Diagnostic accuracy of machine learning algorithms in electrocardiogram-based sleep apnea detection: A systematic review and meta-analysis

Sleep apnea is a prevalent disorder affecting 10 % of middle-aged individuals, yet it remains underdiagnosed due to the limitations of polysomnography (PSG), the current diagnostic gold standard. Single-lead electrocardiography (ECG) has been proposed as a potential alternative diagnostic tool, but...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sleep medicine reviews Ročník 81; s. 102097
Hlavní autori: Kilic, Mustafa Eray, Arayici, Mehmet Emin, Turan, Oguzhan Ekrem, Yilancioglu, Yigit Resit, Ozcan, Emin Evren, Yilmaz, Mehmet Birhan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Elsevier Ltd 01.06.2025
Predmet:
ISSN:1087-0792, 1532-2955, 1532-2955
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Sleep apnea is a prevalent disorder affecting 10 % of middle-aged individuals, yet it remains underdiagnosed due to the limitations of polysomnography (PSG), the current diagnostic gold standard. Single-lead electrocardiography (ECG) has been proposed as a potential alternative diagnostic tool, but interpretation challenges remain. Recent advances in machine learning and deep learning technologies offer promising approaches for enhancing the detection of sleep apnea through automated analysis of ECG signals. This meta-analysis aims to evaluate the diagnostic accuracy of machine learning (ML) and deep learning (DL) algorithms in detecting sleep apnea patterns from single-lead ECG data. A comprehensive literature search across multiple databases was conducted through November 2023, adhering to PRISMA-DTA guidelines. Studies that included sensitivity and specificity data for ECG-based sleep apnea detection using (machine learning/deep learning) ML/DL were selected. The analysis included 84 studies, demonstrating high diagnostic accuracy for ML/DL algorithms, with pooled sensitivity and specificity of over 90 % in per-segment analysis and close to 97 % in per-record analysis. Despite strong diagnostic performance, variations in algorithm effectiveness and methodological biases were noted. This meta-analysis highlights the potential of ML and DL in improving sleep apnea diagnosis and outlines areas for future research to address current limitations.
AbstractList Sleep apnea is a prevalent disorder affecting 10 % of middle-aged individuals, yet it remains underdiagnosed due to the limitations of polysomnography (PSG), the current diagnostic gold standard. Single-lead electrocardiography (ECG) has been proposed as a potential alternative diagnostic tool, but interpretation challenges remain. Recent advances in machine learning and deep learning technologies offer promising approaches for enhancing the detection of sleep apnea through automated analysis of ECG signals. This meta-analysis aims to evaluate the diagnostic accuracy of machine learning (ML) and deep learning (DL) algorithms in detecting sleep apnea patterns from single-lead ECG data. A comprehensive literature search across multiple databases was conducted through November 2023, adhering to PRISMA-DTA guidelines. Studies that included sensitivity and specificity data for ECG-based sleep apnea detection using (machine learning/deep learning) ML/DL were selected. The analysis included 84 studies, demonstrating high diagnostic accuracy for ML/DL algorithms, with pooled sensitivity and specificity of over 90 % in per-segment analysis and close to 97 % in per-record analysis. Despite strong diagnostic performance, variations in algorithm effectiveness and methodological biases were noted. This meta-analysis highlights the potential of ML and DL in improving sleep apnea diagnosis and outlines areas for future research to address current limitations.
AbstractSleep apnea is a prevalent disorder affecting 10 % of middle-aged individuals, yet it remains underdiagnosed due to the limitations of polysomnography (PSG), the current diagnostic gold standard. Single-lead electrocardiography (ECG) has been proposed as a potential alternative diagnostic tool, but interpretation challenges remain. Recent advances in machine learning and deep learning technologies offer promising approaches for enhancing the detection of sleep apnea through automated analysis of ECG signals. This meta-analysis aims to evaluate the diagnostic accuracy of machine learning (ML) and deep learning (DL) algorithms in detecting sleep apnea patterns from single-lead ECG data. A comprehensive literature search across multiple databases was conducted through November 2023, adhering to PRISMA-DTA guidelines. Studies that included sensitivity and specificity data for ECG-based sleep apnea detection using (machine learning/deep learning) ML/DL were selected. The analysis included 84 studies, demonstrating high diagnostic accuracy for ML/DL algorithms, with pooled sensitivity and specificity of over 90 % in per-segment analysis and close to 97 % in per-record analysis. Despite strong diagnostic performance, variations in algorithm effectiveness and methodological biases were noted. This meta-analysis highlights the potential of ML and DL in improving sleep apnea diagnosis and outlines areas for future research to address current limitations.
Sleep apnea is a prevalent disorder affecting 10 % of middle-aged individuals, yet it remains underdiagnosed due to the limitations of polysomnography (PSG), the current diagnostic gold standard. Single-lead electrocardiography (ECG) has been proposed as a potential alternative diagnostic tool, but interpretation challenges remain. Recent advances in machine learning and deep learning technologies offer promising approaches for enhancing the detection of sleep apnea through automated analysis of ECG signals. This meta-analysis aims to evaluate the diagnostic accuracy of machine learning (ML) and deep learning (DL) algorithms in detecting sleep apnea patterns from single-lead ECG data. A comprehensive literature search across multiple databases was conducted through November 2023, adhering to PRISMA-DTA guidelines. Studies that included sensitivity and specificity data for ECG-based sleep apnea detection using (machine learning/deep learning) ML/DL were selected. The analysis included 84 studies, demonstrating high diagnostic accuracy for ML/DL algorithms, with pooled sensitivity and specificity of over 90 % in per-segment analysis and close to 97 % in per-record analysis. Despite strong diagnostic performance, variations in algorithm effectiveness and methodological biases were noted. This meta-analysis highlights the potential of ML and DL in improving sleep apnea diagnosis and outlines areas for future research to address current limitations.Sleep apnea is a prevalent disorder affecting 10 % of middle-aged individuals, yet it remains underdiagnosed due to the limitations of polysomnography (PSG), the current diagnostic gold standard. Single-lead electrocardiography (ECG) has been proposed as a potential alternative diagnostic tool, but interpretation challenges remain. Recent advances in machine learning and deep learning technologies offer promising approaches for enhancing the detection of sleep apnea through automated analysis of ECG signals. This meta-analysis aims to evaluate the diagnostic accuracy of machine learning (ML) and deep learning (DL) algorithms in detecting sleep apnea patterns from single-lead ECG data. A comprehensive literature search across multiple databases was conducted through November 2023, adhering to PRISMA-DTA guidelines. Studies that included sensitivity and specificity data for ECG-based sleep apnea detection using (machine learning/deep learning) ML/DL were selected. The analysis included 84 studies, demonstrating high diagnostic accuracy for ML/DL algorithms, with pooled sensitivity and specificity of over 90 % in per-segment analysis and close to 97 % in per-record analysis. Despite strong diagnostic performance, variations in algorithm effectiveness and methodological biases were noted. This meta-analysis highlights the potential of ML and DL in improving sleep apnea diagnosis and outlines areas for future research to address current limitations.
ArticleNumber 102097
Author Yilancioglu, Yigit Resit
Arayici, Mehmet Emin
Turan, Oguzhan Ekrem
Ozcan, Emin Evren
Kilic, Mustafa Eray
Yilmaz, Mehmet Birhan
Author_xml – sequence: 1
  givenname: Mustafa Eray
  orcidid: 0000-0002-0894-8790
  surname: Kilic
  fullname: Kilic, Mustafa Eray
  email: mustafaeraykilic@gmail.com
  organization: Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
– sequence: 2
  givenname: Mehmet Emin
  orcidid: 0000-0002-0492-5129
  surname: Arayici
  fullname: Arayici, Mehmet Emin
  email: mehmetearayici@gmail.com
  organization: Department of Biostatistics and Medical Informatics, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
– sequence: 3
  givenname: Oguzhan Ekrem
  orcidid: 0000-0003-3557-1682
  surname: Turan
  fullname: Turan, Oguzhan Ekrem
  email: oguzhanekremturan@deu.edu.tr
  organization: Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
– sequence: 4
  givenname: Yigit Resit
  orcidid: 0000-0001-5762-1383
  surname: Yilancioglu
  fullname: Yilancioglu, Yigit Resit
  email: yigityilancioglu@deu.edu.tr
  organization: Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
– sequence: 5
  givenname: Emin Evren
  orcidid: 0000-0002-2198-9300
  surname: Ozcan
  fullname: Ozcan, Emin Evren
  email: eevrenozcan@deu.edu.tr
  organization: Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
– sequence: 6
  givenname: Mehmet Birhan
  orcidid: 0000-0002-8169-8628
  surname: Yilmaz
  fullname: Yilmaz, Mehmet Birhan
  email: profdrmbyilmaz@gmail.com
  organization: Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40349509$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhSNURH_gBVggL9lkajt2ElcIqSpQkCqxANbWHftm6sGxBztTlFfgqXE07aYSZWXLOt-58jn3tDoKMWBVvWZ0xShrz7erPKa7FadclgdOVfesOmGy4TVXUh6VO-27mnaKH1enOW8ppUqw9kV1LGgjlKTqpPrzwcEmxDw5Q8CYfQIzkziQEcytC0g8QgoubAj4TUxuuh0zcYGgRzOlaCBZFzcJxnoNGS3JHnFHYBcQiMWpiFwMF-SS5DlPOMIyJuGdw98EgiUjTlBDAD9nl19WzwfwGV_dn2fVj08fv199rm--Xn-5urypjWjFVPeColyboYNBGTBMtu2acSP6QXTSUmSDatqWUSmlQAtK2E7ygdp-aKBn_bo5q94efHcp_tpjnvToskHvIWDcZ92UQHupuOJF-uZeul-PaPUuuRHSrB_yK4L-IDAp5pxw0MZNsHx6SuC8ZlQvVemtXqrSS1X6UFVB-SP0wf1J6N0BwhJQiTHpbBwGg9alEra20T2Nv3-EG--CM-B_4ox5G_eplJE105lrqr8tC7TsD5dldyQVxeDi3wb_m_4XOmzX3g
CitedBy_id crossref_primary_10_1016_j_smrv_2025_102152
Cites_doi 10.1007/s13534-017-0055-y
10.1109/JBHI.2018.2842919
10.3390/app11146622
10.1016/j.neunet.2023.03.019
10.3390/life12101509
10.3390/life12010119
10.1016/j.bspc.2013.05.007
10.3390/e25030399
10.1093/ehjdh/ztac016
10.1016/j.bspc.2023.105444
10.1016/j.smrv.2016.07.002
10.1016/j.cmpb.2020.105626
10.1016/j.engappai.2023.106451
10.1007/s00034-022-02092-6
10.3390/s22020510
10.1016/j.compbiomed.2016.08.012
10.1007/s10439-025-03691-5
10.1016/j.neucom.2013.04.048
10.1016/j.irbm.2018.03.002
10.1109/JSEN.2017.2690805
10.1016/j.compbiomed.2018.06.011
10.1016/j.compbiomed.2021.105124
10.34768/amcs-2023-0036
10.1109/TASE.2014.2345667
10.3390/jcm9020591
10.1016/j.bspc.2021.102685
10.1016/j.artmed.2021.102133
10.1016/j.compbiomed.2017.10.004
10.1183/09031936.00046710
10.1016/j.ijporl.2017.06.013
10.1109/JBHI.2013.2292928
10.1109/TBME.2015.2498199
10.1007/s11325-008-0234-2
10.1109/JBHI.2022.3203560
10.1016/j.neucom.2021.12.001
10.1016/j.asoc.2019.105568
10.1109/TBME.2015.2422378
10.1016/j.eswa.2023.121658
10.1016/j.bmt.2024.10.003
10.3390/jcm11010192
10.1016/j.smrv.2022.101743
10.1016/j.jclinepi.2005.01.016
10.1016/j.neucom.2018.03.011
10.1016/j.bspc.2023.104754
10.1109/TBCAS.2018.2824659
10.1016/j.compbiomed.2022.106100
10.3390/s21165425
10.1186/1471-2288-14-70
10.1016/j.smrv.2024.101991
10.1007/s12530-022-09445-1
10.1038/jhh.2015.15
10.1016/j.imu.2019.100170
10.1016/j.imu.2023.101286
10.1016/j.cmpb.2019.05.002
10.1001/jama.2017.19163
10.1088/1361-6579/ac0a9c
10.1088/1361-6579/aac7b7
10.1007/s10916-018-0963-0
10.1142/S021951941950026X
10.3390/s20154157
10.1016/j.bspc.2022.104401
10.1016/j.asoc.2023.110613
10.1007/s13534-023-00297-5
10.1001/jamanetworkopen.2019.19657
10.5664/jcsm.27184
10.1016/j.measurement.2022.111787
10.1109/ACCESS.2020.3036024
10.1016/j.eswa.2021.115950
10.1109/JBHI.2017.2784415
10.1007/s11042-018-6161-8
10.1088/1361-6579/ac184e
10.1088/1742-6596/2273/1/012015
10.1088/1361-6579/ac826e
10.3390/s23104692
10.1088/2057-1976/ab68e9
10.1007/s40846-021-00646-8
10.1109/JBHI.2022.3166859
10.1016/j.compbiomed.2021.104532
10.7326/0003-4819-155-8-201110180-00009
10.24200/tjer.vol17iss1pp24-33
10.1371/journal.pone.0250618
10.1016/j.eswa.2023.120484
10.1002/ppul.25423
10.1007/s11325-024-03173-3
10.1186/s12874-022-01788-2
10.1161/01.CIR.101.23.e215
10.1016/j.bspc.2020.102005
10.1016/j.irbm.2020.05.006
10.1016/j.cmpb.2019.105001
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.smrv.2025.102097
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1532-2955
EndPage 102097
ExternalDocumentID 40349509
10_1016_j_smrv_2025_102097
S1087079225000504
1_s2_0_S1087079225000504
Genre Meta-Analysis
Systematic Review
Journal Article
GroupedDBID ---
--K
--M
-RU
.1-
.FO
.~1
0R~
123
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
6PF
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OJ-
OV.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSN
SSZ
T5K
UNMZH
WOW
Z5R
~G-
~HD
AFCTW
AGCQF
AGRNS
RIG
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c464t-840e5bcf7af9cac1566b12c48f475d0e1f9366105554eda94d752f0d8f3a818b3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001491174300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1087-0792
1532-2955
IngestDate Thu Oct 02 23:36:52 EDT 2025
Tue Sep 16 01:45:18 EDT 2025
Tue Nov 18 21:41:12 EST 2025
Sat Nov 29 07:54:40 EST 2025
Sat Jun 21 16:53:14 EDT 2025
Thu Jun 12 22:56:18 EDT 2025
Tue Oct 14 19:35:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Single-lead ECG
Diagnostic accuracy
Machine learning
Sensitivity and specificity
Sleep apnea
Electrocardiogram (ECG)
Sleep medicine
Meta-analysis
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c464t-840e5bcf7af9cac1566b12c48f475d0e1f9366105554eda94d752f0d8f3a818b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2198-9300
0000-0001-5762-1383
0000-0002-0894-8790
0000-0002-0492-5129
0000-0003-3557-1682
0000-0002-8169-8628
PMID 40349509
PQID 3202859292
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3202859292
pubmed_primary_40349509
crossref_citationtrail_10_1016_j_smrv_2025_102097
crossref_primary_10_1016_j_smrv_2025_102097
elsevier_sciencedirect_doi_10_1016_j_smrv_2025_102097
elsevier_clinicalkeyesjournals_1_s2_0_S1087079225000504
elsevier_clinicalkey_doi_10_1016_j_smrv_2025_102097
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Sleep medicine reviews
PublicationTitleAlternate Sleep Med Rev
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hedner, Grote, Bonsignore, McNicholas, Lavie, Parati (bib102) 2011; 38
Jafari (bib43) 2013; 8
Setiawan, Lin (bib62) 2022; 12
Pinho, Pombo, Silva, Bousson, Garcia (bib58) 2019; 83
Sharaf (bib64) 2023; 25
Dey, Chaudhuri, Munshi (bib29) 2018; 8
Lin, Li, Wang, Bai, Cui, Yu (bib117) 2024; 237
Yeo, Byun, Lee, Byun, Rhee, Shin (bib92) 2022; 26
Dong, Li, Chen (bib30) 2018; 22
Zarei, Asl (bib94) 2019; 23
McInnes, Moher, Thombs, McGrath, Bossuyt (bib10) 2018; 319
Yu, Yang, You, Shan (bib93) 2021; 42
Chen, Zhang, Song (bib26) 2015; 12
Song, Liu, Zhang, Chen, Xian (bib74) 2016; 63
Bernardini, Brunello, Gigli, Montanari, Saccomanno (bib21) 2021; 118
Chen, Yue, Zou, Lei, Ma, Fan (bib28) 2023; 162
Scalzitti, Hansen, Maturo, Lospinoso, O'Connor (bib5) 2017; 100
Kandukuri, Prakash, Patro, Neelapu, Tadeusiewicz, Pławiak (bib45) 2023 Sep 1; 33
Venkataraman, Vungarala, Covassin, Somers (bib3) 2020; 9
Qin, Liu (bib60) 2022; 473
Mashrur, Islam, Saha, Islam, Moni (bib51) 2021; 134
Plana, Arevalo-Rodriguez, Fernández-García, Soto, Fabregate, Pérez (bib13) 2022; 22
Nasifoglu, Erogul (bib54) 2021; 42
Bali, Nandi, Hiremath, Patil (bib20) 2024; 7
Chang, Yeh, Lee, Lin (bib24) 2020; 20
Surrel, Aminifar, Rincon, Murali, Atienza (bib76) 2018; 12
Abd-alrazaq, Aslam, AlSaad, Alsahli, Ahmed, Damseh (bib107) 2024; 26
Chen, Shen, Ma, Zheng (bib25) 2022; 16
Hemrajani, Dhaka, Rani, Shukla, Bavirisetti (bib39) 2023; 23
Yeh, Chang, Hu, Lin (bib91) 2022; 22
Gao, Tan, Tan, Ng, Leong, Phua (bib108) 2025; 29
Whiting, Rutjes, Westwood, Mallett, Deeks, Reitsma (bib11) 2011; 155
Wang, Lin, Wang (bib85) 2019; 176
Tyagi, Agarwal (bib6) 2023; 13
Ullah, Mahmood, Kim, Nam, Sultan, Park (bib80) 2023; 123
Wicaksono, u, Alam, Isa (bib89) 2022; 39
Sharma, Agarwal, Acharya (bib66) 2018; 100
Urtnasan, Park, Joo, Lee (bib81) 2018; 42
Hemrajani, Dhaka, Rani (bib38) 2023
Fatimah, Joshi (bib34) 2022; 41
Wang, Lu, Shen, Hong (bib86) 2019; 7
Li, Shi, Zhou, Zhang, Wu, Ren (bib47) 2023; 72
Sharan, Berkovsky, Xiong, Coiera (bib65) 2021; 41
Kumar Tyagi, Agrawal (bib46) 2023; 80
Xu, Faust, Seoni, Chakraborty, Barua, Loh (bib9) 2022; 150
Zarei, Mohammadzadeh Asl (bib95) 2020; 195
Srivastava, Chauhan, Kargeti, Pradhan, Dhaka (bib75) 2023; 84
Li, Pan, Li, Jiang, Liu (bib48) 2018; 294
Zhou, He, Kang (bib97) 2022
Al-Zaiti, Alghwiri, Hu, Clermont, Peace, Macfarlane (bib12) 2022; 3
Pépin, Letesson, Le-Dong, Dedave, Denison, Cuthbert (bib106) 2020; 3
Yang, Zou, Wei, Liu (bib90) 2022; 140
Bozkurt, Uçar, Bozkurt, Bilgin (bib22) 2020; 41
Gutiérrez‐Tobal, Álvarez, Kheirandish‐Gozal, Del Campo, Gozal, Hornero (bib105) 2022; 57
Erdenebayar, Kim, Park, Joo, Lee (bib31) 2019; 180
Ahmadi, Shapiro, Chung, Shapiro (bib4) 2009; 13
Gupta, Bajaj, Ansari (bib37) 2022; 71
Gonzaga, Bertolami, Bertolami, Amodeo, Calhoun (bib1) 2015; 29
Shen, Qin, Wei, Liu (bib70) 2021; 70
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark (bib98) 2000; 101
Travieso, Alonso, Del Pozo, Ticay, Castellanos-Dominguez (bib78) 2014; 132
Sun, Hong, Wang, Dong, Han, Li (bib7) 2022; 43
Nguyen, Wilkins, Cheng, Benjamin (bib55) 2014; 18
Chen, Chen, Ma, Fan, Li, Se-Mscnn (bib27) 2021
Fathima, Ahmed (bib114) 2025
Hossen, Qasim (bib40) 2020; 17
Wang, Lu, Shen (bib87) 2019; 2019
Iyengar, Peng, Morin, Goldberger, Lipsitz (bib101) 1996; 271
Tang, Li, Zhang, Deng, Liu, Zheng (bib118) 2024; 8
Varon, Caicedo, Testelmans, Buyse, Van Huffel (bib83) 2015; 62
Sharma, Sharma (bib69) 2020; 6
Cao, Lv (bib23) 2022; 202
Janbakhshi, Shamsollahi (bib44) 2018; 39
Niroshana, Zhu, Nakamura, Chen (bib56) 2021; 16
Fang, Lu, Hong, Jiang, Wang (bib33) 2022; 12
Hong, Zhang, Sun, Zhou, Li (bib8) 2021; 12
Baek, Kim, Kim, Lee (bib18) 2014; vol. 167
Hu, Cai, Gao, Wang (bib41) 2022; 71
Martín-González, Navarro-Mesa, Juliá-Serdá, Kraemer, Wessel, Ravelo-García (bib50) 2017; 91
Smruthy, Suchetha (bib73) 2017; 17
Sharma, Raval, Acharya (bib67) 2019; 16
Wang, Cheng, Wang, Liu, Tian, Jiang (bib88) 2020; 79
Almutairi, Hassan, Datta (bib16) 2021
Feng, Qin, Wu, Pan, Liu (bib36) 2021; 70
Singh, Talwekar (bib109) 2022; 2273
Li, Zhang, Liu, Lin, Zhang, Tang (bib116) 2023; 146
S Band, Yarahmadi, Hsu, Biyari, Sookhak, Ameri (bib115) 2023; 40
Mukherjee, Dhar, Schwenker, Sarkar (bib52) 2021; 21
(bib42) 2022; 12
Shao, Han, Wang, Song, Yao, Hou (bib63) 2022; 26
Abasi, Aloqaily, Guizani (bib14) 2023; 229
Pombo, Silva, Pinho, Garcia (bib59) 2020; 8
Ayatollahi, Afrakhteh, Soltani, Saleh (bib17) 2023; 14
Sharma, Sharma (bib68) 2016; 77
Khor, Khung, Ruehland, Jiao, Lew, Munsif (bib111) 2023; 68
Landry, Semsar-Kazerooni, Chen, Gurberg, Nguyen, Constantin (bib112) 2024; 78
Thompson, Fergus, Chalmers, Reilly (bib77) 2020
Salari, Hosseinian-Far, Mohammadi, Ghasemi, Khazaie, Daneshkhah (bib110) 2022; 187
Lin, Wang, Setiawan, Trang, Lin (bib49) 2021; 11
Conor Heneghan (bib100) 2007
Deeks, Macaskill, Irwig (bib104) 2005; 58
Heneghan, de, Ryan, Chua, Doherty, Boyle (bib113) 2008; 4
Parbat, Chakraborty (bib57) 2024; 87
Sheta, Turabieh, Thaher, Too, Mafarja, Hossain (bib71) 2021; 11
Bahrami, Forouzanfar (bib19) 2022; 71
Faal, Almasganj (bib32) 2021; 68
Penzel, Moody, Mark, Goldberger, Peter (bib99) 2000
van Enst, Ochodo, Scholten, Hooft, Leeflang (bib103) 2014; 14
Urtnasan, Park, Lee (bib82) 2018; 39
Fatimah, Singh, Singhal, Pachori (bib35) 2020; 61
Singh, Majumder (bib72) 2019; 19
Senaratna, Perret, Lodge, Lowe, Campbell, Matheson (bib2) 2017; 34
Hemrajani (10.1016/j.smrv.2025.102097_bib39) 2023; 23
Ayatollahi (10.1016/j.smrv.2025.102097_bib17) 2023; 14
Cao (10.1016/j.smrv.2025.102097_bib23) 2022; 202
Li (10.1016/j.smrv.2025.102097_bib48) 2018; 294
Shao (10.1016/j.smrv.2025.102097_bib63) 2022; 26
Janbakhshi (10.1016/j.smrv.2025.102097_bib44) 2018; 39
Abd-alrazaq (10.1016/j.smrv.2025.102097_bib107) 2024; 26
Sharma (10.1016/j.smrv.2025.102097_bib69) 2020; 6
Sharaf (10.1016/j.smrv.2025.102097_bib64) 2023; 25
Fathima (10.1016/j.smrv.2025.102097_bib114) 2025
Penzel (10.1016/j.smrv.2025.102097_bib99) 2000
Sheta (10.1016/j.smrv.2025.102097_bib71) 2021; 11
Mashrur (10.1016/j.smrv.2025.102097_bib51) 2021; 134
Conor Heneghan (10.1016/j.smrv.2025.102097_bib100)
Surrel (10.1016/j.smrv.2025.102097_bib76) 2018; 12
Mukherjee (10.1016/j.smrv.2025.102097_bib52) 2021; 21
Fatimah (10.1016/j.smrv.2025.102097_bib34) 2022; 41
Wicaksono (10.1016/j.smrv.2025.102097_bib89) 2022; 39
McInnes (10.1016/j.smrv.2025.102097_bib10) 2018; 319
Whiting (10.1016/j.smrv.2025.102097_bib11) 2011; 155
Setiawan (10.1016/j.smrv.2025.102097_bib62) 2022; 12
Abasi (10.1016/j.smrv.2025.102097_bib14) 2023; 229
Gupta (10.1016/j.smrv.2025.102097_bib37) 2022; 71
Deeks (10.1016/j.smrv.2025.102097_bib104) 2005; 58
Erdenebayar (10.1016/j.smrv.2025.102097_bib31) 2019; 180
Srivastava (10.1016/j.smrv.2025.102097_bib75) 2023; 84
Almutairi (10.1016/j.smrv.2025.102097_bib16) 2021
Gutiérrez‐Tobal (10.1016/j.smrv.2025.102097_bib105) 2022; 57
Hedner (10.1016/j.smrv.2025.102097_bib102) 2011; 38
Wang (10.1016/j.smrv.2025.102097_bib87) 2019; 2019
Hossen (10.1016/j.smrv.2025.102097_bib40) 2020; 17
Venkataraman (10.1016/j.smrv.2025.102097_bib3) 2020; 9
Nasifoglu (10.1016/j.smrv.2025.102097_bib54) 2021; 42
Li (10.1016/j.smrv.2025.102097_bib47) 2023; 72
Plana (10.1016/j.smrv.2025.102097_bib13) 2022; 22
Baek (10.1016/j.smrv.2025.102097_bib18) 2014; vol. 167
Faal (10.1016/j.smrv.2025.102097_bib32) 2021; 68
Sharan (10.1016/j.smrv.2025.102097_bib65) 2021; 41
Sharma (10.1016/j.smrv.2025.102097_bib68) 2016; 77
Goldberger (10.1016/j.smrv.2025.102097_bib98) 2000; 101
Gonzaga (10.1016/j.smrv.2025.102097_bib1) 2015; 29
Bahrami (10.1016/j.smrv.2025.102097_bib19) 2022; 71
Senaratna (10.1016/j.smrv.2025.102097_bib2) 2017; 34
Bernardini (10.1016/j.smrv.2025.102097_bib21) 2021; 118
Yeo (10.1016/j.smrv.2025.102097_bib92) 2022; 26
Xu (10.1016/j.smrv.2025.102097_bib9) 2022; 150
Zhou (10.1016/j.smrv.2025.102097_bib97) 2022
Tyagi (10.1016/j.smrv.2025.102097_bib6) 2023; 13
Bozkurt (10.1016/j.smrv.2025.102097_bib22) 2020; 41
Bali (10.1016/j.smrv.2025.102097_bib20) 2024; 7
Qin (10.1016/j.smrv.2025.102097_bib60) 2022; 473
S Band (10.1016/j.smrv.2025.102097_bib115) 2023; 40
Travieso (10.1016/j.smrv.2025.102097_bib78) 2014; 132
Pépin (10.1016/j.smrv.2025.102097_bib106) 2020; 3
Kandukuri (10.1016/j.smrv.2025.102097_bib45) 2023; 33
Yu (10.1016/j.smrv.2025.102097_bib93) 2021; 42
Chen (10.1016/j.smrv.2025.102097_bib28) 2023; 162
Niroshana (10.1016/j.smrv.2025.102097_bib56) 2021; 16
Chen (10.1016/j.smrv.2025.102097_bib25) 2022; 16
Fang (10.1016/j.smrv.2025.102097_bib33) 2022; 12
Li (10.1016/j.smrv.2025.102097_bib116) 2023; 146
Chen (10.1016/j.smrv.2025.102097_bib27) 2021
Hu (10.1016/j.smrv.2025.102097_bib41) 2022; 71
Nguyen (10.1016/j.smrv.2025.102097_bib55) 2014; 18
Smruthy (10.1016/j.smrv.2025.102097_bib73) 2017; 17
Jafari (10.1016/j.smrv.2025.102097_bib43) 2013; 8
Sharma (10.1016/j.smrv.2025.102097_bib67) 2019; 16
Iyengar (10.1016/j.smrv.2025.102097_bib101) 1996; 271
Varon (10.1016/j.smrv.2025.102097_bib83) 2015; 62
Urtnasan (10.1016/j.smrv.2025.102097_bib82) 2018; 39
Feng (10.1016/j.smrv.2025.102097_bib36) 2021; 70
Scalzitti (10.1016/j.smrv.2025.102097_bib5) 2017; 100
Heneghan (10.1016/j.smrv.2025.102097_bib113) 2008; 4
Lin (10.1016/j.smrv.2025.102097_bib49) 2021; 11
Lin (10.1016/j.smrv.2025.102097_bib117) 2024; 237
Dong (10.1016/j.smrv.2025.102097_bib30) 2018; 22
Sharma (10.1016/j.smrv.2025.102097_bib66) 2018; 100
Urtnasan (10.1016/j.smrv.2025.102097_bib81) 2018; 42
Hong (10.1016/j.smrv.2025.102097_bib8) 2021; 12
Wang (10.1016/j.smrv.2025.102097_bib86) 2019; 7
Zarei (10.1016/j.smrv.2025.102097_bib95) 2020; 195
Al-Zaiti (10.1016/j.smrv.2025.102097_bib12) 2022; 3
Chang (10.1016/j.smrv.2025.102097_bib24) 2020; 20
Pombo (10.1016/j.smrv.2025.102097_bib59) 2020; 8
Ahmadi (10.1016/j.smrv.2025.102097_bib4) 2009; 13
Landry (10.1016/j.smrv.2025.102097_bib112) 2024; 78
Singh (10.1016/j.smrv.2025.102097_bib109) 2022; 2273
Wang (10.1016/j.smrv.2025.102097_bib85) 2019; 176
Salari (10.1016/j.smrv.2025.102097_bib110) 2022; 187
Chen (10.1016/j.smrv.2025.102097_bib26) 2015; 12
Martín-González (10.1016/j.smrv.2025.102097_bib50) 2017; 91
Dey (10.1016/j.smrv.2025.102097_bib29) 2018; 8
Hemrajani (10.1016/j.smrv.2025.102097_bib38) 2023
Wang (10.1016/j.smrv.2025.102097_bib88) 2020; 79
Gao (10.1016/j.smrv.2025.102097_bib108) 2025; 29
Tang (10.1016/j.smrv.2025.102097_bib118) 2024; 8
Fatimah (10.1016/j.smrv.2025.102097_bib35) 2020; 61
van Enst (10.1016/j.smrv.2025.102097_bib103) 2014; 14
Kumar Tyagi (10.1016/j.smrv.2025.102097_bib46) 2023; 80
(10.1016/j.smrv.2025.102097_bib42) 2022; 12
Yang (10.1016/j.smrv.2025.102097_bib90) 2022; 140
Zarei (10.1016/j.smrv.2025.102097_bib94) 2019; 23
Sun (10.1016/j.smrv.2025.102097_bib7) 2022; 43
Ullah (10.1016/j.smrv.2025.102097_bib80) 2023; 123
Song (10.1016/j.smrv.2025.102097_bib74) 2016; 63
Parbat (10.1016/j.smrv.2025.102097_bib57) 2024; 87
Singh (10.1016/j.smrv.2025.102097_bib72) 2019; 19
Thompson (10.1016/j.smrv.2025.102097_bib77) 2020
Khor (10.1016/j.smrv.2025.102097_bib111) 2023; 68
Yeh (10.1016/j.smrv.2025.102097_bib91) 2022; 22
Pinho (10.1016/j.smrv.2025.102097_bib58) 2019; 83
Shen (10.1016/j.smrv.2025.102097_bib70) 2021; 70
References_xml – volume: 155
  start-page: 529
  year: 2011
  end-page: 536
  ident: bib11
  article-title: QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies
  publication-title: Ann Intern Med
– volume: 12
  start-page: 106
  year: 2015
  end-page: 115
  ident: bib26
  article-title: An automatic screening approach for obstructive sleep apnea diagnosis based on single-lead electrocardiogram
  publication-title: IEEE Trans Automat Sci Eng
– volume: 23
  start-page: 1011
  year: 2019
  end-page: 1021
  ident: bib94
  article-title: Automatic detection of obstructive sleep apnea using wavelet Transform and entropy-based features from single-lead ECG signal
  publication-title: IEEE J Biomed Health Inform
– volume: 12
  start-page: 119
  year: 2022
  ident: bib33
  article-title: Sleep apnea detection based on multi-scale residual network
  publication-title: Life
– volume: 180
  year: 2019
  ident: bib31
  article-title: Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram
  publication-title: Comput Methods Progr Biomed
– volume: 70
  start-page: 1
  year: 2021
  end-page: 12
  ident: bib36
  article-title: A sleep apnea detection method based on unsupervised feature learning and single-lead electrocardiogram
  publication-title: IEEE Trans Instrum Meas
– volume: 12
  year: 2021
  ident: bib8
  article-title: Practical lessons on 12-lead ECG classification: meta-analysis of methods from PhysioNet/computing in cardiology challenge 2020
  publication-title: Front Physiol
– volume: 77
  start-page: 116
  year: 2016
  end-page: 124
  ident: bib68
  article-title: An algorithm for sleep apnea detection from single-lead ECG using Hermite basis functions
  publication-title: Comput Biol Med
– volume: 39
  start-page: 206
  year: 2018
  end-page: 218
  ident: bib44
  article-title: Sleep apnea detection from single-lead ECG using features based on ECG-derived respiration (EDR) signals
  publication-title: IRBM
– volume: 83
  year: 2019
  ident: bib58
  article-title: Towards an accurate sleep apnea detection based on ECG signal: the quintessential of a wise feature selection
  publication-title: Appl Soft Comput
– volume: 71
  start-page: 1
  year: 2022
  end-page: 9
  ident: bib37
  article-title: OSACN-net: automated classification of sleep apnea using deep learning model and smoothed Gabor spectrograms of ECG signal
  publication-title: IEEE Trans Instrum Meas
– volume: 61
  year: 2020
  ident: bib35
  article-title: Detection of apnea events from ECG segments using Fourier decomposition method
  publication-title: Biomed Signal Process Control
– volume: 319
  start-page: 388
  year: 2018
  end-page: 396
  ident: bib10
  article-title: Preferred reporting Items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement
  publication-title: JAMA
– volume: 38
  start-page: 635
  year: 2011
  end-page: 642
  ident: bib102
  article-title: The European Sleep Apnoea Database (ESADA): report from 22 European sleep laboratories
  publication-title: Eur Respir J
– volume: 26
  start-page: 5428
  year: 2022
  end-page: 5438
  ident: bib92
  article-title: Robust method for screening sleep apnea with single-lead ECG using deep residual network: evaluation with open database and patch-type wearable device data
  publication-title: IEEE J Biomed Health Inform
– volume: 22
  start-page: 510
  year: 2022
  ident: bib91
  article-title: Contribution of different Subbands of ECG in sleep apnea detection evaluated using Filter Bank decomposition and a convolutional neural network
  publication-title: Sensors
– volume: 7
  start-page: 2852
  year: 2024
  end-page: 2861
  ident: bib20
  article-title: Detection of sleep apnea in ECG signal using PAN- TOMPKINS algorithm and ANN classifiers
  publication-title: Compusoft: An International Journal of Advanced Computer Technology [Internet]
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: bib98
  article-title: PhysioBank, PhysioToolkit, and PhysioNet
  publication-title: Circulation
– volume: 91
  start-page: 47
  year: 2017
  end-page: 58
  ident: bib50
  article-title: Heart rate variability feature selection in the presence of sleep apnea: an expert system for the characterization and detection of the disorder
  publication-title: Comput Biol Med
– volume: 11
  start-page: 6622
  year: 2021
  ident: bib71
  article-title: Diagnosis of obstructive sleep apnea from ECG signals using machine learning and deep learning classifiers
  publication-title: Appl Sci
– volume: 12
  start-page: 762
  year: 2018
  end-page: 773
  ident: bib76
  article-title: Online obstructive sleep apnea detection on medical wearable sensors
  publication-title: IEEE Trans Biomed Circuits Syst
– volume: 71
  start-page: 1
  year: 2022
  end-page: 11
  ident: bib41
  article-title: A hybrid transformer model for obstructive sleep apnea detection based on Self-attention Mechanism using single-lead ECG
  publication-title: IEEE Trans Instrum Meas
– volume: 41
  start-page: 758
  year: 2021
  end-page: 766
  ident: bib65
  article-title: End-to-End sleep apnea detection using single-lead ECG signal and 1-D residual neural networks
  publication-title: J Med Biol Eng
– volume: 134
  year: 2021
  ident: bib51
  article-title: SCNN: scalogram-based convolutional neural network to detect obstructive sleep apnea using single-lead electrocardiogram signals
  publication-title: Comput Biol Med
– volume: 17
  start-page: 3092
  year: 2017
  end-page: 3099
  ident: bib73
  article-title: Real-time classification of healthy and apnea subjects using ECG signals with variational mode decomposition
  publication-title: IEEE Sens J
– volume: 63
  start-page: 1532
  year: 2016
  end-page: 1542
  ident: bib74
  article-title: An obstructive sleep apnea detection approach using a discriminative hidden Markov model from ECG signals
  publication-title: IEEE Trans Biomed Eng
– volume: 23
  start-page: 4692
  year: 2023
  ident: bib39
  article-title: Efficient deep learning based hybrid model to detect obstructive sleep apnea
  publication-title: Sensors
– volume: 42
  start-page: 104
  year: 2018
  ident: bib81
  article-title: Automated detection of obstructive sleep apnea events from a single-lead electrocardiogram using a convolutional neural network
  publication-title: J Med Syst
– volume: 20
  start-page: 4157
  year: 2020
  ident: bib24
  article-title: A sleep apnea detection system based on a one-dimensional deep convolution neural network model using single-lead electrocardiogram
  publication-title: Sensors
– volume: 22
  start-page: 1895
  year: 2018
  end-page: 1905
  ident: bib30
  article-title: Frequency network analysis of heart rate variability for obstructive apnea patient detection
  publication-title: IEEE J Biomed Health Inform
– year: 2007
  ident: bib100
  article-title: St. Vincent's University Hospital/University College Dublin sleep apnea database
– volume: 68
  year: 2021
  ident: bib32
  article-title: Obstructive sleep apnea screening from unprocessed ECG signals using statistical modelling
  publication-title: Biomed Signal Process Control
– volume: vol. 167
  year: 2014
  ident: bib18
  publication-title: Computer-aided detection with a portable electrocardiographic recorder and acceleration sensors for monitoring obstructive sleep apnea
– volume: 8
  start-page: 200477
  year: 2020
  end-page: 200485
  ident: bib59
  article-title: Classifier precision analysis for sleep apnea detection using ECG signals
  publication-title: IEEE Access
– volume: 39
  year: 2018
  ident: bib82
  article-title: Multiclass classification of obstructive sleep apnea/hypopnea based on a convolutional neural network from a single-lead electrocardiogram
  publication-title: Physiol Meas
– volume: 229
  year: 2023
  ident: bib14
  article-title: Optimization of CNN using modified honey badger algorithm for sleep apnea detection
  publication-title: Expert Syst Appl
– volume: 6
  year: 2020
  ident: bib69
  article-title: Sleep apnea detection from ECG using variational mode decomposition
  publication-title: Biomed Phys Eng Express
– volume: 14
  start-page: 191
  year: 2023
  end-page: 206
  ident: bib17
  article-title: Sleep apnea detection from ECG signal using deep CNN-based structures
  publication-title: Evolving Systems
– start-page: 1382
  year: 2021
  end-page: 1386
  ident: bib16
  article-title: Detection of obstructive sleep apnoea by ECG signals using deep learning architectures
  publication-title: 2020 28th European signal processing conference (EUSIPCO)
– volume: 3
  year: 2020
  ident: bib106
  article-title: Assessment of Mandibular movement monitoring with machine learning analysis for the diagnosis of obstructive sleep apnea
  publication-title: JAMA Netw Open
– start-page: 1276
  year: 2021
  end-page: 1280
  ident: bib27
  article-title: A lightweight multi-scaled fusion network for sleep apnea detection using single-lead ECG signals
  publication-title: 2021 IEEE international conference on bioinformatics and biomedicine (BIBM)
– volume: 8
  start-page: 551
  year: 2013
  end-page: 558
  ident: bib43
  article-title: Sleep apnoea detection from ECG using features extracted from reconstructed phase space and frequency domain
  publication-title: Biomed Signal Process Control
– start-page: 255
  year: 2000
  end-page: 258
  ident: bib99
  article-title: The apnea-ECG database
  publication-title: Computers in Cardiology 2000. Vol.27 (Cat. 00CH37163)
– volume: 72
  start-page: 1
  year: 2023
  end-page: 17
  ident: bib47
  article-title: TFFormer: a time–frequency information fusion-based CNN-transformer model for OSA detection with single-lead ECG
  publication-title: IEEE Trans Instrum Meas
– volume: 140
  year: 2022
  ident: bib90
  article-title: Obstructive sleep apnea detection from single-lead electrocardiogram signals using one-dimensional squeeze-and-excitation residual group network
  publication-title: Comput Biol Med
– start-page: 1840
  year: 2022
  end-page: 1845
  ident: bib97
  article-title: OSA-CCNN: obstructive sleep apnea detection based on a composite deep convolution neural network model using single-lead ECG signal
  publication-title: 2022 IEEE International conference on Bioinformatics and Biomedicine (BIBM)
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib87
  article-title: Detection of sleep apnea from single-lead ECG signal using a time Window artificial neural network
  publication-title: BioMed Res Int
– year: 2025
  ident: bib114
  article-title: Sleep apnea detection using EEG: a systematic review of datasets, methods, challenges, and future directions
  publication-title: Ann Biomed Eng
– volume: 79
  start-page: 15813
  year: 2020
  end-page: 15827
  ident: bib88
  article-title: Obstructive sleep apnea detection using ecg-sensor with convolutional neural networks
  publication-title: Multimed Tool Appl
– volume: 2273
  year: 2022
  ident: bib109
  article-title: Comparison of machine learning and deep learning classifier to detect sleep apnea using single-channel ECG and HRV: a Systematic Literature Review
  publication-title: J Phys Conf Ser
– volume: 12
  start-page: 1509
  year: 2022
  ident: bib62
  article-title: A deep learning framework for automatic sleep apnea classification based on Empirical mode decomposition derived from single-lead electrocardiogram
  publication-title: Life
– volume: 4
  start-page: 223
  year: 2008
  end-page: 228
  ident: bib113
  article-title: Electrocardiogram recording as a screening tool for sleep disordered breathing
  publication-title: J Clin Sleep Med
– volume: 41
  start-page: 6427
  year: 2022
  end-page: 6461
  ident: bib34
  article-title: Signal matched multirate Filter Bank design for optimum coding Gain and its application in real-time sleep apnea detection
  publication-title: Circ Syst Signal Process
– volume: 12
  year: 2022
  ident: bib42
  article-title: Obstructive sleep apnea detection using frequency analysis of electrocardiographic RR interval and machine learning algorithms
  publication-title: J Biomed Phys Eng
– volume: 84
  year: 2023
  ident: bib75
  article-title: ApneaNet: a hybrid 1DCNN-LSTM architecture for detection of Obstructive Sleep Apnea using digitized ECG signals
  publication-title: Biomed Signal Process Control
– volume: 8
  start-page: 92
  year: 2024
  end-page: 103
  ident: bib118
  article-title: HMS-TENet: a hierarchical multi-scale topological enhanced network based on EEG and EOG for driver vigilance estimation
  publication-title: Biomedical Technology
– volume: 7
  year: 2019
  ident: bib86
  article-title: Sleep apnea detection from a single-lead ECG signal with automatic feature-extraction through a modified LeNet-5 convolutional neural network
  publication-title: PeerJ
– volume: 34
  start-page: 70
  year: 2017
  end-page: 81
  ident: bib2
  article-title: Prevalence of obstructive sleep apnea in the general population: a systematic review
  publication-title: Sleep Med Rev
– volume: 187
  year: 2022
  ident: bib110
  article-title: Detection of sleep apnea using Machine learning algorithms based on ECG Signals: a comprehensive systematic review
  publication-title: Expert Syst Appl
– volume: 202
  year: 2022
  ident: bib23
  article-title: Multi-task feature fusion network for Obstructive Sleep Apnea detection using single-lead ECG signal
  publication-title: Measurement
– volume: 195
  year: 2020
  ident: bib95
  article-title: Performance evaluation of the spectral autocorrelation function and autoregressive models for automated sleep apnea detection using single-lead ECG signal
  publication-title: Comput Methods Progr Biomed
– volume: 13
  start-page: 293
  year: 2023
  end-page: 312
  ident: bib6
  article-title: Systematic review of automated sleep apnea detection based on physiological signal data using deep learning algorithm: a meta-analysis approach
  publication-title: Biomed Eng Lett
– volume: 26
  year: 2024
  ident: bib107
  article-title: Detection of sleep apnea using wearable AI: systematic review and meta-analysis
  publication-title: J Med Internet Res
– volume: 80
  year: 2023
  ident: bib46
  article-title: Automatic detection of sleep apnea from single-lead ECG signal using enhanced-deep belief network model
  publication-title: Biomed Signal Process Control
– volume: 162
  start-page: 571
  year: 2023
  end-page: 580
  ident: bib28
  article-title: RAFNet: restricted attention fusion network for sleep apnea detection
  publication-title: Neural Netw
– volume: 16
  year: 2022
  ident: bib25
  article-title: A spatio-temporal learning-based model for sleep apnea detection using single-lead ECG signals
  publication-title: Front Neurosci
– volume: 9
  start-page: 591
  year: 2020
  ident: bib3
  article-title: Sleep apnea, hypertension and the sympathetic nervous system in the adult population
  publication-title: J Clin Med
– volume: 118
  year: 2021
  ident: bib21
  article-title: AIOSA: an approach to the automatic identification of obstructive sleep apnea events based on deep learning
  publication-title: Artif Intell Med
– volume: 16
  year: 2021
  ident: bib56
  article-title: A fused-image-based approach to detect obstructive sleep apnea using a single-lead ECG and a 2D convolutional neural network
  publication-title: PLoS One
– volume: 13
  start-page: 221
  year: 2009
  end-page: 226
  ident: bib4
  article-title: Clinical diagnosis of sleep apnea based on single night of polysomnography vs. two nights of polysomnography
  publication-title: Sleep Breath
– volume: 19
  year: 2019
  ident: bib72
  article-title: A Novel approach OSA detection using single-lead ECG scalogram based on deep neural network
  publication-title: J Mech Med Biol
– volume: 176
  start-page: 93
  year: 2019
  end-page: 104
  ident: bib85
  article-title: A RR interval based automated apnea detection approach using residual network
  publication-title: Comput Methods Progr Biomed
– volume: 42
  year: 2021
  ident: bib93
  article-title: {FASSNet}: fast apnea syndrome screening neural network based on single-lead electrocardiogram for wearable devices
  publication-title: Physiol Meas
– volume: 78
  year: 2024
  ident: bib112
  article-title: Diagnostic accuracy of portable sleep monitors in pediatric sleep apnea: a systematic review
  publication-title: Sleep Med Rev
– volume: 42
  year: 2021
  ident: bib54
  article-title: Obstructive sleep apnea prediction from electrocardiogram scalograms and spectrograms using convolutional neural networks
  publication-title: Physiol Meas
– volume: 62
  start-page: 2269
  year: 2015
  end-page: 2278
  ident: bib83
  article-title: A Novel algorithm for the automatic detection of sleep apnea from single-lead ECG
  publication-title: IEEE Trans Biomed Eng
– volume: 41
  start-page: 241
  year: 2020
  end-page: 251
  ident: bib22
  article-title: Detection of abnormal respiratory events with single channel ECG and hybrid machine learning model in patients with obstructive sleep apnea
  publication-title: IRBM
– start-page: 518
  year: 2023
  end-page: 523
  ident: bib38
  article-title: Hybrid RNN-based classification of obstructive sleep apnea using single-lead ECG signals
  publication-title: 2023 International conference on recent advances in lectrical, Electronics & Digital healthcare technologies (REEDCON)
– volume: 71
  start-page: 1
  year: 2022
  end-page: 11
  ident: bib19
  article-title: Sleep apnea detection from single-lead ECG: a comprehensive analysis of machine learning and deep learning algorithms
  publication-title: IEEE Trans Instrum Meas
– volume: 18
  start-page: 1285
  year: 2014
  end-page: 1293
  ident: bib55
  article-title: An online sleep apnea detection method based on Recurrence Quantification analysis
  publication-title: IEEE J Biomed Health Inform
– volume: 150
  year: 2022
  ident: bib9
  article-title: A review of automated sleep disorder detection
  publication-title: Comput Biol Med
– volume: 17
  start-page: 24
  year: 2020
  ident: bib40
  article-title: Identification of obstructive sleep apnea using artificial neural networks and wavelet Packet decomposition of the HRV signal
  publication-title: Jou Eng Res
– volume: 26
  start-page: 5841
  year: 2022
  end-page: 5850
  ident: bib63
  article-title: Obstructive sleep apnea detection Scheme based on manually generated features and Parallel heterogeneous deep learning model under IoMT
  publication-title: IEEE J Biomed Health Inform
– volume: 146
  year: 2023
  ident: bib116
  article-title: An EEG-based brain cognitive dynamic recognition network for representations of brain fatigue
  publication-title: Appl Soft Comput
– volume: 132
  start-page: 159
  year: 2014
  end-page: 165
  ident: bib78
  article-title: Building a Cepstrum-HMM kernel for apnea identification
  publication-title: Neurocomputing
– volume: 21
  start-page: 5425
  year: 2021
  ident: bib52
  article-title: Ensemble of deep learning models for sleep apnea detection: an experimental study
  publication-title: Sensors
– volume: 271
  start-page: R1078
  year: 1996
  end-page: R1084
  ident: bib101
  article-title: Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics
  publication-title: Am J Physiol
– volume: 22
  start-page: 306
  year: 2022
  ident: bib13
  article-title: Meta-DiSc 2.0: a web application for meta-analysis of diagnostic test accuracy data
  publication-title: BMC Med Res Methodol
– volume: 8
  start-page: 95
  year: 2018
  end-page: 100
  ident: bib29
  article-title: Obstructive sleep apnoea detection using convolutional neural network based deep learning framework
  publication-title: Biomed Eng Lett
– volume: 57
  start-page: 1931
  year: 2022
  end-page: 1943
  ident: bib105
  article-title: Reliability of machine learning to diagnose pediatric obstructive sleep apnea: systematic review and meta‐analysis
  publication-title: Pediatr Pulmonol
– volume: 14
  start-page: 70
  year: 2014
  ident: bib103
  article-title: Investigation of publication bias in meta-analyses of diagnostic test accuracy: a meta-epidemiological study
  publication-title: BMC Med Res Methodol
– volume: 11
  start-page: 192
  year: 2021
  ident: bib49
  article-title: Sleep apnea classification algorithm development using a machine-learning framework and Bag-of-features derived from electrocardiogram spectrograms
  publication-title: JCM
– volume: 68
  year: 2023
  ident: bib111
  article-title: Portable evaluation of obstructive sleep apnea in adults: a systematic review
  publication-title: Sleep Med Rev
– volume: 16
  year: 2019
  ident: bib67
  article-title: A new approach to identify obstructive sleep apnea using an optimal orthogonal wavelet filter bank with ECG signals
  publication-title: Inform Med Unlocked
– volume: 100
  start-page: 44
  year: 2017
  end-page: 51
  ident: bib5
  article-title: Comparison of home sleep apnea testing versus laboratory polysomnography for the diagnosis of obstructive sleep apnea in children
  publication-title: Int J Pediatr Otorhinolaryngol
– volume: 3
  start-page: 125
  year: 2022
  end-page: 140
  ident: bib12
  article-title: A clinician's guide to understanding and critically appraising machine learning studies: a checklist for Ruling Out Bias Using Standard Tools in Machine Learning (ROBUST-ML)
  publication-title: Eur Heart J Digit Health
– volume: 33
  start-page: 493
  year: 2023 Sep 1
  end-page: 506
  ident: bib45
  article-title: Constant Q–Transform–based deep learning architecture for detection of obstructive sleep apnea
  publication-title: Int J Appl Math Comput Sci
– start-page: 1
  year: 2020
  end-page: 8
  ident: bib77
  article-title: Detection of obstructive sleep apnoea using features extracted from segmented time-series ECG signals using a one dimensional convolutional neural network
  publication-title: 2020 International Joint conference on Neural networks (IJCNN)
– volume: 58
  start-page: 882
  year: 2005
  end-page: 893
  ident: bib104
  article-title: The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed
  publication-title: J Clin Epidemiol
– volume: 29
  start-page: 36
  year: 2025
  ident: bib108
  article-title: Artificial intelligence facial recognition of obstructive sleep apnea: a Bayesian meta-analysis
  publication-title: Sleep Breath
– volume: 294
  start-page: 94
  year: 2018
  end-page: 101
  ident: bib48
  article-title: A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal
  publication-title: Neurocomputing
– volume: 25
  start-page: 399
  year: 2023
  ident: bib64
  article-title: Sleep apnea detection using wavelet scattering transformation and random forest classifier
  publication-title: Entropy
– volume: 100
  start-page: 100
  year: 2018
  end-page: 113
  ident: bib66
  article-title: Application of an optimal class of antisymmetric wavelet filter banks for obstructive sleep apnea diagnosis using ECG signals
  publication-title: Comput Biol Med
– volume: 70
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib70
  article-title: Multiscale deep neural network for obstructive sleep apnea detection using RR interval from single-lead ECG signal
  publication-title: IEEE Trans Instrum Meas
– volume: 237
  year: 2024
  ident: bib117
  article-title: An EEG-based cross-subject interpretable CNN for game player expertise level classification
  publication-title: Expert Syst Appl
– volume: 473
  start-page: 24
  year: 2022
  end-page: 36
  ident: bib60
  article-title: A dual-model deep learning method for sleep apnea detection based on representation learning and temporal dependence
  publication-title: Neurocomputing
– volume: 39
  start-page: 1527
  year: 2022
  end-page: 1536
  ident: bib89
  article-title: Dealing with imbalanced sleep apnea data using DCGAN
  publication-title: Tob Situat (US Dept Agric Econ Res Serv)
– volume: 43
  year: 2022
  ident: bib7
  article-title: A systematic review of deep learning methods for modeling electrocardiograms during sleep
  publication-title: Physiol Meas
– volume: 123
  year: 2023
  ident: bib80
  article-title: DCDA-Net: dual-convolutional dual-attention network for obstructive sleep apnea diagnosis from single-lead electrocardiograms
  publication-title: Eng Appl Artif Intell
– volume: 29
  start-page: 705
  year: 2015
  end-page: 712
  ident: bib1
  article-title: Obstructive sleep apnea, hypertension and cardiovascular diseases
  publication-title: J Hum Hypertens
– volume: 40
  year: 2023
  ident: bib115
  article-title: Application of explainable artificial intelligence in medical health: a systematic review of interpretability methods
  publication-title: Inform Med Unlocked
– volume: 87
  year: 2024
  ident: bib57
  article-title: Multiscale entropy analysis of single lead ECG and ECG derived respiration for AI based prediction of sleep apnea events
  publication-title: Biomed Signal Process Control
– start-page: 255
  year: 2000
  ident: 10.1016/j.smrv.2025.102097_bib99
  article-title: The apnea-ECG database
– volume: 8
  start-page: 95
  year: 2018
  ident: 10.1016/j.smrv.2025.102097_bib29
  article-title: Obstructive sleep apnoea detection using convolutional neural network based deep learning framework
  publication-title: Biomed Eng Lett
  doi: 10.1007/s13534-017-0055-y
– volume: 23
  start-page: 1011
  year: 2019
  ident: 10.1016/j.smrv.2025.102097_bib94
  article-title: Automatic detection of obstructive sleep apnea using wavelet Transform and entropy-based features from single-lead ECG signal
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2842919
– volume: 11
  start-page: 6622
  year: 2021
  ident: 10.1016/j.smrv.2025.102097_bib71
  article-title: Diagnosis of obstructive sleep apnea from ECG signals using machine learning and deep learning classifiers
  publication-title: Appl Sci
  doi: 10.3390/app11146622
– volume: 162
  start-page: 571
  year: 2023
  ident: 10.1016/j.smrv.2025.102097_bib28
  article-title: RAFNet: restricted attention fusion network for sleep apnea detection
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2023.03.019
– volume: 12
  start-page: 1509
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib62
  article-title: A deep learning framework for automatic sleep apnea classification based on Empirical mode decomposition derived from single-lead electrocardiogram
  publication-title: Life
  doi: 10.3390/life12101509
– volume: 12
  start-page: 119
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib33
  article-title: Sleep apnea detection based on multi-scale residual network
  publication-title: Life
  doi: 10.3390/life12010119
– volume: 8
  start-page: 551
  year: 2013
  ident: 10.1016/j.smrv.2025.102097_bib43
  article-title: Sleep apnoea detection from ECG using features extracted from reconstructed phase space and frequency domain
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2013.05.007
– volume: 25
  start-page: 399
  year: 2023
  ident: 10.1016/j.smrv.2025.102097_bib64
  article-title: Sleep apnea detection using wavelet scattering transformation and random forest classifier
  publication-title: Entropy
  doi: 10.3390/e25030399
– volume: 3
  start-page: 125
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib12
  article-title: A clinician's guide to understanding and critically appraising machine learning studies: a checklist for Ruling Out Bias Using Standard Tools in Machine Learning (ROBUST-ML)
  publication-title: Eur Heart J Digit Health
  doi: 10.1093/ehjdh/ztac016
– volume: vol. 167
  year: 2014
  ident: 10.1016/j.smrv.2025.102097_bib18
– volume: 87
  year: 2024
  ident: 10.1016/j.smrv.2025.102097_bib57
  article-title: Multiscale entropy analysis of single lead ECG and ECG derived respiration for AI based prediction of sleep apnea events
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.105444
– volume: 34
  start-page: 70
  year: 2017
  ident: 10.1016/j.smrv.2025.102097_bib2
  article-title: Prevalence of obstructive sleep apnea in the general population: a systematic review
  publication-title: Sleep Med Rev
  doi: 10.1016/j.smrv.2016.07.002
– volume: 195
  year: 2020
  ident: 10.1016/j.smrv.2025.102097_bib95
  article-title: Performance evaluation of the spectral autocorrelation function and autoregressive models for automated sleep apnea detection using single-lead ECG signal
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2020.105626
– volume: 123
  year: 2023
  ident: 10.1016/j.smrv.2025.102097_bib80
  article-title: DCDA-Net: dual-convolutional dual-attention network for obstructive sleep apnea diagnosis from single-lead electrocardiograms
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.106451
– volume: 41
  start-page: 6427
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib34
  article-title: Signal matched multirate Filter Bank design for optimum coding Gain and its application in real-time sleep apnea detection
  publication-title: Circ Syst Signal Process
  doi: 10.1007/s00034-022-02092-6
– volume: 22
  start-page: 510
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib91
  article-title: Contribution of different Subbands of ECG in sleep apnea detection evaluated using Filter Bank decomposition and a convolutional neural network
  publication-title: Sensors
  doi: 10.3390/s22020510
– volume: 12
  year: 2021
  ident: 10.1016/j.smrv.2025.102097_bib8
  article-title: Practical lessons on 12-lead ECG classification: meta-analysis of methods from PhysioNet/computing in cardiology challenge 2020
  publication-title: Front Physiol
– volume: 77
  start-page: 116
  year: 2016
  ident: 10.1016/j.smrv.2025.102097_bib68
  article-title: An algorithm for sleep apnea detection from single-lead ECG using Hermite basis functions
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.08.012
– volume: 39
  start-page: 1527
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib89
  article-title: Dealing with imbalanced sleep apnea data using DCGAN
  publication-title: Tob Situat (US Dept Agric Econ Res Serv)
– year: 2025
  ident: 10.1016/j.smrv.2025.102097_bib114
  article-title: Sleep apnea detection using EEG: a systematic review of datasets, methods, challenges, and future directions
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-025-03691-5
– volume: 132
  start-page: 159
  year: 2014
  ident: 10.1016/j.smrv.2025.102097_bib78
  article-title: Building a Cepstrum-HMM kernel for apnea identification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.04.048
– start-page: 1276
  year: 2021
  ident: 10.1016/j.smrv.2025.102097_bib27
  article-title: A lightweight multi-scaled fusion network for sleep apnea detection using single-lead ECG signals
– volume: 39
  start-page: 206
  year: 2018
  ident: 10.1016/j.smrv.2025.102097_bib44
  article-title: Sleep apnea detection from single-lead ECG using features based on ECG-derived respiration (EDR) signals
  publication-title: IRBM
  doi: 10.1016/j.irbm.2018.03.002
– volume: 17
  start-page: 3092
  year: 2017
  ident: 10.1016/j.smrv.2025.102097_bib73
  article-title: Real-time classification of healthy and apnea subjects using ECG signals with variational mode decomposition
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2017.2690805
– volume: 100
  start-page: 100
  year: 2018
  ident: 10.1016/j.smrv.2025.102097_bib66
  article-title: Application of an optimal class of antisymmetric wavelet filter banks for obstructive sleep apnea diagnosis using ECG signals
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.06.011
– volume: 140
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib90
  article-title: Obstructive sleep apnea detection from single-lead electrocardiogram signals using one-dimensional squeeze-and-excitation residual group network
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105124
– volume: 33
  start-page: 493
  issue: 3
  year: 2023
  ident: 10.1016/j.smrv.2025.102097_bib45
  article-title: Constant Q–Transform–based deep learning architecture for detection of obstructive sleep apnea
  publication-title: Int J Appl Math Comput Sci
  doi: 10.34768/amcs-2023-0036
– volume: 12
  start-page: 106
  year: 2015
  ident: 10.1016/j.smrv.2025.102097_bib26
  article-title: An automatic screening approach for obstructive sleep apnea diagnosis based on single-lead electrocardiogram
  publication-title: IEEE Trans Automat Sci Eng
  doi: 10.1109/TASE.2014.2345667
– volume: 9
  start-page: 591
  year: 2020
  ident: 10.1016/j.smrv.2025.102097_bib3
  article-title: Sleep apnea, hypertension and the sympathetic nervous system in the adult population
  publication-title: J Clin Med
  doi: 10.3390/jcm9020591
– volume: 68
  year: 2021
  ident: 10.1016/j.smrv.2025.102097_bib32
  article-title: Obstructive sleep apnea screening from unprocessed ECG signals using statistical modelling
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102685
– volume: 118
  year: 2021
  ident: 10.1016/j.smrv.2025.102097_bib21
  article-title: AIOSA: an approach to the automatic identification of obstructive sleep apnea events based on deep learning
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2021.102133
– volume: 91
  start-page: 47
  year: 2017
  ident: 10.1016/j.smrv.2025.102097_bib50
  article-title: Heart rate variability feature selection in the presence of sleep apnea: an expert system for the characterization and detection of the disorder
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.10.004
– volume: 38
  start-page: 635
  year: 2011
  ident: 10.1016/j.smrv.2025.102097_bib102
  article-title: The European Sleep Apnoea Database (ESADA): report from 22 European sleep laboratories
  publication-title: Eur Respir J
  doi: 10.1183/09031936.00046710
– volume: 100
  start-page: 44
  year: 2017
  ident: 10.1016/j.smrv.2025.102097_bib5
  article-title: Comparison of home sleep apnea testing versus laboratory polysomnography for the diagnosis of obstructive sleep apnea in children
  publication-title: Int J Pediatr Otorhinolaryngol
  doi: 10.1016/j.ijporl.2017.06.013
– volume: 18
  start-page: 1285
  year: 2014
  ident: 10.1016/j.smrv.2025.102097_bib55
  article-title: An online sleep apnea detection method based on Recurrence Quantification analysis
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2013.2292928
– volume: 26
  year: 2024
  ident: 10.1016/j.smrv.2025.102097_bib107
  article-title: Detection of sleep apnea using wearable AI: systematic review and meta-analysis
  publication-title: J Med Internet Res
– volume: 63
  start-page: 1532
  year: 2016
  ident: 10.1016/j.smrv.2025.102097_bib74
  article-title: An obstructive sleep apnea detection approach using a discriminative hidden Markov model from ECG signals
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2498199
– volume: 13
  start-page: 221
  year: 2009
  ident: 10.1016/j.smrv.2025.102097_bib4
  article-title: Clinical diagnosis of sleep apnea based on single night of polysomnography vs. two nights of polysomnography
  publication-title: Sleep Breath
  doi: 10.1007/s11325-008-0234-2
– start-page: 518
  year: 2023
  ident: 10.1016/j.smrv.2025.102097_bib38
  article-title: Hybrid RNN-based classification of obstructive sleep apnea using single-lead ECG signals
– volume: 26
  start-page: 5428
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib92
  article-title: Robust method for screening sleep apnea with single-lead ECG using deep residual network: evaluation with open database and patch-type wearable device data
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2022.3203560
– start-page: 1382
  year: 2021
  ident: 10.1016/j.smrv.2025.102097_bib16
  article-title: Detection of obstructive sleep apnoea by ECG signals using deep learning architectures
– volume: 473
  start-page: 24
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib60
  article-title: A dual-model deep learning method for sleep apnea detection based on representation learning and temporal dependence
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.12.001
– volume: 83
  year: 2019
  ident: 10.1016/j.smrv.2025.102097_bib58
  article-title: Towards an accurate sleep apnea detection based on ECG signal: the quintessential of a wise feature selection
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105568
– volume: 62
  start-page: 2269
  year: 2015
  ident: 10.1016/j.smrv.2025.102097_bib83
  article-title: A Novel algorithm for the automatic detection of sleep apnea from single-lead ECG
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2422378
– volume: 237
  year: 2024
  ident: 10.1016/j.smrv.2025.102097_bib117
  article-title: An EEG-based cross-subject interpretable CNN for game player expertise level classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.121658
– volume: 8
  start-page: 92
  year: 2024
  ident: 10.1016/j.smrv.2025.102097_bib118
  article-title: HMS-TENet: a hierarchical multi-scale topological enhanced network based on EEG and EOG for driver vigilance estimation
  publication-title: Biomedical Technology
  doi: 10.1016/j.bmt.2024.10.003
– volume: 11
  start-page: 192
  year: 2021
  ident: 10.1016/j.smrv.2025.102097_bib49
  article-title: Sleep apnea classification algorithm development using a machine-learning framework and Bag-of-features derived from electrocardiogram spectrograms
  publication-title: JCM
  doi: 10.3390/jcm11010192
– volume: 68
  year: 2023
  ident: 10.1016/j.smrv.2025.102097_bib111
  article-title: Portable evaluation of obstructive sleep apnea in adults: a systematic review
  publication-title: Sleep Med Rev
  doi: 10.1016/j.smrv.2022.101743
– volume: 58
  start-page: 882
  year: 2005
  ident: 10.1016/j.smrv.2025.102097_bib104
  article-title: The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2005.01.016
– volume: 294
  start-page: 94
  year: 2018
  ident: 10.1016/j.smrv.2025.102097_bib48
  article-title: A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.011
– volume: 84
  year: 2023
  ident: 10.1016/j.smrv.2025.102097_bib75
  article-title: ApneaNet: a hybrid 1DCNN-LSTM architecture for detection of Obstructive Sleep Apnea using digitized ECG signals
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104754
– volume: 12
  start-page: 762
  year: 2018
  ident: 10.1016/j.smrv.2025.102097_bib76
  article-title: Online obstructive sleep apnea detection on medical wearable sensors
  publication-title: IEEE Trans Biomed Circuits Syst
  doi: 10.1109/TBCAS.2018.2824659
– volume: 150
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib9
  article-title: A review of automated sleep disorder detection
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106100
– volume: 21
  start-page: 5425
  year: 2021
  ident: 10.1016/j.smrv.2025.102097_bib52
  article-title: Ensemble of deep learning models for sleep apnea detection: an experimental study
  publication-title: Sensors
  doi: 10.3390/s21165425
– volume: 14
  start-page: 70
  year: 2014
  ident: 10.1016/j.smrv.2025.102097_bib103
  article-title: Investigation of publication bias in meta-analyses of diagnostic test accuracy: a meta-epidemiological study
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-14-70
– volume: 78
  year: 2024
  ident: 10.1016/j.smrv.2025.102097_bib112
  article-title: Diagnostic accuracy of portable sleep monitors in pediatric sleep apnea: a systematic review
  publication-title: Sleep Med Rev
  doi: 10.1016/j.smrv.2024.101991
– volume: 14
  start-page: 191
  year: 2023
  ident: 10.1016/j.smrv.2025.102097_bib17
  article-title: Sleep apnea detection from ECG signal using deep CNN-based structures
  publication-title: Evolving Systems
  doi: 10.1007/s12530-022-09445-1
– volume: 29
  start-page: 705
  year: 2015
  ident: 10.1016/j.smrv.2025.102097_bib1
  article-title: Obstructive sleep apnea, hypertension and cardiovascular diseases
  publication-title: J Hum Hypertens
  doi: 10.1038/jhh.2015.15
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib41
  article-title: A hybrid transformer model for obstructive sleep apnea detection based on Self-attention Mechanism using single-lead ECG
  publication-title: IEEE Trans Instrum Meas
– volume: 16
  year: 2019
  ident: 10.1016/j.smrv.2025.102097_bib67
  article-title: A new approach to identify obstructive sleep apnea using an optimal orthogonal wavelet filter bank with ECG signals
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2019.100170
– volume: 40
  year: 2023
  ident: 10.1016/j.smrv.2025.102097_bib115
  article-title: Application of explainable artificial intelligence in medical health: a systematic review of interpretability methods
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2023.101286
– volume: 176
  start-page: 93
  year: 2019
  ident: 10.1016/j.smrv.2025.102097_bib85
  article-title: A RR interval based automated apnea detection approach using residual network
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2019.05.002
– volume: 319
  start-page: 388
  year: 2018
  ident: 10.1016/j.smrv.2025.102097_bib10
  article-title: Preferred reporting Items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement
  publication-title: JAMA
  doi: 10.1001/jama.2017.19163
– volume: 42
  year: 2021
  ident: 10.1016/j.smrv.2025.102097_bib54
  article-title: Obstructive sleep apnea prediction from electrocardiogram scalograms and spectrograms using convolutional neural networks
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/ac0a9c
– volume: 39
  year: 2018
  ident: 10.1016/j.smrv.2025.102097_bib82
  article-title: Multiclass classification of obstructive sleep apnea/hypopnea based on a convolutional neural network from a single-lead electrocardiogram
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/aac7b7
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib37
  article-title: OSACN-net: automated classification of sleep apnea using deep learning model and smoothed Gabor spectrograms of ECG signal
  publication-title: IEEE Trans Instrum Meas
– volume: 42
  start-page: 104
  year: 2018
  ident: 10.1016/j.smrv.2025.102097_bib81
  article-title: Automated detection of obstructive sleep apnea events from a single-lead electrocardiogram using a convolutional neural network
  publication-title: J Med Syst
  doi: 10.1007/s10916-018-0963-0
– volume: 19
  year: 2019
  ident: 10.1016/j.smrv.2025.102097_bib72
  article-title: A Novel approach OSA detection using single-lead ECG scalogram based on deep neural network
  publication-title: J Mech Med Biol
  doi: 10.1142/S021951941950026X
– volume: 20
  start-page: 4157
  year: 2020
  ident: 10.1016/j.smrv.2025.102097_bib24
  article-title: A sleep apnea detection system based on a one-dimensional deep convolution neural network model using single-lead electrocardiogram
  publication-title: Sensors
  doi: 10.3390/s20154157
– volume: 7
  start-page: 2852
  issue: 11
  year: 2024
  ident: 10.1016/j.smrv.2025.102097_bib20
  article-title: Detection of sleep apnea in ECG signal using PAN- TOMPKINS algorithm and ANN classifiers
  publication-title: Compusoft: An International Journal of Advanced Computer Technology [Internet]
– volume: 80
  year: 2023
  ident: 10.1016/j.smrv.2025.102097_bib46
  article-title: Automatic detection of sleep apnea from single-lead ECG signal using enhanced-deep belief network model
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104401
– volume: 146
  year: 2023
  ident: 10.1016/j.smrv.2025.102097_bib116
  article-title: An EEG-based brain cognitive dynamic recognition network for representations of brain fatigue
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.110613
– volume: 7
  year: 2019
  ident: 10.1016/j.smrv.2025.102097_bib86
  article-title: Sleep apnea detection from a single-lead ECG signal with automatic feature-extraction through a modified LeNet-5 convolutional neural network
  publication-title: PeerJ
– volume: 13
  start-page: 293
  year: 2023
  ident: 10.1016/j.smrv.2025.102097_bib6
  article-title: Systematic review of automated sleep apnea detection based on physiological signal data using deep learning algorithm: a meta-analysis approach
  publication-title: Biomed Eng Lett
  doi: 10.1007/s13534-023-00297-5
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib19
  article-title: Sleep apnea detection from single-lead ECG: a comprehensive analysis of machine learning and deep learning algorithms
  publication-title: IEEE Trans Instrum Meas
– volume: 3
  year: 2020
  ident: 10.1016/j.smrv.2025.102097_bib106
  article-title: Assessment of Mandibular movement monitoring with machine learning analysis for the diagnosis of obstructive sleep apnea
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.19657
– volume: 4
  start-page: 223
  year: 2008
  ident: 10.1016/j.smrv.2025.102097_bib113
  article-title: Electrocardiogram recording as a screening tool for sleep disordered breathing
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.27184
– volume: 202
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib23
  article-title: Multi-task feature fusion network for Obstructive Sleep Apnea detection using single-lead ECG signal
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111787
– volume: 271
  start-page: R1078
  year: 1996
  ident: 10.1016/j.smrv.2025.102097_bib101
  article-title: Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics
  publication-title: Am J Physiol
– volume: 8
  start-page: 200477
  year: 2020
  ident: 10.1016/j.smrv.2025.102097_bib59
  article-title: Classifier precision analysis for sleep apnea detection using ECG signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3036024
– volume: 187
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib110
  article-title: Detection of sleep apnea using Machine learning algorithms based on ECG Signals: a comprehensive systematic review
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115950
– volume: 22
  start-page: 1895
  year: 2018
  ident: 10.1016/j.smrv.2025.102097_bib30
  article-title: Frequency network analysis of heart rate variability for obstructive apnea patient detection
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2784415
– volume: 79
  start-page: 15813
  year: 2020
  ident: 10.1016/j.smrv.2025.102097_bib88
  article-title: Obstructive sleep apnea detection using ecg-sensor with convolutional neural networks
  publication-title: Multimed Tool Appl
  doi: 10.1007/s11042-018-6161-8
– start-page: 1
  year: 2020
  ident: 10.1016/j.smrv.2025.102097_bib77
  article-title: Detection of obstructive sleep apnoea using features extracted from segmented time-series ECG signals using a one dimensional convolutional neural network
– volume: 42
  year: 2021
  ident: 10.1016/j.smrv.2025.102097_bib93
  article-title: {FASSNet}: fast apnea syndrome screening neural network based on single-lead electrocardiogram for wearable devices
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/ac184e
– volume: 2273
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib109
  article-title: Comparison of machine learning and deep learning classifier to detect sleep apnea using single-channel ECG and HRV: a Systematic Literature Review
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/2273/1/012015
– volume: 43
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib7
  article-title: A systematic review of deep learning methods for modeling electrocardiograms during sleep
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/ac826e
– ident: 10.1016/j.smrv.2025.102097_bib100
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.smrv.2025.102097_bib87
  article-title: Detection of sleep apnea from single-lead ECG signal using a time Window artificial neural network
  publication-title: BioMed Res Int
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.smrv.2025.102097_bib36
  article-title: A sleep apnea detection method based on unsupervised feature learning and single-lead electrocardiogram
  publication-title: IEEE Trans Instrum Meas
– start-page: 1840
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib97
  article-title: OSA-CCNN: obstructive sleep apnea detection based on a composite deep convolution neural network model using single-lead ECG signal
– volume: 23
  start-page: 4692
  year: 2023
  ident: 10.1016/j.smrv.2025.102097_bib39
  article-title: Efficient deep learning based hybrid model to detect obstructive sleep apnea
  publication-title: Sensors
  doi: 10.3390/s23104692
– volume: 6
  year: 2020
  ident: 10.1016/j.smrv.2025.102097_bib69
  article-title: Sleep apnea detection from ECG using variational mode decomposition
  publication-title: Biomed Phys Eng Express
  doi: 10.1088/2057-1976/ab68e9
– volume: 41
  start-page: 758
  year: 2021
  ident: 10.1016/j.smrv.2025.102097_bib65
  article-title: End-to-End sleep apnea detection using single-lead ECG signal and 1-D residual neural networks
  publication-title: J Med Biol Eng
  doi: 10.1007/s40846-021-00646-8
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.smrv.2025.102097_bib70
  article-title: Multiscale deep neural network for obstructive sleep apnea detection using RR interval from single-lead ECG signal
  publication-title: IEEE Trans Instrum Meas
– volume: 26
  start-page: 5841
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib63
  article-title: Obstructive sleep apnea detection Scheme based on manually generated features and Parallel heterogeneous deep learning model under IoMT
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2022.3166859
– volume: 134
  year: 2021
  ident: 10.1016/j.smrv.2025.102097_bib51
  article-title: SCNN: scalogram-based convolutional neural network to detect obstructive sleep apnea using single-lead electrocardiogram signals
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104532
– volume: 155
  start-page: 529
  year: 2011
  ident: 10.1016/j.smrv.2025.102097_bib11
  article-title: QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-155-8-201110180-00009
– volume: 17
  start-page: 24
  year: 2020
  ident: 10.1016/j.smrv.2025.102097_bib40
  article-title: Identification of obstructive sleep apnea using artificial neural networks and wavelet Packet decomposition of the HRV signal
  publication-title: Jou Eng Res
  doi: 10.24200/tjer.vol17iss1pp24-33
– volume: 16
  year: 2021
  ident: 10.1016/j.smrv.2025.102097_bib56
  article-title: A fused-image-based approach to detect obstructive sleep apnea using a single-lead ECG and a 2D convolutional neural network
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0250618
– volume: 229
  year: 2023
  ident: 10.1016/j.smrv.2025.102097_bib14
  article-title: Optimization of CNN using modified honey badger algorithm for sleep apnea detection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120484
– volume: 57
  start-page: 1931
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib105
  article-title: Reliability of machine learning to diagnose pediatric obstructive sleep apnea: systematic review and meta‐analysis
  publication-title: Pediatr Pulmonol
  doi: 10.1002/ppul.25423
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.smrv.2025.102097_bib47
  article-title: TFFormer: a time–frequency information fusion-based CNN-transformer model for OSA detection with single-lead ECG
  publication-title: IEEE Trans Instrum Meas
– volume: 29
  start-page: 36
  year: 2025
  ident: 10.1016/j.smrv.2025.102097_bib108
  article-title: Artificial intelligence facial recognition of obstructive sleep apnea: a Bayesian meta-analysis
  publication-title: Sleep Breath
  doi: 10.1007/s11325-024-03173-3
– volume: 22
  start-page: 306
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib13
  article-title: Meta-DiSc 2.0: a web application for meta-analysis of diagnostic test accuracy data
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-022-01788-2
– volume: 101
  start-page: e215
  year: 2000
  ident: 10.1016/j.smrv.2025.102097_bib98
  article-title: PhysioBank, PhysioToolkit, and PhysioNet
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 12
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib42
  article-title: Obstructive sleep apnea detection using frequency analysis of electrocardiographic RR interval and machine learning algorithms
  publication-title: J Biomed Phys Eng
– volume: 61
  year: 2020
  ident: 10.1016/j.smrv.2025.102097_bib35
  article-title: Detection of apnea events from ECG segments using Fourier decomposition method
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102005
– volume: 41
  start-page: 241
  year: 2020
  ident: 10.1016/j.smrv.2025.102097_bib22
  article-title: Detection of abnormal respiratory events with single channel ECG and hybrid machine learning model in patients with obstructive sleep apnea
  publication-title: IRBM
  doi: 10.1016/j.irbm.2020.05.006
– volume: 180
  year: 2019
  ident: 10.1016/j.smrv.2025.102097_bib31
  article-title: Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2019.105001
– volume: 16
  year: 2022
  ident: 10.1016/j.smrv.2025.102097_bib25
  article-title: A spatio-temporal learning-based model for sleep apnea detection using single-lead ECG signals
  publication-title: Front Neurosci
SSID ssj0009416
Score 2.4754877
SecondaryResourceType review_article
Snippet Sleep apnea is a prevalent disorder affecting 10 % of middle-aged individuals, yet it remains underdiagnosed due to the limitations of polysomnography (PSG),...
AbstractSleep apnea is a prevalent disorder affecting 10 % of middle-aged individuals, yet it remains underdiagnosed due to the limitations of polysomnography...
Sleep apnea is a prevalent disorder affecting 10 % of middle-aged individuals, yet it remains underdiagnosed due to the limitations of polysomnography (PSG),...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102097
SubjectTerms Algorithms
Deep Learning
Diagnostic accuracy
Electrocardiogram (ECG)
Electrocardiography - methods
Humans
Machine learning
Machine Learning - standards
Meta-analysis
Neurology
Polysomnography - methods
Sensitivity and Specificity
Single-lead ECG
Sleep apnea
Sleep Apnea Syndromes - diagnosis
Sleep Medicine
Title Diagnostic accuracy of machine learning algorithms in electrocardiogram-based sleep apnea detection: A systematic review and meta-analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1087079225000504
https://www.clinicalkey.es/playcontent/1-s2.0-S1087079225000504
https://dx.doi.org/10.1016/j.smrv.2025.102097
https://www.ncbi.nlm.nih.gov/pubmed/40349509
https://www.proquest.com/docview/3202859292
Volume 81
WOSCitedRecordID wos001491174300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1532-2955
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009416
  issn: 1087-0792
  databaseCode: AIEXJ
  dateStart: 19971101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bitswEBXZbB8KpfTe9LKo0Lfg4NhSbPctbFN6odvCbiFvQpHlxFvHCbYTln5C_7R_0dHFcbLbbC_QF2NsjS1nTkYj6cwMQi-DgAZ9OaBOLHzqkIkfOSqLt0Mj4vM48iYiNMUmgpOTcDyOPrdaP-pYmHUW5Hl4cREt_6uq4RooW4XO_oW6Nw-FC3AOSocjqB2Of6T414Y8pxOxCrEqVD13tYmuWZOyLhMx7fJsuijSajbXjFhbDkdoeqpibDlqfIu7ZSblssuXueTdWFaauJWbcPbLSaANt3guK-5wm-pk2_U91U-q9_KtSLOVlGapLrb-UUV0JRwMdEPvGcI5SOnbcgZv6I7macMghm_UtvPTdPVtBvZq9LWwC9LKnKWZSimymGYrPdyk01QRscu02l7w8GhDzLI22g3V6mq0Y8RN3RdrhcFpcg3r147pzYUrI4ZZvDjvlfNi3VOv621Lb6fnHh1_6Dul13OdU9UF1QOP6gQ6ZLexmVyx0mMuu9L0AB16AY3CNjocvhuN3zcZoomu07v5OhvhZciIl3u3z4vaN0vS3tLZHXTbTnPw0MDzLmrJ_B66ZdaIsQl9u4--N1DFNVTxIsEWqriGKm6gitMc74Eq1lDFGqp4A9VXeIgboGKDOgxAxTtAfYC-vBmdHb91bG0QR5ABqZyQuJJORBLwJBJcqFWISd8TJExIQGNX9pPIB9dTpbMjMuYRiQPqJW4cJj4HH3XiP0TtfJHLxwhz5UT3_TgAa0ZifxD6IReJxz2VW48Oog7q1781EzZxvqrfkrGaIXnOlH6Y0g8z-umg7kZmadLGXNvar1XI6oBoGMIZYPRaqeBXUrK0xqhk-zDYQXQjaR1t40D_9o0vanwxGIXU1iLP5WJVMh9ahRSmWl4HPTLA23w3USmwYF7y5J_7-xTdbAzBM9SuipV8jm6IdZWWxRE6CMbhkf07_QR04Q81
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+accuracy+of+machine+learning+algorithms+in+electrocardiogram-based+sleep+apnea+detection%3A+A+systematic+review+and+meta-analysis&rft.jtitle=Sleep+medicine+reviews&rft.au=Kilic%2C+Mustafa+Eray&rft.au=Arayici%2C+Mehmet+Emin&rft.au=Turan%2C+Oguzhan+Ekrem&rft.au=Yilancioglu%2C+Yigit+Resit&rft.date=2025-06-01&rft.issn=1087-0792&rft.volume=81&rft.spage=102097&rft.epage=102097&rft_id=info:doi/10.1016%2Fj.smrv.2025.102097&rft.externalDBID=ECK1-s2.0-S1087079225000504&rft.externalDocID=1_s2_0_S1087079225000504
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10870792%2FS1087079225X00022%2Fcov150h.gif