Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD

This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on advances in signal processing Vol. 2017; no. 1; pp. 1 - 11
Main Authors: Gao, Yu-Fei, Gui, Guan, Cong, Xun-Chao, Yang, Yue, Zou, Yan-Bin, Wan, Qun
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 12.06.2017
Springer
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:1687-6180, 1687-6172, 1687-6180
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper.
AbstractList Abstract This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper.
This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper.
ArticleNumber 44
Audience Academic
Author Wan, Qun
Cong, Xun-Chao
Gao, Yu-Fei
Yang, Yue
Gui, Guan
Zou, Yan-Bin
Author_xml – sequence: 1
  givenname: Yu-Fei
  surname: Gao
  fullname: Gao, Yu-Fei
  organization: School of Electronic Engineering, University of Electronic Science and Technology of China
– sequence: 2
  givenname: Guan
  orcidid: 0000-0003-3888-2881
  surname: Gui
  fullname: Gui, Guan
  organization: College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications
– sequence: 3
  givenname: Xun-Chao
  surname: Cong
  fullname: Cong, Xun-Chao
  organization: School of Electronic Engineering, University of Electronic Science and Technology of China
– sequence: 4
  givenname: Yue
  surname: Yang
  fullname: Yang, Yue
  organization: School of Electronic Engineering, University of Electronic Science and Technology of China
– sequence: 5
  givenname: Yan-Bin
  surname: Zou
  fullname: Zou, Yan-Bin
  organization: School of Electronic Engineering, University of Electronic Science and Technology of China
– sequence: 6
  givenname: Qun
  surname: Wan
  fullname: Wan, Qun
  email: wanqun@uestc.edu.cn
  organization: School of Electronic Engineering, University of Electronic Science and Technology of China
BookMark eNp9kU1r3DAQhkVJoUnaH9CboWenGknWx3FJ2zSwpZCPXoUsjx0tjrSVvIf8-2rrBkKhRQeJ0fu8zMx7Rk5iikjIe6AXAFp-LMAlFy0F1VKhTKtekVOQWrUSND158X5DzkrZUdpJRtkp2X47zEto5xDR5absXS7YZPQpliUf_BJSbMaUm9vNTRMe3RTi1PSu4NDUj4cwPWBuUx6wKn58ektej24u-O7PfU7uv3y-u_zabr9fXV9utq0XUiyt7DqhvFbGa8c9dECRQ8dg1EglQN9JxUZuRomojOmQsr4DxSXKQStvBD8n16vvkNzO7nNtLD_Z5IL9XUh5si4vwc9ovROImoJTDsUg-p4z4H3fAzWSUsOq14fVa5_TzwOWxe7SIcfavgVDtTRMaV1VF6tqctU0xDEt2fl6BnwMdVk4hlrfKCo4FZJ1FVAr4HMqJeNofVjccZ0VDLMFao-52TU3W3Ozx9ysqiT8RT4P-D-GrUyp2jhhfjHEP6FfRmupgw
CitedBy_id crossref_primary_10_3390_rs16040621
crossref_primary_10_3390_s20185047
crossref_primary_10_1016_j_aeue_2017_08_003
Cites_doi 10.1016/j.jfranklin.2015.03.039
10.1016/j.sigpro.2016.02.004
10.1109/TIT.2010.2040894
10.1109/TIT.2004.834793
10.1186/s13634-016-0379-2
10.1002/widm.1108
10.1137/090748330
10.1049/el.2016.1944
10.1109/JSTARS.2013.2263309
10.1109/ACCESS.2016.2598320
10.1016/j.acha.2008.07.002
10.1016/j.crme.2010.06.005
10.1137/07070111X
10.1109/RADAR.2007.374203
10.1016/j.laa.2009.08.005
10.1109/TSP.2010.2044837
10.1109/78.852018
10.1109/TIP.2011.2165289
10.1016/j.aeue.2015.01.001
10.1137/S003614450343200X
10.1109/TIT.2009.2030471
10.1186/s13634-016-0327-1
10.1186/1687-6180-2014-153
10.1109/ICDSP.2009.5201211
10.1137/S0895479898346995
10.1109/LGRS.2013.2258886
10.1109/TAES.2013.130115
10.1109/CISS.2010.5464722
10.1109/TSP.2011.2161982
10.1186/1687-6180-2014-94
10.1109/JPROC.2010.2044010
10.1109/TAP.2011.2173130
10.1109/TSP.2008.917929
10.1109/LGRS.2014.2349035
10.1049/ip-rsn:20020493
10.1109/JSTSP.2015.2465361
10.1007/s00034-015-0132-3
10.1109/TGRS.2011.2151865
10.1109/LSP.2015.2428713
10.1016/S0169-7439(97)00032-4
10.1109/ACCESS.2015.2430359
10.1109/LSP.2012.2210872
10.1049/iet-rsn.2015.0385
10.1109/TIP.2014.2348796
10.1186/1687-6180-2011-52
10.1109/MSP.2013.2297439
10.1109/TAES.2004.1386870
ContentType Journal Article
Copyright The Author(s) 2017
COPYRIGHT 2017 Springer
EURASIP Journal on Advances in Signal Processing is a copyright of Springer, 2017.
Copyright_xml – notice: The Author(s) 2017
– notice: COPYRIGHT 2017 Springer
– notice: EURASIP Journal on Advances in Signal Processing is a copyright of Springer, 2017.
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1186/s13634-017-0479-7
DatabaseName Springer Nature Link
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-6180
EndPage 11
ExternalDocumentID oai_doaj_org_article_ca4ee801a7ae4d4bb3213bbb10960092
A704304625
10_1186_s13634_017_0479_7
GrantInformation_xml – fundername: National Science and technology major project
  grantid: 2016ZX03001022
– fundername: National Natural Science Foundation of China
  grantid: 61401069
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: U1533125
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABEEZ
ABUWG
ACACY
ACGFO
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ARCSS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DU5
DWQXO
E3Z
EBLON
EBS
EDO
EJD
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
M0N
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHW
RNS
RSV
SEG
SOJ
TUS
U2A
AASML
AAYXX
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c464t-65547c879c8a3c1510e31521f8e0611b5672f39f6ee7995e02b51736e6d87c943
IEDL.DBID P5Z
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403441100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-6180
1687-6172
IngestDate Tue Oct 14 17:55:48 EDT 2025
Sat Oct 11 05:53:30 EDT 2025
Tue Nov 04 17:38:44 EST 2025
Sat Nov 29 03:12:10 EST 2025
Tue Nov 18 22:18:39 EST 2025
Fri Feb 21 02:43:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords HOSVD
Alternating least squares
Spotlight SAR imaging
Kronecker constraint
Compressed sensing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-65547c879c8a3c1510e31521f8e0611b5672f39f6ee7995e02b51736e6d87c943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3888-2881
OpenAccessLink https://www.proquest.com/docview/1908692788?pq-origsite=%requestingapplication%
PQID 1908692788
PQPubID 237299
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_ca4ee801a7ae4d4bb3213bbb10960092
proquest_journals_1908692788
gale_infotracacademiconefile_A704304625
crossref_citationtrail_10_1186_s13634_017_0479_7
crossref_primary_10_1186_s13634_017_0479_7
springer_journals_10_1186_s13634_017_0479_7
PublicationCentury 2000
PublicationDate 2017-06-12
PublicationDateYYYYMMDD 2017-06-12
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-12
  day: 12
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on advances in signal processing
PublicationTitleAbbrev EURASIP J. Adv. Signal Process
PublicationYear 2017
Publisher Springer International Publishing
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References FranceschettiGLanariRSynthetic Aperture Radar Processing1999Boca RatonCRC press
MaWQuHGuiGXuLZhaoJChenBMaximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-gaussian environmentsJ. Frankl. Inst.201535272708272710.1016/j.jfranklin.2015.03.039
LiYZhangCWangSLow-complexity non-uniform penalized affine projection algorithm for sparse system identificationCirc. Syst. Signal Process.20163551611162410.1007/s00034-015-0132-31346.93124
SunBGuHHuMQiaoZCompressive sensing for a general sar imaging model based on maxwell’s equationsSPIE Sensing Technology+ Applications2015San DiegoInternational Society for Optics and Photonics948402948402
ZhangLQiaoZ-JXingM-DShengJ-LGuoRBaoZHigh-resolution isar imaging by exploiting sparse aperturesIEEE Trans. Antennas Propag.20126029971008293157910.1109/TAP.2011.2173130
ZhaoLWangLBiGLiSYangLZhangHStructured sparsity-driven autofocus algorithm for high-resolution radar imagerySignal Process.201612537638810.1016/j.sigpro.2016.02.004
DL Donoho, et al., High-dimensional data analysis: the curses and blessings of dimensionality. AMS Math Chall. Lect., 1–32 (2000).
R Rubinstein, M Zibulevsky, M Elad, Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Technical Report 8, Computer Science Department, Technion - Israel Institute of Technology (2008).
HaardtMRoemerFDel GaldoGHigher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problemsIEEE Trans. Signal Process.200856731983213251671510.1109/TSP.2008.917929
ChenBWangJZhaoHZhengNPríncipeJCConvergence of a fixed-point algorithm under maximum correntropy criterionIEEE Signal Process. Lett.201522101723172710.1109/LSP.2015.2428713
DuarteMFBaraniukRGKronecker compressive sensingIEEE Trans. Image Process.2012212494504292063510.1109/TIP.2011.2165289
SoumekhMSynthetic Aperture Radar Signal Processing with MATLAB Algorithms1999New YorkWiley-Interscience0974.94003
S Jokar, in 2010 44th Annual Conference on Information Sciences and Systems (CISS). Sparse recovery and kronecker products, (2010), pp. 1–4. doi:10.1109/CISS.2010.5464722.
ZhangLWangHZ-jQiaoResolution enhancement for isar imaging via improved statistical compressive sensingEURASIP J. Adv. Signal Process.2016201618010.1186/s13634-016-0379-2doi:10.1186/s13634-016-0379-2
TroppJAWrightSJComputational methods for sparse solution of linear inverse problemsProc. IEEE201098694895810.1109/JPROC.2010.2044010
ZhangLZ-jQiaoXingMLiYBaoZHigh-resolution isar imaging with sparse stepped-frequency waveformsIEEE Trans. Geosci. Remote Sens.201149114630465110.1109/TGRS.2011.2151865
ZhangLH-lLiZ-jQiaoM-dXingBaoZIntegrating autofocus techniques with fast factorized back-projection for high-resolution spotlight SAR imagingIEEE Geosci. Remote Sens. Lett.20131061394139810.1109/LGRS.2013.2258886
FangJXuZZhangBHongWWuYFast compressed sensing SAR imaging based on approximated observationIEEE J. Sel. Topic Appl. Earth Obs. Remote Sens.20147135236310.1109/JSTARS.2013.2263309
EldarYCMishaliMRobust recovery of signals from a structured union of subspacesIEEE Trans. Inf. Theory2009551153025316259697710.1109/TIT.2009.2030471doi:10.1109/TIT.2009.2030471
TroppJAGreed is good: algorithmic results for sparse approximationIEEE Trans. Inf. Theory2004501022312242209704410.1109/TIT.2004.8347931288.94019
JokarSMehrmannVSparse solutions to underdetermined Kronecker product systemsLinear Algebra Appl.20094311224372447256303410.1016/j.laa.2009.08.0051181.65058
FriedlandSLiQSchonfeldDCompressive sensing of sparse tensorsIEEE Trans. Image Process.2014231044384447330009210.1109/TIP.2014.2348796doi:10.1109/TIP.2014.2348796
SidiropoulosNDBroRGiannakisGBParallel factor analysis in sensor array processingIEEE Trans. Signal Process.20004882377238810.1109/78.852018
KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X1173.65029doi:10.1137/07070111X
MasonESonIYYaziciBPassive synthetic aperture radar imaging using low-rank matrix recovery methodsIEEE J. Sel. Topic Signal Process.2015981570158210.1109/JSTSP.2015.2465361doi:10.1109/JSTSP.2015.2465361
SidiropoulosNDKyrillidisAMulti-way compressed sensing for sparse low-rank tensorsIEEE Signal Process. Lett.2012191175776010.1109/LSP.2012.2210872
ZhangLDuanJQiaoZ-JXingM-DBaoZPhase adjustment and ISAR imaging of maneuvering targets with sparse aperturesIEEE Trans. Aerosp. Electron. Syst.20145031955197310.1109/TAES.2013.130115
BroRParafac. tutorial and applicationsChemometr. Intell. Lab. Syst.199738214917110.1016/S0169-7439(97)00032-4
NeedellDTroppJACosamp: Iterative signal recovery from incomplete and inaccurate samplesAppl. Comput. Harmon. Anal.2009263301321250236610.1016/j.acha.2008.07.0021163.94003
GreengardLLeeJAccelerating the nonuniform fast fourier transformSIAM Rev.2004463443454211505610.1137/S003614450343200X1064.65156
ZhangXLiaoGZhuSYangDDuWEfficient compressed sensing method for moving-target imaging by exploiting the geometry information of the defocused resultsIEEE Geosci. Remote Sens. Lett.201512351752110.1109/LGRS.2014.2349035
RiglingBDMosesRLPolar format algorithm for bistatic SARIEEE Trans. Aerosp. Electron. Syst.20044041147115910.1109/TAES.2004.1386870
ZhangJBanYZhuDZhangGRandom filtering structure-based compressive sensing radarEURASIP J. Adv. Signal Process.2014201419410.1186/1687-6180-2014-94doi:10.1186/1687-6180-2014-94
BaraniukRGCevherVDuarteMFHegdeCModel-based compressive sensingIEEE Trans. Inf. Theory201056419822001265448910.1109/TIT.2010.2040894
BaraniukRSteeghsPCompressive radar imaging2007 IEEE Radar Conference2007BostonIEEE12813310.1109/RADAR.2007.374203
CongXGuiGLiXWenGHuangXWanQObject-level sar imaging method with canonical scattering characterisation and inter-subdictionary interferences mitigationIET Radar Sonar Navig201610478479010.1049/iet-rsn.2015.0385
RoemerFAdvanced algebraic concepts for efficient multi-channel signal processing2013IlmenauPhD thesis, Ilmenau University of Technology
YuanYSunJMaoSPFA algorithm for airborne spotlight SAR imaging with nonideal motionsIEE Proc. Radar Sonar Navig2002149417418210.1049/ip-rsn:20020493
DuarteMFEldarYCStructured compressed sensing: from theory to applicationsIEEE Trans. Signal Process.201159940534085286596910.1109/TSP.2011.2161982
CichockiAMandicDDe LathauwerLZhouGZhaoQCaiafaCPhanHATensor decompositions for signal processing applications: from two-way to multiway component analysisIEEE Signal Process. Mag.201532214516310.1109/MSP.2013.2297439
YC Eldar, M Mishali, in 2009 16th International Conference on Digital Signal Processing. Block sparsity and sampling over a union of subspaces, (2009), pp. 1–8. doi:10.1109/ICDSP.2009.5201211.
LiEShafieeMJKazemzadehFWongASparse reconstruction of compressive sensing multi-spectral data using an inter-spectral multi-layered conditional random field modelIEEE Access201645540555410.1109/ACCESS.2016.2598320doi:10.1109/ACCESS.2016.2598320
De LathauwerLDe MoorBVandewalleJOn the best rank-1 and rank-(r 1, r 2,…, rn) approximation of higher-order tensorsSIAM J. Matrix Anal. Appl.200021413241342178027610.1137/S08954798983469950958.15026
GaoY-FZouLWanQA two-dimensional arrival angles estimation for l-shaped array based on tensor decompositionAEU - Int. J. Electron. Commun.201569473674410.1016/j.aeue.2015.01.001doi:10.1016/j.aeue.2015.01.001
SunBCaoYChenJLiCQiaoZCompressive sensing imaging for general synthetic aperture radar echo model based on Maxwell’s equationsEURASIP J. Adv. Signal Process.20142014115310.1186/1687-6180-2014-153doi:10.1186/1687-6180-2014-153
XuWHuangPDengYEfficient sliding spotlight SAR raw signal simulation of extended scenesEURASIP J. Adv. Signal Process.2011201115210.1186/1687-6180-2011-52doi:10.1186/1687-6180-2011-52
EldarYCKuppingerPBolcskeiHBlock-sparse signals: uncertainty relations and efficient recoveryIEEE Trans. Signal Process.201058630423054273024610.1109/TSP.2010.2044837
LiGHouQXuSChenZMulti-target simultaneous isar imaging based on compressed sensingEURASIP J. Adv. Signal Process.2016201612710.1186/s13634-016-0327-1doi:10.1186/s13634-016-0327-1
VuDHAdvanced techniques for synthetic aperture radar image reconstruction2012GainesvillePhD thesis, University of Florida
CaiafaCFCichockiAMultidimensional compressed sensing and their applicationsWiley Interdiscip. Rev. Data Min. Knowl. Disc.20133635538010.1002/widm.1108doi:10.1002/widm.1108
CurlanderJCMcDonoughRNSynthetic Aperture Radar: Systems and Signal Processing1991New YorkWiley-Interscience0997.94518
LimL-HComonPMultiarray signal processing: tensor decomposition meets compressed sensingComptes Rendus Mecanique2010338631132010.1016/j.crme.2010.06.0051220.94018
LiYWangYSparse SM-NLMS algorithm based on correntropy criterionElectron. Lett.201652171461146310.1049/el.2016.1944
WalterGCRonSGRonaldMMSpotlight Synthetic Aperture Radar1995NorwoodArtech House Publishers0838.94001
MarinoASynthetic Aperture Radar2012BerlinSpringer10.1007/978-3-642-27163-2_2
OseledetsIVTyrtyshnikovEEBreaking the curse of dimensionality, or how to use SVD in many dimensionsSIAM J. Sci. Comput.200931537443759255656010.1137/0907483301200.65028
ZhangZXuYYangJLiXZhangDA survey of sparse representation: algorithms and applicationsIEEE Access2015349053010.1109/ACCESS.2015.2430359doi:10.1109/ACCESS.2015.2430359
479_CR53
B Chen (479_CR13) 2015; 22
R Baraniuk (479_CR7) 2007
G Franceschetti (479_CR3) 1999
L Zhang (479_CR8) 2011; 49
RG Baraniuk (479_CR43) 2010; 56
L Zhao (479_CR21) 2016; 125
Y Yuan (479_CR55) 2002; 149
DH Vu (479_CR34) 2012
L Zhang (479_CR9) 2012; 60
Y Li (479_CR50) 2016; 52
M Soumekh (479_CR5) 1999
S Jokar (479_CR39) 2009; 431
M Haardt (479_CR31) 2008; 56
BD Rigling (479_CR56) 2004; 40
L-H Lim (479_CR25) 2010; 338
S Friedland (479_CR29) 2014; 23
L De Lathauwer (479_CR52) 2000; 21
X Cong (479_CR19) 2016; 10
X Zhang (479_CR18) 2015; 12
TG Kolda (479_CR33) 2009; 51
GC Walter (479_CR2) 1995
Y-F Gao (479_CR46) 2015; 69
MF Duarte (479_CR45) 2012; 21
B Sun (479_CR10) 2014; 2014
G Li (479_CR11) 2016; 2016
D Needell (479_CR57) 2009; 26
Z Zhang (479_CR12) 2015; 3
E Mason (479_CR6) 2015; 9
J Zhang (479_CR17) 2014; 2014
IV Oseledets (479_CR48) 2009; 31
E Li (479_CR30) 2016; 4
JA Tropp (479_CR54) 2010; 98
Y Li (479_CR51) 2016; 35
J Fang (479_CR15) 2014; 7
W Ma (479_CR14) 2015; 352
JA Tropp (479_CR38) 2004; 50
ND Sidiropoulos (479_CR27) 2012; 19
R Bro (479_CR22) 1997; 38
CF Caiafa (479_CR28) 2013; 3
ND Sidiropoulos (479_CR23) 2000; 48
L Zhang (479_CR36) 2013; 10
L Zhang (479_CR16) 2014; 50
A Marino (479_CR4) 2012
JC Curlander (479_CR1) 1991
W Xu (479_CR35) 2011; 2011
479_CR40
B Sun (479_CR49) 2015
479_CR41
MF Duarte (479_CR26) 2011; 59
479_CR47
YC Eldar (479_CR44) 2009; 55
A Cichocki (479_CR24) 2015; 32
F Roemer (479_CR32) 2013
YC Eldar (479_CR42) 2010; 58
L Zhang (479_CR20) 2016; 2016
L Greengard (479_CR37) 2004; 46
References_xml – reference: ZhangLDuanJQiaoZ-JXingM-DBaoZPhase adjustment and ISAR imaging of maneuvering targets with sparse aperturesIEEE Trans. Aerosp. Electron. Syst.20145031955197310.1109/TAES.2013.130115
– reference: SunBCaoYChenJLiCQiaoZCompressive sensing imaging for general synthetic aperture radar echo model based on Maxwell’s equationsEURASIP J. Adv. Signal Process.20142014115310.1186/1687-6180-2014-153doi:10.1186/1687-6180-2014-153
– reference: ZhangLQiaoZ-JXingM-DShengJ-LGuoRBaoZHigh-resolution isar imaging by exploiting sparse aperturesIEEE Trans. Antennas Propag.20126029971008293157910.1109/TAP.2011.2173130
– reference: ChenBWangJZhaoHZhengNPríncipeJCConvergence of a fixed-point algorithm under maximum correntropy criterionIEEE Signal Process. Lett.201522101723172710.1109/LSP.2015.2428713
– reference: ZhangXLiaoGZhuSYangDDuWEfficient compressed sensing method for moving-target imaging by exploiting the geometry information of the defocused resultsIEEE Geosci. Remote Sens. Lett.201512351752110.1109/LGRS.2014.2349035
– reference: DuarteMFBaraniukRGKronecker compressive sensingIEEE Trans. Image Process.2012212494504292063510.1109/TIP.2011.2165289
– reference: De LathauwerLDe MoorBVandewalleJOn the best rank-1 and rank-(r 1, r 2,…, rn) approximation of higher-order tensorsSIAM J. Matrix Anal. Appl.200021413241342178027610.1137/S08954798983469950958.15026
– reference: ZhangZXuYYangJLiXZhangDA survey of sparse representation: algorithms and applicationsIEEE Access2015349053010.1109/ACCESS.2015.2430359doi:10.1109/ACCESS.2015.2430359
– reference: SidiropoulosNDKyrillidisAMulti-way compressed sensing for sparse low-rank tensorsIEEE Signal Process. Lett.2012191175776010.1109/LSP.2012.2210872
– reference: DuarteMFEldarYCStructured compressed sensing: from theory to applicationsIEEE Trans. Signal Process.201159940534085286596910.1109/TSP.2011.2161982
– reference: MarinoASynthetic Aperture Radar2012BerlinSpringer10.1007/978-3-642-27163-2_2
– reference: LimL-HComonPMultiarray signal processing: tensor decomposition meets compressed sensingComptes Rendus Mecanique2010338631132010.1016/j.crme.2010.06.0051220.94018
– reference: FriedlandSLiQSchonfeldDCompressive sensing of sparse tensorsIEEE Trans. Image Process.2014231044384447330009210.1109/TIP.2014.2348796doi:10.1109/TIP.2014.2348796
– reference: MaWQuHGuiGXuLZhaoJChenBMaximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-gaussian environmentsJ. Frankl. Inst.201535272708272710.1016/j.jfranklin.2015.03.039
– reference: S Jokar, in 2010 44th Annual Conference on Information Sciences and Systems (CISS). Sparse recovery and kronecker products, (2010), pp. 1–4. doi:10.1109/CISS.2010.5464722.
– reference: CurlanderJCMcDonoughRNSynthetic Aperture Radar: Systems and Signal Processing1991New YorkWiley-Interscience0997.94518
– reference: CongXGuiGLiXWenGHuangXWanQObject-level sar imaging method with canonical scattering characterisation and inter-subdictionary interferences mitigationIET Radar Sonar Navig201610478479010.1049/iet-rsn.2015.0385
– reference: EldarYCMishaliMRobust recovery of signals from a structured union of subspacesIEEE Trans. Inf. Theory2009551153025316259697710.1109/TIT.2009.2030471doi:10.1109/TIT.2009.2030471
– reference: BroRParafac. tutorial and applicationsChemometr. Intell. Lab. Syst.199738214917110.1016/S0169-7439(97)00032-4
– reference: FangJXuZZhangBHongWWuYFast compressed sensing SAR imaging based on approximated observationIEEE J. Sel. Topic Appl. Earth Obs. Remote Sens.20147135236310.1109/JSTARS.2013.2263309
– reference: XuWHuangPDengYEfficient sliding spotlight SAR raw signal simulation of extended scenesEURASIP J. Adv. Signal Process.2011201115210.1186/1687-6180-2011-52doi:10.1186/1687-6180-2011-52
– reference: BaraniukRGCevherVDuarteMFHegdeCModel-based compressive sensingIEEE Trans. Inf. Theory201056419822001265448910.1109/TIT.2010.2040894
– reference: SunBGuHHuMQiaoZCompressive sensing for a general sar imaging model based on maxwell’s equationsSPIE Sensing Technology+ Applications2015San DiegoInternational Society for Optics and Photonics948402948402
– reference: GreengardLLeeJAccelerating the nonuniform fast fourier transformSIAM Rev.2004463443454211505610.1137/S003614450343200X1064.65156
– reference: LiYZhangCWangSLow-complexity non-uniform penalized affine projection algorithm for sparse system identificationCirc. Syst. Signal Process.20163551611162410.1007/s00034-015-0132-31346.93124
– reference: MasonESonIYYaziciBPassive synthetic aperture radar imaging using low-rank matrix recovery methodsIEEE J. Sel. Topic Signal Process.2015981570158210.1109/JSTSP.2015.2465361doi:10.1109/JSTSP.2015.2465361
– reference: OseledetsIVTyrtyshnikovEEBreaking the curse of dimensionality, or how to use SVD in many dimensionsSIAM J. Sci. Comput.200931537443759255656010.1137/0907483301200.65028
– reference: WalterGCRonSGRonaldMMSpotlight Synthetic Aperture Radar1995NorwoodArtech House Publishers0838.94001
– reference: NeedellDTroppJACosamp: Iterative signal recovery from incomplete and inaccurate samplesAppl. Comput. Harmon. Anal.2009263301321250236610.1016/j.acha.2008.07.0021163.94003
– reference: LiGHouQXuSChenZMulti-target simultaneous isar imaging based on compressed sensingEURASIP J. Adv. Signal Process.2016201612710.1186/s13634-016-0327-1doi:10.1186/s13634-016-0327-1
– reference: ZhangLWangHZ-jQiaoResolution enhancement for isar imaging via improved statistical compressive sensingEURASIP J. Adv. Signal Process.2016201618010.1186/s13634-016-0379-2doi:10.1186/s13634-016-0379-2
– reference: EldarYCKuppingerPBolcskeiHBlock-sparse signals: uncertainty relations and efficient recoveryIEEE Trans. Signal Process.201058630423054273024610.1109/TSP.2010.2044837
– reference: SidiropoulosNDBroRGiannakisGBParallel factor analysis in sensor array processingIEEE Trans. Signal Process.20004882377238810.1109/78.852018
– reference: HaardtMRoemerFDel GaldoGHigher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problemsIEEE Trans. Signal Process.200856731983213251671510.1109/TSP.2008.917929
– reference: ZhangLH-lLiZ-jQiaoM-dXingBaoZIntegrating autofocus techniques with fast factorized back-projection for high-resolution spotlight SAR imagingIEEE Geosci. Remote Sens. Lett.20131061394139810.1109/LGRS.2013.2258886
– reference: ZhangLZ-jQiaoXingMLiYBaoZHigh-resolution isar imaging with sparse stepped-frequency waveformsIEEE Trans. Geosci. Remote Sens.201149114630465110.1109/TGRS.2011.2151865
– reference: ZhangJBanYZhuDZhangGRandom filtering structure-based compressive sensing radarEURASIP J. Adv. Signal Process.2014201419410.1186/1687-6180-2014-94doi:10.1186/1687-6180-2014-94
– reference: RoemerFAdvanced algebraic concepts for efficient multi-channel signal processing2013IlmenauPhD thesis, Ilmenau University of Technology
– reference: TroppJAWrightSJComputational methods for sparse solution of linear inverse problemsProc. IEEE201098694895810.1109/JPROC.2010.2044010
– reference: CaiafaCFCichockiAMultidimensional compressed sensing and their applicationsWiley Interdiscip. Rev. Data Min. Knowl. Disc.20133635538010.1002/widm.1108doi:10.1002/widm.1108
– reference: LiEShafieeMJKazemzadehFWongASparse reconstruction of compressive sensing multi-spectral data using an inter-spectral multi-layered conditional random field modelIEEE Access201645540555410.1109/ACCESS.2016.2598320doi:10.1109/ACCESS.2016.2598320
– reference: DL Donoho, et al., High-dimensional data analysis: the curses and blessings of dimensionality. AMS Math Chall. Lect., 1–32 (2000).
– reference: TroppJAGreed is good: algorithmic results for sparse approximationIEEE Trans. Inf. Theory2004501022312242209704410.1109/TIT.2004.8347931288.94019
– reference: R Rubinstein, M Zibulevsky, M Elad, Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Technical Report 8, Computer Science Department, Technion - Israel Institute of Technology (2008).
– reference: FranceschettiGLanariRSynthetic Aperture Radar Processing1999Boca RatonCRC press
– reference: SoumekhMSynthetic Aperture Radar Signal Processing with MATLAB Algorithms1999New YorkWiley-Interscience0974.94003
– reference: ZhaoLWangLBiGLiSYangLZhangHStructured sparsity-driven autofocus algorithm for high-resolution radar imagerySignal Process.201612537638810.1016/j.sigpro.2016.02.004
– reference: CichockiAMandicDDe LathauwerLZhouGZhaoQCaiafaCPhanHATensor decompositions for signal processing applications: from two-way to multiway component analysisIEEE Signal Process. Mag.201532214516310.1109/MSP.2013.2297439
– reference: BaraniukRSteeghsPCompressive radar imaging2007 IEEE Radar Conference2007BostonIEEE12813310.1109/RADAR.2007.374203
– reference: KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X1173.65029doi:10.1137/07070111X
– reference: YC Eldar, M Mishali, in 2009 16th International Conference on Digital Signal Processing. Block sparsity and sampling over a union of subspaces, (2009), pp. 1–8. doi:10.1109/ICDSP.2009.5201211.
– reference: GaoY-FZouLWanQA two-dimensional arrival angles estimation for l-shaped array based on tensor decompositionAEU - Int. J. Electron. Commun.201569473674410.1016/j.aeue.2015.01.001doi:10.1016/j.aeue.2015.01.001
– reference: RiglingBDMosesRLPolar format algorithm for bistatic SARIEEE Trans. Aerosp. Electron. Syst.20044041147115910.1109/TAES.2004.1386870
– reference: VuDHAdvanced techniques for synthetic aperture radar image reconstruction2012GainesvillePhD thesis, University of Florida
– reference: JokarSMehrmannVSparse solutions to underdetermined Kronecker product systemsLinear Algebra Appl.20094311224372447256303410.1016/j.laa.2009.08.0051181.65058
– reference: LiYWangYSparse SM-NLMS algorithm based on correntropy criterionElectron. Lett.201652171461146310.1049/el.2016.1944
– reference: YuanYSunJMaoSPFA algorithm for airborne spotlight SAR imaging with nonideal motionsIEE Proc. Radar Sonar Navig2002149417418210.1049/ip-rsn:20020493
– volume: 352
  start-page: 2708
  issue: 7
  year: 2015
  ident: 479_CR14
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2015.03.039
– volume: 125
  start-page: 376
  year: 2016
  ident: 479_CR21
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.02.004
– volume: 56
  start-page: 1982
  issue: 4
  year: 2010
  ident: 479_CR43
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2010.2040894
– volume: 50
  start-page: 2231
  issue: 10
  year: 2004
  ident: 479_CR38
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2004.834793
– volume: 2016
  start-page: 80
  issue: 1
  year: 2016
  ident: 479_CR20
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-016-0379-2
– ident: 479_CR53
– volume-title: Spotlight Synthetic Aperture Radar
  year: 1995
  ident: 479_CR2
– volume: 3
  start-page: 355
  issue: 6
  year: 2013
  ident: 479_CR28
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Disc.
  doi: 10.1002/widm.1108
– volume: 31
  start-page: 3744
  issue: 5
  year: 2009
  ident: 479_CR48
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090748330
– volume-title: Advanced techniques for synthetic aperture radar image reconstruction
  year: 2012
  ident: 479_CR34
– volume: 52
  start-page: 1461
  issue: 17
  year: 2016
  ident: 479_CR50
  publication-title: Electron. Lett.
  doi: 10.1049/el.2016.1944
– volume: 7
  start-page: 352
  issue: 1
  year: 2014
  ident: 479_CR15
  publication-title: IEEE J. Sel. Topic Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2263309
– volume: 4
  start-page: 5540
  year: 2016
  ident: 479_CR30
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2598320
– volume: 26
  start-page: 301
  issue: 3
  year: 2009
  ident: 479_CR57
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2008.07.002
– volume: 338
  start-page: 311
  issue: 6
  year: 2010
  ident: 479_CR25
  publication-title: Comptes Rendus Mecanique
  doi: 10.1016/j.crme.2010.06.005
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 479_CR33
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– start-page: 948402
  volume-title: SPIE Sensing Technology+ Applications
  year: 2015
  ident: 479_CR49
– start-page: 128
  volume-title: 2007 IEEE Radar Conference
  year: 2007
  ident: 479_CR7
  doi: 10.1109/RADAR.2007.374203
– volume: 431
  start-page: 2437
  issue: 12
  year: 2009
  ident: 479_CR39
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2009.08.005
– volume: 58
  start-page: 3042
  issue: 6
  year: 2010
  ident: 479_CR42
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2044837
– volume: 48
  start-page: 2377
  issue: 8
  year: 2000
  ident: 479_CR23
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.852018
– volume: 21
  start-page: 494
  issue: 2
  year: 2012
  ident: 479_CR45
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2165289
– volume: 69
  start-page: 736
  issue: 4
  year: 2015
  ident: 479_CR46
  publication-title: AEU - Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2015.01.001
– volume: 46
  start-page: 443
  issue: 3
  year: 2004
  ident: 479_CR37
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450343200X
– volume: 55
  start-page: 5302
  issue: 11
  year: 2009
  ident: 479_CR44
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2030471
– volume: 2016
  start-page: 27
  issue: 1
  year: 2016
  ident: 479_CR11
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-016-0327-1
– volume-title: Advanced algebraic concepts for efficient multi-channel signal processing
  year: 2013
  ident: 479_CR32
– volume: 2014
  start-page: 153
  issue: 1
  year: 2014
  ident: 479_CR10
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/1687-6180-2014-153
– ident: 479_CR41
  doi: 10.1109/ICDSP.2009.5201211
– volume: 21
  start-page: 1324
  issue: 4
  year: 2000
  ident: 479_CR52
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479898346995
– volume: 10
  start-page: 1394
  issue: 6
  year: 2013
  ident: 479_CR36
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2258886
– volume: 50
  start-page: 1955
  issue: 3
  year: 2014
  ident: 479_CR16
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2013.130115
– ident: 479_CR40
  doi: 10.1109/CISS.2010.5464722
– volume: 59
  start-page: 4053
  issue: 9
  year: 2011
  ident: 479_CR26
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2161982
– volume: 2014
  start-page: 94
  issue: 1
  year: 2014
  ident: 479_CR17
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/1687-6180-2014-94
– volume: 98
  start-page: 948
  issue: 6
  year: 2010
  ident: 479_CR54
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2044010
– volume: 60
  start-page: 997
  issue: 2
  year: 2012
  ident: 479_CR9
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2011.2173130
– volume: 56
  start-page: 3198
  issue: 7
  year: 2008
  ident: 479_CR31
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.917929
– volume: 12
  start-page: 517
  issue: 3
  year: 2015
  ident: 479_CR18
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2349035
– volume-title: Synthetic Aperture Radar Processing
  year: 1999
  ident: 479_CR3
– volume: 149
  start-page: 174
  issue: 4
  year: 2002
  ident: 479_CR55
  publication-title: IEE Proc. Radar Sonar Navig
  doi: 10.1049/ip-rsn:20020493
– volume: 9
  start-page: 1570
  issue: 8
  year: 2015
  ident: 479_CR6
  publication-title: IEEE J. Sel. Topic Signal Process.
  doi: 10.1109/JSTSP.2015.2465361
– volume-title: Synthetic Aperture Radar
  year: 2012
  ident: 479_CR4
– volume: 35
  start-page: 1611
  issue: 5
  year: 2016
  ident: 479_CR51
  publication-title: Circ. Syst. Signal Process.
  doi: 10.1007/s00034-015-0132-3
– ident: 479_CR47
– volume-title: Synthetic Aperture Radar: Systems and Signal Processing
  year: 1991
  ident: 479_CR1
– volume-title: Synthetic Aperture Radar Signal Processing with MATLAB Algorithms
  year: 1999
  ident: 479_CR5
– volume: 49
  start-page: 4630
  issue: 11
  year: 2011
  ident: 479_CR8
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2151865
– volume: 22
  start-page: 1723
  issue: 10
  year: 2015
  ident: 479_CR13
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2015.2428713
– volume: 38
  start-page: 149
  issue: 2
  year: 1997
  ident: 479_CR22
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(97)00032-4
– volume: 3
  start-page: 490
  year: 2015
  ident: 479_CR12
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2430359
– volume: 19
  start-page: 757
  issue: 11
  year: 2012
  ident: 479_CR27
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2012.2210872
– volume: 10
  start-page: 784
  issue: 4
  year: 2016
  ident: 479_CR19
  publication-title: IET Radar Sonar Navig
  doi: 10.1049/iet-rsn.2015.0385
– volume: 23
  start-page: 4438
  issue: 10
  year: 2014
  ident: 479_CR29
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2348796
– volume: 2011
  start-page: 52
  issue: 1
  year: 2011
  ident: 479_CR35
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/1687-6180-2011-52
– volume: 32
  start-page: 145
  issue: 2
  year: 2015
  ident: 479_CR24
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2013.2297439
– volume: 40
  start-page: 1147
  issue: 4
  year: 2004
  ident: 479_CR56
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2004.1386870
SSID ssj0056202
Score 2.1540034
Snippet This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario,...
Abstract This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Alternating least squares
Artificial satellites in remote sensing
Complexity
Compressed sensing
Computer simulation
Consumption (Economics)
Engineering
HOSVD
Image reconstruction
Kronecker constraint
Mathematical models
Noise prediction
Quantum Information Technology
Radar imaging
Radar scattering
Signal,Image and Speech Processing
Singular value decomposition
Spintronics
Spotlight SAR imaging
Synthetic aperture radar
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BSx0xEB5EerCHYrWlW63kUBAswd0kL5kcX2vFg0jRVryFTTZLhfqU96S_vzPZfY9XpO2l180uOzszmW9mk3wD8D4lW6tEE6m1SfOvm1pih15GjNn1hB-2NO27PncXF3hz47-stfriPWEDPfCguOPUmpwpjLauzaYzMWrV6Bhjw7l37Uv0rZ1fFlNDDCZQr9W4htmgPV7wO3m3hZNMqS7dbyhUyPqfhuQna6MFck634cWYK4rpIONL2MizHXi-xiC4C-flAK3kXLGdC4oO80UWpchdEcMKSkvF1fRS3N6VjkSCgasTNPC97PGQhX1TXF2fvIJvp5-_fjqTY4MEmYw1j9JSLuASOp-w1Ymwu86a8bjHTDDdxIl1qte-tzkz71uuVZw0TttsO3TJG_0aNmf3s_wGhG0sRt_pHB2aPimcRKVcjz26vuuUqaBeKiykkT2cm1j8CKWKQBsGHQfScWAdB1fB0eqRh4E64283f2QrrG5k1utygXwhjL4Q_uULFRyyDQPPTRIuteMRA_pEZrkKU8cMZ4ZKvgr2l2YO46RdBMqN0HrlECv4sDT92vCfZH_7P2Tfgy1V_JPbIu3DJjlJfgfP0s_H28X8oHj3LzK6-Qg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5R6KE9AH0gUh7yoRJSK6uJ7bXHx-UlDgihUhA3K3YcQIIFbVB_fz3eZEUFrdReE1ty7Jn5ZuKZbwA-h6BLEZIi1TpI-nVTcmzQco8-mjbhh85N-y6OzckJXl7a076Ouxuy3YcryWyps1qj_tbRPMqYMJxo0bl5BUujCi3l8e1RicPM_CY8L0V_ffnitN8AKPP0P7fGz65FM9ocrvzXOldhuXcu2XgmDe9gIU7ew9snlIMf4DhX3HJyLuspS-Zk2kWWo-I5kyxLfiw7G39nN3e5hREjpGtYenGdk0J4putkZxf7H-H88ODH3hHvOyrwoLR65Do5DyagsQFrGRLYl1ESgLcYE65XfqSNaKVtdYxEFBdL4UeVkTrqBk2wSq7B4uR-EteB6Uqjt42M3qBqg8CRF8K02KJpm0aoAsphm13o6cap68Wty2EHajfbKJc2ytFGOVPAl_mUhxnXxt8G79LZzQcSTXZ-cD-9cr3WuVCrGBMG16aOqlHeS1FJ731FgVtpRQE7dPKOlDktLtR9TUL6RKLFcmNDlGgqxYgFbA7C4Xot71xyplBbYRAL-DoIw5PXf1r7p38avQFvRJYmapi0CYtJGuIWvA4_H2-66XYW_l_BbfvY
  priority: 102
  providerName: Springer Nature
Title Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD
URI https://link.springer.com/article/10.1186/s13634-017-0479-7
https://www.proquest.com/docview/1908692788
https://doaj.org/article/ca4ee801a7ae4d4bb3213bbb10960092
Volume 2017
WOSCitedRecordID wos000403441100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: K7-
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: P5Z
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: BENPR
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: PIMPY
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: C24
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMceFeklJUPSEggq4njtZ0T2pZWIMoqaqEqXKzYcaAS7Labit_PjNdZiip64ZJD7ERO5vHN-PENwAvvVS48GlKjfElTNzk3ram4My7oDvFDxaJ9J4d6OjWnp1WdJtz6tK1y8InRUbdzT3PkOwhcRlUCM7Y35xecqkbR6moqobEGG8SSQKUb6vHXwRMjtC_3HCoTj8KJtKpZGLXT0yho_4XmRLLO9V-4FOn7rzvpa6ulEYQO7v_v8B_AvRR-sslSXx7CrTB7BHevkBI-hsN4JpdT-NksGDqcRR9YzJtXXLMMI112PDliZz9jkSNGWNgybPget43wSOjJjk_ePoHPB_uf9t7xVHOBe6nkJVcYXmhvdOVNU3oMB_JQEsR3JiDyF26stOjKqlMhEJVcyIUbF7pUQbVG-0qWm7A-m8_CU2AK_7ur2jI4bWTnhRk7IXRnOqO7thUyg3z449YnQnKqi_HDxsTEKLsUkkUhWRKS1Rm8Wj1yvmTjuKnzLolx1ZGItOON-eKbTXZpfSNDQJRudBNkK50rRVE65wpK7fJKZPCSlMCSuePgfJNOLeAnEnGWnWgiTZOYRWawPUjeJj_Q2z9iz-D1oDtXmv819q2bX_YM7oioulRDaRvWUfzhOdz2vy7P-sUINnb3p_XRCNb2hBzFWQa8ftB8FM0D2-v3H-svvwE16A7u
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQc-EYECvgAQgJZTWyv7RwQWihVq11WiJaqNzd2HKgEu2VTgfhT_EZmvMlSVNFbD1zjJIrjN_Nm_PEG4EkIOhcBDanSQdLUTc5tbUvurY-mQf7QqWjf3thMJnZ_v3y_Ar_6szC0rbL3iclR17NAc-TrSFxWlwIztldH3zhVjaLV1b6ExgIWo_jzB6Zs7cvtDRzfp0Jsvt19s8W7qgI8KK2OuUYCNcGaMthKBiS8PEoiscZG5LbCD7QRjSwbHSOJpcVc-EFhpI66tiaUSuJ7L8BFJa0huxoZ3nt-DCUWexy1TUfvRLeKWli93lKvab-H4STqzs1fPJjKBZwmhVOrs4n0Nq__b7_rBlzrwms2XNjDTViJ01tw9YTo4m0YpzPHnMLras7Qoc7byNK8wFJLl2Ekz3aGH9jh11TEiRHX1wwbPqdtMTwJlrKdvY078PFcunMXVqezabwHTOM4-7KW0RurmiDswAthGttY09S1UBnk_Qi70AmuU92PLy4lXla7BSgcgsIRKJzJ4PnykaOF2shZN78m2CxvJKHwdGE2_-Q6v-NCpWLEKKQyVVS18l6KQnrvC0pd81Jk8IxA58id4ceFqjuVgV0kYTA3NCQKpzBLzmCtR5rr_Fzr_sAsgxc9Vk80_-vb75_9ssdweWv33diNtyejB3BFJLOhelFrsIpQiA_hUvh-fNjOHyUDZHBw3hD-Df-bYc8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAc-EYECvgAQgJZm9hZ2zkgtLCsqLparShUFRcTOw5Ugt2yqUD8NX4dM06yFFX01gPXfFhO_Dxvxh6_AXjkvUqFx4lUKi9p6SblpjIFd8YFXSN_qFi0b2-qZzOzv1_MN-BXfxaG0ip7mxgNdbX0tEY-QOIyqhAYsQ3qLi1iPp68OPzGqYIU7bT25TRaiOyEnz8wfGueb49xrB8LMXn97tUb3lUY4D5X-RFXSKbaG114U0qP5JcGSYRWm4A8l7mh0qKWRa1CIOG0kAo3zLRUQVVG-yKX2O45OK8xxqR0wvnwQ88C6Fa0-Y7KxGN4ottRzYwaNPQHKPdDcxJ45_ovToylA04SxImd2kiAk6v_86-7Blc6t5uN2nlyHTbC4gZcPibGeBOm8SwyJ7e7XDE0tKsmsLhesNbYZejhs93RW3bwNRZ3YuQDVAxvfI7pMjwKmbLdvfEteH8mn3MbNhfLRbgDTOGYu6KSwWmT116YoRNC16Y2uq4qkSeQ9qNtfSfETvVAvtgYkBllW4BYBIglgFidwNP1K4etCslpD78kCK0fJAHxeGG5-mQ7e2R9mYeA3kmpy5BXuXNSZNI5l1FImxYigScEQEtmDjvny-60Bn4iCYbZkSaxuByj5wS2etTZzv419g_kEnjW4_bY7X_1_e7pjT2Ei4hcO92e7dyDSyLOICojtQWbiIRwHy7470cHzepBnIsMPp41gn8DZ7Fq8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-linear+sparse+reconstruction+for+SAR+imaging+based+on+higher-order+SVD&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Gao%2C+Yu-fei&rft.au=Gui%2C+Guan&rft.au=Cong%2C+Xun-chao&rft.au=Yang%2C+Yue&rft.date=2017-06-12&rft.pub=Springer+Nature+B.V&rft.issn=1687-6172&rft.eissn=1687-6180&rft.volume=2017&rft.spage=1&rft_id=info:doi/10.1186%2Fs13634-017-0479-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon