Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol
[Display omitted] •Cu speciation in ZSM-5 zeolite depends on the conditions of thermochemical activation.•Trinuclear [Cu3O3]2+ cationic clusters are preferentially formed in HZSM-5 upon calcination.•Trinuclear Cu-oxo clusters favor the direct methane to methanol oxidation.•Methane activation by binu...
Saved in:
| Published in: | Journal of catalysis Vol. 338; pp. 305 - 312 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
San Diego
Elsevier Inc
01.06.2016
Elsevier BV |
| Subjects: | |
| ISSN: | 0021-9517, 1090-2694 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•Cu speciation in ZSM-5 zeolite depends on the conditions of thermochemical activation.•Trinuclear [Cu3O3]2+ cationic clusters are preferentially formed in HZSM-5 upon calcination.•Trinuclear Cu-oxo clusters favor the direct methane to methanol oxidation.•Methane activation by binuclear [Cu2O]2+ results in strongly bound surface intermediates.
A periodic density functional theory study complemented by ab initio thermodynamic analysis was carried out to identify the active sites and mechanism of selective oxidation of methane to methanol in Cu/ZSM-5 catalysts. We systematically analyzed structure and stability of a wide range of potential extra-framework Cu complexes in ZSM-5 to address Cu speciation in realistic zeolite materials. We demonstrate that depending on the conditions of catalyst activation, binuclear [Cu(μ-O)Cu]2+ species and trinuclear oxygenated [Cu3(μ-O)3]2+ clusters can preferentially be stabilized in ZSM-5. The trinuclear Cu sites are the most stable extra-framework Cu species in Cu/ZSM-5 activated by calcination, whereas the formation of the binuclear complexes is favored under O2-poor atmosphere. Although both types of Cu complexes contain extra-framework O−, radical species necessary for the homolytic C–H bond cleavage, the reaction paths for methane conversion that they provide are drastically different. Binuclear Cu sites react with CH4 stoichiometrically to yield methoxy groups strongly bound in the zeolite micropores. In contrast, the trinuclear [Cu3(μ-O)3]2+ cluster favors the direct conversion of CH4 to CH3OH coordinated with the partially reduced Cu complex. These computational findings point to the trinuclear Cu-oxo clusters in ZSM-5 as the potential candidates for promotion of the low temperature direct conversion of CH4 to CH3OH. |
|---|---|
| AbstractList | A periodic density functional theory study complemented by ab initio thermodynamic analysis was carried out to identify the active sites and mechanism of selective oxidation of methane to methanol in Cu/ZSM-5 catalysts. We systematically analyzed structure and stability of a wide range of potential extra-framework Cu complexes in ZSM-5 to address Cu speciation in realistic zeolite materials. We demonstrate that depending on the conditions of catalyst activation, binuclear [Cu(μ-O)Cu]²⁺ species and trinuclear oxygenated [Cu3(μ-O)3]²⁺ clusters can preferentially be stabilized in ZSM-5. The trinuclear Cu sites are the most stable extra-framework Cu species in Cu/ZSM-5 activated by calcination, whereas the formation of the binuclear complexes is favored under O2-poor atmosphere. Although both types of Cu complexes contain extra-framework O⁻, radical species necessary for the homolytic C–H bond cleavage, the reaction paths for methane conversion that they provide are drastically different. Binuclear Cu sites react with CH4 stoichiometrically to yield methoxy groups strongly bound in the zeolite micropores. In contrast, the trinuclear [Cu3(μ-O)3]²⁺ cluster favors the direct conversion of CH4 to CH3OH coordinated with the partially reduced Cu complex. These computational findings point to the trinuclear Cu-oxo clusters in ZSM-5 as the potential candidates for promotion of the low temperature direct conversion of CH4 to CH3OH. Display Omitted * Cu speciation in ZSM-5 zeolite depends on the conditions of thermochemical activation. * Trinuclear [Cu3O3]2+ cationic clusters are preferentially formed in HZSM-5 upon calcination. * Trinuclear Cu-oxo clusters favor the direct methane to methanol oxidation. * Methane activation by binuclear [Cu2O]2+ results in strongly bound surface intermediates. A periodic density functional theory study complemented by ab initio thermodynamic analysis was carried out to identify the active sites and mechanism of selective oxidation of methane to methanol in Cu/ZSM-5 catalysts. We systematically analyzed structure and stability of a wide range of potential extra-framework Cu complexes in ZSM-5 to address Cu speciation in realistic zeolite materials. We demonstrate that depending on the conditions of catalyst activation, binuclear [Cu( μ -O)Cu]2+ species and trinuclear oxygenated [Cu3(μ -O)3]2+ clusters can preferentially be stabilized in ZSM-5. The trinuclear Cu sites are the most stable extra-framework Cu species in Cu/ZSM-5 activated by calcination, whereas the formation of the binuclear complexes is favored under O2-poor atmosphere. Although both types of Cu complexes contain extra-framework O -,[radical dot] radical species necessary for the homolytic C-H bond cleavage, the reaction paths for methane conversion that they provide are drastically different. Binuclear Cu sites react with CH4 stoichiometrically to yield methoxy groups strongly bound in the zeolite micropores. In contrast, the trinuclear [Cu3( μ -O)3]2+ cluster favors the direct conversion of CH4 to CH3OH coordinated with the partially reduced Cu complex. These computational findings point to the trinuclear Cu-oxo clusters in ZSM-5 as the potential candidates for promotion of the low temperature direct conversion of CH4 to CH3OH. [Display omitted] •Cu speciation in ZSM-5 zeolite depends on the conditions of thermochemical activation.•Trinuclear [Cu3O3]2+ cationic clusters are preferentially formed in HZSM-5 upon calcination.•Trinuclear Cu-oxo clusters favor the direct methane to methanol oxidation.•Methane activation by binuclear [Cu2O]2+ results in strongly bound surface intermediates. A periodic density functional theory study complemented by ab initio thermodynamic analysis was carried out to identify the active sites and mechanism of selective oxidation of methane to methanol in Cu/ZSM-5 catalysts. We systematically analyzed structure and stability of a wide range of potential extra-framework Cu complexes in ZSM-5 to address Cu speciation in realistic zeolite materials. We demonstrate that depending on the conditions of catalyst activation, binuclear [Cu(μ-O)Cu]2+ species and trinuclear oxygenated [Cu3(μ-O)3]2+ clusters can preferentially be stabilized in ZSM-5. The trinuclear Cu sites are the most stable extra-framework Cu species in Cu/ZSM-5 activated by calcination, whereas the formation of the binuclear complexes is favored under O2-poor atmosphere. Although both types of Cu complexes contain extra-framework O−, radical species necessary for the homolytic C–H bond cleavage, the reaction paths for methane conversion that they provide are drastically different. Binuclear Cu sites react with CH4 stoichiometrically to yield methoxy groups strongly bound in the zeolite micropores. In contrast, the trinuclear [Cu3(μ-O)3]2+ cluster favors the direct conversion of CH4 to CH3OH coordinated with the partially reduced Cu complex. These computational findings point to the trinuclear Cu-oxo clusters in ZSM-5 as the potential candidates for promotion of the low temperature direct conversion of CH4 to CH3OH. |
| Author | Vassilev, Peter Hensen, Emiel J.M. Sanchez-Sanchez, Maricruz Pidko, Evgeny A. Lercher, Johannes A. Li, Guanna |
| Author_xml | – sequence: 1 givenname: Guanna surname: Li fullname: Li, Guanna organization: Inorganic Materials Chemistry Group, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands – sequence: 2 givenname: Peter surname: Vassilev fullname: Vassilev, Peter organization: Inorganic Materials Chemistry Group, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands – sequence: 3 givenname: Maricruz surname: Sanchez-Sanchez fullname: Sanchez-Sanchez, Maricruz organization: Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany – sequence: 4 givenname: Johannes A. surname: Lercher fullname: Lercher, Johannes A. organization: Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany – sequence: 5 givenname: Emiel J.M. surname: Hensen fullname: Hensen, Emiel J.M. email: e.j.m.hensen@tue.nl organization: Inorganic Materials Chemistry Group, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands – sequence: 6 givenname: Evgeny A. orcidid: 0000-0001-9242-9901 surname: Pidko fullname: Pidko, Evgeny A. email: e.a.pidko@tue.nl organization: Inorganic Materials Chemistry Group, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands |
| BookMark | eNp9kTtLBTEQhYMoeH38AauAjc2uk31lAzYivkCxUBubkM3OYpbczTXJFfXXm_VaWVjNg_MNwzl7ZHtyExJyxCBnwJrTMR-1inmR-hzKHFi1RRYMBGRFI6ptsgAoWCZqxnfJXggjAGN13S6IfYyqM9bET6qmnnpUOpr3eXQD1W61Qk_dh8u0XYeIPlAz0ZfH-6ymX-gShnRwnga0OHNIlxhf1YSJMb2Kxk00ut-lswdkZ1A24OFv3SfPV5dPFzfZ3cP17cX5XaarpopZN_CGd6AAqw563mhRK67bVIXmZYe9xhaHkte8a3jdiK5TClFUPRRaV3Vb7pOTzd2Vd29rDFEuTdBobfrMrYMsWMlaAVXLk_T4j3R0az-l7yTjLRdFUcKsKjYq7V0IHge58map_KdkIOcA5CjnAOQcgIRSpgAS1P6BtIk_nkSvjP0fPdugmFx6N-hl0AYnjb3xyWjZO_Mf_g3TW6Tn |
| CitedBy_id | crossref_primary_10_1515_psr_2017_0014 crossref_primary_10_1016_j_ccr_2022_214691 crossref_primary_10_1016_j_cattod_2019_10_035 crossref_primary_10_1016_j_jcat_2020_03_036 crossref_primary_10_1039_D3CP05802F crossref_primary_10_1016_j_cattod_2019_05_007 crossref_primary_10_1016_j_cej_2022_136671 crossref_primary_10_1016_j_cplett_2022_140188 crossref_primary_10_1021_jacs_2c10554 crossref_primary_10_1039_D0CY00379D crossref_primary_10_1002_anie_201702550 crossref_primary_10_1039_C9CY01803D crossref_primary_10_1016_j_biombioe_2023_106733 crossref_primary_10_1039_C8CP03302A crossref_primary_10_1021_jacs_7b02936 crossref_primary_10_3390_catal8110545 crossref_primary_10_1002_anie_201903802 crossref_primary_10_1126_science_aba5005 crossref_primary_10_1002_chem_202403167 crossref_primary_10_1002_slct_202404456 crossref_primary_10_1039_C7CC00467B crossref_primary_10_1016_j_ccr_2023_215438 crossref_primary_10_1021_jacs_6b08668 crossref_primary_10_1039_D0CY01739F crossref_primary_10_1016_j_jcat_2022_08_005 crossref_primary_10_1016_j_fuel_2021_122178 crossref_primary_10_1039_C8CY02414F crossref_primary_10_1016_j_jcat_2022_12_017 crossref_primary_10_1021_jacs_3c13374 crossref_primary_10_1039_C8CC03921F crossref_primary_10_1016_j_apcatb_2025_125429 crossref_primary_10_1016_j_micromeso_2023_112966 crossref_primary_10_1016_j_micromeso_2023_112448 crossref_primary_10_1002_advs_202413870 crossref_primary_10_1039_D1CY01987B crossref_primary_10_1016_j_cej_2024_151528 crossref_primary_10_1039_C8RA08038K crossref_primary_10_1016_j_apcatb_2020_119827 crossref_primary_10_1016_S1872_5813_24_60408_6 crossref_primary_10_1016_j_pecs_2022_101045 crossref_primary_10_1016_j_rser_2018_09_003 crossref_primary_10_1021_jacs_8b11525 crossref_primary_10_1080_10584587_2018_1456186 crossref_primary_10_3390_catal12040438 crossref_primary_10_1021_jacs_5c03554 crossref_primary_10_1039_D2CY01758J crossref_primary_10_3390_molecules27217146 crossref_primary_10_1002_cctc_202400156 crossref_primary_10_1039_D5CC00719D crossref_primary_10_1039_D3RA00058C crossref_primary_10_3390_catal11010017 crossref_primary_10_3390_catal13030604 crossref_primary_10_3390_ma15062021 crossref_primary_10_1126_science_aam9035 crossref_primary_10_1021_jacs_4c11614 crossref_primary_10_1002_cphc_202100580 crossref_primary_10_1039_D1SC02174E crossref_primary_10_1002_cphc_202100103 crossref_primary_10_1002_chem_201801135 crossref_primary_10_1002_slct_201800550 crossref_primary_10_1080_01614940_2019_1674475 crossref_primary_10_1007_s11705_024_2505_2 crossref_primary_10_1002_ange_201903802 crossref_primary_10_1002_cctc_202400825 crossref_primary_10_1016_j_jcat_2018_07_014 crossref_primary_10_1016_j_jcat_2019_07_039 crossref_primary_10_1021_jacs_8b03809 crossref_primary_10_1002_cctc_201902371 crossref_primary_10_1002_chem_201605876 crossref_primary_10_1021_acs_chemmater_5c00930 crossref_primary_10_1002_cphc_201900973 crossref_primary_10_1021_jacs_3c04328 crossref_primary_10_1016_j_jcat_2021_10_034 crossref_primary_10_1016_j_jiec_2018_09_047 crossref_primary_10_1016_j_fuel_2022_125483 crossref_primary_10_1002_slct_202204745 crossref_primary_10_1039_D3SC01677C crossref_primary_10_1007_s11244_016_0676_x crossref_primary_10_1039_C8CY02593B crossref_primary_10_3389_fchem_2019_00514 crossref_primary_10_1039_D3CY00431G crossref_primary_10_1016_j_molliq_2024_125062 crossref_primary_10_1016_S1872_5813_21_60016_6 crossref_primary_10_1016_j_comptc_2023_114228 crossref_primary_10_1038_s41586_020_2783_x crossref_primary_10_1002_cctc_201902063 crossref_primary_10_1016_j_fuproc_2023_107722 crossref_primary_10_1016_j_energy_2019_04_113 crossref_primary_10_1016_j_rser_2023_113561 crossref_primary_10_3390_catal10020194 crossref_primary_10_1002_cctc_201600644 crossref_primary_10_1039_C8CY01441H crossref_primary_10_1016_j_ccr_2023_215637 crossref_primary_10_1021_jacs_8b05139 crossref_primary_10_3390_ijms24043374 crossref_primary_10_1002_cctc_201801493 crossref_primary_10_1016_j_cattod_2017_01_023 crossref_primary_10_1016_j_jcat_2024_115388 crossref_primary_10_1002_cctc_202201238 crossref_primary_10_1002_ange_201702550 crossref_primary_10_1016_j_matchemphys_2025_130893 crossref_primary_10_1039_D5CP01472G crossref_primary_10_1021_jacs_9b02902 crossref_primary_10_1016_j_cattod_2018_03_063 crossref_primary_10_1038_s41929_019_0273_z crossref_primary_10_1002_smtd_201800266 crossref_primary_10_1021_jacs_4c11773 crossref_primary_10_1007_s11244_018_0907_4 crossref_primary_10_3389_fchem_2021_716745 crossref_primary_10_3390_catal12030314 crossref_primary_10_1039_C8SC05056B crossref_primary_10_1007_s11426_019_9695_9 crossref_primary_10_1007_s11244_020_01247_6 crossref_primary_10_1016_j_ijhydene_2021_05_166 crossref_primary_10_1039_D3CY00929G crossref_primary_10_1016_j_biombioe_2023_106818 crossref_primary_10_1007_s11244_018_1096_x crossref_primary_10_1007_s40995_020_00964_7 crossref_primary_10_1002_cctc_201901911 crossref_primary_10_1016_j_mcat_2022_112308 crossref_primary_10_1002_cctc_201700768 crossref_primary_10_1016_j_micromeso_2022_111910 crossref_primary_10_1039_D0CY01325K crossref_primary_10_1007_s11244_019_01160_7 crossref_primary_10_1039_D1CY01876K crossref_primary_10_1002_cctc_201801542 crossref_primary_10_1016_j_apsusc_2021_149690 crossref_primary_10_1016_j_mencom_2021_09_002 |
| Cites_doi | 10.1039/C005500J 10.1002/anie.201003403 10.1039/b100712m 10.1021/cr000018s 10.1021/acscatal.5b02268 10.1021/jp049613e 10.1016/j.jinorgbio.2005.12.014 10.1002/cssc.200900123 10.1021/jp993893u 10.1039/C4CC02832E 10.1021/jacs.5b02157 10.1039/b100531f 10.1016/0039-6028(94)00731-4 10.1039/a900214f 10.1021/ic701777t 10.1021/ja5106927 10.1021/ja029684w 10.1002/1099-0682(200203)2002:3<515::AID-EJIC515>3.0.CO;2-6 10.1103/PhysRevB.81.155455 10.1038/417507a 10.1039/b301120h 10.1002/cphc.200300746 10.1021/ja047158u 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.68.045407 10.1007/s10562-010-0380-6 10.1021/ic101138u 10.1016/j.ccr.2012.07.008 10.1038/ncomms8546 10.1021/jp310374k 10.1039/C5CS00396B 10.1021/acs.biochem.5b00198 10.1016/j.jcat.2012.06.024 10.1021/la4018568 10.1039/C4CP03226H 10.1038/nature08992 10.1021/ja0493547 10.1073/pnas.0911413106 10.1126/science.259.5093.340 10.1002/anie.200461055 10.1021/jacs.5b02817 10.1021/jp992600u 10.1002/ejic.200900709 10.1021/jp0009352 10.1073/pnas.0910461106 10.1021/j100093a026 10.1021/ja4113808 10.1021/ar700004s 10.1021/jp960403e 10.1039/B418498J 10.1039/B608411G 10.1002/anie.201006424 10.1021/ar050194t 10.1039/c000967a 10.1021/ar990028j 10.1021/cs400713c 10.1016/j.cattod.2005.09.028 10.1021/ar600060t 10.1021/acs.jpcc.5b05577 10.1039/C1CC15840F 10.1002/cctc.201300473 10.1002/cssc.201200299 10.1021/bi0497603 10.1007/BF00806043 10.1021/ja106283u 10.1103/PhysRevB.50.17953 10.1021/jp952455u 10.1002/anie.200604647 10.1073/pnas.0707119104 10.1016/j.jcat.2011.07.008 10.1002/anie.201209846 10.1103/PhysRevB.48.13115 10.1016/0144-2449(94)90134-1 10.1002/anie.201108706 10.1039/b411053f 10.1016/j.jcat.2011.10.009 10.1107/S0021889811038970 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Inc. |
| Copyright_xml | – notice: 2016 Elsevier Inc. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jcat.2016.03.014 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1090-2694 |
| EndPage | 312 |
| ExternalDocumentID | 4051484141 10_1016_j_jcat_2016_03_014 S002195171600110X |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE ADFGL ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SCC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K TAE TWZ UPT VH1 WUQ XFK XPP YQT ZMT ZU3 ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS SSH 7S9 L.6 |
| ID | FETCH-LOGICAL-c464t-bf767b0a0e4b0d76c95a7c86c99c73bedce8ef3757b67569bbaaee94d02cc4583 |
| ISICitedReferencesCount | 226 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376695500031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9517 |
| IngestDate | Wed Oct 01 14:00:48 EDT 2025 Mon Jul 14 07:51:54 EDT 2025 Sat Nov 29 07:00:33 EST 2025 Tue Nov 18 21:43:00 EST 2025 Fri Feb 23 02:27:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Methane Selective oxidation DFT Radical mechanism ZSM-5 Trinuclear clusters Copper Spin crossing Zeolites Methanol |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c464t-bf767b0a0e4b0d76c95a7c86c99c73bedce8ef3757b67569bbaaee94d02cc4583 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9242-9901 |
| PQID | 1787922307 |
| PQPubID | 32080 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2131890487 proquest_journals_1787922307 crossref_primary_10_1016_j_jcat_2016_03_014 crossref_citationtrail_10_1016_j_jcat_2016_03_014 elsevier_sciencedirect_doi_10_1016_j_jcat_2016_03_014 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-06-01 |
| PublicationDateYYYYMMDD | 2016-06-01 |
| PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | San Diego |
| PublicationPlace_xml | – name: San Diego |
| PublicationTitle | Journal of catalysis |
| PublicationYear | 2016 |
| Publisher | Elsevier Inc Elsevier BV |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
| References | Groothaert, Smeets, Sels, Jacobs, Schoonheydt (b0045) 2005; 127 Morpurgo, Moretti, Bossa (b0105) 2007; 9 Periana, Taube, Evitt, Loffler, Wentrcek, Voss, Masuda (b0030) 1993; 259 Grundner, Markovits, Li, Tromp, Pidko, Hensen, Jentys, Sanchez-Sanchez, Lercher (b0320) 2015; 6 Schröder, Shaik, Schwarz (b0395) 2000; 33 Vanelderen, Hadt, Smeets, Solomon, Schoonheydt, Sels (b0145) 2011; 284 Li, Pidko, van Santen, Feng, Li, Hensen (b0340) 2011; 284 Itadani, Yumura, Ohkubo, Kobayashi, Kuroda (b0160) 2010; 12 Bordiga, Lamberti, Bonino, Travert, Thibault-Starzyk (b0165) 2015; 44 Nachtigall, Nachtigallova, Sauer (b0220) 2000; 104 Yoshizawa (b0290) 2006; 39 Pierloot, Delabie, Groothaert, Schoonheydt (b0130) 2001; 3 Pidko, Hensen, van Santen (b0350) 2012; 468 Guhl, Miller, Reuter (b0380) 2010; 81 Schwarz (b0020) 2011; 50 Rice, Chakraborty, Bell (b0085) 2000; 104 Vanelderen, Vancauwenbergh, Sels, Schoonheydt (b0140) 2013; 257 Banerjee, Singh, Mondal, Colacio, Rajak (b0260) 2010; 2010 Chan, Lu, Nagababu, Maji, Hung, Lee, Hsu, Pham Dinh, Lai, Ng, Ramalingam, Yu, Chan (b0310) 2013; 52 Balasubramanian, Smith, Rawat, Yatsunyk, Stemmler, Rosenzweig (b0265) 2010; 465 Jones, Taube, Ziatdinov, Periana, Nielsen, Oxgaard, Goddard (b0035) 2004; 43 Itadani, Sogawa, Oda, Ohkubo, Yumura, Kobayashi, Sato, Kuroda (b0155) 2015; 119 Himes, Karlin (b0010) 2009; 106 Delabie, Pierloot, Groothaert, Schoonheydt, Vanquickenborne (b0125) 2002; 2002 Woertink, Tian, Maiti, Lucas, Himes, Karlin, Neese, Würtele, Holthausen, Bill, Sundermeyer, Schindler, Solomon (b0195) 2010; 49 Nachtigallova, Nachtigall, Sierka, Sauer (b0075) 1999; 1 Palkovits, von Malotki, Baumgarten, Müllen, Baltes, Antonietti, Kuhn, Weber, Thomas, Schüth (b0050) 2010; 3 Yokomichi, Yamabe, Ohtsuka, Kakumoto (b0070) 1996; 100 Gruenert, Hayes, Joyner, Shpiro, Siddiqui, Baeva (b0055) 1994; 98 Chan, Chen, Yu, Chen, Kuo (b0280) 2004; 43 Mills, Jónsson, Schenter (b0365) 1995; 324 Balasubramanian, Rosenzweig (b0210) 2007; 40 Li, Pidko, van Santen, Li, Hensen (b0345) 2013; 117 Narsimhan, Michaelis, Mathies, Gunther, Griffin, Román-Leshkov (b0240) 2015; 137 Citek, Gary, Wasinger, Stack (b0275) 2015; 137 Labinger, Bercaw (b0040) 2002; 417 Bolis, Barbaglia, Bordiga, Lamberti, Zecchina (b0090) 2004; 108 Nachtigallova, Nachtigall, Sauer (b0225) 2001; 3 Smeets, Hadt, Woertink, Vanelderen, Schoonheydt, Sels, Solomon (b0200) 2010; 132 Chen, Chan (b0295) 2006; 100 Chan, Chien, Yu, Nagababu, Maji, Chen (b0305) 2012; 293 Momma, Izumi (b0370) 2011; 44 Solomon, Ginsbach, Heppner, Kieber-Emmons, Kjaergaard, Smeets, Tian, Woertink (b0250) 2011; 148 Beutel, Sarkany, Lei, Yan, Sachtler (b0065) 1996; 100 Pidko, Kazansky (b0100) 2005; 7 Solomon, Sarangi, Woertink, Augustine, Yoon, Ghosh (b0215) 2007; 40 Kresse, Hafner (b0325) 1993; 48 Moretti (b0060) 1994; 28 Groothaert, Pierloot, Delabie, Schoonheydt (b0120) 2003; 5 Bar-Nahum, Khenkin, Neumann (b0015) 2004; 126 Alayon, Nachtegaal, Bodi, Ranocchiari, van Bokhoven (b0245) 2015; 17 Itadani, Sogawa, Oda, Torigoe, Ohkubo, Kuroda (b0110) 2013; 29 Reuter, Scheffler (b0385) 2003; 68 Alayon, Nachtegaal, Ranocchiari, van Bokhoven (b0230) 2012; 48 Chan, Wang, Lai, Yu, Chen, Chen, Chen, Chan (b0285) 2007; 46 Spoto, Gribov, Bordiga, Lamberti, Ricchiardi, Scarano, Zecchina (b0095) 2004 Woertink, Smeets, Groothaert, Vance, Sels, Schoonheydt, Solomon (b0190) 2009; 106 Sirajuddin, Rosenzweig (b0270) 2015; 54 Burkhardt, Spielberg, Görls, Plass (b0255) 2008; 47 Blöchl (b0335) 1994; 50 Hammond, Conrad, Hermans (b0025) 2012; 5 Arakawa, Aresta, Armor, Barteau, Beckman, Bell, Bercaw, Creutz, Dinjus, Dixon, Domen, DuBois, Eckert, Fujita, Gibson, Goddard, Goodman, Keller, Kubas, Kung, Lyons, Manzer, Marks, Morokuma, Nicholas, Periana, Que, Rostrup-Nielson, Sachtler, Schmidt, Sen, Somorjai, Stair, Stults, Tumas (b0005) 2001; 101 Palomino, Fisicaro, Bordiga, Zecchina, Giamello, Lamberti (b0080) 2000; 104 Chen, Nagababu, Yu, Chan (b0315) 2014; 6 Himes, Barnese, Karlin (b0205) 2010; 49 Sheppard, Hamill, Goguet, Rooney, Thompson (b0235) 2014; 50 Tsai, Hadt, Vanelderen, Sels, Schoonheydt, Solomon (b0390) 2014; 136 Stull, Prophet (b0375) 1971 Vanelderen, Snyder, Tsai, Hadt, Vancauwenbergh, Coussens, Schoonheydt, Sels, Solomon (b0150) 2015; 137 Groothaert, Lievens, van Bokhoven, Battiston, Weckhuysen, Pierloot, Schoonheydt (b0180) 2003; 4 Chen, Yang, Lee, Chan (b0300) 2007; 104 Groothaert, van Bokhoven, Battiston, Weckhuysen, Schoonheydt (b0115) 2003; 125 Alayon, Nachtegaal, Bodi, van Bokhoven (b0170) 2014; 4 Hammond, Forde, Ab Rahim, Thetford, He, Jenkins, Dimitratos, Lopez-Sanchez, Dummer, Murphy, Carley, Taylor, Willock, Stangland, Kang, Hagen, Kiely, Hutchings (b0175) 2012; 51 van Koningsveld, Jansen, van Bekkum (b0360) 1990; 10 Smeets, Groothaert, Schoonheydt (b0185) 2005; 110 Liu, Li, Hensen, Pidko (b0355) 2015; 5 Beznis, Weckhuysen, Bitter (b0135) 2010; 138 Perdew, Burke, Ernzerhof (b0330) 1996; 77 Nachtigallova (10.1016/j.jcat.2016.03.014_b0075) 1999; 1 Smeets (10.1016/j.jcat.2016.03.014_b0185) 2005; 110 Balasubramanian (10.1016/j.jcat.2016.03.014_b0265) 2010; 465 Kresse (10.1016/j.jcat.2016.03.014_b0325) 1993; 48 Smeets (10.1016/j.jcat.2016.03.014_b0200) 2010; 132 Grundner (10.1016/j.jcat.2016.03.014_b0320) 2015; 6 Sirajuddin (10.1016/j.jcat.2016.03.014_b0270) 2015; 54 Pidko (10.1016/j.jcat.2016.03.014_b0100) 2005; 7 Sheppard (10.1016/j.jcat.2016.03.014_b0235) 2014; 50 Chen (10.1016/j.jcat.2016.03.014_b0300) 2007; 104 Itadani (10.1016/j.jcat.2016.03.014_b0160) 2010; 12 Narsimhan (10.1016/j.jcat.2016.03.014_b0240) 2015; 137 Bar-Nahum (10.1016/j.jcat.2016.03.014_b0015) 2004; 126 Palomino (10.1016/j.jcat.2016.03.014_b0080) 2000; 104 Spoto (10.1016/j.jcat.2016.03.014_b0095) 2004 Groothaert (10.1016/j.jcat.2016.03.014_b0180) 2003; 4 Himes (10.1016/j.jcat.2016.03.014_b0205) 2010; 49 Burkhardt (10.1016/j.jcat.2016.03.014_b0255) 2008; 47 Mills (10.1016/j.jcat.2016.03.014_b0365) 1995; 324 Beutel (10.1016/j.jcat.2016.03.014_b0065) 1996; 100 Labinger (10.1016/j.jcat.2016.03.014_b0040) 2002; 417 Gruenert (10.1016/j.jcat.2016.03.014_b0055) 1994; 98 Citek (10.1016/j.jcat.2016.03.014_b0275) 2015; 137 Chan (10.1016/j.jcat.2016.03.014_b0310) 2013; 52 Yokomichi (10.1016/j.jcat.2016.03.014_b0070) 1996; 100 Nachtigall (10.1016/j.jcat.2016.03.014_b0220) 2000; 104 Alayon (10.1016/j.jcat.2016.03.014_b0245) 2015; 17 Pidko (10.1016/j.jcat.2016.03.014_b0350) 2012; 468 Guhl (10.1016/j.jcat.2016.03.014_b0380) 2010; 81 Groothaert (10.1016/j.jcat.2016.03.014_b0120) 2003; 5 Yoshizawa (10.1016/j.jcat.2016.03.014_b0290) 2006; 39 Banerjee (10.1016/j.jcat.2016.03.014_b0260) 2010; 2010 Jones (10.1016/j.jcat.2016.03.014_b0035) 2004; 43 Chan (10.1016/j.jcat.2016.03.014_b0280) 2004; 43 Periana (10.1016/j.jcat.2016.03.014_b0030) 1993; 259 Woertink (10.1016/j.jcat.2016.03.014_b0190) 2009; 106 Chen (10.1016/j.jcat.2016.03.014_b0295) 2006; 100 Delabie (10.1016/j.jcat.2016.03.014_b0125) 2002; 2002 Vanelderen (10.1016/j.jcat.2016.03.014_b0140) 2013; 257 Woertink (10.1016/j.jcat.2016.03.014_b0195) 2010; 49 Morpurgo (10.1016/j.jcat.2016.03.014_b0105) 2007; 9 Alayon (10.1016/j.jcat.2016.03.014_b0170) 2014; 4 Chan (10.1016/j.jcat.2016.03.014_b0285) 2007; 46 Moretti (10.1016/j.jcat.2016.03.014_b0060) 1994; 28 Rice (10.1016/j.jcat.2016.03.014_b0085) 2000; 104 Groothaert (10.1016/j.jcat.2016.03.014_b0115) 2003; 125 Bordiga (10.1016/j.jcat.2016.03.014_b0165) 2015; 44 Momma (10.1016/j.jcat.2016.03.014_b0370) 2011; 44 Tsai (10.1016/j.jcat.2016.03.014_b0390) 2014; 136 Arakawa (10.1016/j.jcat.2016.03.014_b0005) 2001; 101 Itadani (10.1016/j.jcat.2016.03.014_b0155) 2015; 119 Li (10.1016/j.jcat.2016.03.014_b0340) 2011; 284 Nachtigallova (10.1016/j.jcat.2016.03.014_b0225) 2001; 3 van Koningsveld (10.1016/j.jcat.2016.03.014_b0360) 1990; 10 Itadani (10.1016/j.jcat.2016.03.014_b0110) 2013; 29 Hammond (10.1016/j.jcat.2016.03.014_b0175) 2012; 51 Reuter (10.1016/j.jcat.2016.03.014_b0385) 2003; 68 Beznis (10.1016/j.jcat.2016.03.014_b0135) 2010; 138 Blöchl (10.1016/j.jcat.2016.03.014_b0335) 1994; 50 Bolis (10.1016/j.jcat.2016.03.014_b0090) 2004; 108 Vanelderen (10.1016/j.jcat.2016.03.014_b0145) 2011; 284 Groothaert (10.1016/j.jcat.2016.03.014_b0045) 2005; 127 Solomon (10.1016/j.jcat.2016.03.014_b0215) 2007; 40 Perdew (10.1016/j.jcat.2016.03.014_b0330) 1996; 77 Chan (10.1016/j.jcat.2016.03.014_b0305) 2012; 293 Liu (10.1016/j.jcat.2016.03.014_b0355) 2015; 5 Alayon (10.1016/j.jcat.2016.03.014_b0230) 2012; 48 Solomon (10.1016/j.jcat.2016.03.014_b0250) 2011; 148 Balasubramanian (10.1016/j.jcat.2016.03.014_b0210) 2007; 40 Himes (10.1016/j.jcat.2016.03.014_b0010) 2009; 106 Hammond (10.1016/j.jcat.2016.03.014_b0025) 2012; 5 Stull (10.1016/j.jcat.2016.03.014_b0375) 1971 Palkovits (10.1016/j.jcat.2016.03.014_b0050) 2010; 3 Li (10.1016/j.jcat.2016.03.014_b0345) 2013; 117 Schwarz (10.1016/j.jcat.2016.03.014_b0020) 2011; 50 Schröder (10.1016/j.jcat.2016.03.014_b0395) 2000; 33 Pierloot (10.1016/j.jcat.2016.03.014_b0130) 2001; 3 Vanelderen (10.1016/j.jcat.2016.03.014_b0150) 2015; 137 Chen (10.1016/j.jcat.2016.03.014_b0315) 2014; 6 |
| References_xml | – volume: 33 start-page: 139 year: 2000 end-page: 145 ident: b0395 publication-title: Acc. Chem. Res. – volume: 468 start-page: 2070 year: 2012 end-page: 2086 ident: b0350 publication-title: Proc. R. Soc. London, Ser. A – volume: 465 start-page: 115 year: 2010 end-page: 119 ident: b0265 publication-title: Nature – volume: 44 start-page: 1272 year: 2011 end-page: 1276 ident: b0370 publication-title: J. Appl. Crystallogr. – volume: 100 start-page: 845 year: 1996 end-page: 851 ident: b0065 publication-title: J. Phys. Chem. – volume: 104 start-page: 4064 year: 2000 end-page: 4073 ident: b0080 publication-title: J. Phys. Chem. B – volume: 5 start-page: 2135 year: 2003 end-page: 2144 ident: b0120 publication-title: Phys. Chem. Chem. Phys. – volume: 44 start-page: 7262 year: 2015 end-page: 7341 ident: b0165 publication-title: Chem. Soc. Rev. – volume: 138 start-page: 14 year: 2010 end-page: 22 ident: b0135 publication-title: Catal. Lett. – volume: 106 start-page: 18877 year: 2009 end-page: 18878 ident: b0010 publication-title: Proc. Natl. Acad. Sci. – volume: 137 start-page: 6991 year: 2015 end-page: 6994 ident: b0275 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 4421 year: 2004 end-page: 4430 ident: b0280 publication-title: Biochemistry – volume: 54 start-page: 2283 year: 2015 end-page: 2294 ident: b0270 publication-title: Biochemistry – volume: 5 start-page: 1668 year: 2012 end-page: 1686 ident: b0025 publication-title: ChemSusChem – volume: 100 start-page: 14424 year: 1996 end-page: 14429 ident: b0070 publication-title: J. Phys. Chem. – volume: 51 start-page: 5129 year: 2012 end-page: 5133 ident: b0175 publication-title: Angew. Chem., Int. Ed. – volume: 2010 start-page: 790 year: 2010 end-page: 798 ident: b0260 publication-title: Eur. J. Inorg. Chem. – volume: 49 start-page: 9450 year: 2010 end-page: 9459 ident: b0195 publication-title: Inorg. Chem. – volume: 40 start-page: 573 year: 2007 end-page: 580 ident: b0210 publication-title: Acc. Chem. Res. – volume: 3 start-page: 1552 year: 2001 end-page: 1559 ident: b0225 publication-title: Phys. Chem. Phys. Chem. – volume: 50 start-page: 11053 year: 2014 end-page: 11055 ident: b0235 publication-title: Chem. Commun. – volume: 40 start-page: 581 year: 2007 end-page: 591 ident: b0215 publication-title: Acc. Chem. Res. – volume: 136 start-page: 3522 year: 2014 end-page: 3529 ident: b0390 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 303 year: 2005 end-page: 309 ident: b0185 publication-title: Catal. Today – volume: 52 start-page: 3731 year: 2013 end-page: 3735 ident: b0310 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 6455 year: 2010 end-page: 6465 ident: b0160 publication-title: Phys. Chem. Phys. Chem. – volume: 4 start-page: 16 year: 2014 end-page: 22 ident: b0170 publication-title: ACS Catal. – volume: 49 start-page: 6714 year: 2010 end-page: 6716 ident: b0205 publication-title: Angew. Chem., Int. Ed. – volume: 104 start-page: 9987 year: 2000 end-page: 9992 ident: b0085 publication-title: J. Phys. Chem. B – volume: 4 start-page: 626 year: 2003 end-page: 630 ident: b0180 publication-title: ChemPhysChem – volume: 104 start-page: 1738 year: 2000 end-page: 1745 ident: b0220 publication-title: J. Phys. Chem. B – volume: 101 start-page: 953 year: 2001 end-page: 996 ident: b0005 publication-title: Chem. Rev. – volume: 9 start-page: 417 year: 2007 end-page: 424 ident: b0105 publication-title: Phys. Chem. Phys. Chem. – volume: 48 start-page: 404 year: 2012 end-page: 406 ident: b0230 publication-title: Chem. Commun. – volume: 6 start-page: 429 year: 2014 end-page: 437 ident: b0315 publication-title: ChemCatChem – volume: 148 start-page: 11 year: 2011 end-page: 39 ident: b0250 publication-title: Faraday Discuss. – volume: 50 start-page: 10096 year: 2011 end-page: 10115 ident: b0020 publication-title: Angew. Chem., Int. Ed. – volume: 137 start-page: 1825 year: 2015 end-page: 1832 ident: b0240 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 7024 year: 2015 end-page: 7033 ident: b0355 publication-title: ACS Catal. – volume: 7 start-page: 1939 year: 2005 end-page: 1944 ident: b0100 publication-title: Phys. Chem. Phys. Chem. – volume: 117 start-page: 413 year: 2013 end-page: 426 ident: b0345 publication-title: J. Phys. Chem. C – volume: 126 start-page: 10236 year: 2004 end-page: 10237 ident: b0015 publication-title: J. Am. Chem. Soc. – volume: 259 start-page: 340 year: 1993 end-page: 343 ident: b0030 publication-title: Science – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: b0330 publication-title: Phys. Rev. Lett. – volume: 108 start-page: 9970 year: 2004 end-page: 9983 ident: b0090 publication-title: J. Phys. Chem. B – volume: 106 start-page: 18908 year: 2009 end-page: 18913 ident: b0190 publication-title: Proc. Natl. Acad. Sci. – volume: 47 start-page: 2485 year: 2008 end-page: 2493 ident: b0255 publication-title: Inorg. Chem. – volume: 10 start-page: 235 year: 1990 end-page: 242 ident: b0360 publication-title: Zeolites – volume: 6 start-page: 7546 year: 2015 ident: b0320 publication-title: Nat. Commun. – volume: 417 start-page: 507 year: 2002 end-page: 514 ident: b0040 publication-title: Nature – volume: 29 start-page: 9727 year: 2013 end-page: 9733 ident: b0110 publication-title: Langmuir – volume: 324 start-page: 305 year: 1995 end-page: 337 ident: b0365 publication-title: Surf. Sci. – volume: 132 start-page: 14736 year: 2010 end-page: 14738 ident: b0200 publication-title: J. Am. Chem. Soc. – volume: 98 start-page: 10832 year: 1994 end-page: 10846 ident: b0055 publication-title: J. Phys. Chem. – volume: 43 start-page: 4626 year: 2004 end-page: 4629 ident: b0035 publication-title: Angew. Chem., Int. Ed. – volume: 284 start-page: 157 year: 2011 end-page: 164 ident: b0145 publication-title: J. Catal. – volume: 293 start-page: 186 year: 2012 end-page: 194 ident: b0305 publication-title: J. Catal. – volume: 28 start-page: 143 year: 1994 end-page: 152 ident: b0060 publication-title: Catal. Lett. – volume: 137 start-page: 6383 year: 2015 end-page: 6392 ident: b0150 publication-title: J. Am. Chem. Soc. – volume: 100 start-page: 801 year: 2006 end-page: 809 ident: b0295 publication-title: J. Inorg. Biochem. – volume: 46 start-page: 1992 year: 2007 end-page: 1994 ident: b0285 publication-title: Angew. Chem., Int. Ed. – volume: 127 start-page: 1394 year: 2005 end-page: 1395 ident: b0045 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 277 year: 2010 end-page: 282 ident: b0050 publication-title: ChemSusChem – volume: 48 start-page: 13115 year: 1993 end-page: 13118 ident: b0325 publication-title: Phys. Rev. B – year: 1971 ident: b0375 article-title: JANAF Thermochemical Tables – volume: 39 start-page: 375 year: 2006 end-page: 382 ident: b0290 publication-title: Acc. Chem. Res. – volume: 17 start-page: 7681 year: 2015 end-page: 7693 ident: b0245 publication-title: Phys. Chem. Chem. Phys. – volume: 257 start-page: 483 year: 2013 end-page: 494 ident: b0140 publication-title: Coord. Chem. Rev. – volume: 125 start-page: 7629 year: 2003 end-page: 7640 ident: b0115 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 2174 year: 2001 end-page: 2183 ident: b0130 publication-title: Phys. Chem. Chem. Phys. – volume: 68 start-page: 045407 year: 2003 ident: b0385 publication-title: Phys. Rev. B – volume: 1 start-page: 2019 year: 1999 end-page: 2026 ident: b0075 publication-title: Phys. Chem. Phys. Chem. – volume: 104 start-page: 14570 year: 2007 end-page: 14575 ident: b0300 publication-title: Proc. Natl. Acad. Sci. – volume: 81 start-page: 155455 year: 2010 ident: b0380 publication-title: Phys. Rev. B – start-page: 2768 year: 2004 end-page: 2769 ident: b0095 publication-title: Chem. Commun. – volume: 119 start-page: 21483 year: 2015 end-page: 21496 ident: b0155 publication-title: J. Phys. Chem. C – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: b0335 publication-title: Phys. Rev. B – volume: 2002 start-page: 515 year: 2002 end-page: 530 ident: b0125 publication-title: Eur. J. Inorg. Chem. – volume: 284 start-page: 194 year: 2011 end-page: 206 ident: b0340 publication-title: J. Catal. – volume: 148 start-page: 11 year: 2011 ident: 10.1016/j.jcat.2016.03.014_b0250 publication-title: Faraday Discuss. doi: 10.1039/C005500J – volume: 49 start-page: 6714 year: 2010 ident: 10.1016/j.jcat.2016.03.014_b0205 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201003403 – volume: 3 start-page: 1552 year: 2001 ident: 10.1016/j.jcat.2016.03.014_b0225 publication-title: Phys. Chem. Phys. Chem. doi: 10.1039/b100712m – volume: 101 start-page: 953 year: 2001 ident: 10.1016/j.jcat.2016.03.014_b0005 publication-title: Chem. Rev. doi: 10.1021/cr000018s – volume: 5 start-page: 7024 year: 2015 ident: 10.1016/j.jcat.2016.03.014_b0355 publication-title: ACS Catal. doi: 10.1021/acscatal.5b02268 – volume: 108 start-page: 9970 year: 2004 ident: 10.1016/j.jcat.2016.03.014_b0090 publication-title: J. Phys. Chem. B doi: 10.1021/jp049613e – year: 1971 ident: 10.1016/j.jcat.2016.03.014_b0375 – volume: 100 start-page: 801 year: 2006 ident: 10.1016/j.jcat.2016.03.014_b0295 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2005.12.014 – volume: 3 start-page: 277 year: 2010 ident: 10.1016/j.jcat.2016.03.014_b0050 publication-title: ChemSusChem doi: 10.1002/cssc.200900123 – volume: 104 start-page: 4064 year: 2000 ident: 10.1016/j.jcat.2016.03.014_b0080 publication-title: J. Phys. Chem. B doi: 10.1021/jp993893u – volume: 50 start-page: 11053 year: 2014 ident: 10.1016/j.jcat.2016.03.014_b0235 publication-title: Chem. Commun. doi: 10.1039/C4CC02832E – volume: 137 start-page: 6991 year: 2015 ident: 10.1016/j.jcat.2016.03.014_b0275 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02157 – volume: 3 start-page: 2174 year: 2001 ident: 10.1016/j.jcat.2016.03.014_b0130 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b100531f – volume: 468 start-page: 2070 year: 2012 ident: 10.1016/j.jcat.2016.03.014_b0350 publication-title: Proc. R. Soc. London, Ser. A – volume: 324 start-page: 305 year: 1995 ident: 10.1016/j.jcat.2016.03.014_b0365 publication-title: Surf. Sci. doi: 10.1016/0039-6028(94)00731-4 – volume: 1 start-page: 2019 year: 1999 ident: 10.1016/j.jcat.2016.03.014_b0075 publication-title: Phys. Chem. Phys. Chem. doi: 10.1039/a900214f – volume: 47 start-page: 2485 year: 2008 ident: 10.1016/j.jcat.2016.03.014_b0255 publication-title: Inorg. Chem. doi: 10.1021/ic701777t – volume: 137 start-page: 1825 year: 2015 ident: 10.1016/j.jcat.2016.03.014_b0240 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5106927 – volume: 125 start-page: 7629 year: 2003 ident: 10.1016/j.jcat.2016.03.014_b0115 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja029684w – volume: 2002 start-page: 515 year: 2002 ident: 10.1016/j.jcat.2016.03.014_b0125 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/1099-0682(200203)2002:3<515::AID-EJIC515>3.0.CO;2-6 – volume: 81 start-page: 155455 year: 2010 ident: 10.1016/j.jcat.2016.03.014_b0380 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.155455 – volume: 417 start-page: 507 year: 2002 ident: 10.1016/j.jcat.2016.03.014_b0040 publication-title: Nature doi: 10.1038/417507a – volume: 5 start-page: 2135 year: 2003 ident: 10.1016/j.jcat.2016.03.014_b0120 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b301120h – volume: 4 start-page: 626 year: 2003 ident: 10.1016/j.jcat.2016.03.014_b0180 publication-title: ChemPhysChem doi: 10.1002/cphc.200300746 – volume: 127 start-page: 1394 year: 2005 ident: 10.1016/j.jcat.2016.03.014_b0045 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja047158u – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.jcat.2016.03.014_b0330 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 68 start-page: 045407 year: 2003 ident: 10.1016/j.jcat.2016.03.014_b0385 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.045407 – volume: 138 start-page: 14 year: 2010 ident: 10.1016/j.jcat.2016.03.014_b0135 publication-title: Catal. Lett. doi: 10.1007/s10562-010-0380-6 – volume: 49 start-page: 9450 year: 2010 ident: 10.1016/j.jcat.2016.03.014_b0195 publication-title: Inorg. Chem. doi: 10.1021/ic101138u – volume: 257 start-page: 483 year: 2013 ident: 10.1016/j.jcat.2016.03.014_b0140 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2012.07.008 – volume: 6 start-page: 7546 year: 2015 ident: 10.1016/j.jcat.2016.03.014_b0320 publication-title: Nat. Commun. doi: 10.1038/ncomms8546 – volume: 117 start-page: 413 year: 2013 ident: 10.1016/j.jcat.2016.03.014_b0345 publication-title: J. Phys. Chem. C doi: 10.1021/jp310374k – volume: 44 start-page: 7262 year: 2015 ident: 10.1016/j.jcat.2016.03.014_b0165 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00396B – volume: 54 start-page: 2283 year: 2015 ident: 10.1016/j.jcat.2016.03.014_b0270 publication-title: Biochemistry doi: 10.1021/acs.biochem.5b00198 – volume: 293 start-page: 186 year: 2012 ident: 10.1016/j.jcat.2016.03.014_b0305 publication-title: J. Catal. doi: 10.1016/j.jcat.2012.06.024 – volume: 29 start-page: 9727 year: 2013 ident: 10.1016/j.jcat.2016.03.014_b0110 publication-title: Langmuir doi: 10.1021/la4018568 – volume: 17 start-page: 7681 year: 2015 ident: 10.1016/j.jcat.2016.03.014_b0245 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP03226H – volume: 465 start-page: 115 year: 2010 ident: 10.1016/j.jcat.2016.03.014_b0265 publication-title: Nature doi: 10.1038/nature08992 – volume: 126 start-page: 10236 year: 2004 ident: 10.1016/j.jcat.2016.03.014_b0015 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0493547 – volume: 106 start-page: 18877 year: 2009 ident: 10.1016/j.jcat.2016.03.014_b0010 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0911413106 – volume: 259 start-page: 340 year: 1993 ident: 10.1016/j.jcat.2016.03.014_b0030 publication-title: Science doi: 10.1126/science.259.5093.340 – volume: 43 start-page: 4626 year: 2004 ident: 10.1016/j.jcat.2016.03.014_b0035 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461055 – volume: 137 start-page: 6383 year: 2015 ident: 10.1016/j.jcat.2016.03.014_b0150 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02817 – volume: 104 start-page: 1738 year: 2000 ident: 10.1016/j.jcat.2016.03.014_b0220 publication-title: J. Phys. Chem. B doi: 10.1021/jp992600u – volume: 2010 start-page: 790 year: 2010 ident: 10.1016/j.jcat.2016.03.014_b0260 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200900709 – volume: 104 start-page: 9987 year: 2000 ident: 10.1016/j.jcat.2016.03.014_b0085 publication-title: J. Phys. Chem. B doi: 10.1021/jp0009352 – volume: 106 start-page: 18908 year: 2009 ident: 10.1016/j.jcat.2016.03.014_b0190 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0910461106 – volume: 98 start-page: 10832 year: 1994 ident: 10.1016/j.jcat.2016.03.014_b0055 publication-title: J. Phys. Chem. doi: 10.1021/j100093a026 – volume: 136 start-page: 3522 year: 2014 ident: 10.1016/j.jcat.2016.03.014_b0390 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4113808 – volume: 40 start-page: 573 year: 2007 ident: 10.1016/j.jcat.2016.03.014_b0210 publication-title: Acc. Chem. Res. doi: 10.1021/ar700004s – volume: 100 start-page: 14424 year: 1996 ident: 10.1016/j.jcat.2016.03.014_b0070 publication-title: J. Phys. Chem. doi: 10.1021/jp960403e – volume: 7 start-page: 1939 year: 2005 ident: 10.1016/j.jcat.2016.03.014_b0100 publication-title: Phys. Chem. Phys. Chem. doi: 10.1039/B418498J – volume: 9 start-page: 417 year: 2007 ident: 10.1016/j.jcat.2016.03.014_b0105 publication-title: Phys. Chem. Phys. Chem. doi: 10.1039/B608411G – volume: 50 start-page: 10096 year: 2011 ident: 10.1016/j.jcat.2016.03.014_b0020 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201006424 – volume: 39 start-page: 375 year: 2006 ident: 10.1016/j.jcat.2016.03.014_b0290 publication-title: Acc. Chem. Res. doi: 10.1021/ar050194t – volume: 12 start-page: 6455 year: 2010 ident: 10.1016/j.jcat.2016.03.014_b0160 publication-title: Phys. Chem. Phys. Chem. doi: 10.1039/c000967a – volume: 33 start-page: 139 year: 2000 ident: 10.1016/j.jcat.2016.03.014_b0395 publication-title: Acc. Chem. Res. doi: 10.1021/ar990028j – volume: 4 start-page: 16 year: 2014 ident: 10.1016/j.jcat.2016.03.014_b0170 publication-title: ACS Catal. doi: 10.1021/cs400713c – volume: 110 start-page: 303 year: 2005 ident: 10.1016/j.jcat.2016.03.014_b0185 publication-title: Catal. Today doi: 10.1016/j.cattod.2005.09.028 – volume: 40 start-page: 581 year: 2007 ident: 10.1016/j.jcat.2016.03.014_b0215 publication-title: Acc. Chem. Res. doi: 10.1021/ar600060t – volume: 119 start-page: 21483 year: 2015 ident: 10.1016/j.jcat.2016.03.014_b0155 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b05577 – volume: 48 start-page: 404 year: 2012 ident: 10.1016/j.jcat.2016.03.014_b0230 publication-title: Chem. Commun. doi: 10.1039/C1CC15840F – volume: 6 start-page: 429 year: 2014 ident: 10.1016/j.jcat.2016.03.014_b0315 publication-title: ChemCatChem doi: 10.1002/cctc.201300473 – volume: 5 start-page: 1668 year: 2012 ident: 10.1016/j.jcat.2016.03.014_b0025 publication-title: ChemSusChem doi: 10.1002/cssc.201200299 – volume: 43 start-page: 4421 year: 2004 ident: 10.1016/j.jcat.2016.03.014_b0280 publication-title: Biochemistry doi: 10.1021/bi0497603 – volume: 28 start-page: 143 year: 1994 ident: 10.1016/j.jcat.2016.03.014_b0060 publication-title: Catal. Lett. doi: 10.1007/BF00806043 – volume: 132 start-page: 14736 year: 2010 ident: 10.1016/j.jcat.2016.03.014_b0200 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106283u – volume: 50 start-page: 17953 year: 1994 ident: 10.1016/j.jcat.2016.03.014_b0335 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 100 start-page: 845 year: 1996 ident: 10.1016/j.jcat.2016.03.014_b0065 publication-title: J. Phys. Chem. doi: 10.1021/jp952455u – volume: 46 start-page: 1992 year: 2007 ident: 10.1016/j.jcat.2016.03.014_b0285 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200604647 – volume: 104 start-page: 14570 year: 2007 ident: 10.1016/j.jcat.2016.03.014_b0300 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0707119104 – volume: 284 start-page: 194 year: 2011 ident: 10.1016/j.jcat.2016.03.014_b0340 publication-title: J. Catal. doi: 10.1016/j.jcat.2011.07.008 – volume: 52 start-page: 3731 year: 2013 ident: 10.1016/j.jcat.2016.03.014_b0310 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201209846 – volume: 48 start-page: 13115 year: 1993 ident: 10.1016/j.jcat.2016.03.014_b0325 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.13115 – volume: 10 start-page: 235 year: 1990 ident: 10.1016/j.jcat.2016.03.014_b0360 publication-title: Zeolites doi: 10.1016/0144-2449(94)90134-1 – volume: 51 start-page: 5129 year: 2012 ident: 10.1016/j.jcat.2016.03.014_b0175 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201108706 – start-page: 2768 year: 2004 ident: 10.1016/j.jcat.2016.03.014_b0095 publication-title: Chem. Commun. doi: 10.1039/b411053f – volume: 284 start-page: 157 year: 2011 ident: 10.1016/j.jcat.2016.03.014_b0145 publication-title: J. Catal. doi: 10.1016/j.jcat.2011.10.009 – volume: 44 start-page: 1272 year: 2011 ident: 10.1016/j.jcat.2016.03.014_b0370 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889811038970 |
| SSID | ssj0011558 |
| Score | 2.5968406 |
| Snippet | [Display omitted]
•Cu speciation in ZSM-5 zeolite depends on the conditions of thermochemical activation.•Trinuclear [Cu3O3]2+ cationic clusters are... Display Omitted * Cu speciation in ZSM-5 zeolite depends on the conditions of thermochemical activation. * Trinuclear [Cu3O3]2+ cationic clusters are... A periodic density functional theory study complemented by ab initio thermodynamic analysis was carried out to identify the active sites and mechanism of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 305 |
| SubjectTerms | active sites Catalysts chemical bonding Copper density functional theory DFT homolytic cleavage Methane Methanol micropores Oxidation Radical mechanism Selective oxidation Spin crossing temperature thermodynamics Trinuclear clusters Zeolites ZSM-5 |
| Title | Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol |
| URI | https://dx.doi.org/10.1016/j.jcat.2016.03.014 https://www.proquest.com/docview/1787922307 https://www.proquest.com/docview/2131890487 |
| Volume | 338 |
| WOSCitedRecordID | wos000376695500031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2694 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011558 issn: 0021-9517 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhgQ8IBggOgYyEuKlyuRcHT9OUyeYRkFaN1W8WInrilZV0vWmqr-PH8Y5tpN2m1bBAy9J5TSWm-_rOSfH50LIJz_SEUe_Bqiz1ANSMC_vh8yLkzQcCK3DQGWm2QTvdNJeT_xoNH5XuTDLMS-KdLUSk_8KNYwB2Jg6-w9w15PCAHwG0OEIsMPxr4AH89EEvNrCSmATKtcgwgSQTyZ62ipXpafGC6yRYMJhf15-8-LWWmMsnC0CPjPtcTCqCFtMZ2CJlquhbb-E1qodLMcPmLbGJ4SlTupwHxMzAHQsiloNXIPZDiJpeS9K-BKI-EuvPXd2GUVDNV2s6_n0tCLbeQkrAXntnLLOgeEnm0Ar61WrM2uutwU1Ro7ENq3zWFvZzATzMPF2W3iHtjaME7-hSeG-rxash2J0PEJvLq7BFLa12au3a3B3vsuzq4sL2W33urevGp0fYbn4NPIj__PkxsPeZbjH7xq5PCL7AY8FyNb9k6_t3nm9mwU2m7UI3I9yyVs2zvDumh4ykO6YCsb-6b4gzx269MQS7iVp6OKAPDmt-gUekGdbpS1fkXFNQwo0pBsa0nJALQ3pNg3psKCGhtTRkAINaU1D6mhIaxrSeUkrGr4mV2ft7ukXz3X28FSURHMvH_CE5yxjOspZnydKxBlXKZyF4mGOkcmpHoQ85jm80CYiz7NMaxH1WaAU7vS_IXtFWei3hPaTLPeZTrDANrxcJClgEwkW5ooFnKV5k_jV45TKlb3H7itjWcU3jiRCIBECyUIJEDRJq75nYou-7Px2XKEkndlqzVEJ9Nt531EFqXTyYyZ9UKAiwOyMJvlYXwYkcR8PHnO5mMnAB0UsQPXyw91TvCNPN3-4I7I3ny70e_JYLefD2fSDY-kfthjOmQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+reactivity+of+copper+oxo-clusters+in+ZSM-5+zeolite+for+selective+methane+oxidation+to+methanol&rft.jtitle=Journal+of+catalysis&rft.au=Li%2C+Guanna&rft.au=Vassilev%2C+Peter&rft.au=Sanchez-Sanchez%2C+Maricruz&rft.au=Lercher%2C+Johannes+A&rft.date=2016-06-01&rft.pub=Elsevier+BV&rft.issn=0021-9517&rft.eissn=1090-2694&rft.volume=338&rft.spage=305&rft_id=info:doi/10.1016%2Fj.jcat.2016.03.014&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4051484141 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon |