Vagus nerve stimulation drives selective circuit modulation through cholinergic reinforcement
Vagus nerve stimulation (VNS) is a neuromodulation therapy for a broad and expanding set of neurologic conditions. However, the mechanism through which VNS influences central nervous system circuitry is not well described, limiting therapeutic optimization. VNS leads to widespread brain activation,...
Uloženo v:
| Vydáno v: | Neuron (Cambridge, Mass.) Ročník 110; číslo 17; s. 2867 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
07.09.2022
|
| Témata: | |
| ISSN: | 1097-4199, 1097-4199 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Vagus nerve stimulation (VNS) is a neuromodulation therapy for a broad and expanding set of neurologic conditions. However, the mechanism through which VNS influences central nervous system circuitry is not well described, limiting therapeutic optimization. VNS leads to widespread brain activation, but the effects on behavior are remarkably specific, indicating plasticity unique to behaviorally engaged neural circuits. To understand how VNS can lead to specific circuit modulation, we leveraged genetic tools including optogenetics and in vivo calcium imaging in mice learning a skilled reach task. We find that VNS enhances skilled motor learning in healthy animals via a cholinergic reinforcement mechanism, producing a rapid consolidation of an expert reach trajectory. In primary motor cortex (M1), VNS drives precise temporal modulation of neurons that respond to behavioral outcome. This suggests that VNS may accelerate motor refinement in M1 via cholinergic signaling, opening new avenues for optimizing VNS to target specific disease-relevant circuitry. |
|---|---|
| AbstractList | Vagus nerve stimulation (VNS) is a neuromodulation therapy for a broad and expanding set of neurologic conditions. However, the mechanism through which VNS influences central nervous system circuitry is not well described, limiting therapeutic optimization. VNS leads to widespread brain activation, but the effects on behavior are remarkably specific, indicating plasticity unique to behaviorally engaged neural circuits. To understand how VNS can lead to specific circuit modulation, we leveraged genetic tools including optogenetics and in vivo calcium imaging in mice learning a skilled reach task. We find that VNS enhances skilled motor learning in healthy animals via a cholinergic reinforcement mechanism, producing a rapid consolidation of an expert reach trajectory. In primary motor cortex (M1), VNS drives precise temporal modulation of neurons that respond to behavioral outcome. This suggests that VNS may accelerate motor refinement in M1 via cholinergic signaling, opening new avenues for optimizing VNS to target specific disease-relevant circuitry.Vagus nerve stimulation (VNS) is a neuromodulation therapy for a broad and expanding set of neurologic conditions. However, the mechanism through which VNS influences central nervous system circuitry is not well described, limiting therapeutic optimization. VNS leads to widespread brain activation, but the effects on behavior are remarkably specific, indicating plasticity unique to behaviorally engaged neural circuits. To understand how VNS can lead to specific circuit modulation, we leveraged genetic tools including optogenetics and in vivo calcium imaging in mice learning a skilled reach task. We find that VNS enhances skilled motor learning in healthy animals via a cholinergic reinforcement mechanism, producing a rapid consolidation of an expert reach trajectory. In primary motor cortex (M1), VNS drives precise temporal modulation of neurons that respond to behavioral outcome. This suggests that VNS may accelerate motor refinement in M1 via cholinergic signaling, opening new avenues for optimizing VNS to target specific disease-relevant circuitry. Vagus nerve stimulation (VNS) is a neuromodulation therapy for a broad and expanding set of neurologic conditions. However, the mechanism through which VNS influences central nervous system circuitry is not well described, limiting therapeutic optimization. VNS leads to widespread brain activation, but the effects on behavior are remarkably specific, indicating plasticity unique to behaviorally engaged neural circuits. To understand how VNS can lead to specific circuit modulation, we leveraged genetic tools including optogenetics and in vivo calcium imaging in mice learning a skilled reach task. We find that VNS enhances skilled motor learning in healthy animals via a cholinergic reinforcement mechanism, producing a rapid consolidation of an expert reach trajectory. In primary motor cortex (M1), VNS drives precise temporal modulation of neurons that respond to behavioral outcome. This suggests that VNS may accelerate motor refinement in M1 via cholinergic signaling, opening new avenues for optimizing VNS to target specific disease-relevant circuitry. |
| Author | Welle, Cristin G Hickman, Jordan Williamson, W Ryan Washington, Kayden Huang, Rongchen Donegan, Dane Bowles, Spencer Peng, Xiaoyu |
| Author_xml | – sequence: 1 givenname: Spencer surname: Bowles fullname: Bowles, Spencer organization: Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA – sequence: 2 givenname: Jordan surname: Hickman fullname: Hickman, Jordan organization: Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA – sequence: 3 givenname: Xiaoyu surname: Peng fullname: Peng, Xiaoyu organization: Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA – sequence: 4 givenname: W Ryan surname: Williamson fullname: Williamson, W Ryan organization: IDEA Core, University of Colorado School of Medicine, Aurora, CO 80045, USA – sequence: 5 givenname: Rongchen surname: Huang fullname: Huang, Rongchen organization: Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA – sequence: 6 givenname: Kayden surname: Washington fullname: Washington, Kayden organization: Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA – sequence: 7 givenname: Dane surname: Donegan fullname: Donegan, Dane organization: Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA – sequence: 8 givenname: Cristin G surname: Welle fullname: Welle, Cristin G email: cristin.welle@cuanschutz.edu organization: Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA. Electronic address: cristin.welle@cuanschutz.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35858623$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtKAzEARYNU7EP_QCRLNzMmmTyapRRfUHCj7mTIJJk2ZSapeRT8ewtacHXP4nAWdw4mPngLwDVGNUaY3-1qb0sMviaIkBrxGmFxBmYYSVFRLOXkH0_BPKUdQpgyiS_AtGFLtuSkmYHPD7UpCXobDxam7MYyqOyChya6g00w2cHqfESoXdTFZTgGc3LyNoay2UK9DYM7JjZOw2id70PUdrQ-X4LzXg3JXv3tArw_Prytnqv169PL6n5dacpprjqFkSFGdYQLJTDrGNYSNZJSQRFVrFFkqXvacWE4XRojNLKi15oZJUSjJVmA29_uPoavYlNuR5e0HQblbSipJVwSwXhzvGoBbv7U0o3WtPvoRhW_29Ml5AepB2ln |
| CitedBy_id | crossref_primary_10_1016_j_tics_2023_11_001 crossref_primary_10_1161_STROKEAHA_122_042313 crossref_primary_10_1038_s41531_025_00889_1 crossref_primary_10_1109_TNSRE_2025_3551753 crossref_primary_10_3389_fncir_2025_1569158 crossref_primary_10_1016_j_bbii_2025_100119 crossref_primary_10_1016_j_brs_2023_08_009 crossref_primary_10_1161_STROKEAHA_125_051470 crossref_primary_10_3389_fnhum_2023_1297325 crossref_primary_10_1038_s41467_024_55016_0 crossref_primary_10_1038_s41598_024_69666_z crossref_primary_10_1080_14737175_2025_2552784 crossref_primary_10_1113_JP286205 crossref_primary_10_3389_fneur_2023_1210103 crossref_primary_10_1016_j_brs_2025_01_022 crossref_primary_10_1016_j_neuron_2022_08_004 crossref_primary_10_1007_s11571_024_10143_8 crossref_primary_10_1016_j_pnpbp_2025_111290 crossref_primary_10_1111_cns_14561 crossref_primary_10_1016_j_janxdis_2024_102912 crossref_primary_10_3389_fnhum_2024_1320806 crossref_primary_10_1016_j_isci_2025_112439 crossref_primary_10_1161_STROKEAHA_123_043414 crossref_primary_10_1177_15459683251340916 crossref_primary_10_1038_s41598_024_61958_8 crossref_primary_10_3389_fncir_2025_1568655 crossref_primary_10_1007_s11910_023_01323_w crossref_primary_10_1113_JP285566 crossref_primary_10_3389_fnins_2023_1108371 crossref_primary_10_1016_j_brs_2023_09_019 crossref_primary_10_3389_fnagi_2025_1518198 crossref_primary_10_1038_s42003_024_07447_0 crossref_primary_10_1038_s41467_024_52397_0 crossref_primary_10_1038_s41593_024_01767_4 crossref_primary_10_1016_j_jpeds_2023_113563 crossref_primary_10_1016_j_neuron_2024_12_013 crossref_primary_10_1016_j_semcdb_2023_02_004 crossref_primary_10_1016_j_clinph_2024_02_011 crossref_primary_10_1177_15459683221137341 crossref_primary_10_1016_j_brs_2025_03_007 crossref_primary_10_1016_j_tins_2023_04_001 crossref_primary_10_1016_j_clinph_2024_11_012 crossref_primary_10_3389_fnins_2024_1490300 crossref_primary_10_1016_j_brainres_2025_149460 crossref_primary_10_1515_tnsci_2022_0308 crossref_primary_10_1016_j_comppsych_2024_152488 crossref_primary_10_3389_fnins_2025_1600024 crossref_primary_10_1177_13872877251366695 crossref_primary_10_1016_j_brs_2025_04_007 crossref_primary_10_1038_s41562_024_01901_z crossref_primary_10_1016_j_brs_2025_06_016 crossref_primary_10_1016_j_brainres_2025_149736 crossref_primary_10_3389_fnins_2023_1248936 crossref_primary_10_1007_s00221_024_06876_x crossref_primary_10_3389_fneur_2024_1516242 crossref_primary_10_3390_brainsci15040346 crossref_primary_10_61882_nl_4_2_114 crossref_primary_10_1038_s41598_024_54026_8 crossref_primary_10_3389_fnhum_2025_1595737 crossref_primary_10_1007_s12028_024_02195_9 crossref_primary_10_1016_j_neurom_2025_01_012 crossref_primary_10_1177_15459683241252599 crossref_primary_10_1038_s41467_024_45590_8 crossref_primary_10_1038_s41582_024_00953_z crossref_primary_10_1038_s41586_025_09028_5 crossref_primary_10_1360_SSV_2024_0355 crossref_primary_10_1177_15459683251360725 crossref_primary_10_4103_NRR_NRR_D_24_00945 crossref_primary_10_1007_s12035_023_03477_7 crossref_primary_10_3390_brainsci12091137 crossref_primary_10_1007_s12264_023_01129_3 crossref_primary_10_1097_MD_0000000000040900 crossref_primary_10_3389_fneur_2024_1379451 crossref_primary_10_1152_jn_00447_2022 crossref_primary_10_1016_j_neuroscience_2023_09_015 crossref_primary_10_3724_SP_J_1329_2025_03007 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neuron.2022.06.017 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| EISSN | 1097-4199 |
| ExternalDocumentID | 35858623 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS115975 – fundername: NINDS NIH HHS grantid: P30 NS048154 – fundername: NINDS NIH HHS grantid: R01 NS123665 – fundername: NINDS NIH HHS grantid: T32 NS099042 |
| GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 4.4 457 4G. 53G 5RE 62- 7-5 8FE 8FH AAEDT AAEDW AAFWJ AAKRW AAKUH AALRI AAMRU AAVLU AAXUO AAYWO ABDGV ABJNI ABMAC ACGFO ACGFS ACIWK ACNCT ACPRK ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEFWE AENEX AEUPX AEXQZ AFPUW AFTJW AGCQF AGKMS AHHHB AHMBA AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP AQUVI ASPBG AVWKF AZFZN BAWUL BKEYQ BKNYI BPHCQ BVXVI CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EFKBS EIF F5P FCP FDB FEDTE FIRID HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M3Z M41 N9A NPM O-L O9- OK1 P2P P6G PQQKQ PROAC ROL RPZ SCP SDP SES SSZ TR2 WOW 7X8 |
| ID | FETCH-LOGICAL-c464t-ba10d2dab267a715b51c9039447404a53a28cf4b67d648dd7c0e7fcc5da773c92 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000861125500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1097-4199 |
| IngestDate | Wed Oct 01 11:12:44 EDT 2025 Mon Jul 21 05:51:28 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | neuromodulation motor cortex motor learning basal forebrain cholinergic plasticity learning vagus nerve stimulation reinforcement outcome |
| Language | English |
| License | Copyright © 2022 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c464t-ba10d2dab267a715b51c9039447404a53a28cf4b67d648dd7c0e7fcc5da773c92 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://pmc.ncbi.nlm.nih.gov/articles/PMC10212211/pdf/nihms-1898505.pdf |
| PMID | 35858623 |
| PQID | 2692756320 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2692756320 pubmed_primary_35858623 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-07 |
| PublicationDateYYYYMMDD | 2022-09-07 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neuron (Cambridge, Mass.) |
| PublicationTitleAlternate | Neuron |
| PublicationYear | 2022 |
| References | 36076336 - Neuron. 2022 Sep 7;110(17):2709-2712 |
| References_xml | – reference: 36076336 - Neuron. 2022 Sep 7;110(17):2709-2712 |
| SSID | ssj0014591 |
| Score | 2.6353264 |
| Snippet | Vagus nerve stimulation (VNS) is a neuromodulation therapy for a broad and expanding set of neurologic conditions. However, the mechanism through which VNS... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2867 |
| SubjectTerms | Animals Brain Cholinergic Agents - pharmacology Mice Nervous System Diseases - therapy Neuronal Plasticity - physiology Vagus Nerve Stimulation - methods |
| Title | Vagus nerve stimulation drives selective circuit modulation through cholinergic reinforcement |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35858623 https://www.proquest.com/docview/2692756320 |
| Volume | 110 |
| WOSCitedRecordID | wos000861125500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qFLz4sfkxv4gg3optmibNSYY4POjYQWUXGWnSSg9rZ7sJ--_NS1N28SB4KT00UJKXl5f3fu_3Q-gmYDGVQag9pXjmUZ5QTwJoPIhUBnUZFieWXf-Zj0bxZCLGLuFWO1hl6xOto9alghz5HWECmMpD4t_PvzxQjYLqqpPQ2ESd0IQyAOnik3UVgUZWMQ-KrFDtFG3rnMV3Wb5IYEAlxDJ4OsmyX4NMe9gM9__7mwdoz4WZeNDYxSHaSIsu6g0Kc8WerfAttsBPm1Hvop1Gj3LVQx_v8nNZ4wJQkNjs_ZnT9sK6AnZaXFvRHPOKVV6pZb7As1K33zjFHwz-1HYU5gpXqSVmVTYHeYTeho-vD0-e01_wFGV04SUy8DXRMiGMSx5ESRQo4UMnLac-lVEoSawymjCuGY215spPeaZUpCXnoRLkGG0VZZGeIix8AV2vZqAJNwVNYhaJLBXGHpg2tsz76LqdzqmxbyhayCItl_V0PaF9dNKsyXTeEHFMQ3PXMTey8OwPo8_RLiy1hYfxC9TJzO5OL9G2-l7kdXVlDcc8R-OXH862zwg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vagus+nerve+stimulation+drives+selective+circuit+modulation+through+cholinergic+reinforcement&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Bowles%2C+Spencer&rft.au=Hickman%2C+Jordan&rft.au=Peng%2C+Xiaoyu&rft.au=Williamson%2C+W+Ryan&rft.date=2022-09-07&rft.issn=1097-4199&rft.eissn=1097-4199&rft.volume=110&rft.issue=17&rft.spage=2867&rft_id=info:doi/10.1016%2Fj.neuron.2022.06.017&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4199&client=summon |