Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD
This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR...
Saved in:
| Published in: | EURASIP journal on advances in signal processing Vol. 2017; no. 1; pp. 1 - 11 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
12.06.2017
Springer Springer Nature B.V SpringerOpen |
| Subjects: | |
| ISSN: | 1687-6180, 1687-6172, 1687-6180 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper. |
|---|---|
| AbstractList | Abstract This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper. This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper. |
| ArticleNumber | 44 |
| Audience | Academic |
| Author | Wan, Qun Cong, Xun-Chao Gao, Yu-Fei Yang, Yue Gui, Guan Zou, Yan-Bin |
| Author_xml | – sequence: 1 givenname: Yu-Fei surname: Gao fullname: Gao, Yu-Fei organization: School of Electronic Engineering, University of Electronic Science and Technology of China – sequence: 2 givenname: Guan orcidid: 0000-0003-3888-2881 surname: Gui fullname: Gui, Guan organization: College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications – sequence: 3 givenname: Xun-Chao surname: Cong fullname: Cong, Xun-Chao organization: School of Electronic Engineering, University of Electronic Science and Technology of China – sequence: 4 givenname: Yue surname: Yang fullname: Yang, Yue organization: School of Electronic Engineering, University of Electronic Science and Technology of China – sequence: 5 givenname: Yan-Bin surname: Zou fullname: Zou, Yan-Bin organization: School of Electronic Engineering, University of Electronic Science and Technology of China – sequence: 6 givenname: Qun surname: Wan fullname: Wan, Qun email: wanqun@uestc.edu.cn organization: School of Electronic Engineering, University of Electronic Science and Technology of China |
| BookMark | eNp9kU1r3DAQhkVJoUnaH9CboWenGknWx3FJ2zSwpZCPXoUsjx0tjrSVvIf8-2rrBkKhRQeJ0fu8zMx7Rk5iikjIe6AXAFp-LMAlFy0F1VKhTKtekVOQWrUSND158X5DzkrZUdpJRtkp2X47zEto5xDR5absXS7YZPQpliUf_BJSbMaUm9vNTRMe3RTi1PSu4NDUj4cwPWBuUx6wKn58ektej24u-O7PfU7uv3y-u_zabr9fXV9utq0XUiyt7DqhvFbGa8c9dECRQ8dg1EglQN9JxUZuRomojOmQsr4DxSXKQStvBD8n16vvkNzO7nNtLD_Z5IL9XUh5si4vwc9ovROImoJTDsUg-p4z4H3fAzWSUsOq14fVa5_TzwOWxe7SIcfavgVDtTRMaV1VF6tqctU0xDEt2fl6BnwMdVk4hlrfKCo4FZJ1FVAr4HMqJeNofVjccZ0VDLMFao-52TU3W3Ozx9ysqiT8RT4P-D-GrUyp2jhhfjHEP6FfRmupgw |
| CitedBy_id | crossref_primary_10_3390_rs16040621 crossref_primary_10_3390_s20185047 crossref_primary_10_1016_j_aeue_2017_08_003 |
| Cites_doi | 10.1016/j.jfranklin.2015.03.039 10.1016/j.sigpro.2016.02.004 10.1109/TIT.2010.2040894 10.1109/TIT.2004.834793 10.1186/s13634-016-0379-2 10.1002/widm.1108 10.1137/090748330 10.1049/el.2016.1944 10.1109/JSTARS.2013.2263309 10.1109/ACCESS.2016.2598320 10.1016/j.acha.2008.07.002 10.1016/j.crme.2010.06.005 10.1137/07070111X 10.1109/RADAR.2007.374203 10.1016/j.laa.2009.08.005 10.1109/TSP.2010.2044837 10.1109/78.852018 10.1109/TIP.2011.2165289 10.1016/j.aeue.2015.01.001 10.1137/S003614450343200X 10.1109/TIT.2009.2030471 10.1186/s13634-016-0327-1 10.1186/1687-6180-2014-153 10.1109/ICDSP.2009.5201211 10.1137/S0895479898346995 10.1109/LGRS.2013.2258886 10.1109/TAES.2013.130115 10.1109/CISS.2010.5464722 10.1109/TSP.2011.2161982 10.1186/1687-6180-2014-94 10.1109/JPROC.2010.2044010 10.1109/TAP.2011.2173130 10.1109/TSP.2008.917929 10.1109/LGRS.2014.2349035 10.1049/ip-rsn:20020493 10.1109/JSTSP.2015.2465361 10.1007/s00034-015-0132-3 10.1109/TGRS.2011.2151865 10.1109/LSP.2015.2428713 10.1016/S0169-7439(97)00032-4 10.1109/ACCESS.2015.2430359 10.1109/LSP.2012.2210872 10.1049/iet-rsn.2015.0385 10.1109/TIP.2014.2348796 10.1186/1687-6180-2011-52 10.1109/MSP.2013.2297439 10.1109/TAES.2004.1386870 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2017 COPYRIGHT 2017 Springer EURASIP Journal on Advances in Signal Processing is a copyright of Springer, 2017. |
| Copyright_xml | – notice: The Author(s) 2017 – notice: COPYRIGHT 2017 Springer – notice: EURASIP Journal on Advances in Signal Processing is a copyright of Springer, 2017. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.1186/s13634-017-0479-7 |
| DatabaseName | Springer Nature Link CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1687-6180 |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_ca4ee801a7ae4d4bb3213bbb10960092 A704304625 10_1186_s13634_017_0479_7 |
| GrantInformation_xml | – fundername: National Science and technology major project grantid: 2016ZX03001022 – fundername: National Natural Science Foundation of China grantid: 61401069 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: U1533125 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABEEZ ABUWG ACACY ACGFO ACGFS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ARCSS AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU DU5 DWQXO E3Z EBLON EBS EDO EJD F5P GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 M0N M~E OK1 P62 PIMPY PQQKQ PROAC Q2X RHU RHW RNS RSV SEG SOJ TUS U2A AASML AAYXX AFFHD CITATION OVT PHGZM PHGZT PQGLB 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c464t-65547c879c8a3c1510e31521f8e0611b5672f39f6ee7995e02b51736e6d87c943 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403441100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1687-6180 1687-6172 |
