Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol

[Display omitted] •Cu speciation in ZSM-5 zeolite depends on the conditions of thermochemical activation.•Trinuclear [Cu3O3]2+ cationic clusters are preferentially formed in HZSM-5 upon calcination.•Trinuclear Cu-oxo clusters favor the direct methane to methanol oxidation.•Methane activation by binu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of catalysis Vol. 338; pp. 305 - 312
Main Authors: Li, Guanna, Vassilev, Peter, Sanchez-Sanchez, Maricruz, Lercher, Johannes A., Hensen, Emiel J.M., Pidko, Evgeny A.
Format: Journal Article
Language:English
Published: San Diego Elsevier Inc 01.06.2016
Elsevier BV
Subjects:
ISSN:0021-9517, 1090-2694
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •Cu speciation in ZSM-5 zeolite depends on the conditions of thermochemical activation.•Trinuclear [Cu3O3]2+ cationic clusters are preferentially formed in HZSM-5 upon calcination.•Trinuclear Cu-oxo clusters favor the direct methane to methanol oxidation.•Methane activation by binuclear [Cu2O]2+ results in strongly bound surface intermediates. A periodic density functional theory study complemented by ab initio thermodynamic analysis was carried out to identify the active sites and mechanism of selective oxidation of methane to methanol in Cu/ZSM-5 catalysts. We systematically analyzed structure and stability of a wide range of potential extra-framework Cu complexes in ZSM-5 to address Cu speciation in realistic zeolite materials. We demonstrate that depending on the conditions of catalyst activation, binuclear [Cu(μ-O)Cu]2+ species and trinuclear oxygenated [Cu3(μ-O)3]2+ clusters can preferentially be stabilized in ZSM-5. The trinuclear Cu sites are the most stable extra-framework Cu species in Cu/ZSM-5 activated by calcination, whereas the formation of the binuclear complexes is favored under O2-poor atmosphere. Although both types of Cu complexes contain extra-framework O−, radical species necessary for the homolytic C–H bond cleavage, the reaction paths for methane conversion that they provide are drastically different. Binuclear Cu sites react with CH4 stoichiometrically to yield methoxy groups strongly bound in the zeolite micropores. In contrast, the trinuclear [Cu3(μ-O)3]2+ cluster favors the direct conversion of CH4 to CH3OH coordinated with the partially reduced Cu complex. These computational findings point to the trinuclear Cu-oxo clusters in ZSM-5 as the potential candidates for promotion of the low temperature direct conversion of CH4 to CH3OH.
AbstractList A periodic density functional theory study complemented by ab initio thermodynamic analysis was carried out to identify the active sites and mechanism of selective oxidation of methane to methanol in Cu/ZSM-5 catalysts. We systematically analyzed structure and stability of a wide range of potential extra-framework Cu complexes in ZSM-5 to address Cu speciation in realistic zeolite materials. We demonstrate that depending on the conditions of catalyst activation, binuclear [Cu(μ-O)Cu]²⁺ species and trinuclear oxygenated [Cu3(μ-O)3]²⁺ clusters can preferentially be stabilized in ZSM-5. The trinuclear Cu sites are the most stable extra-framework Cu species in Cu/ZSM-5 activated by calcination, whereas the formation of the binuclear complexes is favored under O2-poor atmosphere. Although both types of Cu complexes contain extra-framework O⁻, radical species necessary for the homolytic C–H bond cleavage, the reaction paths for methane conversion that they provide are drastically different. Binuclear Cu sites react with CH4 stoichiometrically to yield methoxy groups strongly bound in the zeolite micropores. In contrast, the trinuclear [Cu3(μ-O)3]²⁺ cluster favors the direct conversion of CH4 to CH3OH coordinated with the partially reduced Cu complex. These computational findings point to the trinuclear Cu-oxo clusters in ZSM-5 as the potential candidates for promotion of the low temperature direct conversion of CH4 to CH3OH.
Display Omitted * Cu speciation in ZSM-5 zeolite depends on the conditions of thermochemical activation. * Trinuclear [Cu3O3]2+ cationic clusters are preferentially formed in HZSM-5 upon calcination. * Trinuclear Cu-oxo clusters favor the direct methane to methanol oxidation. * Methane activation by binuclear [Cu2O]2+ results in strongly bound surface intermediates. A periodic density functional theory study complemented by ab initio thermodynamic analysis was carried out to identify the active sites and mechanism of selective oxidation of methane to methanol in Cu/ZSM-5 catalysts. We systematically analyzed structure and stability of a wide range of potential extra-framework Cu complexes in ZSM-5 to address Cu speciation in realistic zeolite materials. We demonstrate that depending on the conditions of catalyst activation, binuclear [Cu( μ -O)Cu]2+ species and trinuclear oxygenated [Cu3(μ -O)3]2+ clusters can preferentially be stabilized in ZSM-5. The trinuclear Cu sites are the most stable extra-framework Cu species in Cu/ZSM-5 activated by calcination, whereas the formation of the binuclear complexes is favored under O2-poor atmosphere. Although both types of Cu complexes contain extra-framework O -,[radical dot] radical species necessary for the homolytic C-H bond cleavage, the reaction paths for methane conversion that they provide are drastically different. Binuclear Cu sites react with CH4 stoichiometrically to yield methoxy groups strongly bound in the zeolite micropores. In contrast, the trinuclear [Cu3( μ -O)3]2+ cluster favors the direct conversion of CH4 to CH3OH coordinated with the partially reduced Cu complex. These computational findings point to the trinuclear Cu-oxo clusters in ZSM-5 as the potential candidates for promotion of the low temperature direct conversion of CH4 to CH3OH.
[Display omitted] •Cu speciation in ZSM-5 zeolite depends on the conditions of thermochemical activation.•Trinuclear [Cu3O3]2+ cationic clusters are preferentially formed in HZSM-5 upon calcination.•Trinuclear Cu-oxo clusters favor the direct methane to methanol oxidation.•Methane activation by binuclear [Cu2O]2+ results in strongly bound surface intermediates. A periodic density functional theory study complemented by ab initio thermodynamic analysis was carried out to identify the active sites and mechanism of selective oxidation of methane to methanol in Cu/ZSM-5 catalysts. We systematically analyzed structure and stability of a wide range of potential extra-framework Cu complexes in ZSM-5 to address Cu speciation in realistic zeolite materials. We demonstrate that depending on the conditions of catalyst activation, binuclear [Cu(μ-O)Cu]2+ species and trinuclear oxygenated [Cu3(μ-O)3]2+ clusters can preferentially be stabilized in ZSM-5. The trinuclear Cu sites are the most stable extra-framework Cu species in Cu/ZSM-5 activated by calcination, whereas the formation of the binuclear complexes is favored under O2-poor atmosphere. Although both types of Cu complexes contain extra-framework O−, radical species necessary for the homolytic C–H bond cleavage, the reaction paths for methane conversion that they provide are drastically different. Binuclear Cu sites react with CH4 stoichiometrically to yield methoxy groups strongly bound in the zeolite micropores. In contrast, the trinuclear [Cu3(μ-O)3]2+ cluster favors the direct conversion of CH4 to CH3OH coordinated with the partially reduced Cu complex. These computational findings point to the trinuclear Cu-oxo clusters in ZSM-5 as the potential candidates for promotion of the low temperature direct conversion of CH4 to CH3OH.
Author Vassilev, Peter
Hensen, Emiel J.M.
Sanchez-Sanchez, Maricruz
Pidko, Evgeny A.
Lercher, Johannes A.
Li, Guanna
Author_xml – sequence: 1
  givenname: Guanna
  surname: Li
  fullname: Li, Guanna
  organization: Inorganic Materials Chemistry Group, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
– sequence: 2
  givenname: Peter
  surname: Vassilev
  fullname: Vassilev, Peter
  organization: Inorganic Materials Chemistry Group, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
– sequence: 3
  givenname: Maricruz
  surname: Sanchez-Sanchez
  fullname: Sanchez-Sanchez, Maricruz
  organization: Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany
– sequence: 4
  givenname: Johannes A.
  surname: Lercher
  fullname: Lercher, Johannes A.
  organization: Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany
– sequence: 5
  givenname: Emiel J.M.
  surname: Hensen
  fullname: Hensen, Emiel J.M.
  email: e.j.m.hensen@tue.nl
  organization: Inorganic Materials Chemistry Group, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
– sequence: 6
  givenname: Evgeny A.
  orcidid: 0000-0001-9242-9901
  surname: Pidko
  fullname: Pidko, Evgeny A.
  email: e.a.pidko@tue.nl
  organization: Inorganic Materials Chemistry Group, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
BookMark eNp9kTtLBTEQhYMoeH38AauAjc2uk31lAzYivkCxUBubkM3OYpbczTXJFfXXm_VaWVjNg_MNwzl7ZHtyExJyxCBnwJrTMR-1inmR-hzKHFi1RRYMBGRFI6ptsgAoWCZqxnfJXggjAGN13S6IfYyqM9bET6qmnnpUOpr3eXQD1W61Qk_dh8u0XYeIPlAz0ZfH-6ymX-gShnRwnga0OHNIlxhf1YSJMb2Kxk00ut-lswdkZ1A24OFv3SfPV5dPFzfZ3cP17cX5XaarpopZN_CGd6AAqw563mhRK67bVIXmZYe9xhaHkte8a3jdiK5TClFUPRRaV3Vb7pOTzd2Vd29rDFEuTdBobfrMrYMsWMlaAVXLk_T4j3R0az-l7yTjLRdFUcKsKjYq7V0IHge58map_KdkIOcA5CjnAOQcgIRSpgAS1P6BtIk_nkSvjP0fPdugmFx6N-hl0AYnjb3xyWjZO_Mf_g3TW6Tn
CitedBy_id crossref_primary_10_1515_psr_2017_0014
crossref_primary_10_1016_j_ccr_2022_214691
crossref_primary_10_1016_j_cattod_2019_10_035
crossref_primary_10_1016_j_jcat_2020_03_036
crossref_primary_10_1039_D3CP05802F
crossref_primary_10_1016_j_cattod_2019_05_007
crossref_primary_10_1016_j_cej_2022_136671
crossref_primary_10_1016_j_cplett_2022_140188
crossref_primary_10_1021_jacs_2c10554
crossref_primary_10_1039_D0CY00379D
crossref_primary_10_1002_anie_201702550
crossref_primary_10_1039_C9CY01803D
crossref_primary_10_1016_j_biombioe_2023_106733
crossref_primary_10_1039_C8CP03302A
crossref_primary_10_1021_jacs_7b02936
crossref_primary_10_3390_catal8110545
crossref_primary_10_1002_anie_201903802
crossref_primary_10_1126_science_aba5005
crossref_primary_10_1002_chem_202403167
crossref_primary_10_1002_slct_202404456
crossref_primary_10_1039_C7CC00467B
crossref_primary_10_1016_j_ccr_2023_215438
crossref_primary_10_1021_jacs_6b08668
crossref_primary_10_1039_D0CY01739F
crossref_primary_10_1016_j_jcat_2022_08_005
crossref_primary_10_1016_j_fuel_2021_122178
crossref_primary_10_1039_C8CY02414F
crossref_primary_10_1016_j_jcat_2022_12_017
crossref_primary_10_1021_jacs_3c13374
crossref_primary_10_1039_C8CC03921F
crossref_primary_10_1016_j_apcatb_2025_125429
crossref_primary_10_1016_j_micromeso_2023_112966
crossref_primary_10_1016_j_micromeso_2023_112448
crossref_primary_10_1002_advs_202413870
crossref_primary_10_1039_D1CY01987B
crossref_primary_10_1016_j_cej_2024_151528
crossref_primary_10_1039_C8RA08038K
crossref_primary_10_1016_j_apcatb_2020_119827
crossref_primary_10_1016_S1872_5813_24_60408_6
crossref_primary_10_1016_j_pecs_2022_101045
crossref_primary_10_1016_j_rser_2018_09_003
crossref_primary_10_1021_jacs_8b11525
crossref_primary_10_1080_10584587_2018_1456186
crossref_primary_10_3390_catal12040438
crossref_primary_10_1021_jacs_5c03554
crossref_primary_10_1039_D2CY01758J
crossref_primary_10_3390_molecules27217146
crossref_primary_10_1002_cctc_202400156
crossref_primary_10_1039_D5CC00719D
crossref_primary_10_1039_D3RA00058C
crossref_primary_10_3390_catal11010017
crossref_primary_10_3390_catal13030604
crossref_primary_10_3390_ma15062021
crossref_primary_10_1126_science_aam9035
crossref_primary_10_1021_jacs_4c11614
crossref_primary_10_1002_cphc_202100580
crossref_primary_10_1039_D1SC02174E
crossref_primary_10_1002_cphc_202100103
crossref_primary_10_1002_chem_201801135
crossref_primary_10_1002_slct_201800550
crossref_primary_10_1080_01614940_2019_1674475
crossref_primary_10_1007_s11705_024_2505_2
crossref_primary_10_1002_ange_201903802
crossref_primary_10_1002_cctc_202400825
crossref_primary_10_1016_j_jcat_2018_07_014
crossref_primary_10_1016_j_jcat_2019_07_039
crossref_primary_10_1021_jacs_8b03809
crossref_primary_10_1002_cctc_201902371
crossref_primary_10_1002_chem_201605876
crossref_primary_10_1021_acs_chemmater_5c00930
crossref_primary_10_1002_cphc_201900973
crossref_primary_10_1021_jacs_3c04328
crossref_primary_10_1016_j_jcat_2021_10_034
crossref_primary_10_1016_j_jiec_2018_09_047
crossref_primary_10_1016_j_fuel_2022_125483
crossref_primary_10_1002_slct_202204745
crossref_primary_10_1039_D3SC01677C
crossref_primary_10_1007_s11244_016_0676_x
crossref_primary_10_1039_C8CY02593B
crossref_primary_10_3389_fchem_2019_00514
crossref_primary_10_1039_D3CY00431G
crossref_primary_10_1016_j_molliq_2024_125062
crossref_primary_10_1016_S1872_5813_21_60016_6
crossref_primary_10_1016_j_comptc_2023_114228
crossref_primary_10_1038_s41586_020_2783_x
crossref_primary_10_1002_cctc_201902063
crossref_primary_10_1016_j_fuproc_2023_107722
crossref_primary_10_1016_j_energy_2019_04_113
crossref_primary_10_1016_j_rser_2023_113561
crossref_primary_10_3390_catal10020194
crossref_primary_10_1002_cctc_201600644
crossref_primary_10_1039_C8CY01441H
crossref_primary_10_1016_j_ccr_2023_215637
crossref_primary_10_1021_jacs_8b05139
crossref_primary_10_3390_ijms24043374
crossref_primary_10_1002_cctc_201801493
crossref_primary_10_1016_j_cattod_2017_01_023
crossref_primary_10_1016_j_jcat_2024_115388
crossref_primary_10_1002_cctc_202201238
crossref_primary_10_1002_ange_201702550
crossref_primary_10_1016_j_matchemphys_2025_130893
crossref_primary_10_1039_D5CP01472G
crossref_primary_10_1021_jacs_9b02902
crossref_primary_10_1016_j_cattod_2018_03_063
crossref_primary_10_1038_s41929_019_0273_z
crossref_primary_10_1002_smtd_201800266
crossref_primary_10_1021_jacs_4c11773
crossref_primary_10_1007_s11244_018_0907_4
crossref_primary_10_3389_fchem_2021_716745
crossref_primary_10_3390_catal12030314
crossref_primary_10_1039_C8SC05056B
crossref_primary_10_1007_s11426_019_9695_9
crossref_primary_10_1007_s11244_020_01247_6
crossref_primary_10_1016_j_ijhydene_2021_05_166
crossref_primary_10_1039_D3CY00929G
crossref_primary_10_1016_j_biombioe_2023_106818
crossref_primary_10_1007_s11244_018_1096_x
crossref_primary_10_1007_s40995_020_00964_7
crossref_primary_10_1002_cctc_201901911
crossref_primary_10_1016_j_mcat_2022_112308
crossref_primary_10_1002_cctc_201700768
crossref_primary_10_1016_j_micromeso_2022_111910
crossref_primary_10_1039_D0CY01325K
crossref_primary_10_1007_s11244_019_01160_7
crossref_primary_10_1039_D1CY01876K
crossref_primary_10_1002_cctc_201801542
crossref_primary_10_1016_j_apsusc_2021_149690
crossref_primary_10_1016_j_mencom_2021_09_002
Cites_doi 10.1039/C005500J
10.1002/anie.201003403
10.1039/b100712m
10.1021/cr000018s
10.1021/acscatal.5b02268
10.1021/jp049613e
10.1016/j.jinorgbio.2005.12.014
10.1002/cssc.200900123
10.1021/jp993893u
10.1039/C4CC02832E
10.1021/jacs.5b02157
10.1039/b100531f
10.1016/0039-6028(94)00731-4
10.1039/a900214f
10.1021/ic701777t
10.1021/ja5106927
10.1021/ja029684w
10.1002/1099-0682(200203)2002:3<515::AID-EJIC515>3.0.CO;2-6
10.1103/PhysRevB.81.155455
10.1038/417507a
10.1039/b301120h
10.1002/cphc.200300746
10.1021/ja047158u
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.68.045407
10.1007/s10562-010-0380-6
10.1021/ic101138u
10.1016/j.ccr.2012.07.008
10.1038/ncomms8546
10.1021/jp310374k
10.1039/C5CS00396B
10.1021/acs.biochem.5b00198
10.1016/j.jcat.2012.06.024
10.1021/la4018568
10.1039/C4CP03226H
10.1038/nature08992
10.1021/ja0493547
10.1073/pnas.0911413106
10.1126/science.259.5093.340
10.1002/anie.200461055
10.1021/jacs.5b02817
10.1021/jp992600u
10.1002/ejic.200900709
10.1021/jp0009352
10.1073/pnas.0910461106
10.1021/j100093a026
10.1021/ja4113808
10.1021/ar700004s
10.1021/jp960403e
10.1039/B418498J
10.1039/B608411G
10.1002/anie.201006424
10.1021/ar050194t
10.1039/c000967a
10.1021/ar990028j
10.1021/cs400713c
10.1016/j.cattod.2005.09.028
10.1021/ar600060t
10.1021/acs.jpcc.5b05577
10.1039/C1CC15840F
10.1002/cctc.201300473
10.1002/cssc.201200299
10.1021/bi0497603
10.1007/BF00806043
10.1021/ja106283u
10.1103/PhysRevB.50.17953
10.1021/jp952455u
10.1002/anie.200604647
10.1073/pnas.0707119104
10.1016/j.jcat.2011.07.008
10.1002/anie.201209846
10.1103/PhysRevB.48.13115
10.1016/0144-2449(94)90134-1
10.1002/anie.201108706
10.1039/b411053f
10.1016/j.jcat.2011.10.009
10.1107/S0021889811038970
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright_xml – notice: 2016 Elsevier Inc.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jcat.2016.03.014
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1090-2694
EndPage 312
ExternalDocumentID 4051484141
10_1016_j_jcat_2016_03_014
S002195171600110X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
TAE
TWZ
UPT
VH1
WUQ
XFK
XPP
YQT
ZMT
ZU3
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
SSH
7S9
L.6
ID FETCH-LOGICAL-c464t-bf767b0a0e4b0d76c95a7c86c99c73bedce8ef3757b67569bbaaee94d02cc4583
ISICitedReferencesCount 226
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376695500031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9517
IngestDate Wed Oct 01 14:00:48 EDT 2025
Mon Jul 14 07:51:54 EDT 2025
Sat Nov 29 07:00:33 EST 2025
Tue Nov 18 21:43:00 EST 2025
Fri Feb 23 02:27:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Methane
Selective oxidation
DFT
Radical mechanism
ZSM-5
Trinuclear clusters
Copper
Spin crossing
Zeolites
Methanol
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c464t-bf767b0a0e4b0d76c95a7c86c99c73bedce8ef3757b67569bbaaee94d02cc4583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9242-9901
PQID 1787922307
PQPubID 32080
PageCount 8
ParticipantIDs proquest_miscellaneous_2131890487
proquest_journals_1787922307
crossref_primary_10_1016_j_jcat_2016_03_014
crossref_citationtrail_10_1016_j_jcat_2016_03_014
elsevier_sciencedirect_doi_10_1016_j_jcat_2016_03_014
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace San Diego
PublicationPlace_xml – name: San Diego
PublicationTitle Journal of catalysis
PublicationYear 2016
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Groothaert, Smeets, Sels, Jacobs, Schoonheydt (b0045) 2005; 127
Morpurgo, Moretti, Bossa (b0105) 2007; 9
Periana, Taube, Evitt, Loffler, Wentrcek, Voss, Masuda (b0030) 1993; 259
Grundner, Markovits, Li, Tromp, Pidko, Hensen, Jentys, Sanchez-Sanchez, Lercher (b0320) 2015; 6
Schröder, Shaik, Schwarz (b0395) 2000; 33
Vanelderen, Hadt, Smeets, Solomon, Schoonheydt, Sels (b0145) 2011; 284
Li, Pidko, van Santen, Feng, Li, Hensen (b0340) 2011; 284
Itadani, Yumura, Ohkubo, Kobayashi, Kuroda (b0160) 2010; 12
Bordiga, Lamberti, Bonino, Travert, Thibault-Starzyk (b0165) 2015; 44
Nachtigall, Nachtigallova, Sauer (b0220) 2000; 104
Yoshizawa (b0290) 2006; 39
Pierloot, Delabie, Groothaert, Schoonheydt (b0130) 2001; 3
Pidko, Hensen, van Santen (b0350) 2012; 468
Guhl, Miller, Reuter (b0380) 2010; 81
Schwarz (b0020) 2011; 50
Rice, Chakraborty, Bell (b0085) 2000; 104
Vanelderen, Vancauwenbergh, Sels, Schoonheydt (b0140) 2013; 257
Banerjee, Singh, Mondal, Colacio, Rajak (b0260) 2010; 2010
Chan, Lu, Nagababu, Maji, Hung, Lee, Hsu, Pham Dinh, Lai, Ng, Ramalingam, Yu, Chan (b0310) 2013; 52
Balasubramanian, Smith, Rawat, Yatsunyk, Stemmler, Rosenzweig (b0265) 2010; 465
Jones, Taube, Ziatdinov, Periana, Nielsen, Oxgaard, Goddard (b0035) 2004; 43
Itadani, Sogawa, Oda, Ohkubo, Yumura, Kobayashi, Sato, Kuroda (b0155) 2015; 119
Himes, Karlin (b0010) 2009; 106
Delabie, Pierloot, Groothaert, Schoonheydt, Vanquickenborne (b0125) 2002; 2002
Woertink, Tian, Maiti, Lucas, Himes, Karlin, Neese, Würtele, Holthausen, Bill, Sundermeyer, Schindler, Solomon (b0195) 2010; 49
Nachtigallova, Nachtigall, Sierka, Sauer (b0075) 1999; 1
Palkovits, von Malotki, Baumgarten, Müllen, Baltes, Antonietti, Kuhn, Weber, Thomas, Schüth (b0050) 2010; 3
Yokomichi, Yamabe, Ohtsuka, Kakumoto (b0070) 1996; 100
Gruenert, Hayes, Joyner, Shpiro, Siddiqui, Baeva (b0055) 1994; 98
Chan, Chen, Yu, Chen, Kuo (b0280) 2004; 43
Mills, Jónsson, Schenter (b0365) 1995; 324
Balasubramanian, Rosenzweig (b0210) 2007; 40
Li, Pidko, van Santen, Li, Hensen (b0345) 2013; 117
Narsimhan, Michaelis, Mathies, Gunther, Griffin, Román-Leshkov (b0240) 2015; 137
Citek, Gary, Wasinger, Stack (b0275) 2015; 137
Labinger, Bercaw (b0040) 2002; 417
Bolis, Barbaglia, Bordiga, Lamberti, Zecchina (b0090) 2004; 108
Nachtigallova, Nachtigall, Sauer (b0225) 2001; 3
Smeets, Hadt, Woertink, Vanelderen, Schoonheydt, Sels, Solomon (b0200) 2010; 132
Chen, Chan (b0295) 2006; 100
Chan, Chien, Yu, Nagababu, Maji, Chen (b0305) 2012; 293
Momma, Izumi (b0370) 2011; 44
Solomon, Ginsbach, Heppner, Kieber-Emmons, Kjaergaard, Smeets, Tian, Woertink (b0250) 2011; 148
Beutel, Sarkany, Lei, Yan, Sachtler (b0065) 1996; 100
Pidko, Kazansky (b0100) 2005; 7
Solomon, Sarangi, Woertink, Augustine, Yoon, Ghosh (b0215) 2007; 40
Kresse, Hafner (b0325) 1993; 48
Moretti (b0060) 1994; 28
Groothaert, Pierloot, Delabie, Schoonheydt (b0120) 2003; 5
Bar-Nahum, Khenkin, Neumann (b0015) 2004; 126
Alayon, Nachtegaal, Bodi, Ranocchiari, van Bokhoven (b0245) 2015; 17
Itadani, Sogawa, Oda, Torigoe, Ohkubo, Kuroda (b0110) 2013; 29
Reuter, Scheffler (b0385) 2003; 68
Alayon, Nachtegaal, Ranocchiari, van Bokhoven (b0230) 2012; 48
Chan, Wang, Lai, Yu, Chen, Chen, Chen, Chan (b0285) 2007; 46
Spoto, Gribov, Bordiga, Lamberti, Ricchiardi, Scarano, Zecchina (b0095) 2004
Woertink, Smeets, Groothaert, Vance, Sels, Schoonheydt, Solomon (b0190) 2009; 106
Sirajuddin, Rosenzweig (b0270) 2015; 54
Burkhardt, Spielberg, Görls, Plass (b0255) 2008; 47
Blöchl (b0335) 1994; 50
Hammond, Conrad, Hermans (b0025) 2012; 5
Arakawa, Aresta, Armor, Barteau, Beckman, Bell, Bercaw, Creutz, Dinjus, Dixon, Domen, DuBois, Eckert, Fujita, Gibson, Goddard, Goodman, Keller, Kubas, Kung, Lyons, Manzer, Marks, Morokuma, Nicholas, Periana, Que, Rostrup-Nielson, Sachtler, Schmidt, Sen, Somorjai, Stair, Stults, Tumas (b0005) 2001; 101
Palomino, Fisicaro, Bordiga, Zecchina, Giamello, Lamberti (b0080) 2000; 104
Chen, Nagababu, Yu, Chan (b0315) 2014; 6
Himes, Barnese, Karlin (b0205) 2010; 49
Sheppard, Hamill, Goguet, Rooney, Thompson (b0235) 2014; 50
Tsai, Hadt, Vanelderen, Sels, Schoonheydt, Solomon (b0390) 2014; 136
Stull, Prophet (b0375) 1971
Vanelderen, Snyder, Tsai, Hadt, Vancauwenbergh, Coussens, Schoonheydt, Sels, Solomon (b0150) 2015; 137
Groothaert, Lievens, van Bokhoven, Battiston, Weckhuysen, Pierloot, Schoonheydt (b0180) 2003; 4
Chen, Yang, Lee, Chan (b0300) 2007; 104
Groothaert, van Bokhoven, Battiston, Weckhuysen, Schoonheydt (b0115) 2003; 125
Alayon, Nachtegaal, Bodi, van Bokhoven (b0170) 2014; 4
Hammond, Forde, Ab Rahim, Thetford, He, Jenkins, Dimitratos, Lopez-Sanchez, Dummer, Murphy, Carley, Taylor, Willock, Stangland, Kang, Hagen, Kiely, Hutchings (b0175) 2012; 51
van Koningsveld, Jansen, van Bekkum (b0360) 1990; 10
Smeets, Groothaert, Schoonheydt (b0185) 2005; 110
Liu, Li, Hensen, Pidko (b0355) 2015; 5
Beznis, Weckhuysen, Bitter (b0135) 2010; 138
Perdew, Burke, Ernzerhof (b0330) 1996; 77
Nachtigallova (10.1016/j.jcat.2016.03.014_b0075) 1999; 1
Smeets (10.1016/j.jcat.2016.03.014_b0185) 2005; 110
Balasubramanian (10.1016/j.jcat.2016.03.014_b0265) 2010; 465
Kresse (10.1016/j.jcat.2016.03.014_b0325) 1993; 48
Smeets (10.1016/j.jcat.2016.03.014_b0200) 2010; 132
Grundner (10.1016/j.jcat.2016.03.014_b0320) 2015; 6
Sirajuddin (10.1016/j.jcat.2016.03.014_b0270) 2015; 54
Pidko (10.1016/j.jcat.2016.03.014_b0100) 2005; 7
Sheppard (10.1016/j.jcat.2016.03.014_b0235) 2014; 50
Chen (10.1016/j.jcat.2016.03.014_b0300) 2007; 104
Itadani (10.1016/j.jcat.2016.03.014_b0160) 2010; 12
Narsimhan (10.1016/j.jcat.2016.03.014_b0240) 2015; 137
Bar-Nahum (10.1016/j.jcat.2016.03.014_b0015) 2004; 126
Palomino (10.1016/j.jcat.2016.03.014_b0080) 2000; 104
Spoto (10.1016/j.jcat.2016.03.014_b0095) 2004
Groothaert (10.1016/j.jcat.2016.03.014_b0180) 2003; 4
Himes (10.1016/j.jcat.2016.03.014_b0205) 2010; 49
Burkhardt (10.1016/j.jcat.2016.03.014_b0255) 2008; 47
Mills (10.1016/j.jcat.2016.03.014_b0365) 1995; 324
Beutel (10.1016/j.jcat.2016.03.014_b0065) 1996; 100
Labinger (10.1016/j.jcat.2016.03.014_b0040) 2002; 417
Gruenert (10.1016/j.jcat.2016.03.014_b0055) 1994; 98
Citek (10.1016/j.jcat.2016.03.014_b0275) 2015; 137
Chan (10.1016/j.jcat.2016.03.014_b0310) 2013; 52
Yokomichi (10.1016/j.jcat.2016.03.014_b0070) 1996; 100
Nachtigall (10.1016/j.jcat.2016.03.014_b0220) 2000; 104
Alayon (10.1016/j.jcat.2016.03.014_b0245) 2015; 17
Pidko (10.1016/j.jcat.2016.03.014_b0350) 2012; 468
Guhl (10.1016/j.jcat.2016.03.014_b0380) 2010; 81
Groothaert (10.1016/j.jcat.2016.03.014_b0120) 2003; 5
Yoshizawa (10.1016/j.jcat.2016.03.014_b0290) 2006; 39
Banerjee (10.1016/j.jcat.2016.03.014_b0260) 2010; 2010
Jones (10.1016/j.jcat.2016.03.014_b0035) 2004; 43
Chan (10.1016/j.jcat.2016.03.014_b0280) 2004; 43
Periana (10.1016/j.jcat.2016.03.014_b0030) 1993; 259
Woertink (10.1016/j.jcat.2016.03.014_b0190) 2009; 106
Chen (10.1016/j.jcat.2016.03.014_b0295) 2006; 100
Delabie (10.1016/j.jcat.2016.03.014_b0125) 2002; 2002
Vanelderen (10.1016/j.jcat.2016.03.014_b0140) 2013; 257
Woertink (10.1016/j.jcat.2016.03.014_b0195) 2010; 49
Morpurgo (10.1016/j.jcat.2016.03.014_b0105) 2007; 9
Alayon (10.1016/j.jcat.2016.03.014_b0170) 2014; 4
Chan (10.1016/j.jcat.2016.03.014_b0285) 2007; 46
Moretti (10.1016/j.jcat.2016.03.014_b0060) 1994; 28
Rice (10.1016/j.jcat.2016.03.014_b0085) 2000; 104
Groothaert (10.1016/j.jcat.2016.03.014_b0115) 2003; 125
Bordiga (10.1016/j.jcat.2016.03.014_b0165) 2015; 44
Momma (10.1016/j.jcat.2016.03.014_b0370) 2011; 44
Tsai (10.1016/j.jcat.2016.03.014_b0390) 2014; 136
Arakawa (10.1016/j.jcat.2016.03.014_b0005) 2001; 101
Itadani (10.1016/j.jcat.2016.03.014_b0155) 2015; 119
Li (10.1016/j.jcat.2016.03.014_b0340) 2011; 284
Nachtigallova (10.1016/j.jcat.2016.03.014_b0225) 2001; 3
van Koningsveld (10.1016/j.jcat.2016.03.014_b0360) 1990; 10
Itadani (10.1016/j.jcat.2016.03.014_b0110) 2013; 29
Hammond (10.1016/j.jcat.2016.03.014_b0175) 2012; 51
Reuter (10.1016/j.jcat.2016.03.014_b0385) 2003; 68
Beznis (10.1016/j.jcat.2016.03.014_b0135) 2010; 138
Blöchl (10.1016/j.jcat.2016.03.014_b0335) 1994; 50
Bolis (10.1016/j.jcat.2016.03.014_b0090) 2004; 108
Vanelderen (10.1016/j.jcat.2016.03.014_b0145) 2011; 284
Groothaert (10.1016/j.jcat.2016.03.014_b0045) 2005; 127
Solomon (10.1016/j.jcat.2016.03.014_b0215) 2007; 40
Perdew (10.1016/j.jcat.2016.03.014_b0330) 1996; 77
Chan (10.1016/j.jcat.2016.03.014_b0305) 2012; 293
Liu (10.1016/j.jcat.2016.03.014_b0355) 2015; 5
Alayon (10.1016/j.jcat.2016.03.014_b0230) 2012; 48
Solomon (10.1016/j.jcat.2016.03.014_b0250) 2011; 148
Balasubramanian (10.1016/j.jcat.2016.03.014_b0210) 2007; 40
Himes (10.1016/j.jcat.2016.03.014_b0010) 2009; 106
Hammond (10.1016/j.jcat.2016.03.014_b0025) 2012; 5
Stull (10.1016/j.jcat.2016.03.014_b0375) 1971
Palkovits (10.1016/j.jcat.2016.03.014_b0050) 2010; 3
Li (10.1016/j.jcat.2016.03.014_b0345) 2013; 117
Schwarz (10.1016/j.jcat.2016.03.014_b0020) 2011; 50
Schröder (10.1016/j.jcat.2016.03.014_b0395) 2000; 33
Pierloot (10.1016/j.jcat.2016.03.014_b0130) 2001; 3
Vanelderen (10.1016/j.jcat.2016.03.014_b0150) 2015; 137
Chen (10.1016/j.jcat.2016.03.014_b0315) 2014; 6
References_xml – volume: 33
  start-page: 139
  year: 2000
  end-page: 145
  ident: b0395
  publication-title: Acc. Chem. Res.
– volume: 468
  start-page: 2070
  year: 2012
  end-page: 2086
  ident: b0350
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 465
  start-page: 115
  year: 2010
  end-page: 119
  ident: b0265
  publication-title: Nature
– volume: 44
  start-page: 1272
  year: 2011
  end-page: 1276
  ident: b0370
  publication-title: J. Appl. Crystallogr.
– volume: 100
  start-page: 845
  year: 1996
  end-page: 851
  ident: b0065
  publication-title: J. Phys. Chem.
– volume: 104
  start-page: 4064
  year: 2000
  end-page: 4073
  ident: b0080
  publication-title: J. Phys. Chem. B
– volume: 5
  start-page: 2135
  year: 2003
  end-page: 2144
  ident: b0120
  publication-title: Phys. Chem. Chem. Phys.
– volume: 44
  start-page: 7262
  year: 2015
  end-page: 7341
  ident: b0165
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 14
  year: 2010
  end-page: 22
  ident: b0135
  publication-title: Catal. Lett.
– volume: 106
  start-page: 18877
  year: 2009
  end-page: 18878
  ident: b0010
  publication-title: Proc. Natl. Acad. Sci.
– volume: 137
  start-page: 6991
  year: 2015
  end-page: 6994
  ident: b0275
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 4421
  year: 2004
  end-page: 4430
  ident: b0280
  publication-title: Biochemistry
– volume: 54
  start-page: 2283
  year: 2015
  end-page: 2294
  ident: b0270
  publication-title: Biochemistry
– volume: 5
  start-page: 1668
  year: 2012
  end-page: 1686
  ident: b0025
  publication-title: ChemSusChem
– volume: 100
  start-page: 14424
  year: 1996
  end-page: 14429
  ident: b0070
  publication-title: J. Phys. Chem.
– volume: 51
  start-page: 5129
  year: 2012
  end-page: 5133
  ident: b0175
  publication-title: Angew. Chem., Int. Ed.
– volume: 2010
  start-page: 790
  year: 2010
  end-page: 798
  ident: b0260
  publication-title: Eur. J. Inorg. Chem.
– volume: 49
  start-page: 9450
  year: 2010
  end-page: 9459
  ident: b0195
  publication-title: Inorg. Chem.
– volume: 40
  start-page: 573
  year: 2007
  end-page: 580
  ident: b0210
  publication-title: Acc. Chem. Res.
– volume: 3
  start-page: 1552
  year: 2001
  end-page: 1559
  ident: b0225
  publication-title: Phys. Chem. Phys. Chem.
– volume: 50
  start-page: 11053
  year: 2014
  end-page: 11055
  ident: b0235
  publication-title: Chem. Commun.
– volume: 40
  start-page: 581
  year: 2007
  end-page: 591
  ident: b0215
  publication-title: Acc. Chem. Res.
– volume: 136
  start-page: 3522
  year: 2014
  end-page: 3529
  ident: b0390
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 303
  year: 2005
  end-page: 309
  ident: b0185
  publication-title: Catal. Today
– volume: 52
  start-page: 3731
  year: 2013
  end-page: 3735
  ident: b0310
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 6455
  year: 2010
  end-page: 6465
  ident: b0160
  publication-title: Phys. Chem. Phys. Chem.
– volume: 4
  start-page: 16
  year: 2014
  end-page: 22
  ident: b0170
  publication-title: ACS Catal.
– volume: 49
  start-page: 6714
  year: 2010
  end-page: 6716
  ident: b0205
  publication-title: Angew. Chem., Int. Ed.
– volume: 104
  start-page: 9987
  year: 2000
  end-page: 9992
  ident: b0085
  publication-title: J. Phys. Chem. B
– volume: 4
  start-page: 626
  year: 2003
  end-page: 630
  ident: b0180
  publication-title: ChemPhysChem
– volume: 104
  start-page: 1738
  year: 2000
  end-page: 1745
  ident: b0220
  publication-title: J. Phys. Chem. B
– volume: 101
  start-page: 953
  year: 2001
  end-page: 996
  ident: b0005
  publication-title: Chem. Rev.
– volume: 9
  start-page: 417
  year: 2007
  end-page: 424
  ident: b0105
  publication-title: Phys. Chem. Phys. Chem.
– volume: 48
  start-page: 404
  year: 2012
  end-page: 406
  ident: b0230
  publication-title: Chem. Commun.
– volume: 6
  start-page: 429
  year: 2014
  end-page: 437
  ident: b0315
  publication-title: ChemCatChem
– volume: 148
  start-page: 11
  year: 2011
  end-page: 39
  ident: b0250
  publication-title: Faraday Discuss.
– volume: 50
  start-page: 10096
  year: 2011
  end-page: 10115
  ident: b0020
  publication-title: Angew. Chem., Int. Ed.
– volume: 137
  start-page: 1825
  year: 2015
  end-page: 1832
  ident: b0240
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 7024
  year: 2015
  end-page: 7033
  ident: b0355
  publication-title: ACS Catal.
– volume: 7
  start-page: 1939
  year: 2005
  end-page: 1944
  ident: b0100
  publication-title: Phys. Chem. Phys. Chem.
– volume: 117
  start-page: 413
  year: 2013
  end-page: 426
  ident: b0345
  publication-title: J. Phys. Chem. C
– volume: 126
  start-page: 10236
  year: 2004
  end-page: 10237
  ident: b0015
  publication-title: J. Am. Chem. Soc.
– volume: 259
  start-page: 340
  year: 1993
  end-page: 343
  ident: b0030
  publication-title: Science
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: b0330
  publication-title: Phys. Rev. Lett.
– volume: 108
  start-page: 9970
  year: 2004
  end-page: 9983
  ident: b0090
  publication-title: J. Phys. Chem. B
– volume: 106
  start-page: 18908
  year: 2009
  end-page: 18913
  ident: b0190
  publication-title: Proc. Natl. Acad. Sci.
– volume: 47
  start-page: 2485
  year: 2008
  end-page: 2493
  ident: b0255
  publication-title: Inorg. Chem.
– volume: 10
  start-page: 235
  year: 1990
  end-page: 242
  ident: b0360
  publication-title: Zeolites
– volume: 6
  start-page: 7546
  year: 2015
  ident: b0320
  publication-title: Nat. Commun.
– volume: 417
  start-page: 507
  year: 2002
  end-page: 514
  ident: b0040
  publication-title: Nature
– volume: 29
  start-page: 9727
  year: 2013
  end-page: 9733
  ident: b0110
  publication-title: Langmuir
– volume: 324
  start-page: 305
  year: 1995
  end-page: 337
  ident: b0365
  publication-title: Surf. Sci.
– volume: 132
  start-page: 14736
  year: 2010
  end-page: 14738
  ident: b0200
  publication-title: J. Am. Chem. Soc.
– volume: 98
  start-page: 10832
  year: 1994
  end-page: 10846
  ident: b0055
  publication-title: J. Phys. Chem.
– volume: 43
  start-page: 4626
  year: 2004
  end-page: 4629
  ident: b0035
  publication-title: Angew. Chem., Int. Ed.
– volume: 284
  start-page: 157
  year: 2011
  end-page: 164
  ident: b0145
  publication-title: J. Catal.
– volume: 293
  start-page: 186
  year: 2012
  end-page: 194
  ident: b0305
  publication-title: J. Catal.
– volume: 28
  start-page: 143
  year: 1994
  end-page: 152
  ident: b0060
  publication-title: Catal. Lett.
– volume: 137
  start-page: 6383
  year: 2015
  end-page: 6392
  ident: b0150
  publication-title: J. Am. Chem. Soc.
– volume: 100
  start-page: 801
  year: 2006
  end-page: 809
  ident: b0295
  publication-title: J. Inorg. Biochem.
– volume: 46
  start-page: 1992
  year: 2007
  end-page: 1994
  ident: b0285
  publication-title: Angew. Chem., Int. Ed.
– volume: 127
  start-page: 1394
  year: 2005
  end-page: 1395
  ident: b0045
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 277
  year: 2010
  end-page: 282
  ident: b0050
  publication-title: ChemSusChem
– volume: 48
  start-page: 13115
  year: 1993
  end-page: 13118
  ident: b0325
  publication-title: Phys. Rev. B
– year: 1971
  ident: b0375
  article-title: JANAF Thermochemical Tables
– volume: 39
  start-page: 375
  year: 2006
  end-page: 382
  ident: b0290
  publication-title: Acc. Chem. Res.
– volume: 17
  start-page: 7681
  year: 2015
  end-page: 7693
  ident: b0245
  publication-title: Phys. Chem. Chem. Phys.
– volume: 257
  start-page: 483
  year: 2013
  end-page: 494
  ident: b0140
  publication-title: Coord. Chem. Rev.
– volume: 125
  start-page: 7629
  year: 2003
  end-page: 7640
  ident: b0115
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 2174
  year: 2001
  end-page: 2183
  ident: b0130
  publication-title: Phys. Chem. Chem. Phys.
– volume: 68
  start-page: 045407
  year: 2003
  ident: b0385
  publication-title: Phys. Rev. B
– volume: 1
  start-page: 2019
  year: 1999
  end-page: 2026
  ident: b0075
  publication-title: Phys. Chem. Phys. Chem.
– volume: 104
  start-page: 14570
  year: 2007
  end-page: 14575
  ident: b0300
  publication-title: Proc. Natl. Acad. Sci.
– volume: 81
  start-page: 155455
  year: 2010
  ident: b0380
  publication-title: Phys. Rev. B
– start-page: 2768
  year: 2004
  end-page: 2769
  ident: b0095
  publication-title: Chem. Commun.
– volume: 119
  start-page: 21483
  year: 2015
  end-page: 21496
  ident: b0155
  publication-title: J. Phys. Chem. C
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: b0335
  publication-title: Phys. Rev. B
– volume: 2002
  start-page: 515
  year: 2002
  end-page: 530
  ident: b0125
  publication-title: Eur. J. Inorg. Chem.
– volume: 284
  start-page: 194
  year: 2011
  end-page: 206
  ident: b0340
  publication-title: J. Catal.
– volume: 148
  start-page: 11
  year: 2011
  ident: 10.1016/j.jcat.2016.03.014_b0250
  publication-title: Faraday Discuss.
  doi: 10.1039/C005500J
– volume: 49
  start-page: 6714
  year: 2010
  ident: 10.1016/j.jcat.2016.03.014_b0205
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201003403
– volume: 3
  start-page: 1552
  year: 2001
  ident: 10.1016/j.jcat.2016.03.014_b0225
  publication-title: Phys. Chem. Phys. Chem.
  doi: 10.1039/b100712m
– volume: 101
  start-page: 953
  year: 2001
  ident: 10.1016/j.jcat.2016.03.014_b0005
  publication-title: Chem. Rev.
  doi: 10.1021/cr000018s
– volume: 5
  start-page: 7024
  year: 2015
  ident: 10.1016/j.jcat.2016.03.014_b0355
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02268
– volume: 108
  start-page: 9970
  year: 2004
  ident: 10.1016/j.jcat.2016.03.014_b0090
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp049613e
– year: 1971
  ident: 10.1016/j.jcat.2016.03.014_b0375
– volume: 100
  start-page: 801
  year: 2006
  ident: 10.1016/j.jcat.2016.03.014_b0295
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2005.12.014
– volume: 3
  start-page: 277
  year: 2010
  ident: 10.1016/j.jcat.2016.03.014_b0050
  publication-title: ChemSusChem
  doi: 10.1002/cssc.200900123
– volume: 104
  start-page: 4064
  year: 2000
  ident: 10.1016/j.jcat.2016.03.014_b0080
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp993893u
– volume: 50
  start-page: 11053
  year: 2014
  ident: 10.1016/j.jcat.2016.03.014_b0235
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC02832E
– volume: 137
  start-page: 6991
  year: 2015
  ident: 10.1016/j.jcat.2016.03.014_b0275
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02157
– volume: 3
  start-page: 2174
  year: 2001
  ident: 10.1016/j.jcat.2016.03.014_b0130
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b100531f
– volume: 468
  start-page: 2070
  year: 2012
  ident: 10.1016/j.jcat.2016.03.014_b0350
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 324
  start-page: 305
  year: 1995
  ident: 10.1016/j.jcat.2016.03.014_b0365
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(94)00731-4
– volume: 1
  start-page: 2019
  year: 1999
  ident: 10.1016/j.jcat.2016.03.014_b0075
  publication-title: Phys. Chem. Phys. Chem.
  doi: 10.1039/a900214f
– volume: 47
  start-page: 2485
  year: 2008
  ident: 10.1016/j.jcat.2016.03.014_b0255
  publication-title: Inorg. Chem.
  doi: 10.1021/ic701777t
– volume: 137
  start-page: 1825
  year: 2015
  ident: 10.1016/j.jcat.2016.03.014_b0240
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5106927
– volume: 125
  start-page: 7629
  year: 2003
  ident: 10.1016/j.jcat.2016.03.014_b0115
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja029684w
– volume: 2002
  start-page: 515
  year: 2002
  ident: 10.1016/j.jcat.2016.03.014_b0125
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/1099-0682(200203)2002:3<515::AID-EJIC515>3.0.CO;2-6
– volume: 81
  start-page: 155455
  year: 2010
  ident: 10.1016/j.jcat.2016.03.014_b0380
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.155455
– volume: 417
  start-page: 507
  year: 2002
  ident: 10.1016/j.jcat.2016.03.014_b0040
  publication-title: Nature
  doi: 10.1038/417507a
– volume: 5
  start-page: 2135
  year: 2003
  ident: 10.1016/j.jcat.2016.03.014_b0120
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b301120h
– volume: 4
  start-page: 626
  year: 2003
  ident: 10.1016/j.jcat.2016.03.014_b0180
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200300746
– volume: 127
  start-page: 1394
  year: 2005
  ident: 10.1016/j.jcat.2016.03.014_b0045
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja047158u
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.jcat.2016.03.014_b0330
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 68
  start-page: 045407
  year: 2003
  ident: 10.1016/j.jcat.2016.03.014_b0385
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.045407
– volume: 138
  start-page: 14
  year: 2010
  ident: 10.1016/j.jcat.2016.03.014_b0135
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-010-0380-6
– volume: 49
  start-page: 9450
  year: 2010
  ident: 10.1016/j.jcat.2016.03.014_b0195
  publication-title: Inorg. Chem.
  doi: 10.1021/ic101138u
– volume: 257
  start-page: 483
  year: 2013
  ident: 10.1016/j.jcat.2016.03.014_b0140
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2012.07.008
– volume: 6
  start-page: 7546
  year: 2015
  ident: 10.1016/j.jcat.2016.03.014_b0320
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8546
– volume: 117
  start-page: 413
  year: 2013
  ident: 10.1016/j.jcat.2016.03.014_b0345
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp310374k
– volume: 44
  start-page: 7262
  year: 2015
  ident: 10.1016/j.jcat.2016.03.014_b0165
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00396B
– volume: 54
  start-page: 2283
  year: 2015
  ident: 10.1016/j.jcat.2016.03.014_b0270
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.5b00198
– volume: 293
  start-page: 186
  year: 2012
  ident: 10.1016/j.jcat.2016.03.014_b0305
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.06.024
– volume: 29
  start-page: 9727
  year: 2013
  ident: 10.1016/j.jcat.2016.03.014_b0110
  publication-title: Langmuir
  doi: 10.1021/la4018568
– volume: 17
  start-page: 7681
  year: 2015
  ident: 10.1016/j.jcat.2016.03.014_b0245
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP03226H
– volume: 465
  start-page: 115
  year: 2010
  ident: 10.1016/j.jcat.2016.03.014_b0265
  publication-title: Nature
  doi: 10.1038/nature08992
– volume: 126
  start-page: 10236
  year: 2004
  ident: 10.1016/j.jcat.2016.03.014_b0015
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0493547
– volume: 106
  start-page: 18877
  year: 2009
  ident: 10.1016/j.jcat.2016.03.014_b0010
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0911413106
– volume: 259
  start-page: 340
  year: 1993
  ident: 10.1016/j.jcat.2016.03.014_b0030
  publication-title: Science
  doi: 10.1126/science.259.5093.340
– volume: 43
  start-page: 4626
  year: 2004
  ident: 10.1016/j.jcat.2016.03.014_b0035
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200461055
– volume: 137
  start-page: 6383
  year: 2015
  ident: 10.1016/j.jcat.2016.03.014_b0150
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02817
– volume: 104
  start-page: 1738
  year: 2000
  ident: 10.1016/j.jcat.2016.03.014_b0220
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp992600u
– volume: 2010
  start-page: 790
  year: 2010
  ident: 10.1016/j.jcat.2016.03.014_b0260
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.200900709
– volume: 104
  start-page: 9987
  year: 2000
  ident: 10.1016/j.jcat.2016.03.014_b0085
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0009352
– volume: 106
  start-page: 18908
  year: 2009
  ident: 10.1016/j.jcat.2016.03.014_b0190
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0910461106
– volume: 98
  start-page: 10832
  year: 1994
  ident: 10.1016/j.jcat.2016.03.014_b0055
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100093a026
– volume: 136
  start-page: 3522
  year: 2014
  ident: 10.1016/j.jcat.2016.03.014_b0390
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4113808
– volume: 40
  start-page: 573
  year: 2007
  ident: 10.1016/j.jcat.2016.03.014_b0210
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700004s
– volume: 100
  start-page: 14424
  year: 1996
  ident: 10.1016/j.jcat.2016.03.014_b0070
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp960403e
– volume: 7
  start-page: 1939
  year: 2005
  ident: 10.1016/j.jcat.2016.03.014_b0100
  publication-title: Phys. Chem. Phys. Chem.
  doi: 10.1039/B418498J
– volume: 9
  start-page: 417
  year: 2007
  ident: 10.1016/j.jcat.2016.03.014_b0105
  publication-title: Phys. Chem. Phys. Chem.
  doi: 10.1039/B608411G
– volume: 50
  start-page: 10096
  year: 2011
  ident: 10.1016/j.jcat.2016.03.014_b0020
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201006424
– volume: 39
  start-page: 375
  year: 2006
  ident: 10.1016/j.jcat.2016.03.014_b0290
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar050194t
– volume: 12
  start-page: 6455
  year: 2010
  ident: 10.1016/j.jcat.2016.03.014_b0160
  publication-title: Phys. Chem. Phys. Chem.
  doi: 10.1039/c000967a
– volume: 33
  start-page: 139
  year: 2000
  ident: 10.1016/j.jcat.2016.03.014_b0395
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar990028j
– volume: 4
  start-page: 16
  year: 2014
  ident: 10.1016/j.jcat.2016.03.014_b0170
  publication-title: ACS Catal.
  doi: 10.1021/cs400713c
– volume: 110
  start-page: 303
  year: 2005
  ident: 10.1016/j.jcat.2016.03.014_b0185
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2005.09.028
– volume: 40
  start-page: 581
  year: 2007
  ident: 10.1016/j.jcat.2016.03.014_b0215
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar600060t
– volume: 119
  start-page: 21483
  year: 2015
  ident: 10.1016/j.jcat.2016.03.014_b0155
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b05577
– volume: 48
  start-page: 404
  year: 2012
  ident: 10.1016/j.jcat.2016.03.014_b0230
  publication-title: Chem. Commun.
  doi: 10.1039/C1CC15840F
– volume: 6
  start-page: 429
  year: 2014
  ident: 10.1016/j.jcat.2016.03.014_b0315
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201300473
– volume: 5
  start-page: 1668
  year: 2012
  ident: 10.1016/j.jcat.2016.03.014_b0025
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201200299
– volume: 43
  start-page: 4421
  year: 2004
  ident: 10.1016/j.jcat.2016.03.014_b0280
  publication-title: Biochemistry
  doi: 10.1021/bi0497603
– volume: 28
  start-page: 143
  year: 1994
  ident: 10.1016/j.jcat.2016.03.014_b0060
  publication-title: Catal. Lett.
  doi: 10.1007/BF00806043
– volume: 132
  start-page: 14736
  year: 2010
  ident: 10.1016/j.jcat.2016.03.014_b0200
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106283u
– volume: 50
  start-page: 17953
  year: 1994
  ident: 10.1016/j.jcat.2016.03.014_b0335
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 100
  start-page: 845
  year: 1996
  ident: 10.1016/j.jcat.2016.03.014_b0065
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp952455u
– volume: 46
  start-page: 1992
  year: 2007
  ident: 10.1016/j.jcat.2016.03.014_b0285
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200604647
– volume: 104
  start-page: 14570
  year: 2007
  ident: 10.1016/j.jcat.2016.03.014_b0300
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0707119104
– volume: 284
  start-page: 194
  year: 2011
  ident: 10.1016/j.jcat.2016.03.014_b0340
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2011.07.008
– volume: 52
  start-page: 3731
  year: 2013
  ident: 10.1016/j.jcat.2016.03.014_b0310
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201209846
– volume: 48
  start-page: 13115
  year: 1993
  ident: 10.1016/j.jcat.2016.03.014_b0325
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.13115
– volume: 10
  start-page: 235
  year: 1990
  ident: 10.1016/j.jcat.2016.03.014_b0360
  publication-title: Zeolites
  doi: 10.1016/0144-2449(94)90134-1
– volume: 51
  start-page: 5129
  year: 2012
  ident: 10.1016/j.jcat.2016.03.014_b0175
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201108706
– start-page: 2768
  year: 2004
  ident: 10.1016/j.jcat.2016.03.014_b0095
  publication-title: Chem. Commun.
  doi: 10.1039/b411053f
– volume: 284
  start-page: 157
  year: 2011
  ident: 10.1016/j.jcat.2016.03.014_b0145
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2011.10.009
– volume: 44
  start-page: 1272
  year: 2011
  ident: 10.1016/j.jcat.2016.03.014_b0370
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889811038970
SSID ssj0011558
Score 2.5968406
Snippet [Display omitted] •Cu speciation in ZSM-5 zeolite depends on the conditions of thermochemical activation.•Trinuclear [Cu3O3]2+ cationic clusters are...
Display Omitted * Cu speciation in ZSM-5 zeolite depends on the conditions of thermochemical activation. * Trinuclear [Cu3O3]2+ cationic clusters are...
A periodic density functional theory study complemented by ab initio thermodynamic analysis was carried out to identify the active sites and mechanism of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 305
SubjectTerms active sites
Catalysts
chemical bonding
Copper
density functional theory
DFT
homolytic cleavage
Methane
Methanol
micropores
Oxidation
Radical mechanism
Selective oxidation
Spin crossing
temperature
thermodynamics
Trinuclear clusters
Zeolites
ZSM-5
Title Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol
URI https://dx.doi.org/10.1016/j.jcat.2016.03.014
https://www.proquest.com/docview/1787922307
https://www.proquest.com/docview/2131890487
Volume 338
WOSCitedRecordID wos000376695500031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011558
  issn: 0021-9517
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhgQ8IBggOgYyEuKlyuRcHT9OUyeYRkFaN1W8WInrilZV0vWmqr-PH8Y5tpN2m1bBAy9J5TSWm-_rOSfH50LIJz_SEUe_Bqiz1ANSMC_vh8yLkzQcCK3DQGWm2QTvdNJeT_xoNH5XuTDLMS-KdLUSk_8KNYwB2Jg6-w9w15PCAHwG0OEIsMPxr4AH89EEvNrCSmATKtcgwgSQTyZ62ipXpafGC6yRYMJhf15-8-LWWmMsnC0CPjPtcTCqCFtMZ2CJlquhbb-E1qodLMcPmLbGJ4SlTupwHxMzAHQsiloNXIPZDiJpeS9K-BKI-EuvPXd2GUVDNV2s6_n0tCLbeQkrAXntnLLOgeEnm0Ar61WrM2uutwU1Ro7ENq3zWFvZzATzMPF2W3iHtjaME7-hSeG-rxash2J0PEJvLq7BFLa12au3a3B3vsuzq4sL2W33urevGp0fYbn4NPIj__PkxsPeZbjH7xq5PCL7AY8FyNb9k6_t3nm9mwU2m7UI3I9yyVs2zvDumh4ykO6YCsb-6b4gzx269MQS7iVp6OKAPDmt-gUekGdbpS1fkXFNQwo0pBsa0nJALQ3pNg3psKCGhtTRkAINaU1D6mhIaxrSeUkrGr4mV2ft7ukXz3X28FSURHMvH_CE5yxjOspZnydKxBlXKZyF4mGOkcmpHoQ85jm80CYiz7NMaxH1WaAU7vS_IXtFWei3hPaTLPeZTrDANrxcJClgEwkW5ooFnKV5k_jV45TKlb3H7itjWcU3jiRCIBECyUIJEDRJq75nYou-7Px2XKEkndlqzVEJ9Nt531EFqXTyYyZ9UKAiwOyMJvlYXwYkcR8PHnO5mMnAB0UsQPXyw91TvCNPN3-4I7I3ny70e_JYLefD2fSDY-kfthjOmQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+reactivity+of+copper+oxo-clusters+in+ZSM-5+zeolite+for+selective+methane+oxidation+to+methanol&rft.jtitle=Journal+of+catalysis&rft.au=Li%2C+Guanna&rft.au=Vassilev%2C+Peter&rft.au=Sanchez-Sanchez%2C+Maricruz&rft.au=Lercher%2C+Johannes+A&rft.date=2016-06-01&rft.pub=Elsevier+BV&rft.issn=0021-9517&rft.eissn=1090-2694&rft.volume=338&rft.spage=305&rft_id=info:doi/10.1016%2Fj.jcat.2016.03.014&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4051484141
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon