_127600
crossref_primary_10_1007_s42765_022_00175_2
crossref_primary_10_1016_j_enbuild_2022_112719
crossref_primary_10_3390_molecules29102223
crossref_primary_10_1016_j_jcis_2017_10_035
crossref_primary_10_1016_j_ijthermalsci_2023_108850
crossref_primary_10_1016_j_mtcomm_2022_104261
crossref_primary_10_1016_j_cej_2020_128304
crossref_primary_10_1016_j_msea_2014_12_007
crossref_primary_10_1002_pc_22949
crossref_primary_10_1016_j_jece_2025_115906
crossref_primary_10_1016_j_eurpolymj_2016_02_019
crossref_primary_10_1016_j_apsusc_2019_05_017
crossref_primary_10_1016_j_polymer_2018_01_067
crossref_primary_10_3390_molecules28145534
crossref_primary_10_1016_j_heliyon_2021_e07675
crossref_primary_10_1007_s10971_021_05720_w
crossref_primary_10_1016_j_jnoncrysol_2022_121887
crossref_primary_10_1007_s10934_025_01769_y
crossref_primary_10_3390_w15091724
crossref_primary_10_3390_gels10110702
crossref_primary_10_1016_j_ceramint_2024_09_135
crossref_primary_10_1016_j_solidstatesciences_2015_08_005
crossref_primary_10_3390_ma14216646
crossref_primary_10_1039_D0QM00234H
crossref_primary_10_1002_adma_202005569
crossref_primary_10_1016_j_jnoncrysol_2016_10_015
crossref_primary_10_1680_jmacr_17_00234
crossref_primary_10_1007_s10853_021_05997_w
crossref_primary_10_1016_j_colsurfa_2021_126331
crossref_primary_10_1016_j_jcis_2021_09_128
crossref_primary_10_1002_er_8377
crossref_primary_10_1016_j_matchemphys_2015_05_077
crossref_primary_10_1007_s10934_021_01136_7
crossref_primary_10_1016_j_matdes_2022_111065
crossref_primary_10_1007_s11595_016_1441_5
crossref_primary_10_1016_j_flatc_2022_100449
crossref_primary_10_3390_ijms20133213
crossref_primary_10_1007_s12633_020_00421_5
crossref_primary_10_1016_j_cej_2021_128604
crossref_primary_10_1002_slct_201703000
crossref_primary_10_1007_s11356_022_24689_9
crossref_primary_10_1016_j_coco_2023_101531
crossref_primary_10_1007_s10934_021_01091_3
crossref_primary_10_1016_j_cej_2019_123813
crossref_primary_10_1016_j_conbuildmat_2021_123289
crossref_primary_10_1002_adfm_202215168
crossref_primary_10_1002_smll_201902826
crossref_primary_10_3390_gels11090718
crossref_primary_10_1016_j_ceramint_2017_04_043
crossref_primary_10_3390_gels9030241
crossref_primary_10_1016_j_matdes_2020_108521
crossref_primary_10_3390_jfb9020030
crossref_primary_10_1007_s11814_020_0574_6
crossref_primary_10_1016_j_carbpol_2020_116079
crossref_primary_10_1016_j_jcis_2019_04_028
crossref_primary_10_1016_j_micromeso_2020_110759
crossref_primary_10_1063_5_0266767
crossref_primary_10_1088_2631_7990_aca44d
crossref_primary_10_1016_j_ijbiomac_2025_143177
crossref_primary_10_1016_j_energy_2022_124768
crossref_primary_10_1002_admi_202001892
crossref_primary_10_1007_s10934_020_00929_6
crossref_primary_10_1016_j_cis_2016_08_009
crossref_primary_10_1007_s10934_021_01080_6
crossref_primary_10_1007_s10971_023_06110_0
crossref_primary_10_1007_s10971_023_06156_0
crossref_primary_10_1016_j_ijbiomac_2023_125928
crossref_primary_10_1016_j_carbpol_2024_122237
crossref_primary_10_1002_pen_26260
crossref_primary_10_3390_en16176244
crossref_primary_10_1016_j_micromeso_2016_06_025
crossref_primary_10_1016_j_diamond_2019_04_017
crossref_primary_10_1002_app_48196
crossref_primary_10_1007_s10934_025_01830_w
crossref_primary_10_1016_j_actaastro_2019_07_030
crossref_primary_10_1016_j_matdes_2018_02_039
crossref_primary_10_1016_j_ceramint_2021_05_262
crossref_primary_10_3390_gels8070392
crossref_primary_10_1016_j_carbon_2016_07_060
crossref_primary_10_1063_1_5138928
crossref_primary_10_1016_j_jnoncrysol_2017_03_030
crossref_primary_10_1016_j_micromeso_2019_109575
crossref_primary_10_1016_j_conbuildmat_2023_132257
crossref_primary_10_1002_sstr_202400120
crossref_primary_10_1016_j_cej_2016_04_098
crossref_primary_10_1515_epoly_2022_0077
crossref_primary_10_1016_j_supflu_2017_11_017
crossref_primary_10_1080_01932691_2017_1382375
crossref_primary_10_3390_polym14132745
crossref_primary_10_1016_j_ces_2024_120826
crossref_primary_10_3390_gels5010006
crossref_primary_10_1016_j_applthermaleng_2025_125941
crossref_primary_10_1007_s10934_025_01841_7
crossref_primary_10_1016_j_nanoen_2023_109229
crossref_primary_10_1080_00222348_2018_1476440
crossref_primary_10_1007_s10934_021_01103_2
crossref_primary_10_1002_adfm_201404368
crossref_primary_10_1016_j_jnoncrysol_2016_09_003
crossref_primary_10_1016_j_est_2022_104324
crossref_primary_10_3390_gels8100617
crossref_primary_10_1016_j_cej_2020_127488
crossref_primary_10_1016_j_ijbiomac_2024_129800
crossref_primary_10_1186_s42825_021_00067_y
crossref_primary_10_1007_s10971_017_4339_6
crossref_primary_10_1016_j_ceramint_2023_01_178
crossref_primary_10_3390_gels4010005
crossref_primary_10_1016_j_porgcoat_2020_106023
crossref_primary_10_3390_en15196982
crossref_primary_10_1002_marc_202200628
crossref_primary_10_1016_j_ijadhadh_2016_02_002
crossref_primary_10_1016_j_apcatb_2017_08_012
crossref_primary_10_1016_j_ceramint_2021_05_248
crossref_primary_10_1016_j_apsusc_2022_155348
crossref_primary_10_1063_1_5028479
crossref_primary_10_1111_ijac_13125
crossref_primary_10_1016_j_enbuild_2021_111661
crossref_primary_10_1016_j_eurpolymj_2014_06_012
crossref_primary_10_1016_j_eng_2025_08_029
crossref_primary_10_1007_s10853_021_06781_6
crossref_primary_10_1016_j_enbuild_2021_111058
crossref_primary_10_3390_gels9090749
crossref_primary_10_1007_s10971_024_06600_9
crossref_primary_10_1002_agt2_30
crossref_primary_10_1016_j_carbpol_2023_121476
crossref_primary_10_1002_adts_201900211
crossref_primary_10_3390_polym15102323
crossref_primary_10_1002_ange_201709014
crossref_primary_10_1016_j_micromeso_2015_07_019
crossref_primary_10_1134_S108765962460039X
crossref_primary_10_3390_ma14071631
crossref_primary_10_1016_j_apenergy_2023_122027
crossref_primary_10_1002_adma_202102892
crossref_primary_10_1016_j_apmt_2025_102800
crossref_primary_10_3390_molecules30061212
crossref_primary_10_1007_s10971_024_06538_y
crossref_primary_10_3390_polym15020262
crossref_primary_10_3390_gels11070511
crossref_primary_10_1016_j_apsusc_2017_07_134
crossref_primary_10_1016_j_cis_2016_05_011
crossref_primary_10_1002_app_43268
crossref_primary_10_1007_s10971_018_4885_6
crossref_primary_10_1016_j_enbuild_2019_03_033
crossref_primary_10_1016_j_ceramint_2025_02_117
crossref_primary_10_1016_j_compscitech_2018_12_027
crossref_primary_10_4028_www_scientific_net_JNanoR_62_31
crossref_primary_10_1016_j_jssc_2019_07_038
crossref_primary_10_3390_gels10010004
crossref_primary_10_1016_j_conbuildmat_2025_141698
crossref_primary_10_3390_en13061464
crossref_primary_10_1016_j_micromeso_2019_109781
crossref_primary_10_3390_molecules25122788
crossref_primary_10_1039_C9RA00970A
crossref_primary_10_1007_s42765_020_00054_8
crossref_primary_10_1002_anie_201507328
crossref_primary_10_3390_ma15248811
crossref_primary_10_1016_j_jnoncrysol_2014_07_001
crossref_primary_10_1007_s10971_017_4326_y
crossref_primary_10_1093_ijlct_ctad003
crossref_primary_10_1016_j_jenvman_2025_124668
crossref_primary_10_1016_j_nxmate_2024_100388
crossref_primary_10_3390_nano8020113
crossref_primary_10_1007_s10971_018_4645_7
crossref_primary_10_1186_s11671_017_2323_2
crossref_primary_10_1016_j_supflu_2018_07_002
crossref_primary_10_1016_j_supflu_2019_02_018
crossref_primary_10_1016_j_ceramint_2019_07_109
crossref_primary_10_1016_j_jnoncrysol_2023_122177
crossref_primary_10_1016_j_matdes_2015_07_041
crossref_primary_10_1007_s00339_014_8609_7
crossref_primary_10_1007_s10971_017_4359_2
crossref_primary_10_1016_j_jece_2023_109828
crossref_primary_10_1016_j_supflu_2019_02_010
crossref_primary_10_3390_safety9040080
crossref_primary_10_1016_j_colsurfa_2017_12_025
crossref_primary_10_1007_s10934_016_0280_2
crossref_primary_10_1016_j_enbuild_2019_06_027
crossref_primary_10_1007_s13369_020_04912_w
crossref_primary_10_1007_s10971_017_4400_5
crossref_primary_10_1016_j_jtice_2020_07_008
crossref_primary_10_1016_j_matlet_2016_05_085
crossref_primary_10_1007_s10971_021_05701_z
crossref_primary_10_1016_j_tsep_2022_101484
crossref_primary_10_1039_D4RA04976D
crossref_primary_10_1016_j_bsecv_2023_03_001
crossref_primary_10_1016_j_ijhydene_2021_10_272
crossref_primary_10_1016_j_microc_2019_04_028
crossref_primary_10_1039_C7TA08959G
crossref_primary_10_1016_j_conbuildmat_2023_134478
crossref_primary_10_1007_s10971_016_4137_6
crossref_primary_10_1016_j_commatsci_2020_110252
crossref_primary_10_1002_app_56823
crossref_primary_10_3390_gels7030122
crossref_primary_10_1016_j_expthermflusci_2017_01_021
crossref_primary_10_1016_j_colsurfa_2022_130502
crossref_primary_10_1177_0892705719876316
crossref_primary_10_1016_j_heliyon_2023_e23102
crossref_primary_10_1016_j_ijthermalsci_2022_107703
crossref_primary_10_1007_s10971_023_06088_9
crossref_primary_10_1016_j_applthermaleng_2021_116890
crossref_primary_10_1080_15567036_2024_2424915
crossref_primary_10_3390_gels7040264
crossref_primary_10_3390_ma17010027
crossref_primary_10_1007_s10853_021_06142_3
crossref_primary_10_1007_s10971_014_3575_2
crossref_primary_10_1016_j_cis_2020_102189
crossref_primary_10_3390_polym10060623
crossref_primary_10_1016_j_seppur_2021_120229
crossref_primary_10_1007_s10661_025_14292_z
crossref_primary_10_1016_j_micromeso_2022_111682
crossref_primary_10_1007_s10934_018_0617_0
crossref_primary_10_1016_j_arabjc_2019_12_008
crossref_primary_10_1177_17442591251344836
crossref_primary_10_1016_j_cis_2021_102464
crossref_primary_10_1016_j_ijthermalsci_2017_07_014
crossref_primary_10_1016_j_micromeso_2019_109863
crossref_primary_10_1016_j_cej_2025_160590
crossref_primary_10_1016_j_jnoncrysol_2017_12_047
crossref_primary_10_1016_j_apsusc_2018_01_132
crossref_primary_10_1016_j_matlet_2015_03_058
crossref_primary_10_1016_j_surfin_2025_106788
crossref_primary_10_3390_nano13091498
crossref_primary_10_1007_s10971_020_05396_8
crossref_primary_10_1002_app_47945
crossref_primary_10_1016_j_ceramint_2018_06_213
crossref_primary_10_1007_s10570_023_05264_y
crossref_primary_10_1016_j_micromeso_2023_112886
crossref_primary_10_1080_21650373_2024_2383943
crossref_primary_10_1134_S107036322312023X
crossref_primary_10_1515_polyeng_2017_0402
crossref_primary_10_3390_ma14195592
crossref_primary_10_1016_j_jnoncrysol_2017_05_016
crossref_primary_10_1016_j_jallcom_2024_173990
crossref_primary_10_1016_j_optcom_2025_132426
crossref_primary_10_1177_0731684415578306
crossref_primary_10_1515_polyeng_2018_0089
crossref_primary_10_1016_j_matdes_2024_113091
crossref_primary_10_3390_ijms241210128
crossref_primary_10_1007_s10934_016_0305_x
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122618
crossref_primary_10_1016_j_apmt_2021_100964
crossref_primary_10_1016_j_apcatb_2018_04_044
crossref_primary_10_1016_j_enbuild_2021_111146
crossref_primary_10_1002_app_52385
crossref_primary_10_3390_molecules28247978
crossref_primary_10_1021_acsami_4c00065
crossref_primary_10_1038_s41467_024_48840_x
crossref_primary_10_1007_s10934_021_01085_1
crossref_primary_10_1038_s41598_021_89634_1
crossref_primary_10_1016_j_scitotenv_2019_03_337
crossref_primary_10_1080_03067319_2021_1982921
crossref_primary_10_1134_S0036023624600576
crossref_primary_10_1016_j_conbuildmat_2021_122815
crossref_primary_10_1016_j_polymer_2019_03_050
crossref_primary_10_1016_j_micromeso_2017_09_016
crossref_primary_10_3390_nano10122406
crossref_primary_10_1002_adma_202412385
crossref_primary_10_1002_cssc_202402119
crossref_primary_10_1016_j_ceramint_2018_09_064
crossref_primary_10_1039_D5AN00182J
crossref_primary_10_1007_s13367_022_00046_7
crossref_primary_10_1016_j_apsusc_2020_147677
crossref_primary_10_1016_j_conbuildmat_2024_139826
crossref_primary_10_1016_j_cej_2020_125937
crossref_primary_10_1016_j_egyr_2023_04_061
crossref_primary_10_1016_j_psep_2023_06_081
crossref_primary_10_1002_app_49892
crossref_primary_10_1016_j_mtchem_2022_101257
crossref_primary_10_1016_j_apt_2019_12_013
crossref_primary_10_1016_j_cej_2023_146589
crossref_primary_10_1007_s11164_017_3029_x
crossref_primary_10_1002_ange_201507328
crossref_primary_10_3390_ma11091494
crossref_primary_10_1016_j_jechem_2022_10_009
crossref_primary_10_3390_nano15120901
crossref_primary_10_1016_j_mtla_2019_100527
crossref_primary_10_3390_molecules24091815
crossref_primary_10_1021_acsami_5c10776
crossref_primary_10_1007_s10570_023_05190_z
crossref_primary_10_1002_app_52960
crossref_primary_10_1016_j_jnoncrysol_2017_01_037
crossref_primary_10_1070_RCR4932
crossref_primary_10_1016_j_biopha_2019_01_014
crossref_primary_10_1016_j_matchemphys_2016_11_064
crossref_primary_10_1016_j_micromeso_2020_110164
crossref_primary_10_1016_j_colsurfa_2021_128183
crossref_primary_10_1002_app_44193
crossref_primary_10_1002_pc_24412
crossref_primary_10_1007_s10971_016_4012_5
crossref_primary_10_1007_s10971_016_3968_5
crossref_primary_10_1080_1023666X_2016_1091541
crossref_primary_10_1016_j_matdes_2019_108333
crossref_primary_10_1016_j_apmt_2020_100843
crossref_primary_10_3390_gels10090554
crossref_primary_10_1002_adfm_202511831
crossref_primary_10_1016_j_porgcoat_2025_109114
crossref_primary_10_3390_gels8080485
crossref_primary_10_3390_nano12091522
crossref_primary_10_1016_j_compositesa_2017_09_018
crossref_primary_10_1002_adsu_202400184
crossref_primary_10_1016_j_jcis_2025_137926
crossref_primary_10_1007_s10934_020_00901_4
crossref_primary_10_1039_D0RA03472J
crossref_primary_10_1007_s10570_018_2189_1
crossref_primary_10_1016_j_micromeso_2016_11_037
crossref_primary_10_1016_j_mtla_2019_100315
crossref_primary_10_1039_C8RA08646J
crossref_primary_10_1016_j_micromeso_2014_06_003
crossref_primary_10_1007_s10971_015_3756_7
crossref_primary_10_1016_j_jcis_2020_03_118
crossref_primary_10_1016_j_cjche_2020_04_023
crossref_primary_10_3390_ma16103778
crossref_primary_10_1016_j_cis_2020_102101
crossref_primary_10_1016_j_micromeso_2021_111569
crossref_primary_10_3390_gels10050293
crossref_primary_10_1016_j_eurpolymj_2017_06_009
crossref_primary_10_1016_j_jnoncrysol_2017_07_032
crossref_primary_10_1007_s10934_017_0513_z
crossref_primary_10_1007_s10934_021_01089_x
crossref_primary_10_1016_j_matdes_2016_11_080
crossref_primary_10_1016_j_porgcoat_2019_02_030
crossref_primary_10_1016_j_enbuild_2016_08_053
crossref_primary_10_1007_s11814_025_00537_7
crossref_primary_10_1016_j_jnoncrysol_2018_09_029
crossref_primary_10_1016_j_tsep_2023_101808
crossref_primary_10_1016_j_matchemphys_2021_124252
crossref_primary_10_1016_j_micromeso_2020_110092
crossref_primary_10_1016_j_jnoncrysol_2023_122171
crossref_primary_10_1016_j_ceramint_2019_04_176
crossref_primary_10_1016_j_supflu_2024_106354
crossref_primary_10_1016_j_jnoncrysol_2021_120828
crossref_primary_10_3390_computation12020035
crossref_primary_10_1016_j_jeurceramsoc_2022_11_061
crossref_primary_10_1016_j_seppur_2021_119409
crossref_primary_10_3390_ma15041277
crossref_primary_10_1007_s10971_025_06831_4
crossref_primary_10_1016_j_diamond_2021_108474
crossref_primary_10_1007_s13399_023_04443_y
crossref_primary_10_1016_j_jnoncrysol_2017_10_053
crossref_primary_10_1002_adfm_201705042
crossref_primary_10_3390_polym11111883
crossref_primary_10_1007_s10971_018_4640_z
crossref_primary_10_1016_j_ceramint_2024_06_240
crossref_primary_10_1007_s00226_022_01412_y
crossref_primary_10_1134_S0040579525600160
crossref_primary_10_1093_burnst_tkab019
crossref_primary_10_1016_j_polymer_2024_127274
crossref_primary_10_1016_j_jcis_2019_11_072
crossref_primary_10_1016_j_jnoncrysol_2023_122259
crossref_primary_10_1007_s10570_024_06074_6
crossref_primary_10_1016_j_matdes_2016_03_063
crossref_primary_10_1002_er_4423
crossref_primary_10_1007_s42114_024_00969_5
crossref_primary_10_1016_j_seppur_2023_124201
crossref_primary_10_3390_catal13091286
crossref_primary_10_1016_j_ijthermalsci_2020_106681
crossref_primary_10_1016_j_snb_2015_04_070
crossref_primary_10_1007_s10311_018_0723_x
crossref_primary_10_1016_j_supflu_2015_06_020
crossref_primary_10_1039_D2RA01336C
crossref_primary_10_1002_advs_202204681
crossref_primary_10_1007_s10971_022_05756_6
crossref_primary_10_1016_j_jnoncrysol_2020_120306
crossref_primary_10_1002_adfm_202108774
crossref_primary_10_1016_j_jssc_2019_120971
crossref_primary_10_1007_s10934_021_01066_4
crossref_primary_10_1007_s10971_016_4154_5
crossref_primary_10_1016_j_compscitech_2016_12_004
crossref_primary_10_1016_j_matchemphys_2018_05_019
crossref_primary_10_1007_s10973_018_7315_7
crossref_primary_10_1016_j_jiec_2020_05_019
crossref_primary_10_2478_aut_2019_0082
crossref_primary_10_1007_s10853_016_0514_3
crossref_primary_10_1002_ejic_201801512
crossref_primary_10_1016_j_ceramint_2018_09_223
crossref_primary_10_3390_nano14050469
crossref_primary_10_1007_s10971_021_05692_x
crossref_primary_10_1016_j_micromeso_2022_111874
crossref_primary_10_1002_pen_26628
crossref_primary_10_1515_pac_2018_0706
crossref_primary_10_1016_j_apmt_2022_101670
crossref_primary_10_1016_j_foodhyd_2018_05_021
crossref_primary_10_1016_j_ceramint_2021_06_023
crossref_primary_10_1016_j_matdes_2025_113919
crossref_primary_10_1007_s10971_017_4373_4
crossref_primary_10_3390_nano12071086
crossref_primary_10_3390_ma11122589
crossref_primary_10_1016_j_jnoncrysol_2016_08_031
crossref_primary_10_3390_gels4020055
crossref_primary_10_1016_j_jnoncrysol_2017_09_005
crossref_primary_10_3390_ma12182878
crossref_primary_10_1002_pc_24814
crossref_primary_10_1016_j_tafmec_2018_08_007
crossref_primary_10_1007_s10934_019_00757_3
crossref_primary_10_1016_j_jnoncrysol_2015_06_013
crossref_primary_10_1007_s10965_016_0938_0
crossref_primary_10_1016_j_matchemphys_2021_124852
crossref_primary_10_1016_j_cej_2022_140818
crossref_primary_10_1016_j_matpr_2022_09_147
crossref_primary_10_1016_j_micromeso_2020_110206
crossref_primary_10_1016_j_ceramint_2022_07_238
crossref_primary_10_1016_j_ijbiomac_2019_10_037
crossref_primary_10_1016_j_jcis_2021_05_059
crossref_primary_10_3390_molecules26165023
crossref_primary_10_1002_ppsc_202200186
crossref_primary_10_1007_s40090_020_00209_x
crossref_primary_10_1016_j_jnoncrysol_2020_120517
crossref_primary_10_3390_ma13122677
crossref_primary_10_1016_j_mspro_2015_11_081
crossref_primary_10_1016_j_compositesa_2024_108164
crossref_primary_10_1002_pen_25871
crossref_primary_10_1002_pat_5041
crossref_primary_10_1007_s00466_022_02150_5
crossref_primary_10_1007_s10971_019_04933_4
crossref_primary_10_1016_j_ijbiomac_2024_129460
crossref_primary_10_1007_s10971_019_05148_3
crossref_primary_10_1039_D3NR05895F
crossref_primary_10_1016_j_polymdegradstab_2025_111484
crossref_primary_10_1016_j_compscitech_2020_107992
crossref_primary_10_1007_s13399_024_05715_x
crossref_primary_10_1016_j_jnoncrysol_2021_120923
crossref_primary_10_1016_j_mspro_2015_11_072
crossref_primary_10_1016_j_carbpol_2016_03_048
crossref_primary_10_1016_j_scriptamat_2017_09_028
crossref_primary_10_1007_s11947_020_02432_x
crossref_primary_10_1039_D1EN00026H
crossref_primary_10_1016_j_ceramint_2024_04_346
crossref_primary_10_3390_gels9120967
crossref_primary_10_1080_10426507_2021_2017434
crossref_primary_10_1016_j_supflu_2015_07_015
crossref_primary_10_3390_ijms25021309
crossref_primary_10_1016_j_jtice_2025_106143
crossref_primary_10_1016_j_supflu_2015_07_018
crossref_primary_10_1016_j_susmat_2020_e00240
crossref_primary_10_3390_ma14133559
crossref_primary_10_1155_2017_2102467
crossref_primary_10_1016_j_ceramint_2018_10_038
crossref_primary_10_1016_j_eurpolymj_2019_03_033
crossref_primary_10_1016_j_rser_2018_12_040
crossref_primary_10_1039_D2RA01511K
crossref_primary_10_1002_smll_202502291
crossref_primary_10_1016_j_addma_2023_103583
crossref_primary_10_3390_ma14082046
crossref_primary_10_1016_j_ceramint_2018_05_199
crossref_primary_10_1002_adfm_202407547
crossref_primary_10_3390_gels10060380
crossref_primary_10_1007_s11705_022_2222_7
crossref_primary_10_1016_j_scriptamat_2019_10_010
crossref_primary_10_3390_polym12102417
crossref_primary_10_1002_mame_202000612
crossref_primary_10_1016_j_biombioe_2022_106424
crossref_primary_10_1016_j_ijbiomac_2020_08_066
crossref_primary_10_3390_gels9070535
crossref_primary_10_1016_j_jcomc_2025_100573
crossref_primary_10_3390_molecules25194417
crossref_primary_10_1002_anie_201709014
crossref_primary_10_3390_gels9020160
crossref_primary_10_1016_j_matdes_2017_06_036
crossref_primary_10_1016_j_ceramint_2020_07_278
crossref_primary_10_1111_jace_20401
crossref_primary_10_1016_j_jnoncrysol_2023_122322
crossref_primary_10_1007_s10971_017_4470_4
crossref_primary_10_3390_polym12061278
crossref_primary_10_1039_C9NR07035D
crossref_primary_10_1016_j_eti_2020_100642
crossref_primary_10_1016_j_micromeso_2020_110456
crossref_primary_10_1134_S1061933X20040043
crossref_primary_10_1016_j_conbuildmat_2019_04_102
crossref_primary_10_1016_j_jtice_2016_05_030
crossref_primary_10_1080_09593330_2017_1397766
crossref_primary_10_1007_s10971_021_05499_w
crossref_primary_10_1002_admi_202300109
crossref_primary_10_1016_j_cej_2019_122421
crossref_primary_10_1007_s10570_025_06647_z
crossref_primary_10_1002_cctc_202301118
crossref_primary_10_1016_j_micromeso_2021_110895
crossref_primary_10_3390_molecules29112675
crossref_primary_10_1016_j_ceramint_2018_11_089
crossref_primary_10_1016_j_jcis_2020_01_110
crossref_primary_10_1557_adv_2017_375
crossref_primary_10_1111_jace_17465
crossref_primary_10_3390_molecules28041691
crossref_primary_10_1016_j_ijbiomac_2021_01_098
crossref_primary_10_1080_10407790_2023_2217340
crossref_primary_10_1016_j_cej_2025_167640
crossref_primary_10_1016_j_trac_2021_116497
Cites_doi 10.1007/s10934-007-9104-8
10.1016/S0022-3093(01)00697-4
10.1007/s10971-006-0513-y
10.1038/374439a0
10.1007/s10971-005-1372-7
10.1039/b916355g
10.1007/s10971-008-1830-0
10.1007/s10971-005-5288-z
10.1016/S0022-3093(00)00257-X
10.1021/cm703381e
10.1016/0167-577X(85)90077-1
10.1016/j.jallcom.2007.12.019
10.1557/PROC-271-567
10.1007/s10971-011-2604-7
10.1021/j150331a003
10.1021/ar600033s
10.1039/b800602d
10.1016/0022-3093(90)90106-V
10.1016/j.jnoncrysol.2004.07.074
10.1016/j.polymer.2006.05.073
10.1023/A:1021576104859
10.1021/am8001617
10.1016/j.micromeso.2004.03.021
10.1016/S0022-3093(01)00473-2
10.1007/s10971-006-7762-7
10.1557/PROC-435-295
10.1080/10601320600934792
10.1021/cm950067z
10.1016/S0022-3093(98)00054-4
10.1016/j.jcis.2006.09.025
10.1016/S0022-3093(98)00405-0
10.1039/b604323b
10.1023/A:1023765030983
10.1021/ie00041a001
10.1002/anie.201105730
10.1039/c0cs00136h
10.1016/0022-3093(95)00049-6
10.1007/s10971-008-1861-6
10.1021/nl025690e
10.1021/cm800963h
10.1016/S0022-3093(05)80462-4
10.1021/ma3001719
10.1002/anie.200460587
10.1021/cm00039a006
10.1016/j.solidstatesciences.2004.04.010
10.1002/adma.200700079
10.1021/cm011060m
10.1016/j.micromeso.2008.08.025
10.1023/A:1008774827602
10.1016/j.jnoncrysol.2011.06.017
10.1021/am900451x
10.1016/j.matlet.2012.01.114
10.1016/S0022-3093(98)00747-9
10.1016/S0022-3093(98)00003-9
10.1016/0022-3093(90)90160-N
10.1007/BF02706890
10.1039/b509097k
10.1016/j.jmatprotec.2007.10.060
10.4028/www.scientific.net/AST.63.41
10.1021/cr0101306
10.1166/jnn.2012.4560
10.1016/0022-3093(95)00059-3
10.1016/j.jnoncrysol.2004.06.041
10.1021/am900014z
10.1016/S0022-3093(98)00135-5
10.1021/j100054a043
10.1021/am900240h
10.1016/j.jnoncrysol.2007.05.183
10.1021/am101123h
10.1021/cr00037a013
10.1023/A:1008648925228
10.1007/s10971-006-1505-7
10.1007/s10934-010-9366-4
10.1038/127741a0
10.1063/1.95334
10.1039/a805081c
10.1016/0022-3093(86)90045-1
10.1007/s10971-008-1828-7
10.1021/cm301345r
10.1016/S0022-3093(00)00231-3
10.1016/j.jnoncrysol.2004.06.034
10.1081/DRT-120019055
10.1021/ar000109b
10.1016/S1387-1811(99)00037-2
10.1016/0022-3093(90)90132-6
10.1016/0022-3093(95)00074-7
10.1016/j.jnoncrysol.2007.06.024
10.1080/00323910500402961
10.1016/0022-3093(88)90014-2
10.1038/nnano.2010.155
10.1021/am100422x
10.1007/BF00402691
10.1007/s00396-002-0814-9
10.1021/cm903662a
10.1016/S0022-3093(86)80078-3
10.1023/A:1015309014546
10.1039/a805538f
10.1016/S0022-3093(03)00007-3
10.1021/cm070102p
10.1016/S0168-9002(00)00452-6
10.1115/1.1611885
10.1016/0022-3093(95)00065-8
10.1016/j.solidstatesciences.2007.04.020
10.1016/j.jnoncrysol.2006.02.159
10.1016/j.supflu.2009.11.004
10.1021/ie0705406
10.1002/(SICI)1097-4628(19991003)74:1<133::AID-APP16>3.0.CO;2-N
10.1016/S0079-6425(01)00009-3
10.1016/j.snb.2004.10.034
10.1016/0022-3093(95)00016-X
10.1002/1099-0488(20000701)38:13<1699::AID-POLB30>3.0.CO;2-L
10.1007/s10853-005-4417-y
10.1016/S0022-3093(01)00423-9
10.1016/0022-3093(95)00039-9
10.1016/0022-3093(90)90141-8
10.1016/j.jcis.2012.04.062
10.1016/S0021-9673(03)00510-7
10.1002/adma.200602457
10.1023/A:1008717219952
10.1016/0022-3093(84)90385-5
10.1021/cm048063u
10.1016/S0022-3093(00)00288-X
10.1039/c0jm01448f
10.1021/ma00172a026
10.1007/BF00541574
10.1016/0022-3093(95)00191-3
10.1016/S0254-0584(97)02055-5
10.1016/S0022-3093(97)00430-4
10.1016/0965-9773(95)00206-5
10.1016/j.jnoncrysol.2006.03.054
10.1016/0022-3093(86)90133-X
10.1002/(SICI)1097-4628(19960919)61:12<2173::AID-APP16>3.0.CO;2-8
10.1021/cr068035q
10.1016/j.jnoncrysol.2008.03.039
10.1021/am200007n
10.1016/0022-3093(85)90388-6
10.1021/cm0513841
10.1149/1.1391177
10.1246/bcsj.73.765
10.1021/am100081a
10.1016/j.apsusc.2006.12.117
10.1002/app.11152
10.1016/j.solmat.2005.01.016
10.1016/S0022-3093(01)00462-8
10.1023/A:1008663908431
10.1016/S0021-9673(00)01184-5
10.1016/j.jcis.2006.03.044
10.1016/j.apsusc.2005.07.006
10.1016/0022-3093(95)00072-0
10.1021/cm011074s
10.1016/j.micromeso.2007.01.007
10.1016/S0022-3093(98)00102-1
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.jnoncrysol.2013.10.017
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4812
EndPage 74
ExternalDocumentID 28180729
10_1016_j_jnoncrysol_2013_10_017
S002230931300522X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~02
~G-
29L
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SMS
VH1
WUQ
~HD
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c464t-c26bec02362da9cc569a2d897ca071ea71137a44b32cd6d58a3700e4f94ed3bc3
ISICitedReferencesCount 611
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331662500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3093
IngestDate Wed Apr 02 07:37:52 EDT 2025
Tue Nov 18 22:27:34 EST 2025
Sat Nov 29 07:27:59 EST 2025
Fri Feb 23 02:24:48 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Silica aerogels
Sol–gel
Mechanical reinforcement
Hybrid materials
High density
Industrial application
Hybrid material
Porous materials
Specific surface area
Precursor
Silica
Texture
Monomers
Fibers
Hydroxyl group
Thermal conductivity
Stress effects
Stiffness
Sol-gel process
Silanes
Liquid state
Sol-gel
Organic polymers
Supercritical state
Reviews
Porosity
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c464t-c26bec02362da9cc569a2d897ca071ea71137a44b32cd6d58a3700e4f94ed3bc3
ORCID 0000-0002-7520-4767
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S002230931300522X
PageCount 20
ParticipantIDs pascalfrancis_primary_28180729
crossref_citationtrail_10_1016_j_jnoncrysol_2013_10_017
crossref_primary_10_1016_j_jnoncrysol_2013_10_017
elsevier_sciencedirect_doi_10_1016_j_jnoncrysol_2013_10_017
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of non-crystalline solids
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Lucas (10.1016/j.jnoncrysol.2013.10.017_bb0615) 2004; 350
Ye (10.1016/j.jnoncrysol.2013.10.017_bb0840) 2012; 24
Pekala (10.1016/j.jnoncrysol.2013.10.017_bb0185) 1990
Rao (10.1016/j.jnoncrysol.2013.10.017_bb0410) 2007; 305
Choy (10.1016/j.jnoncrysol.2013.10.017_bb0830) 2003; 48
Hwang (10.1016/j.jnoncrysol.2013.10.017_bb0545) 2007; 41
Kirkbir (10.1016/j.jnoncrysol.2013.10.017_bb0590) 1998; 225
Rao (10.1016/j.jnoncrysol.2013.10.017_bb0565) 2007; 253
Hegde (10.1016/j.jnoncrysol.2013.10.017_bb0535) 2007; 42
Gross (10.1016/j.jnoncrysol.2013.10.017_bb0195) 1995; 6
Rao (10.1016/j.jnoncrysol.2013.10.017_bb0380) 2004; 350
Paul (10.1016/j.jnoncrysol.2013.10.017_bb0060) 2003; 125
Rao (10.1016/j.jnoncrysol.2013.10.017_bb0350) 2008; 15
Wang (10.1016/j.jnoncrysol.2013.10.017_bb0515) 2004; 71
Wittwer (10.1016/j.jnoncrysol.2013.10.017_bb0020) 1992; 145
Leventis (10.1016/j.jnoncrysol.2013.10.017_bb0110) 2010; 22
Boday (10.1016/j.jnoncrysol.2013.10.017_bb0120) 2010; 20
Nadargi (10.1016/j.jnoncrysol.2013.10.017_bb0100) 2009; 117
Zhang (10.1016/j.jnoncrysol.2013.10.017_bb0420) 2004; 350
10.1016/j.jnoncrysol.2013.10.017_bb0850
Lu (10.1016/j.jnoncrysol.2013.10.017_bb0635) 1995; 188
Guo (10.1016/j.jnoncrysol.2013.10.017_bb0815) 2011; 3
Einasrud (10.1016/j.jnoncrysol.2013.10.017_bb0435) 1995; 186
Einarsrud (10.1016/j.jnoncrysol.2013.10.017_bb0450) 2001; 285
Meixner (10.1016/j.jnoncrysol.2013.10.017_bb0505) 1999; 14
Nicolaon (10.1016/j.jnoncrysol.2013.10.017_bb0325) 1968; 5
Sanchez (10.1016/j.jnoncrysol.2013.10.017_bb0705) 2005; 15
10.1016/j.jnoncrysol.2013.10.017_bb0280
Vivod (10.1016/j.jnoncrysol.2013.10.017_bb0165) 2009; 50
Alié (10.1016/j.jnoncrysol.2013.10.017_bb0490) 2006; 352
Schottner (10.1016/j.jnoncrysol.2013.10.017_bb0405) 2001; 13
Prakash (10.1016/j.jnoncrysol.2013.10.017_bb0530) 1995; 374
Rao (10.1016/j.jnoncrysol.2013.10.017_bb0640) 2003; 27
Shea (10.1016/j.jnoncrysol.2013.10.017_bb0415) 2001; 13
Olsson (10.1016/j.jnoncrysol.2013.10.017_bb0880) 2010; 5
Bhagat (10.1016/j.jnoncrysol.2013.10.017_bb0555) 2007; 9
Pajonk (10.1016/j.jnoncrysol.2013.10.017_bb0475) 1990; 121
Kramer (10.1016/j.jnoncrysol.2013.10.017_bb0170) 1996; 435
Gould (10.1016/j.jnoncrysol.2013.10.017_bb0725) 2008; 49
Finlay (10.1016/j.jnoncrysol.2013.10.017_bb0870) 2008; 47
Nguyen (10.1016/j.jnoncrysol.2013.10.017_bb0835) 2010; 2
Long (10.1016/j.jnoncrysol.2013.10.017_bb0030) 2000; 3
(10.1016/j.jnoncrysol.2013.10.017_bb0160) 2010
Nass (10.1016/j.jnoncrysol.2013.10.017_bb0680) 1990; 121
Parmenter (10.1016/j.jnoncrysol.2013.10.017_bb0860) 1998; 223
Leventis (10.1016/j.jnoncrysol.2013.10.017_bb0140) 2002; 2
Tretyakov (10.1016/j.jnoncrysol.2013.10.017_bb0470) 1999; 9
Ilhan (10.1016/j.jnoncrysol.2013.10.017_bb0265) 2006; 16
She (10.1016/j.jnoncrysol.2013.10.017_bb0600) 2002; 31
Yim (10.1016/j.jnoncrysol.2013.10.017_bb0625) 2002; 19
Katti (10.1016/j.jnoncrysol.2013.10.017_bb0800) 2006; 18
Perdigoto (10.1016/j.jnoncrysol.2013.10.017_bb0045) 2012; 380
Ward (10.1016/j.jnoncrysol.2013.10.017_bb0035) 1995; 34
Moner-Girona (10.1016/j.jnoncrysol.2013.10.017_bb0085) 2001; 285
Bommel (10.1016/j.jnoncrysol.2013.10.017_bb0585) 1995; 186
Zou (10.1016/j.jnoncrysol.2013.10.017_bb0795) 2008; 108
Meador (10.1016/j.jnoncrysol.2013.10.017_bb0115) 2007; 19
(10.1016/j.jnoncrysol.2013.10.017_bb0305) 2010
Kanamori (10.1016/j.jnoncrysol.2013.10.017_bb0645) 2007; 19
Duffours (10.1016/j.jnoncrysol.2013.10.017_bb0500) 1995; 186
Guise (10.1016/j.jnoncrysol.2013.10.017_bb0070) 1995; 285
Li (10.1016/j.jnoncrysol.2013.10.017_bb0275) 2009; 1
Iwashita (10.1016/j.jnoncrysol.2013.10.017_bb0750) 1996; 61
Durães (10.1016/j.jnoncrysol.2013.10.017_bb0395) 2008
Loy (10.1016/j.jnoncrysol.2013.10.017_bb0175) 1995; 95
Estella (10.1016/j.jnoncrysol.2013.10.017_bb0440) 2007; 102
Shea (10.1016/j.jnoncrysol.2013.10.017_bb0695) 2001; 34
Aravind (10.1016/j.jnoncrysol.2013.10.017_bb0655) 2011; 18
Karout (10.1016/j.jnoncrysol.2013.10.017_bb0290) 2005; 36
Lin (10.1016/j.jnoncrysol.2013.10.017_bb0760) 2000; 38
Karout (10.1016/j.jnoncrysol.2013.10.017_bb0520) 2007; 353
Holmes (10.1016/j.jnoncrysol.2013.10.017_bb0150) 1984; 45
Bisson (10.1016/j.jnoncrysol.2013.10.017_bb0465) 2003; 21
Tewari (10.1016/j.jnoncrysol.2013.10.017_bb0580) 1985; 63
Gibiat (10.1016/j.jnoncrysol.2013.10.017_bb0025) 1995; 186
Novak (10.1016/j.jnoncrysol.2013.10.017_bb0720) 1994; 6
Adachi (10.1016/j.jnoncrysol.2013.10.017_bb0570) 1986; 79
Tang (10.1016/j.jnoncrysol.2013.10.017_bb0055) 2006
Rao (10.1016/j.jnoncrysol.2013.10.017_bb0660) 2004; 6
Carraher (10.1016/j.jnoncrysol.2013.10.017_bb0005) 2005; 30
Nadargi (10.1016/j.jnoncrysol.2013.10.017_bb0650) 2009; 467
(10.1016/j.jnoncrysol.2013.10.017_bb0390) 2010
Chandradass (10.1016/j.jnoncrysol.2013.10.017_bb0890) 2008; 354
Meador (10.1016/j.jnoncrysol.2013.10.017_bb0690) 2009; 1
Alié (10.1016/j.jnoncrysol.2013.10.017_bb0335) 2001; 289
Knez (10.1016/j.jnoncrysol.2013.10.017_bb0825) 2007; 19
Matyjaszewski (10.1016/j.jnoncrysol.2013.10.017_bb0845) 2012; 45
Einarsrud (10.1016/j.jnoncrysol.2013.10.017_bb0485) 1998; 231
Kistler (10.1016/j.jnoncrysol.2013.10.017_bb0310) 1931; 127
Zhang (10.1016/j.jnoncrysol.2013.10.017_bb0345) 2001; 910
Fragiadakis (10.1016/j.jnoncrysol.2013.10.017_bb0780) 2007; 353
Meador (10.1016/j.jnoncrysol.2013.10.017_bb0240) 2005; 17
Schmidt (10.1016/j.jnoncrysol.2013.10.017_bb0080) 1998; 225
Lee (10.1016/j.jnoncrysol.2013.10.017_bb0320) 2002; 37
Fragiadakis (10.1016/j.jnoncrysol.2013.10.017_bb0775) 2006; 352
Guo (10.1016/j.jnoncrysol.2013.10.017_bb0105) 2009; 19
Leventis (10.1016/j.jnoncrysol.2013.10.017_bb0595) 2010
Yang (10.1016/j.jnoncrysol.2013.10.017_bb0810) 2011; 357
Kirkbir (10.1016/j.jnoncrysol.2013.10.017_bb0340) 1996; 6
Jitianu (10.1016/j.jnoncrysol.2013.10.017_bb0385) 2003; 319
Kartal (10.1016/j.jnoncrysol.2013.10.017_bb0560) 2010; 53
Nakane (10.1016/j.jnoncrysol.2013.10.017_bb0765) 1999; 74
Meador (10.1016/j.jnoncrysol.2013.10.017_bb0245) 2010; 2
Ravaine (10.1016/j.jnoncrysol.2013.10.017_bb0670) 1986; 82
Pierre (10.1016/j.jnoncrysol.2013.10.017_bb0205) 1998
Nadargi (10.1016/j.jnoncrysol.2013.10.017_bb0460) 2009; 49
Boday (10.1016/j.jnoncrysol.2013.10.017_bb0820) 2008; 20
Meador (10.1016/j.jnoncrysol.2013.10.017_bb0135) 2008; 18
Hdach (10.1016/j.jnoncrysol.2013.10.017_bb0455) 1990; 121
Schwertfeger (10.1016/j.jnoncrysol.2013.10.017_bb0480) 1998; 225
Siouffi (10.1016/j.jnoncrysol.2013.10.017_bb0365) 2003; 1000
Wagh (10.1016/j.jnoncrysol.2013.10.017_bb0370) 1998; 5
Wu (10.1016/j.jnoncrysol.2013.10.017_bb0330) 2000; 275
Leventis (10.1016/j.jnoncrysol.2013.10.017_bb0785) 2005; 35
Brinker (10.1016/j.jnoncrysol.2013.10.017_bb0210) 1990
Mascia (10.1016/j.jnoncrysol.2013.10.017_bb0675) 1995; 3
Reisfeld (10.1016/j.jnoncrysol.2013.10.017_bb0730) 1990; 121
Mckiernan (10.1016/j.jnoncrysol.2013.10.017_bb0735) 1994; 98
Kocon (10.1016/j.jnoncrysol.2013.10.017_bb0225) 2005; AF196
Bhagat (10.1016/j.jnoncrysol.2013.10.017_bb0375) 2006; 252
Kistler (10.1016/j.jnoncrysol.2013.10.017_bb0315) 1932; 36
Bandyopadhyay (10.1016/j.jnoncrysol.2013.10.017_bb0770) 2005; 40
Jones (10.1016/j.jnoncrysol.2013.10.017_bb0050) 2006; 40
Randall (10.1016/j.jnoncrysol.2013.10.017_bb0145) 2011; 3
Durães (10.1016/j.jnoncrysol.2013.10.017_bb0360) 2010; 63
Hu (10.1016/j.jnoncrysol.2013.10.017_bb0790) 1992; 27
Woignier (10.1016/j.jnoncrysol.2013.10.017_bb0200) 1998; 241
Kim (10.1016/j.jnoncrysol.2013.10.017_bb0550) 2009; 49
Zhihua (10.1016/j.jnoncrysol.2013.10.017_bb0295) 2008
Lee (10.1016/j.jnoncrysol.2013.10.017_bb0250) 2009; 49
Capadona (10.1016/j.jnoncrysol.2013.10.017_bb0255) 2006; 47
(10.1016/j.jnoncrysol.2013.10.017_bb0270) 2010
Ochoa (10.1016/j.jnoncrysol.2013.10.017_bb0400) 2012; 61
Fricke (10.1016/j.jnoncrysol.2013.10.017_bb0190) 1998; 13
Rao (10.1016/j.jnoncrysol.2013.10.017_bb0095) 2006; 300
Durães (10.1016/j.jnoncrysol.2013.10.017_bb0495) 2012; 12
Sanchez (10.1016/j.jnoncrysol.2013.10.017_bb0715) 2011; 40
Rao (10.1016/j.jnoncrysol.2013.10.017_bb0090) 1999; 30
Leventis (10.1016/j.jnoncrysol.2013.10.017_bb0130) 2007; 40
Yuan (10.1016/j.jnoncrysol.2013.10.017_bb0630) 2012; 75
Loy (10.1016/j.jnoncrysol.2013.10.017_bb0685) 1996; 8
Mulik (10.1016/j.jnoncrysol.2013.10.017_bb0805) 2008; 20
Soleimani Dorcheh (10.1016/j.jnoncrysol.2013.10.017_bb0235) 2008; 199
Vivod (10.1016/j.jnoncrysol.2013.10.017_bb0700) 2008
Pierre (10.1016/j.jnoncrysol.2013.10.017_bb0215) 2002; 102
Zhang (10.1016/j.jnoncrysol.2013.10.017_bb0285) 2006; 43
Karmakar (10.1016/j.jnoncrysol.2013.10.017_bb0355) 2000; 272
Wang (10.1016/j.jnoncrysol.2013.10.017_bb0040) 2005; 107
Nguyen (10.1016/j.jnoncrysol.2013.10.017_bb0260) 2009; 1
Brinker (10.1016/j.jnoncrysol.2013.10.017_bb0430) 1984; 63
Schmidt (10.1016/j.jnoncrysol.2013.10.017_bb0665) 1985; 73
Tong (10.1016/j.jnoncrysol.2013.10.017_bb0755) 2002; 86
Hrubesh (10.1016/j.jnoncrysol.2013.10.017_bb0075) 1998; 225
Hæreid (10.1016/j.jnoncrysol.2013.10.017_bb0610) 1995; 185
Scherer (10.1016/j.jnoncrysol.2013.10.017_bb0525) 1995; 186
Park (10.1016/j.jnoncrysol.2013.10.017_bb0740) 2000; 16
Schultz (10.1016/j.jnoncrysol.2013.10.017_bb0010) 2005; 89
Boday (10.1016/j.jnoncrysol.2013.10.017_bb0125) 2009; 1
Park (10.1016/j.jnoncrysol.2013.10.017_bb0510) 1998; 12
Dullien (10.1016/j.jnoncrysol.2013.10.017_bb0575) 1992
Smith (10.1016/j.jnoncrysol.2013.10.017_bb0540) 1992; 271
Strom (10.1016/j.jnoncrysol.2013.10.017_bb0445) 2007; 41
Klemm (10.1016/j.jnoncrysol.2013.10.017_bb0865) 2005; 44
(10.1016/j.jnoncrysol.2013.10.017_bb0885) 2010
Takahashi (10.1016/j.jnoncrysol.2013.10.017_bb0745) 2000; 73
Cai (10.1016/j.jnoncrysol.2013.10.017_bb0875) 2012; 51
Pajonk (10.1016/j.jnoncrysol.2013.10.017_bb0230) 2003; 281
Pope (10.1016/j.jnoncrysol.2013.10.017_bb0425) 1986; 87
Del Corso (10.1016/j.jnoncrysol.2013.10.017_bb0065) 2009
da Cunha (10.1016/j.jnoncrysol.2013.10.017_bb0015) 2000; 452
Ma (10.1016/j.jnoncrysol.2013.10.017_bb0605) 2000; 277
Fricke (10.1016/j.jnoncrysol.2013.10.017_bb0180) 1988; 100
Tsou (10.1016/j.jnoncrysol.2013.10.017_bb0155) 1995; 186
10.1016/j.jnoncrysol.2013.10.017_bb0300
Sanchez (10.1016/j.jnoncrysol.2013.10.017_bb0710) 1999; 9
Ambekar (10.1016/j.jnoncrysol.2013.10.017_bb0220) 2006; 51
Huang (10.1016/j.jnoncrysol.2013.10.017_bb0620) 1987; 20
References_xml – volume: 15
  start-page: 507
  year: 2008
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0350
  article-title: Effect of protic solvents on the physical properties of the ambient pressure dried hydrophobic silica aerogels using sodium silicate precursor
  publication-title: J. Porous. Mater.
  doi: 10.1007/s10934-007-9104-8
– volume: 289
  start-page: 88
  year: 2001
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0335
  article-title: Preparation of low-density xerogels by incorporation of additives during synthesis
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(01)00697-4
– volume: 41
  start-page: 139
  year: 2007
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0545
  article-title: Effective preparation of crack-free silica aerogels via ambient drying
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-006-0513-y
– ident: 10.1016/j.jnoncrysol.2013.10.017_bb0850
– volume: 374
  start-page: 439
  year: 1995
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0530
  article-title: Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage
  publication-title: Nature
  doi: 10.1038/374439a0
– volume: 35
  start-page: 99
  year: 2005
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0785
  article-title: Nanoengineered silica-polymer composite aerogels with no need for supercritical fluid drying
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-005-1372-7
– volume: 19
  start-page: 9054
  year: 2009
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0105
  article-title: Elastic low density aerogels derived from bis[3-(triethoxysilyl)propyl]disulfide, tetramethylorthosilicate and vinyltrimethoxysilane via a two-step process
  publication-title: J. Mater. Chem.
  doi: 10.1039/b916355g
– volume: 49
  start-page: 53
  year: 2009
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0460
  article-title: Effect of post-treatment (gel aging) on the properties of methyltrimethoxysilane based silica aerogels prepared by two-step sol–gel process
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-008-1830-0
– volume: 36
  start-page: 163
  year: 2005
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0290
  article-title: Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-005-5288-z
– volume: 275
  start-page: 169
  year: 2000
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0330
  article-title: Properties of sol–gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(00)00257-X
– volume: 20
  start-page: 2845
  year: 2008
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0820
  article-title: Formation of polycyanoacrylate-silica nanocomposites by chemical vapor deposition of cyanoacrylates on aerogels
  publication-title: Chem. Mater.
  doi: 10.1021/cm703381e
– volume: 63
  start-page: 363
  year: 1985
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0580
  article-title: Ambient-temperature supercritical drying of transparent silica aerogels
  publication-title: Mater. Lett.
  doi: 10.1016/0167-577X(85)90077-1
– volume: 467
  start-page: 397
  year: 2009
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0650
  article-title: Methyltriethoxysilane: new precursor for synthesizing silica aerogels
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2007.12.019
– volume: 271
  start-page: 567
  year: 1992
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0540
  article-title: Preparation of low-density aerogels at ambient pressure
  publication-title: Mater. Res. Soc. Symp. Proc.
  doi: 10.1557/PROC-271-567
– volume: 61
  start-page: 151
  year: 2012
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0400
  article-title: Study of the suitability of silica based xerogels synthesized using ethyltrimethoxysilane and/or methyltrimethoxysilane precursors for aerospace applications
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-011-2604-7
– volume: 36
  start-page: 52
  year: 1932
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0315
  article-title: Coherent expanded aerogels
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150331a003
– volume: 40
  start-page: 874
  year: 2007
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0130
  article-title: Three dimensional core-shell superstructures: mechanically strong aerogels
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar600033s
– volume: 18
  start-page: 1843
  year: 2008
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0135
  article-title: Reinforcing polymer cross-linked aerogels with carbon nanofibers
  publication-title: J. Mater. Chem.
  doi: 10.1039/b800602d
– volume: 121
  start-page: 66
  year: 1990
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0475
  article-title: From sol–gel to aerogels and cryogels
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(90)90106-V
– volume: 350
  start-page: 244
  year: 2004
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0615
  article-title: Silica aerogels with enhanced durability, 30-nm mean pore-size, and improved immersibility in liquids
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2004.07.074
– volume: 47
  start-page: 5754
  year: 2006
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0255
  article-title: Effect of processing conditions on chemical make-up of di-isocyanate crosslinked silica aerogels
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.05.073
– volume: 31
  start-page: 1833
  year: 2002
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0600
  article-title: Porous mullite ceramics with high strength
  publication-title: J. Mater. Sci. Lett.
  doi: 10.1023/A:1021576104859
– volume: 1
  start-page: 621
  year: 2009
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0260
  article-title: Tailoring elastic properties of silica aerogels cross-linked with polystyrene
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am8001617
– volume: 71
  start-page: 87
  year: 2004
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0515
  article-title: Effects of ammonia/silica molar ratio on the synthesis and structure of bimodal mesopore silica xerogel
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2004.03.021
– year: 2010
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0885
– volume: 285
  start-page: 317
  year: 1995
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0070
  article-title: An experimental investigation of aerosol collection utilizing packed beds of silica aerogel microspheres
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(01)00473-2
– volume: 40
  start-page: 351
  year: 2006
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0050
  article-title: Aerogel: space exploration applications
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-006-7762-7
– volume: 435
  start-page: 295
  year: 1996
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0170
  article-title: Organically modified silicate aerogels, “Aeromosils”
  publication-title: Mater. Res. Soc. Symp. Proc.
  doi: 10.1557/PROC-435-295
– volume: 43
  start-page: 1663
  year: 2006
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0285
  article-title: Hydrophobic silica aerogels strengthened with nonwoven fibers
  publication-title: Macromol. Sci. A
  doi: 10.1080/10601320600934792
– volume: 8
  start-page: 656
  year: 1996
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0685
  article-title: Sol–gel synthesis of hybrid organic–inorganic materials. Hexylene- and phenylene-bridged polysiloxanes
  publication-title: Chem. Mater.
  doi: 10.1021/cm950067z
– volume: 225
  start-page: 364
  year: 1998
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0080
  article-title: Applications for silica aerogel products
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(98)00054-4
– volume: 305
  start-page: 124
  year: 2007
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0410
  article-title: Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.09.025
– year: 1990
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0185
– year: 1992
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0575
– volume: 231
  start-page: 10
  year: 1998
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0485
  article-title: Structural development of silica gels aged in TEOS
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(98)00405-0
– volume: 16
  start-page: 3046
  year: 2006
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0265
  article-title: Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica
  publication-title: J. Mater. Chem.
  doi: 10.1039/b604323b
– volume: 27
  start-page: 103
  year: 2003
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0640
  article-title: Synthesis and characterization of hydrophobic silica aerogels using trimethylethoxysilane as a co-precursor
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1023/A:1023765030983
– volume: 50
  start-page: 119
  year: 2009
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0165
  article-title: Flexible di-isocyanate cross-linked silica aerogels with 1,6-bis(trimethoxysilyl)hexane incorporated in the underlying silica backbone
  publication-title: Polym. Prepr.
– volume: 34
  start-page: 421
  year: 1995
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0035
  article-title: Preparing catalytic materials by the sol–gel method
  publication-title: J. Ind. Eng. Chem. Res.
  doi: 10.1021/ie00041a001
– volume: 51
  start-page: 2076
  year: 2012
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0875
  article-title: Cellulose–silica nanocomposite aerogels by in situ formation of silica in cellulose gel
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201105730
– ident: 10.1016/j.jnoncrysol.2013.10.017_bb0280
– volume: 40
  start-page: 696
  year: 2011
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0715
  article-title: Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00136h
– volume: 186
  start-page: 244
  year: 1995
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0025
  article-title: Acoustic properties and potential applications of silica aerogels
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(95)00049-6
– volume: 49
  start-page: 209
  year: 2009
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0250
  article-title: Polyurea based aerogel for a high performance thermal insulation material
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-008-1861-6
– start-page: 79
  year: 2010
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0390
– volume: 2
  start-page: 957
  year: 2002
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0140
  article-title: Nanoengineering strong silica aerogels
  publication-title: Nano Lett.
  doi: 10.1021/nl025690e
– volume: 20
  start-page: 5035
  year: 2008
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0805
  article-title: Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization
  publication-title: Chem. Mater.
  doi: 10.1021/cm800963h
– volume: 145
  start-page: 233
  year: 1992
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0020
  article-title: Development of aerogel windows
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(05)80462-4
– volume: 45
  start-page: 4015
  year: 2012
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0845
  article-title: Atom Transfer Radical Polymerization (ATRP): current status and future perspectives
  publication-title: Macromolecules
  doi: 10.1021/ma3001719
– volume: 44
  start-page: 3358
  year: 2005
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0865
  article-title: Cellulose: fascinating biopolymer and sustainable raw material
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.200460587
– volume: 6
  start-page: 282
  year: 1994
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0720
  article-title: Low-density, mutually interpenetrating organic–inorganic composite materials via supercritically drying techniques
  publication-title: Chem. Mater.
  doi: 10.1021/cm00039a006
– volume: 6
  start-page: 945
  year: 2004
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0660
  article-title: Synthesis and physical properties of TEOS based silica aerogels prepared by two step (acid–base) sol–gel process
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2004.04.010
– volume: 19
  start-page: 3425
  year: 2007
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0825
  article-title: Synthesis and surface engineering of complex nanostructures by atomic layer deposition
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700079
– volume: 13
  start-page: 3422
  year: 2001
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0405
  article-title: Hybrid sol–gel-derived polymers: applications of multifunctional materials
  publication-title: Chem. Mater.
  doi: 10.1021/cm011060m
– volume: 117
  start-page: 617
  year: 2009
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0100
  article-title: Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2008.08.025
– volume: 14
  start-page: 223
  year: 1999
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0505
  article-title: Influence of sol–gel synthesis parameters on the microstructure of particulate silica xerogels
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1023/A:1008774827602
– volume: 357
  start-page: 3447
  year: 2011
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0810
  article-title: Mechanical properties of polymer-modified silica aerogels dried under ambient pressure
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2011.06.017
– volume: 1
  start-page: 2491
  year: 2009
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0275
  article-title: Flexible nanofiber reinforced aerogel (xerogel): synthesis, manufacture and characterization
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am900451x
– volume: 75
  start-page: 204
  year: 2012
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0630
  article-title: Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2012.01.114
– start-page: 21
  year: 2010
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0305
– volume: 241
  start-page: 45
  year: 1998
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0200
  article-title: Different kinds of structure in aerogels: relationships with the mechanical properties
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(98)00747-9
– ident: 10.1016/j.jnoncrysol.2013.10.017_bb0300
– volume: 225
  start-page: 14
  year: 1998
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0590
  article-title: Drying of aerogels in different solvents between atmospheric and supercritical pressures
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(98)00003-9
– volume: 121
  start-page: 370
  year: 1990
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0680
  article-title: Modelling of ORMOCER coatings by processing
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(90)90160-N
– volume: 19
  start-page: 159
  year: 2002
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0625
  article-title: Fabrication and thermophysical characterization of nano-porous silicapolyurethane hybrid aerogels by sol–gel processing and supercritical solvent drying technique
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/BF02706890
– volume: 15
  start-page: 3559
  year: 2005
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0705
  article-title: Applications of hybrid organic–inorganic nanocomposites
  publication-title: J. Mater. Chem.
  doi: 10.1039/b509097k
– volume: 199
  start-page: 10
  year: 2008
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0235
  article-title: Silica aerogel; synthesis, properties and characterization
  publication-title: J. Mater. Proc. Technol.
  doi: 10.1016/j.jmatprotec.2007.10.060
– volume: 63
  start-page: 41
  year: 2010
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0360
  article-title: Tailored silica based xerogels and aerogels for insulation in space environments
  publication-title: Adv. Sci. Technol.
  doi: 10.4028/www.scientific.net/AST.63.41
– volume: 102
  start-page: 4243
  year: 2002
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0215
  article-title: Aerogels and their applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr0101306
– volume: 12
  start-page: 6828
  year: 2012
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0495
  article-title: Effect of the drying conditions on the microstructure of silica based xerogels and aerogels
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2012.4560
– volume: 186
  start-page: 321
  year: 1995
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0500
  article-title: Plastic behavior of aerogels under isostatic pressure
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(95)00059-3
– volume: 350
  start-page: 152
  year: 2004
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0420
  article-title: Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2004.06.041
– volume: 1
  start-page: 894
  year: 2009
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0690
  article-title: Structure–property relationships in porous 3D nanostructures: epoxy-cross-linked silica aerogels produced using ethanol as the solvent
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am900014z
– volume: 225
  start-page: 335
  year: 1998
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0075
  article-title: Aerogel applications
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(98)00135-5
– volume: 98
  start-page: 1006
  year: 1994
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0735
  article-title: Proton diffusion in the pores of silicate sol–gel glasses
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100054a043
– volume: 1
  start-page: 1364
  year: 2009
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0125
  article-title: Strong, low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am900240h
– volume: 353
  start-page: 4344
  year: 2007
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0780
  article-title: Glass transition and segmental dynamics in poly(dimethylsiloxane)/silica nanocomposites studied by various techniques
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2007.05.183
– volume: 3
  start-page: 546
  year: 2011
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0815
  article-title: Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am101123h
– volume: 95
  start-page: 1431
  year: 1995
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0175
  article-title: Bridged polysilsesquioxanes: highly porous hybrid organic–inorganic materials
  publication-title: Chem. Rev.
  doi: 10.1021/cr00037a013
– volume: 12
  start-page: 15
  year: 1998
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0510
  article-title: Ethanol washing effect on textural properties of the sodium-silicate derived silica xerogel
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1023/A:1008648925228
– volume: 41
  start-page: 291
  year: 2007
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0445
  article-title: Strengthening and aging of wet silica gels for up-scaling of aerogel preparation
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-006-1505-7
– volume: 18
  start-page: 159
  year: 2011
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0655
  article-title: High surface area methyltriethoxysilane-derived aerogels by ambient pressure drying
  publication-title: J. Porous. Mater.
  doi: 10.1007/s10934-010-9366-4
– volume: 127
  start-page: 741-741
  year: 1931
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0310
  article-title: Coherent expanded aerogels and jellies
  publication-title: Nature
  doi: 10.1038/127741a0
– volume: 45
  start-page: 626
  year: 1984
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0150
  article-title: Silica at ultrahigh temperature and expanded volume
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.95334
– volume: 9
  start-page: 19
  year: 1999
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0470
  article-title: Recent progress in cryochemical synthesis of oxide materials
  publication-title: J. Mater. Chem.
  doi: 10.1039/a805081c
– volume: 79
  start-page: 177
  year: 1986
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0570
  article-title: Effect of formamide additive on the chemistry of silica sol–gels: part I: NMR of silica hydrolysis
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(86)90045-1
– year: 1990
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0210
– volume: 49
  start-page: 47
  year: 2009
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0550
  article-title: Synthesis of nanoporous silica aerogel by ambient pressure drying
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-008-1828-7
– volume: 24
  start-page: 2987
  year: 2012
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0840
  article-title: Versatile grafting approaches to functionalizing individually dispersed graphene nanosheets using RAFT polymerization and click chemistry
  publication-title: Chem. Mater.
  doi: 10.1021/cm301345r
– year: 1998
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0205
– volume: AF196
  year: 2005
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0225
  article-title: Aerogels. Material aspect Techniques de l'Ingenieur
  publication-title: Sci. Fondam.
– volume: 272
  start-page: 119
  year: 2000
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0355
  article-title: Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(00)00231-3
– volume: 350
  start-page: 216
  year: 2004
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0380
  article-title: Comparative studies on the surface chemical modification of silica aerogels based on various organosilane compounds of the type RnSiX4−n
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2004.06.034
– volume: 21
  start-page: 593
  year: 2003
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0465
  article-title: Drying of silica gels to obtain aerogels: phenomenology and basic techniques
  publication-title: Dry. Technol.
  doi: 10.1081/DRT-120019055
– start-page: 563
  year: 2008
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0395
  article-title: Flexible silica based xerogels and aerogels for spatial applications
– volume: 3
  start-page: 61
  year: 1995
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0675
  article-title: Developments in organic–inorganic polymeric hybrids: ceramers
  publication-title: Trends Polym. Sci.
– volume: 49
  start-page: 534
  year: 2008
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0725
  article-title: Highly-transparent polymer modified silica aerogels
  publication-title: Polym. Prepr.
– volume: 34
  start-page: 707
  year: 2001
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0695
  article-title: A mechanistic investigation of gelation. The sol–gel polymerization of precursors to bridged polysilsesquioxanes
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar000109b
– volume: 42
  start-page: 6965
  year: 2007
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0535
  article-title: Physical properties of methyltrimethoxysilane based elastic silica aerogels prepared by the two-stage sol–gel process
  publication-title: J. Mater. Sci. Lett.
– volume: 30
  start-page: 267
  year: 1999
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0090
  article-title: Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/S1387-1811(99)00037-2
– volume: 121
  start-page: 202
  year: 1990
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0455
  article-title: Effect of aging and pH on the modulus of aerogels
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(90)90132-6
– volume: 186
  start-page: 316
  year: 1995
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0525
  article-title: Compression of aerogels
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(95)00074-7
– volume: 353
  start-page: 2900
  year: 2007
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0520
  article-title: Silica xerogels and aerogels synthesized with ionic liquids
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2007.06.024
– volume: 30
  start-page: 386
  year: 2005
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0005
  article-title: General topics: silica aerogels—properties and uses
  publication-title: Polym. News
  doi: 10.1080/00323910500402961
– volume: 100
  start-page: 169
  year: 1988
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0180
  article-title: Aerogels — highly tenuous solids with fascinating properties
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(88)90014-2
– volume: 5
  start-page: 584
  year: 2010
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0880
  article-title: Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils templates
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.155
– volume: 2
  start-page: 2162
  year: 2010
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0245
  article-title: Epoxy reinforced aerogels made using a streamlined process
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am100422x
– volume: 6
  start-page: 203
  year: 1996
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0340
  article-title: Drying and sintering of sol–gel derived large SiO2 monoliths
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/BF00402691
– volume: 281
  start-page: 637
  year: 2003
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0230
  article-title: Some applications of silica aerogels
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-002-0814-9
– volume: 22
  start-page: 2790
  year: 2010
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0110
  article-title: Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks
  publication-title: Chem. Mater.
  doi: 10.1021/cm903662a
– volume: 87
  start-page: 185
  year: 1986
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0425
  article-title: Structural studies of silica-aerogel — a mass–fractal model system
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(86)80078-3
– volume: 37
  start-page: 2237
  year: 2002
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0320
  article-title: Synthesis of silica aerogels from waterglass via new modified ambient drying
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1015309014546
– volume: 5
  start-page: 1900
  year: 1968
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0325
  article-title: New preparation process for silica xerogels and aerogels, and their textural properties
  publication-title: Bull. Soc. Chim. Fr.
– volume: 51
  start-page: 96
  year: 2006
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0220
  article-title: A review on: “aerogel — world's lightest solid”
  publication-title: Pop. Plast. Packag.
– volume: 9
  start-page: 35
  year: 1999
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0710
  article-title: Molecular design of hybrid organic–inorganic nanocomposites synthesized via sol–gel chemistry
  publication-title: J. Mater. Chem.
  doi: 10.1039/a805538f
– start-page: 371
  year: 2008
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0295
  article-title: Mechanical reinforcement of silica aerogel insulation with ceramic fibers
– volume: 319
  start-page: 263
  year: 2003
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0385
  article-title: Comparative study of the sol–gel processes starting with different substituted Si-alkoxides
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(03)00007-3
– volume: 19
  start-page: 2247
  year: 2007
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0115
  article-title: Structure–property relationships in porous 3D nanostructures as a function of preparation conditions: isocyanate cross-linked silica aerogels
  publication-title: Chem. Mater.
  doi: 10.1021/cm070102p
– volume: 452
  start-page: 401
  year: 2000
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0015
  article-title: On the reconstruction of Cherenkov rings from aerogel radiators
  publication-title: Nucl. Instrum. Methods A
  doi: 10.1016/S0168-9002(00)00452-6
– volume: 125
  start-page: 639
  year: 2003
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0060
  article-title: Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 2: mechanisms for the pathogenesis of syringomyelia
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1611885
– start-page: 252
  year: 2010
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0270
– volume: 186
  start-page: 415
  year: 1995
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0155
  article-title: Silica aerogel captures cosmic dust intact
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(95)00065-8
– volume: 9
  start-page: 628
  year: 2007
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0555
  article-title: A cost-effective and fast synthesis of nanoporous SiO2 aerogel powders using water-glass via ambient pressure drying route
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2007.04.020
– volume: 352
  start-page: 4969
  year: 2006
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0775
  article-title: Modified chain dynamics in poly(dimethylsiloxane)/silica nanocomposites
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2006.02.159
– volume: 53
  start-page: 115
  year: 2010
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0560
  article-title: Surface modification of silica aerogels by hexamethyldisilazane–carbon dioxide mixtures and their phase behavior
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/j.supflu.2009.11.004
– volume: 47
  start-page: 615
  year: 2008
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0870
  article-title: Biologically based fiber-reinforced/clay aerogel composites
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0705406
– volume: 74
  start-page: 133
  year: 1999
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0765
  article-title: Properties and structure of poly(vinyl alcohol)/silica composites
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/(SICI)1097-4628(19991003)74:1<133::AID-APP16>3.0.CO;2-N
– volume: 48
  start-page: 57
  year: 2003
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0830
  article-title: Chemical vapour deposition of coatings
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/S0079-6425(01)00009-3
– volume: 107
  start-page: 402
  year: 2005
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0040
  article-title: Humidity sensors based on silica nanoparticle aerogel thin films
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2004.10.034
– volume: 185
  start-page: 221
  year: 1995
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0610
  article-title: Thermal and temporal aging of TMOS based aerogel precursors in water
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(95)00016-X
– volume: 38
  start-page: 1699
  year: 2000
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0760
  article-title: Thermal, mechanical and morphological properties of phenolic resin/silica hybrid ceramers
  publication-title: J. Polym. Sci. B Polym. Phys.
  doi: 10.1002/1099-0488(20000701)38:13<1699::AID-POLB30>3.0.CO;2-L
– volume: 40
  start-page: 5233
  year: 2005
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0770
  article-title: Poly(vinyl alcohol)/silica hybrid nanocomposites by sol–gel technique: synthesis and properties
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-005-4417-y
– volume: 285
  start-page: 1
  year: 2001
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0450
  article-title: Strengthening of silica gels and aerogels by washing and aging processes
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(01)00423-9
– volume: 186
  start-page: 96
  year: 1995
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0435
  article-title: Preparation and properties of monolithic silica xerogels from TEOS-based alcogels aged in silane solutions
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(95)00039-9
– volume: 121
  start-page: 254
  year: 1990
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0730
  article-title: Spectroscopy and applications of molecules in glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(90)90141-8
– volume: 380
  start-page: 134
  year: 2012
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0045
  article-title: Application of hydrophobic silica based aerogels and xerogels for removal of toxic organic compounds from aqueous solutions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.04.062
– volume: 1000
  start-page: 801
  year: 2003
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0365
  article-title: Silica gel-based monoliths prepared by the sol–gel method: facts and figures
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(03)00510-7
– start-page: 56
  year: 2010
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0595
– volume: 19
  start-page: 1589
  year: 2007
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0645
  article-title: New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602457
– volume: 16
  start-page: 235
  year: 2000
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0740
  article-title: Preparation and optical properties of silica–poly(ethylene oxide) hybrid materials
  publication-title: J. Sol–Gel Sci. Technol.
  doi: 10.1023/A:1008717219952
– volume: 63
  start-page: 45
  year: 1984
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0430
  article-title: Sol–gel transition in simple silicates
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(84)90385-5
– start-page: 2235
  year: 2006
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0055
– volume: 17
  start-page: 1085
  year: 2005
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0240
  article-title: Crosslinking amine modified silica aerogels with epoxies: mechanically strong lightweight porous materials
  publication-title: Chem. Mater.
  doi: 10.1021/cm048063u
– volume: 277
  start-page: 127
  year: 2000
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0605
  article-title: Mechanical structure–property relationship of aerogels
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(00)00288-X
– volume: 20
  start-page: 6863
  year: 2010
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0120
  article-title: Mechanically reinforced silica aerogel nanocomposites via surface initiated atom transfer radical polymerizations
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm01448f
– volume: 20
  start-page: 1322
  year: 1987
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0620
  article-title: Structure-property behavior of new hybrid materials incorporating oligomeric species into sol-gel glasses. 3. Effect of acid content, tetraethoxysilane content, and molecular weight of poly(dimethylsiloxane)
  publication-title: Macromolecules
  doi: 10.1021/ma00172a026
– year: 2008
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0700
  article-title: Di-isocyanate crosslinked aerogels with 1,6-bis(trimethoxysilyl)hexane incorporated in silica backbon
– volume: 27
  start-page: 4415
  year: 1992
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0790
  article-title: Rubber-like elasticity of organically modified silicates
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00541574
– volume: 188
  start-page: 226
  year: 1995
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0635
  article-title: Correlation between structure and thermal conductivity of organic aerogels
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(95)00191-3
– volume: 5
  start-page: 41
  year: 1998
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0370
  article-title: Influence of molar ratios of precursor, solvent and water on physical properties of citric acid catalyzed TEOS silica aerogels
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/S0254-0584(97)02055-5
– volume: 223
  start-page: 179
  year: 1998
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0860
  article-title: Mechanical properties of silica aerogels
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(97)00430-4
– volume: 6
  start-page: 905
  year: 1995
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0195
  article-title: Scaling of elastic properties in highly porous nanostructured aerogels
  publication-title: J. Nanostruct. Mater.
  doi: 10.1016/0965-9773(95)00206-5
– volume: 352
  start-page: 2763
  year: 2006
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0490
  article-title: Multigram scale synthesis and characterization of low-density silica xerogels
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2006.03.054
– volume: 82
  start-page: 210
  year: 1986
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0670
  article-title: A new family of organically modified silicates prepared from gels
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(86)90133-X
– volume: 61
  start-page: 2173
  year: 1996
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0750
  article-title: Water permeation properties of SiO2–RSiO3/2 (R=methyl, vinyl, phenyl) thin films prepared by sol–gel method on nylon-6 substrate
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/(SICI)1097-4628(19960919)61:12<2173::AID-APP16>3.0.CO;2-8
– volume: 108
  start-page: 3893
  year: 2008
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0795
  article-title: Polymer/silica nanocomposites: preparation, characterization, properties, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr068035q
– volume: 354
  start-page: 4115
  year: 2008
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0890
  article-title: Synthesis of silica aerogel blanket by ambient drying method using water glass based precursor and glass wool modified by alumina sol
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2008.03.039
– volume: 3
  start-page: 613
  year: 2011
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0145
  article-title: Tailoring mechanical properties of aerogels for aerospace applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am200007n
– start-page: 2009
  year: 2009
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0065
– volume: 73
  start-page: 681
  year: 1985
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0665
  article-title: New type of non-crystalline solids between inorganic and organic materials
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(85)90388-6
– volume: 18
  start-page: 285
  year: 2006
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0800
  article-title: Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels
  publication-title: Chem. Mater.
  doi: 10.1021/cm0513841
– volume: 3
  start-page: 453
  year: 2000
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0030
  article-title: Design of pore and matter architectures in manganese oxide charge-storage materials
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1391177
– volume: 73
  start-page: 765
  year: 2000
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0745
  article-title: Preparation of microporous silica gel by sol–gel process in the presence of ethylene glycol oligomers
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.73.765
– volume: 2
  start-page: 1430
  year: 2010
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0835
  article-title: Elastic behavior of methyltrimethoxysilane based aerogels reinforced with tri-isocyanate
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am100081a
– start-page: 315
  year: 2010
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0160
– volume: 253
  start-page: 6032
  year: 2007
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0565
  article-title: Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2006.12.117
– volume: 86
  start-page: 3532
  year: 2002
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0755
  article-title: Preparation of polymer/silica hybrid through sol–gel method involving emulsion polymers: II. poly(ethyl acrylate)/SiO2
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.11152
– volume: 89
  start-page: 275
  year: 2005
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0010
  article-title: Super insulating aerogel glazing
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2005.01.016
– volume: 285
  start-page: 1
  year: 2001
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0085
  article-title: Sol–gel processing parameters and carbon addition
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(01)00462-8
– volume: 13
  start-page: 299
  year: 1998
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0190
  article-title: Aerogels—recent progress in production techniques and novel applications
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1023/A:1008663908431
– volume: 910
  start-page: 13
  year: 2001
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0345
  article-title: Single step on-column frit making for capillary high-performance liquid chromatography using sol–gel technology
  publication-title: J. Chromatogr.
  doi: 10.1016/S0021-9673(00)01184-5
– volume: 300
  start-page: 279
  year: 2006
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0095
  article-title: Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.03.044
– volume: 252
  start-page: 4289
  year: 2006
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0375
  article-title: Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid–base) sol–gel process
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2005.07.006
– volume: 186
  start-page: 78
  year: 1995
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0585
  article-title: Drying of silica aerogel with supercritical carbon dioxide
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(95)00072-0
– volume: 13
  start-page: 3306
  year: 2001
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0415
  article-title: Bridged polysilsesquioxanes. Molecular-engineered hybrid organic–inorganic materials
  publication-title: Chem. Mater.
  doi: 10.1021/cm011074s
– volume: 102
  start-page: 274
  year: 2007
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0440
  article-title: Effects of aging and drying conditions on the structural and textural properties of silica gels
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2007.01.007
– volume: 225
  start-page: 24
  year: 1998
  ident: 10.1016/j.jnoncrysol.2013.10.017_bb0480
  article-title: Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(98)00102-1
SSID ssj0000738
Score 2.609024
Snippet Silica aerogels are lightweight and highly porous materials, with a three-dimensional network of silica particles, which are obtained by extracting the liquid...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 55
SubjectTerms Cross-disciplinary physics: materials science; rheology
Exact sciences and technology
Hybrid materials
Materials science
Materials synthesis; materials processing
Mechanical reinforcement
Physics
Porous materials; granular materials
Silica aerogels
Sol–gel
Specific materials
Title An overview on silica aerogels synthesis and different mechanical reinforcing strategies
URI https://dx.doi.org/10.1016/j.jnoncrysol.2013.10.017
Volume 385
WOSCitedRecordID wos000331662500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4812
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000738
  issn: 0022-3093
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKBgKEEBQQ48fkB96qTEnsxIl4CqPAoIxpaqW-RY7tolYlrZKuGg_875zjOMmAifLAS1SlTRPn-3J3utx9h9CrwJfK4xl3QilDh9JYOhwci8MUyahPI5q5VaPwiJ2eRtNpfNbr_bC9MNsly_Po8jJe_1eoYR-ArVtn_wHu5k9hB3wG0GELsMN2J-ATCAC32gLojpR8UM51Wm7AVbH6Cn5QSxRAzKdlSHTK3M5H2Qy-Kd0DXEFWqEpOVZhUg9WSuCaMzVe5I4rvEGQuq4gVFjeXTaD-ORkNP51U_o0veFMI_HZyngyrosHRxbxsPMPZl_Px5H0yqlUN9Ev8NyQ3lWI2NeFRW81s82W1c-_aX9074JqZiNb-kijoWFAj2lv7YjPA5zcrbxIOi6MFLFGvcKXfIXnkSJfpmU7Qq8Lavzi8pgxRK2Fp5fQbaN9nQQxGcT85GU4_tq6ckaiRm4fLrkvBTIHgn89-XXxzb81LgHBmxqV0YpjxA3S_Rg0nhjQPUU_lfXT72M7866O7HXnKPrpVlQeL8hGaJjm2pMKrHBtSYUsq3JAKA6lwQyrckgp3SIVbUj1Gk3fD8fEHp57J4Qga0o0j_BCeej12wJc8FiIIY-7LKGaCQ7CqOPM8wjilGfGFDGUQccJcV9FZTJUkmSBP0B7cN_UU4Rnzskhy4rtRRl2ZRYEgNCDxjDNXUkkPELN3MhW1YL2em7JMbWXiIm0xSDUG-hvA4AB5zZFrI9qywzGvLVhpHXyaoDIF1u1w9OEVfJvTWoo9-9sPnqM77SP0Au1tigv1Et0U2828LA5rYv4Eofy0kA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+overview+on+silica+aerogels+synthesis+and+different+mechanical+reinforcing+strategies&rft.jtitle=Journal+of+non-crystalline+solids&rft.au=MALEKI%2C+Hajar&rft.au=DURAES%2C+Luisa&rft.au=PORTUGAL%2C+Ant%C3%B3nio&rft.date=2014-02-01&rft.pub=Elsevier&rft.issn=0022-3093&rft.volume=385&rft.spage=55&rft.epage=74&rft_id=info:doi/10.1016%2Fj.jnoncrysol.2013.10.017&rft.externalDBID=n%2Fa&rft.externalDocID=28180729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3093&client=summon