| IngestDate | Tue Oct 14 17:55:48 EDT 2025 Sat Oct 11 05:53:30 EDT 2025 Tue Nov 04 17:38:44 EST 2025 Sat Nov 29 03:12:10 EST 2025 Tue Nov 18 22:18:39 EST 2025 Fri Feb 21 02:43:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | HOSVD Alternating least squares Spotlight SAR imaging Kronecker constraint Compressed sensing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c464t-65547c879c8a3c1510e31521f8e0611b5672f39f6ee7995e02b51736e6d87c943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3888-2881 |
| OpenAccessLink | https://www.proquest.com/docview/1908692788?pq-origsite=%requestingapplication% |
| PQID | 1908692788 |
| PQPubID | 237299 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ca4ee801a7ae4d4bb3213bbb10960092 proquest_journals_1908692788 gale_infotracacademiconefile_A704304625 crossref_citationtrail_10_1186_s13634_017_0479_7 crossref_primary_10_1186_s13634_017_0479_7 springer_journals_10_1186_s13634_017_0479_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-12 |
| PublicationDateYYYYMMDD | 2017-06-12 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-12 day: 12 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: New York |
| PublicationTitle | EURASIP journal on advances in signal processing |
| PublicationTitleAbbrev | EURASIP J. Adv. Signal Process |
| PublicationYear | 2017 |
| Publisher | Springer International Publishing Springer Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
| References | FranceschettiGLanariRSynthetic Aperture Radar Processing1999Boca RatonCRC press MaWQuHGuiGXuLZhaoJChenBMaximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-gaussian environmentsJ. Frankl. Inst.201535272708272710.1016/j.jfranklin.2015.03.039 LiYZhangCWangSLow-complexity non-uniform penalized affine projection algorithm for sparse system identificationCirc. Syst. Signal Process.20163551611162410.1007/s00034-015-0132-31346.93124 SunBGuHHuMQiaoZCompressive sensing for a general sar imaging model based on maxwell’s equationsSPIE Sensing Technology+ Applications2015San DiegoInternational Society for Optics and Photonics948402948402 ZhangLQiaoZ-JXingM-DShengJ-LGuoRBaoZHigh-resolution isar imaging by exploiting sparse aperturesIEEE Trans. Antennas Propag.20126029971008293157910.1109/TAP.2011.2173130 ZhaoLWangLBiGLiSYangLZhangHStructured sparsity-driven autofocus algorithm for high-resolution radar imagerySignal Process.201612537638810.1016/j.sigpro.2016.02.004 DL Donoho, et al., High-dimensional data analysis: the curses and blessings of dimensionality. AMS Math Chall. Lect., 1–32 (2000). R Rubinstein, M Zibulevsky, M Elad, Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Technical Report 8, Computer Science Department, Technion - Israel Institute of Technology (2008). HaardtMRoemerFDel GaldoGHigher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problemsIEEE Trans. Signal Process.200856731983213251671510.1109/TSP.2008.917929 ChenBWangJZhaoHZhengNPríncipeJCConvergence of a fixed-point algorithm under maximum correntropy criterionIEEE Signal Process. Lett.201522101723172710.1109/LSP.2015.2428713 DuarteMFBaraniukRGKronecker compressive sensingIEEE Trans. Image Process.2012212494504292063510.1109/TIP.2011.2165289 SoumekhMSynthetic Aperture Radar Signal Processing with MATLAB Algorithms1999New YorkWiley-Interscience0974.94003 S Jokar, in 2010 44th Annual Conference on Information Sciences and Systems (CISS). Sparse recovery and kronecker products, (2010), pp. 1–4. doi:10.1109/CISS.2010.5464722. ZhangLWangHZ-jQiaoResolution enhancement for isar imaging via improved statistical compressive sensingEURASIP J. Adv. Signal Process.2016201618010.1186/s13634-016-0379-2doi:10.1186/s13634-016-0379-2 TroppJAWrightSJComputational methods for sparse solution of linear inverse problemsProc. IEEE201098694895810.1109/JPROC.2010.2044010 ZhangLZ-jQiaoXingMLiYBaoZHigh-resolution isar imaging with sparse stepped-frequency waveformsIEEE Trans. Geosci. Remote Sens.201149114630465110.1109/TGRS.2011.2151865 ZhangLH-lLiZ-jQiaoM-dXingBaoZIntegrating autofocus techniques with fast factorized back-projection for high-resolution spotlight SAR imagingIEEE Geosci. Remote Sens. Lett.20131061394139810.1109/LGRS.2013.2258886 FangJXuZZhangBHongWWuYFast compressed sensing SAR imaging based on approximated observationIEEE J. Sel. Topic Appl. Earth Obs. Remote Sens.20147135236310.1109/JSTARS.2013.2263309 EldarYCMishaliMRobust recovery of signals from a structured union of subspacesIEEE Trans. Inf. Theory2009551153025316259697710.1109/TIT.2009.2030471doi:10.1109/TIT.2009.2030471 TroppJAGreed is good: algorithmic results for sparse approximationIEEE Trans. Inf. Theory2004501022312242209704410.1109/TIT.2004.8347931288.94019 JokarSMehrmannVSparse solutions to underdetermined Kronecker product systemsLinear Algebra Appl.20094311224372447256303410.1016/j.laa.2009.08.0051181.65058 FriedlandSLiQSchonfeldDCompressive sensing of sparse tensorsIEEE Trans. Image Process.2014231044384447330009210.1109/TIP.2014.2348796doi:10.1109/TIP.2014.2348796 SidiropoulosNDBroRGiannakisGBParallel factor analysis in sensor array processingIEEE Trans. Signal Process.20004882377238810.1109/78.852018 KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X1173.65029doi:10.1137/07070111X MasonESonIYYaziciBPassive synthetic aperture radar imaging using low-rank matrix recovery methodsIEEE J. Sel. Topic Signal Process.2015981570158210.1109/JSTSP.2015.2465361doi:10.1109/JSTSP.2015.2465361 SidiropoulosNDKyrillidisAMulti-way compressed sensing for sparse low-rank tensorsIEEE Signal Process. Lett.2012191175776010.1109/LSP.2012.2210872 ZhangLDuanJQiaoZ-JXingM-DBaoZPhase adjustment and ISAR imaging of maneuvering targets with sparse aperturesIEEE Trans. Aerosp. Electron. Syst.20145031955197310.1109/TAES.2013.130115 BroRParafac. tutorial and applicationsChemometr. Intell. Lab. Syst.199738214917110.1016/S0169-7439(97)00032-4 NeedellDTroppJACosamp: Iterative signal recovery from incomplete and inaccurate samplesAppl. Comput. Harmon. Anal.2009263301321250236610.1016/j.acha.2008.07.0021163.94003 GreengardLLeeJAccelerating the nonuniform fast fourier transformSIAM Rev.2004463443454211505610.1137/S003614450343200X1064.65156 ZhangXLiaoGZhuSYangDDuWEfficient compressed sensing method for moving-target imaging by exploiting the geometry information of the defocused resultsIEEE Geosci. Remote Sens. Lett.201512351752110.1109/LGRS.2014.2349035 RiglingBDMosesRLPolar format algorithm for bistatic SARIEEE Trans. Aerosp. Electron. Syst.20044041147115910.1109/TAES.2004.1386870 ZhangJBanYZhuDZhangGRandom filtering structure-based compressive sensing radarEURASIP J. Adv. Signal Process.2014201419410.1186/1687-6180-2014-94doi:10.1186/1687-6180-2014-94 BaraniukRGCevherVDuarteMFHegdeCModel-based compressive sensingIEEE Trans. Inf. Theory201056419822001265448910.1109/TIT.2010.2040894 BaraniukRSteeghsPCompressive radar imaging2007 IEEE Radar Conference2007BostonIEEE12813310.1109/RADAR.2007.374203 CongXGuiGLiXWenGHuangXWanQObject-level sar imaging method with canonical scattering characterisation and inter-subdictionary interferences mitigationIET Radar Sonar Navig201610478479010.1049/iet-rsn.2015.0385 RoemerFAdvanced algebraic concepts for efficient multi-channel signal processing2013IlmenauPhD thesis, Ilmenau University of Technology YuanYSunJMaoSPFA algorithm for airborne spotlight SAR imaging with nonideal motionsIEE Proc. Radar Sonar Navig2002149417418210.1049/ip-rsn:20020493 DuarteMFEldarYCStructured compressed sensing: from theory to applicationsIEEE Trans. Signal Process.201159940534085286596910.1109/TSP.2011.2161982 CichockiAMandicDDe LathauwerLZhouGZhaoQCaiafaCPhanHATensor decompositions for signal processing applications: from two-way to multiway component analysisIEEE Signal Process. Mag.201532214516310.1109/MSP.2013.2297439 YC Eldar, M Mishali, in 2009 16th International Conference on Digital Signal Processing. Block sparsity and sampling over a union of subspaces, (2009), pp. 1–8. doi:10.1109/ICDSP.2009.5201211. LiEShafieeMJKazemzadehFWongASparse reconstruction of compressive sensing multi-spectral data using an inter-spectral multi-layered conditional random field modelIEEE Access201645540555410.1109/ACCESS.2016.2598320doi:10.1109/ACCESS.2016.2598320 De LathauwerLDe MoorBVandewalleJOn the best rank-1 and rank-(r 1, r 2,…, rn) approximation of higher-order tensorsSIAM J. Matrix Anal. Appl.200021413241342178027610.1137/S08954798983469950958.15026 GaoY-FZouLWanQA two-dimensional arrival angles estimation for l-shaped array based on tensor decompositionAEU - Int. J. Electron. Commun.201569473674410.1016/j.aeue.2015.01.001doi:10.1016/j.aeue.2015.01.001 SunBCaoYChenJLiCQiaoZCompressive sensing imaging for general synthetic aperture radar echo model based on Maxwell’s equationsEURASIP J. Adv. Signal Process.20142014115310.1186/1687-6180-2014-153doi:10.1186/1687-6180-2014-153 XuWHuangPDengYEfficient sliding spotlight SAR raw signal simulation of extended scenesEURASIP J. Adv. Signal Process.2011201115210.1186/1687-6180-2011-52doi:10.1186/1687-6180-2011-52 EldarYCKuppingerPBolcskeiHBlock-sparse signals: uncertainty relations and efficient recoveryIEEE Trans. Signal Process.201058630423054273024610.1109/TSP.2010.2044837 LiGHouQXuSChenZMulti-target simultaneous isar imaging based on compressed sensingEURASIP J. Adv. Signal Process.2016201612710.1186/s13634-016-0327-1doi:10.1186/s13634-016-0327-1 VuDHAdvanced techniques for synthetic aperture radar image reconstruction2012GainesvillePhD thesis, University of Florida CaiafaCFCichockiAMultidimensional compressed sensing and their applicationsWiley Interdiscip. Rev. Data Min. Knowl. Disc.20133635538010.1002/widm.1108doi:10.1002/widm.1108 CurlanderJCMcDonoughRNSynthetic Aperture Radar: Systems and Signal Processing1991New YorkWiley-Interscience0997.94518 LimL-HComonPMultiarray signal processing: tensor decomposition meets compressed sensingComptes Rendus Mecanique2010338631132010.1016/j.crme.2010.06.0051220.94018 LiYWangYSparse SM-NLMS algorithm based on correntropy criterionElectron. Lett.201652171461146310.1049/el.2016.1944 WalterGCRonSGRonaldMMSpotlight Synthetic Aperture Radar1995NorwoodArtech House Publishers0838.94001 MarinoASynthetic Aperture Radar2012BerlinSpringer10.1007/978-3-642-27163-2_2 OseledetsIVTyrtyshnikovEEBreaking the curse of dimensionality, or how to use SVD in many dimensionsSIAM J. Sci. Comput.200931537443759255656010.1137/0907483301200.65028 ZhangZXuYYangJLiXZhangDA survey of sparse representation: algorithms and applicationsIEEE Access2015349053010.1109/ACCESS.2015.2430359doi:10.1109/ACCESS.2015.2430359 479_CR53 B Chen (479_CR13) 2015; 22 R Baraniuk (479_CR7) 2007 G Franceschetti (479_CR3) 1999 L Zhang (479_CR8) 2011; 49 RG Baraniuk (479_CR43) 2010; 56 L Zhao (479_CR21) 2016; 125 Y Yuan (479_CR55) 2002; 149 DH Vu (479_CR34) 2012 L Zhang (479_CR9) 2012; 60 Y Li (479_CR50) 2016; 52 M Soumekh (479_CR5) 1999 S Jokar (479_CR39) 2009; 431 M Haardt (479_CR31) 2008; 56 BD Rigling (479_CR56) 2004; 40 L-H Lim (479_CR25) 2010; 338 S Friedland (479_CR29) 2014; 23 L De Lathauwer (479_CR52) 2000; 21 X Cong (479_CR19) 2016; 10 X Zhang (479_CR18) 2015; 12 TG Kolda (479_CR33) 2009; 51 GC Walter (479_CR2) 1995 Y-F Gao (479_CR46) 2015; 69 MF Duarte (479_CR45) 2012; 21 B Sun (479_CR10) 2014; 2014 G Li (479_CR11) 2016; 2016 D Needell (479_CR57) 2009; 26 Z Zhang (479_CR12) 2015; 3 E Mason (479_CR6) 2015; 9 J Zhang (479_CR17) 2014; 2014 IV Oseledets (479_CR48) 2009; 31 E Li (479_CR30) 2016; 4 JA Tropp (479_CR54) 2010; 98 Y Li (479_CR51) 2016; 35 J Fang (479_CR15) 2014; 7 W Ma (479_CR14) 2015; 352 JA Tropp (479_CR38) 2004; 50 ND Sidiropoulos (479_CR27) 2012; 19 R Bro (479_CR22) 1997; 38 CF Caiafa (479_CR28) 2013; 3 ND Sidiropoulos (479_CR23) 2000; 48 L Zhang (479_CR36) 2013; 10 L Zhang (479_CR16) 2014; 50 A Marino (479_CR4) 2012 JC Curlander (479_CR1) 1991 W Xu (479_CR35) 2011; 2011 479_CR40 B Sun (479_CR49) 2015 479_CR41 MF Duarte (479_CR26) 2011; 59 479_CR47 YC Eldar (479_CR44) 2009; 55 A Cichocki (479_CR24) 2015; 32 F Roemer (479_CR32) 2013 YC Eldar (479_CR42) 2010; 58 L Zhang (479_CR20) 2016; 2016 L Greengard (479_CR37) 2004; 46 |
| References_xml | – reference: ZhangLDuanJQiaoZ-JXingM-DBaoZPhase adjustment and ISAR imaging of maneuvering targets with sparse aperturesIEEE Trans. Aerosp. Electron. Syst.20145031955197310.1109/TAES.2013.130115 – reference: SunBCaoYChenJLiCQiaoZCompressive sensing imaging for general synthetic aperture radar echo model based on Maxwell’s equationsEURASIP J. Adv. Signal Process.20142014115310.1186/1687-6180-2014-153doi:10.1186/1687-6180-2014-153 – reference: ZhangLQiaoZ-JXingM-DShengJ-LGuoRBaoZHigh-resolution isar imaging by exploiting sparse aperturesIEEE Trans. Antennas Propag.20126029971008293157910.1109/TAP.2011.2173130 – reference: ChenBWangJZhaoHZhengNPríncipeJCConvergence of a fixed-point algorithm under maximum correntropy criterionIEEE Signal Process. Lett.201522101723172710.1109/LSP.2015.2428713 – reference: ZhangXLiaoGZhuSYangDDuWEfficient compressed sensing method for moving-target imaging by exploiting the geometry information of the defocused resultsIEEE Geosci. Remote Sens. Lett.201512351752110.1109/LGRS.2014.2349035 – reference: DuarteMFBaraniukRGKronecker compressive sensingIEEE Trans. Image Process.2012212494504292063510.1109/TIP.2011.2165289 – reference: De LathauwerLDe MoorBVandewalleJOn the best rank-1 and rank-(r 1, r 2,…, rn) approximation of higher-order tensorsSIAM J. Matrix Anal. Appl.200021413241342178027610.1137/S08954798983469950958.15026 – reference: ZhangZXuYYangJLiXZhangDA survey of sparse representation: algorithms and applicationsIEEE Access2015349053010.1109/ACCESS.2015.2430359doi:10.1109/ACCESS.2015.2430359 – reference: SidiropoulosNDKyrillidisAMulti-way compressed sensing for sparse low-rank tensorsIEEE Signal Process. Lett.2012191175776010.1109/LSP.2012.2210872 – reference: DuarteMFEldarYCStructured compressed sensing: from theory to applicationsIEEE Trans. Signal Process.201159940534085286596910.1109/TSP.2011.2161982 – reference: MarinoASynthetic Aperture Radar2012BerlinSpringer10.1007/978-3-642-27163-2_2 – reference: LimL-HComonPMultiarray signal processing: tensor decomposition meets compressed sensingComptes Rendus Mecanique2010338631132010.1016/j.crme.2010.06.0051220.94018 – reference: FriedlandSLiQSchonfeldDCompressive sensing of sparse tensorsIEEE Trans. Image Process.2014231044384447330009210.1109/TIP.2014.2348796doi:10.1109/TIP.2014.2348796 – reference: MaWQuHGuiGXuLZhaoJChenBMaximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-gaussian environmentsJ. Frankl. Inst.201535272708272710.1016/j.jfranklin.2015.03.039 – reference: S Jokar, in 2010 44th Annual Conference on Information Sciences and Systems (CISS). Sparse recovery and kronecker products, (2010), pp. 1–4. doi:10.1109/CISS.2010.5464722. – reference: CurlanderJCMcDonoughRNSynthetic Aperture Radar: Systems and Signal Processing1991New YorkWiley-Interscience0997.94518 – reference: CongXGuiGLiXWenGHuangXWanQObject-level sar imaging method with canonical scattering characterisation and inter-subdictionary interferences mitigationIET Radar Sonar Navig201610478479010.1049/iet-rsn.2015.0385 – reference: EldarYCMishaliMRobust recovery of signals from a structured union of subspacesIEEE Trans. Inf. Theory2009551153025316259697710.1109/TIT.2009.2030471doi:10.1109/TIT.2009.2030471 – reference: BroRParafac. tutorial and applicationsChemometr. Intell. Lab. Syst.199738214917110.1016/S0169-7439(97)00032-4 – reference: FangJXuZZhangBHongWWuYFast compressed sensing SAR imaging based on approximated observationIEEE J. Sel. Topic Appl. Earth Obs. Remote Sens.20147135236310.1109/JSTARS.2013.2263309 – reference: XuWHuangPDengYEfficient sliding spotlight SAR raw signal simulation of extended scenesEURASIP J. Adv. Signal Process.2011201115210.1186/1687-6180-2011-52doi:10.1186/1687-6180-2011-52 – reference: BaraniukRGCevherVDuarteMFHegdeCModel-based compressive sensingIEEE Trans. Inf. Theory201056419822001265448910.1109/TIT.2010.2040894 – reference: SunBGuHHuMQiaoZCompressive sensing for a general sar imaging model based on maxwell’s equationsSPIE Sensing Technology+ Applications2015San DiegoInternational Society for Optics and Photonics948402948402 – reference: GreengardLLeeJAccelerating the nonuniform fast fourier transformSIAM Rev.2004463443454211505610.1137/S003614450343200X1064.65156 – reference: LiYZhangCWangSLow-complexity non-uniform penalized affine projection algorithm for sparse system identificationCirc. Syst. Signal Process.20163551611162410.1007/s00034-015-0132-31346.93124 – reference: MasonESonIYYaziciBPassive synthetic aperture radar imaging using low-rank matrix recovery methodsIEEE J. Sel. Topic Signal Process.2015981570158210.1109/JSTSP.2015.2465361doi:10.1109/JSTSP.2015.2465361 – reference: OseledetsIVTyrtyshnikovEEBreaking the curse of dimensionality, or how to use SVD in many dimensionsSIAM J. Sci. Comput.200931537443759255656010.1137/0907483301200.65028 – reference: WalterGCRonSGRonaldMMSpotlight Synthetic Aperture Radar1995NorwoodArtech House Publishers0838.94001 – reference: NeedellDTroppJACosamp: Iterative signal recovery from incomplete and inaccurate samplesAppl. Comput. Harmon. Anal.2009263301321250236610.1016/j.acha.2008.07.0021163.94003 – reference: LiGHouQXuSChenZMulti-target simultaneous isar imaging based on compressed sensingEURASIP J. Adv. Signal Process.2016201612710.1186/s13634-016-0327-1doi:10.1186/s13634-016-0327-1 – reference: ZhangLWangHZ-jQiaoResolution enhancement for isar imaging via improved statistical compressive sensingEURASIP J. Adv. Signal Process.2016201618010.1186/s13634-016-0379-2doi:10.1186/s13634-016-0379-2 – reference: EldarYCKuppingerPBolcskeiHBlock-sparse signals: uncertainty relations and efficient recoveryIEEE Trans. Signal Process.201058630423054273024610.1109/TSP.2010.2044837 – reference: SidiropoulosNDBroRGiannakisGBParallel factor analysis in sensor array processingIEEE Trans. Signal Process.20004882377238810.1109/78.852018 – reference: HaardtMRoemerFDel GaldoGHigher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problemsIEEE Trans. Signal Process.200856731983213251671510.1109/TSP.2008.917929 – reference: ZhangLH-lLiZ-jQiaoM-dXingBaoZIntegrating autofocus techniques with fast factorized back-projection for high-resolution spotlight SAR imagingIEEE Geosci. Remote Sens. Lett.20131061394139810.1109/LGRS.2013.2258886 – reference: ZhangLZ-jQiaoXingMLiYBaoZHigh-resolution isar imaging with sparse stepped-frequency waveformsIEEE Trans. Geosci. Remote Sens.201149114630465110.1109/TGRS.2011.2151865 – reference: ZhangJBanYZhuDZhangGRandom filtering structure-based compressive sensing radarEURASIP J. Adv. Signal Process.2014201419410.1186/1687-6180-2014-94doi:10.1186/1687-6180-2014-94 – reference: RoemerFAdvanced algebraic concepts for efficient multi-channel signal processing2013IlmenauPhD thesis, Ilmenau University of Technology – reference: TroppJAWrightSJComputational methods for sparse solution of linear inverse problemsProc. IEEE201098694895810.1109/JPROC.2010.2044010 – reference: CaiafaCFCichockiAMultidimensional compressed sensing and their applicationsWiley Interdiscip. Rev. Data Min. Knowl. Disc.20133635538010.1002/widm.1108doi:10.1002/widm.1108 – reference: LiEShafieeMJKazemzadehFWongASparse reconstruction of compressive sensing multi-spectral data using an inter-spectral multi-layered conditional random field modelIEEE Access201645540555410.1109/ACCESS.2016.2598320doi:10.1109/ACCESS.2016.2598320 – reference: DL Donoho, et al., High-dimensional data analysis: the curses and blessings of dimensionality. AMS Math Chall. Lect., 1–32 (2000). – reference: TroppJAGreed is good: algorithmic results for sparse approximationIEEE Trans. Inf. Theory2004501022312242209704410.1109/TIT.2004.8347931288.94019 – reference: R Rubinstein, M Zibulevsky, M Elad, Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Technical Report 8, Computer Science Department, Technion - Israel Institute of Technology (2008). – reference: FranceschettiGLanariRSynthetic Aperture Radar Processing1999Boca RatonCRC press – reference: SoumekhMSynthetic Aperture Radar Signal Processing with MATLAB Algorithms1999New YorkWiley-Interscience0974.94003 – reference: ZhaoLWangLBiGLiSYangLZhangHStructured sparsity-driven autofocus algorithm for high-resolution radar imagerySignal Process.201612537638810.1016/j.sigpro.2016.02.004 – reference: CichockiAMandicDDe LathauwerLZhouGZhaoQCaiafaCPhanHATensor decompositions for signal processing applications: from two-way to multiway component analysisIEEE Signal Process. Mag.201532214516310.1109/MSP.2013.2297439 – reference: BaraniukRSteeghsPCompressive radar imaging2007 IEEE Radar Conference2007BostonIEEE12813310.1109/RADAR.2007.374203 – reference: KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X1173.65029doi:10.1137/07070111X – reference: YC Eldar, M Mishali, in 2009 16th International Conference on Digital Signal Processing. Block sparsity and sampling over a union of subspaces, (2009), pp. 1–8. doi:10.1109/ICDSP.2009.5201211. – reference: GaoY-FZouLWanQA two-dimensional arrival angles estimation for l-shaped array based on tensor decompositionAEU - Int. J. Electron. Commun.201569473674410.1016/j.aeue.2015.01.001doi:10.1016/j.aeue.2015.01.001 – reference: RiglingBDMosesRLPolar format algorithm for bistatic SARIEEE Trans. Aerosp. Electron. Syst.20044041147115910.1109/TAES.2004.1386870 – reference: VuDHAdvanced techniques for synthetic aperture radar image reconstruction2012GainesvillePhD thesis, University of Florida – reference: JokarSMehrmannVSparse solutions to underdetermined Kronecker product systemsLinear Algebra Appl.20094311224372447256303410.1016/j.laa.2009.08.0051181.65058 – reference: LiYWangYSparse SM-NLMS algorithm based on correntropy criterionElectron. Lett.201652171461146310.1049/el.2016.1944 – reference: YuanYSunJMaoSPFA algorithm for airborne spotlight SAR imaging with nonideal motionsIEE Proc. Radar Sonar Navig2002149417418210.1049/ip-rsn:20020493 – volume: 352 start-page: 2708 issue: 7 year: 2015 ident: 479_CR14 publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2015.03.039 – volume: 125 start-page: 376 year: 2016 ident: 479_CR21 publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.02.004 – volume: 56 start-page: 1982 issue: 4 year: 2010 ident: 479_CR43 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2010.2040894 – volume: 50 start-page: 2231 issue: 10 year: 2004 ident: 479_CR38 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2004.834793 – volume: 2016 start-page: 80 issue: 1 year: 2016 ident: 479_CR20 publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-016-0379-2 – ident: 479_CR53 – volume-title: Spotlight Synthetic Aperture Radar year: 1995 ident: 479_CR2 – volume: 3 start-page: 355 issue: 6 year: 2013 ident: 479_CR28 publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Disc. doi: 10.1002/widm.1108 – volume: 31 start-page: 3744 issue: 5 year: 2009 ident: 479_CR48 publication-title: SIAM J. Sci. Comput. doi: 10.1137/090748330 – volume-title: Advanced techniques for synthetic aperture radar image reconstruction year: 2012 ident: 479_CR34 – volume: 52 start-page: 1461 issue: 17 year: 2016 ident: 479_CR50 publication-title: Electron. Lett. doi: 10.1049/el.2016.1944 – volume: 7 start-page: 352 issue: 1 year: 2014 ident: 479_CR15 publication-title: IEEE J. Sel. Topic Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2263309 – volume: 4 start-page: 5540 year: 2016 ident: 479_CR30 publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2598320 – volume: 26 start-page: 301 issue: 3 year: 2009 ident: 479_CR57 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2008.07.002 – volume: 338 start-page: 311 issue: 6 year: 2010 ident: 479_CR25 publication-title: Comptes Rendus Mecanique doi: 10.1016/j.crme.2010.06.005 – volume: 51 start-page: 455 issue: 3 year: 2009 ident: 479_CR33 publication-title: SIAM Rev. doi: 10.1137/07070111X – start-page: 948402 volume-title: SPIE Sensing Technology+ Applications year: 2015 ident: 479_CR49 – start-page: 128 volume-title: 2007 IEEE Radar Conference year: 2007 ident: 479_CR7 doi: 10.1109/RADAR.2007.374203 – volume: 431 start-page: 2437 issue: 12 year: 2009 ident: 479_CR39 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2009.08.005 – volume: 58 start-page: 3042 issue: 6 year: 2010 ident: 479_CR42 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2044837 – volume: 48 start-page: 2377 issue: 8 year: 2000 ident: 479_CR23 publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.852018 – volume: 21 start-page: 494 issue: 2 year: 2012 ident: 479_CR45 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2165289 – volume: 69 start-page: 736 issue: 4 year: 2015 ident: 479_CR46 publication-title: AEU - Int. J. Electron. Commun. doi: 10.1016/j.aeue.2015.01.001 – volume: 46 start-page: 443 issue: 3 year: 2004 ident: 479_CR37 publication-title: SIAM Rev. doi: 10.1137/S003614450343200X – volume: 55 start-page: 5302 issue: 11 year: 2009 ident: 479_CR44 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2009.2030471 – volume: 2016 start-page: 27 issue: 1 year: 2016 ident: 479_CR11 publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-016-0327-1 – volume-title: Advanced algebraic concepts for efficient multi-channel signal processing year: 2013 ident: 479_CR32 – volume: 2014 start-page: 153 issue: 1 year: 2014 ident: 479_CR10 publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/1687-6180-2014-153 – ident: 479_CR41 doi: 10.1109/ICDSP.2009.5201211 – volume: 21 start-page: 1324 issue: 4 year: 2000 ident: 479_CR52 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479898346995 – volume: 10 start-page: 1394 issue: 6 year: 2013 ident: 479_CR36 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2258886 – volume: 50 start-page: 1955 issue: 3 year: 2014 ident: 479_CR16 publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2013.130115 – ident: 479_CR40 doi: 10.1109/CISS.2010.5464722 – volume: 59 start-page: 4053 issue: 9 year: 2011 ident: 479_CR26 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2011.2161982 – volume: 2014 start-page: 94 issue: 1 year: 2014 ident: 479_CR17 publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/1687-6180-2014-94 – volume: 98 start-page: 948 issue: 6 year: 2010 ident: 479_CR54 publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2044010 – volume: 60 start-page: 997 issue: 2 year: 2012 ident: 479_CR9 publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2011.2173130 – volume: 56 start-page: 3198 issue: 7 year: 2008 ident: 479_CR31 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.917929 – volume: 12 start-page: 517 issue: 3 year: 2015 ident: 479_CR18 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2349035 – volume-title: Synthetic Aperture Radar Processing year: 1999 ident: 479_CR3 – volume: 149 start-page: 174 issue: 4 year: 2002 ident: 479_CR55 publication-title: IEE Proc. Radar Sonar Navig doi: 10.1049/ip-rsn:20020493 – volume: 9 start-page: 1570 issue: 8 year: 2015 ident: 479_CR6 publication-title: IEEE J. Sel. Topic Signal Process. doi: 10.1109/JSTSP.2015.2465361 – volume-title: Synthetic Aperture Radar year: 2012 ident: 479_CR4 – volume: 35 start-page: 1611 issue: 5 year: 2016 ident: 479_CR51 publication-title: Circ. Syst. Signal Process. doi: 10.1007/s00034-015-0132-3 – ident: 479_CR47 – volume-title: Synthetic Aperture Radar: Systems and Signal Processing year: 1991 ident: 479_CR1 – volume-title: Synthetic Aperture Radar Signal Processing with MATLAB Algorithms year: 1999 ident: 479_CR5 – volume: 49 start-page: 4630 issue: 11 year: 2011 ident: 479_CR8 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2151865 – volume: 22 start-page: 1723 issue: 10 year: 2015 ident: 479_CR13 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2015.2428713 – volume: 38 start-page: 149 issue: 2 year: 1997 ident: 479_CR22 publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/S0169-7439(97)00032-4 – volume: 3 start-page: 490 year: 2015 ident: 479_CR12 publication-title: IEEE Access doi: 10.1109/ACCESS.2015.2430359 – volume: 19 start-page: 757 issue: 11 year: 2012 ident: 479_CR27 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2012.2210872 – volume: 10 start-page: 784 issue: 4 year: 2016 ident: 479_CR19 publication-title: IET Radar Sonar Navig doi: 10.1049/iet-rsn.2015.0385 – volume: 23 start-page: 4438 issue: 10 year: 2014 ident: 479_CR29 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2348796 – volume: 2011 start-page: 52 issue: 1 year: 2011 ident: 479_CR35 publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/1687-6180-2011-52 – volume: 32 start-page: 145 issue: 2 year: 2015 ident: 479_CR24 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2013.2297439 – volume: 40 start-page: 1147 issue: 4 year: 2004 ident: 479_CR56 publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2004.1386870 |
| SSID | ssj0056202 |
| Score | 2.1540034 |
| Snippet | This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario,... Abstract This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world... |
| SourceID | doaj proquest gale crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Alternating least squares Artificial satellites in remote sensing Complexity Compressed sensing Computer simulation Consumption (Economics) Engineering HOSVD Image reconstruction Kronecker constraint Mathematical models Noise prediction Quantum Information Technology Radar imaging Radar scattering Signal,Image and Speech Processing Singular value decomposition Spintronics Spotlight SAR imaging Synthetic aperture radar |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BSx0xEB5EerCHYrWlW63kUBAswd0kL5kcX2vFg0jRVryFTTZLhfqU96S_vzPZfY9XpO2l180uOzszmW9mk3wD8D4lW6tEE6m1SfOvm1pih15GjNn1hB-2NO27PncXF3hz47-stfriPWEDPfCguOPUmpwpjLauzaYzMWrV6Bhjw7l37Uv0rZ1fFlNDDCZQr9W4htmgPV7wO3m3hZNMqS7dbyhUyPqfhuQna6MFck634cWYK4rpIONL2MizHXi-xiC4C-flAK3kXLGdC4oO80UWpchdEcMKSkvF1fRS3N6VjkSCgasTNPC97PGQhX1TXF2fvIJvp5-_fjqTY4MEmYw1j9JSLuASOp-w1Ymwu86a8bjHTDDdxIl1qte-tzkz71uuVZw0TttsO3TJG_0aNmf3s_wGhG0sRt_pHB2aPimcRKVcjz26vuuUqaBeKiykkT2cm1j8CKWKQBsGHQfScWAdB1fB0eqRh4E64283f2QrrG5k1utygXwhjL4Q_uULFRyyDQPPTRIuteMRA_pEZrkKU8cMZ4ZKvgr2l2YO46RdBMqN0HrlECv4sDT92vCfZH_7P2Tfgy1V_JPbIu3DJjlJfgfP0s_H28X8oHj3LzK6-Qg priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5R6KE9AH0gUh7yoRJSK6uJ7bXHx-UlDgihUhA3K3YcQIIFbVB_fz3eZEUFrdReE1ty7Jn5ZuKZbwA-h6BLEZIi1TpI-nVTcmzQco8-mjbhh85N-y6OzckJXl7a076Ouxuy3YcryWyps1qj_tbRPMqYMJxo0bl5BUujCi3l8e1RicPM_CY8L0V_ffnitN8AKPP0P7fGz65FM9ocrvzXOldhuXcu2XgmDe9gIU7ew9snlIMf4DhX3HJyLuspS-Zk2kWWo-I5kyxLfiw7G39nN3e5hREjpGtYenGdk0J4putkZxf7H-H88ODH3hHvOyrwoLR65Do5DyagsQFrGRLYl1ESgLcYE65XfqSNaKVtdYxEFBdL4UeVkTrqBk2wSq7B4uR-EteB6Uqjt42M3qBqg8CRF8K02KJpm0aoAsphm13o6cap68Wty2EHajfbKJc2ytFGOVPAl_mUhxnXxt8G79LZzQcSTXZ-cD-9cr3WuVCrGBMG16aOqlHeS1FJ731FgVtpRQE7dPKOlDktLtR9TUL6RKLFcmNDlGgqxYgFbA7C4Xot71xyplBbYRAL-DoIw5PXf1r7p38avQFvRJYmapi0CYtJGuIWvA4_H2-66XYW_l_BbfvY priority: 102 providerName: Springer Nature |
| Title | Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD |
| URI | https://link.springer.com/article/10.1186/s13634-017-0479-7 https://www.proquest.com/docview/1908692788 https://doaj.org/article/ca4ee801a7ae4d4bb3213bbb10960092 |
| Volume | 2017 |
| WOSCitedRecordID | wos000403441100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056202 issn: 1687-6180 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1687-6180 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0056202 issn: 1687-6180 databaseCode: K7- dateStart: 20070101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1687-6180 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0056202 issn: 1687-6180 databaseCode: P5Z dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1687-6180 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0056202 issn: 1687-6180 databaseCode: BENPR dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1687-6180 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0056202 issn: 1687-6180 databaseCode: PIMPY dateStart: 20070101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056202 issn: 1687-6180 databaseCode: C24 dateStart: 20070101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMceFeklJUPSEggq4njtZ0T2pZWIMoqaqEqXKzYcaAS7Labit_PjNdZiip64ZJD7ERO5vHN-PENwAvvVS48GlKjfElTNzk3ram4My7oDvFDxaJ9J4d6OjWnp1WdJtz6tK1y8InRUbdzT3PkOwhcRlUCM7Y35xecqkbR6moqobEGG8SSQKUb6vHXwRMjtC_3HCoTj8KJtKpZGLXT0yho_4XmRLLO9V-4FOn7rzvpa6ulEYQO7v_v8B_AvRR-sslSXx7CrTB7BHevkBI-hsN4JpdT-NksGDqcRR9YzJtXXLMMI112PDliZz9jkSNGWNgybPget43wSOjJjk_ePoHPB_uf9t7xVHOBe6nkJVcYXmhvdOVNU3oMB_JQEsR3JiDyF26stOjKqlMhEJVcyIUbF7pUQbVG-0qWm7A-m8_CU2AK_7ur2jI4bWTnhRk7IXRnOqO7thUyg3z449YnQnKqi_HDxsTEKLsUkkUhWRKS1Rm8Wj1yvmTjuKnzLolx1ZGItOON-eKbTXZpfSNDQJRudBNkK50rRVE65wpK7fJKZPCSlMCSuePgfJNOLeAnEnGWnWgiTZOYRWawPUjeJj_Q2z9iz-D1oDtXmv819q2bX_YM7oioulRDaRvWUfzhOdz2vy7P-sUINnb3p_XRCNb2hBzFWQa8ftB8FM0D2-v3H-svvwE16A7u |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQc-EYECvgAQgJZTWyv7RwQWihVq11WiJaqNzd2HKgEu2VTgfhT_EZmvMlSVNFbD1zjJIrjN_Nm_PEG4EkIOhcBDanSQdLUTc5tbUvurY-mQf7QqWjf3thMJnZ_v3y_Ar_6szC0rbL3iclR17NAc-TrSFxWlwIztldH3zhVjaLV1b6ExgIWo_jzB6Zs7cvtDRzfp0Jsvt19s8W7qgI8KK2OuUYCNcGaMthKBiS8PEoiscZG5LbCD7QRjSwbHSOJpcVc-EFhpI66tiaUSuJ7L8BFJa0huxoZ3nt-DCUWexy1TUfvRLeKWli93lKvab-H4STqzs1fPJjKBZwmhVOrs4n0Nq__b7_rBlzrwms2XNjDTViJ01tw9YTo4m0YpzPHnMLras7Qoc7byNK8wFJLl2Ekz3aGH9jh11TEiRHX1wwbPqdtMTwJlrKdvY078PFcunMXVqezabwHTOM4-7KW0RurmiDswAthGttY09S1UBnk_Qi70AmuU92PLy4lXla7BSgcgsIRKJzJ4PnykaOF2shZN78m2CxvJKHwdGE2_-Q6v-NCpWLEKKQyVVS18l6KQnrvC0pd81Jk8IxA58id4ceFqjuVgV0kYTA3NCQKpzBLzmCtR5rr_Fzr_sAsgxc9Vk80_-vb75_9ssdweWv33diNtyejB3BFJLOhelFrsIpQiA_hUvh-fNjOHyUDZHBw3hD-Df-bYc8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAc-EYECvgAQgJZm9hZ2zkgtLCsqLparShUFRcTOw5Ugt2yqUD8NX4dM06yFFX01gPXfFhO_Dxvxh6_AXjkvUqFx4lUKi9p6SblpjIFd8YFXSN_qFi0b2-qZzOzv1_MN-BXfxaG0ip7mxgNdbX0tEY-QOIyqhAYsQ3qLi1iPp68OPzGqYIU7bT25TRaiOyEnz8wfGueb49xrB8LMXn97tUb3lUY4D5X-RFXSKbaG114U0qP5JcGSYRWm4A8l7mh0qKWRa1CIOG0kAo3zLRUQVVG-yKX2O45OK8xxqR0wvnwQ88C6Fa0-Y7KxGN4ottRzYwaNPQHKPdDcxJ45_ovToylA04SxImd2kiAk6v_86-7Blc6t5uN2nlyHTbC4gZcPibGeBOm8SwyJ7e7XDE0tKsmsLhesNbYZejhs93RW3bwNRZ3YuQDVAxvfI7pMjwKmbLdvfEteH8mn3MbNhfLRbgDTOGYu6KSwWmT116YoRNC16Y2uq4qkSeQ9qNtfSfETvVAvtgYkBllW4BYBIglgFidwNP1K4etCslpD78kCK0fJAHxeGG5-mQ7e2R9mYeA3kmpy5BXuXNSZNI5l1FImxYigScEQEtmDjvny-60Bn4iCYbZkSaxuByj5wS2etTZzv419g_kEnjW4_bY7X_1_e7pjT2Ei4hcO92e7dyDSyLOICojtQWbiIRwHy7470cHzepBnIsMPp41gn8DZ7Fq8w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-linear+sparse+reconstruction+for+SAR+imaging+based+on+higher-order+SVD&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Gao%2C+Yu-fei&rft.au=Gui%2C+Guan&rft.au=Cong%2C+Xun-chao&rft.au=Yang%2C+Yue&rft.date=2017-06-12&rft.pub=Springer+Nature+B.V&rft.issn=1687-6172&rft.eissn=1687-6180&rft.volume=2017&rft.spage=1&rft_id=info:doi/10.1186%2Fs13634-017-0479-7&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon |