Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm

Many engineering problems require the optimization of expensive, black-box functions involving multiple conflicting criteria, such that commonly used methods like multiobjective genetic algorithms are inadequate. To tackle this problem several algorithms have been developed using surrogates. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization Jg. 71; H. 2; S. 407 - 438
Hauptverfasser: Bradford, Eric, Schweidtmann, Artur M., Lapkin, Alexei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2018
Springer
Springer Nature B.V
Schlagworte:
ISSN:0925-5001, 1573-2916
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Many engineering problems require the optimization of expensive, black-box functions involving multiple conflicting criteria, such that commonly used methods like multiobjective genetic algorithms are inadequate. To tackle this problem several algorithms have been developed using surrogates. However, these often have disadvantages such as the requirement of a priori knowledge of the output functions or exponentially scaling computational cost with respect to the number of objectives. In this paper a new algorithm is proposed, TSEMO, which uses Gaussian processes as surrogates. The Gaussian processes are sampled using spectral sampling techniques to make use of Thompson sampling in conjunction with the hypervolume quality indicator and NSGA-II to choose a new evaluation point at each iteration. The reference point required for the hypervolume calculation is estimated within TSEMO. Further, a simple extension was proposed to carry out batch-sequential design. TSEMO was compared to ParEGO, an expected hypervolume implementation, and NSGA-II on nine test problems with a budget of 150 function evaluations. Overall, TSEMO shows promising performance, while giving a simple algorithm without the requirement of a priori knowledge, reduced hypervolume calculations to approach linear scaling with respect to the number of objectives, the capacity to handle noise and lastly the ability for batch-sequential usage.
AbstractList Many engineering problems require the optimization of expensive, black-box functions involving multiple conflicting criteria, such that commonly used methods like multiobjective genetic algorithms are inadequate. To tackle this problem several algorithms have been developed using surrogates. However, these often have disadvantages such as the requirement of a priori knowledge of the output functions or exponentially scaling computational cost with respect to the number of objectives. In this paper a new algorithm is proposed, TSEMO, which uses Gaussian processes as surrogates. The Gaussian processes are sampled using spectral sampling techniques to make use of Thompson sampling in conjunction with the hypervolume quality indicator and NSGA-II to choose a new evaluation point at each iteration. The reference point required for the hypervolume calculation is estimated within TSEMO. Further, a simple extension was proposed to carry out batch-sequential design. TSEMO was compared to ParEGO, an expected hypervolume implementation, and NSGA-II on nine test problems with a budget of 150 function evaluations. Overall, TSEMO shows promising performance, while giving a simple algorithm without the requirement of a priori knowledge, reduced hypervolume calculations to approach linear scaling with respect to the number of objectives, the capacity to handle noise and lastly the ability for batch-sequential usage.
Audience Academic
Author Bradford, Eric
Lapkin, Alexei
Schweidtmann, Artur M.
Author_xml – sequence: 1
  givenname: Eric
  orcidid: 0000-0002-0803-0576
  surname: Bradford
  fullname: Bradford, Eric
  email: ecb65@cantab.net
  organization: Department of Engineering Cybernetics, Norwegian University of Science and Technology, Department of Chemical Engineering and Biotechnology, University of Cambridge
– sequence: 2
  givenname: Artur M.
  orcidid: 0000-0001-8885-6847
  surname: Schweidtmann
  fullname: Schweidtmann, Artur M.
  organization: Aachener Verfahrenstechnik - Process Systems Engineering, RWTH Aachen University, Department of Chemical Engineering and Biotechnology, University of Cambridge
– sequence: 3
  givenname: Alexei
  orcidid: 0000-0001-7621-0889
  surname: Lapkin
  fullname: Lapkin, Alexei
  organization: Department of Chemical Engineering and Biotechnology, University of Cambridge
BookMark eNp9kV9rFTEQxYNU8Lb6AXwL-Oq2k393k8dSahUKvuhzmJtN1lx2k3WTK9RPb64rCEIlhMBwfjkzcy7JRcrJE_KWwTUD6G8KA210B6zdPZiOvyA7pnrRccP2F2QHhqtOAbBX5LKUIwAYrfiOzPchRBd9qnQ-TTXmw9G7Gn94mpca5_gTWy1RPy9TfopppA94KiViosuanS_Fl_e0LI1ZcaIFm-6swjRQpKNPvkZHcRrzGuu3-TV5GXAq_s2f94p8_XD_5e5j9_j54dPd7WPn5F7WTvIh9OgkA8G0PDCh0KgQjJNKSCMGrVEw1-MABwyCo3Ty4MMeetSD8b0QV-Td9m9r8vvJl2qP-bSmZmk5AFfaKMOb6npTjTh5G1PIbQjXzuDn6Np-Q2z12771wJnhugFsA9yaS1l9sMsaZ1yfLAN7jsFuMdgWgz3HYM8m_T-Mi_X3UptZnP5L8o0szSWNfv07xPPQLz4GoAs
CitedBy_id crossref_primary_10_1016_j_compchemeng_2021_107528
crossref_primary_10_1016_j_ifacsc_2021_100158
crossref_primary_10_1002_cmtd_202300021
crossref_primary_10_1016_j_cej_2023_147567
crossref_primary_10_1016_j_matdes_2023_111974
crossref_primary_10_1038_s41598_024_68011_8
crossref_primary_10_1002_cmtd_202100091
crossref_primary_10_1002_aic_17591
crossref_primary_10_1039_D5RE00161G
crossref_primary_10_1002_cctc_202400777
crossref_primary_10_1039_D2RE00054G
crossref_primary_10_1016_j_memsci_2018_10_013
crossref_primary_10_1039_D3SC02082G
crossref_primary_10_1515_pac_2022_0202
crossref_primary_10_1002_er_5573
crossref_primary_10_1016_j_cclet_2023_108877
crossref_primary_10_3390_pr11010087
crossref_primary_10_1016_j_cej_2025_160700
crossref_primary_10_1016_j_compchemeng_2025_109266
crossref_primary_10_1155_2022_8252086
crossref_primary_10_1039_D1RE00549A
crossref_primary_10_1002_advs_202105547
crossref_primary_10_1093_bib_bbaf286
crossref_primary_10_1155_2022_1721157
crossref_primary_10_1016_j_trechm_2020_12_006
crossref_primary_10_1016_j_ces_2021_116938
crossref_primary_10_1016_j_compchemeng_2020_106844
crossref_primary_10_1016_j_microrel_2021_114334
crossref_primary_10_1039_D5SC04249F
crossref_primary_10_1155_2022_6309282
crossref_primary_10_1016_j_ejps_2025_107239
crossref_primary_10_1016_j_trechm_2020_12_001
crossref_primary_10_1016_j_wasman_2024_11_001
crossref_primary_10_3390_land11050646
crossref_primary_10_1080_17452759_2023_2266641
crossref_primary_10_1007_s41981_023_00273_1
crossref_primary_10_1016_j_rcns_2023_06_002
crossref_primary_10_3390_math11020465
crossref_primary_10_1038_s41598_022_08997_1
crossref_primary_10_1016_j_compchemeng_2025_109261
crossref_primary_10_1016_j_cej_2019_123340
crossref_primary_10_1002_aic_17616
crossref_primary_10_1016_j_ifset_2022_103232
crossref_primary_10_1016_j_swevo_2024_101506
crossref_primary_10_1039_C9RE00209J
crossref_primary_10_1016_j_compchemeng_2024_108983
crossref_primary_10_1016_j_csbj_2025_07_030
crossref_primary_10_3390_pr11020330
crossref_primary_10_1016_j_apenergy_2019_04_135
crossref_primary_10_1016_j_compchemeng_2018_10_007
crossref_primary_10_1016_j_jclepro_2022_131330
crossref_primary_10_1155_2022_7799769
crossref_primary_10_1007_s40747_019_0113_4
crossref_primary_10_1016_j_egyai_2025_100608
crossref_primary_10_1016_j_seta_2023_103317
crossref_primary_10_1109_TEVC_2022_3162993
crossref_primary_10_1039_D5DD00258C
crossref_primary_10_3390_ijerph19159497
crossref_primary_10_1016_j_matt_2025_102140
crossref_primary_10_1038_s41598_022_20941_x
crossref_primary_10_1002_oca_2817
crossref_primary_10_1039_D3RE00539A
crossref_primary_10_1177_20555636221086224
crossref_primary_10_1016_j_compchemeng_2024_108910
crossref_primary_10_1002_ange_202102009
crossref_primary_10_1109_TEVC_2021_3096669
crossref_primary_10_1016_j_fufo_2025_100741
crossref_primary_10_1039_D2PY00040G
crossref_primary_10_1002_rnc_5149
crossref_primary_10_1007_s10898_021_01052_9
crossref_primary_10_1016_j_isatra_2019_08_039
crossref_primary_10_1038_s42004_023_01080_4
crossref_primary_10_1016_j_mineng_2023_108484
crossref_primary_10_1109_TCSI_2020_3008947
crossref_primary_10_1016_j_psep_2024_09_042
crossref_primary_10_1016_j_compchemeng_2025_109113
crossref_primary_10_1016_j_addma_2024_104204
crossref_primary_10_1017_S0269888924000079
crossref_primary_10_1016_j_cej_2018_07_031
crossref_primary_10_1088_2632_2153_ada47d
crossref_primary_10_1016_j_compstruct_2025_119160
crossref_primary_10_1002_cmtd_202000044
crossref_primary_10_1016_j_actamat_2025_120820
crossref_primary_10_1038_s41467_023_44599_9
crossref_primary_10_1016_j_cej_2021_130248
crossref_primary_10_1039_D2RE00208F
crossref_primary_10_3390_pr10050883
crossref_primary_10_1016_j_compchemeng_2023_108140
crossref_primary_10_1109_TCAD_2021_3121263
crossref_primary_10_1016_j_asoc_2023_110631
crossref_primary_10_1145_3582078
crossref_primary_10_1287_ijoc_2023_0250
crossref_primary_10_1016_j_ejor_2020_11_016
crossref_primary_10_1016_j_cej_2025_168103
crossref_primary_10_1021_acsengineeringau_5c00004
crossref_primary_10_1017_dce_2024_29
crossref_primary_10_1039_D3RE00243H
crossref_primary_10_1039_D3RE00502J
crossref_primary_10_1002_cmtd_202000051
crossref_primary_10_1016_j_cej_2021_131345
crossref_primary_10_1016_j_engstruct_2022_114749
crossref_primary_10_1016_j_compchemeng_2019_106574
crossref_primary_10_1039_D2RE00552B
crossref_primary_10_1155_2022_2745773
crossref_primary_10_1109_ACCESS_2019_2932883
crossref_primary_10_1002_aidi_202500063
crossref_primary_10_1016_j_apenergy_2021_118061
crossref_primary_10_1016_j_swevo_2024_101700
crossref_primary_10_1039_D4RE00175C
crossref_primary_10_1155_2022_5112950
crossref_primary_10_3390_app12052286
crossref_primary_10_1002_anie_202102009
crossref_primary_10_1039_C9SC01844A
crossref_primary_10_1007_s12532_021_00204_y
crossref_primary_10_1016_j_matt_2023_01_018
crossref_primary_10_1016_j_nxener_2023_100078
crossref_primary_10_1016_j_swevo_2022_101183
crossref_primary_10_1155_2022_5354326
crossref_primary_10_1016_j_ast_2023_108725
crossref_primary_10_1016_j_est_2024_110756
crossref_primary_10_1039_D3RE00357D
crossref_primary_10_1007_s10846_022_01709_x
crossref_primary_10_1016_j_ces_2024_120434
crossref_primary_10_1016_j_pmatsci_2022_101043
crossref_primary_10_1038_s44286_024_00033_5
crossref_primary_10_1016_j_compstruc_2025_107703
crossref_primary_10_1016_j_compchemeng_2023_108430
crossref_primary_10_3390_ma16031050
crossref_primary_10_1016_j_cjche_2024_11_004
crossref_primary_10_1016_j_ces_2022_117469
crossref_primary_10_1016_j_applthermaleng_2023_120331
crossref_primary_10_1016_j_compchemeng_2022_107700
crossref_primary_10_1016_j_est_2020_101645
crossref_primary_10_1002_aic_17248
crossref_primary_10_1557_s43577_023_00481_z
crossref_primary_10_3390_pr13092687
crossref_primary_10_1016_j_aquaculture_2022_738638
crossref_primary_10_1039_D2SC00821A
crossref_primary_10_1007_s10898_018_0629_y
crossref_primary_10_1039_D3RE00673E
crossref_primary_10_1109_LES_2023_3298734
crossref_primary_10_1038_s41524_024_01274_x
crossref_primary_10_1021_acs_oprd_4c00533
crossref_primary_10_1016_j_compchemeng_2020_107194
crossref_primary_10_1002_ima_22304
crossref_primary_10_1038_s41524_024_01353_z
crossref_primary_10_3762_bjoc_21_3
crossref_primary_10_1016_j_oceaneng_2024_118777
crossref_primary_10_1109_LAWP_2022_3144046
crossref_primary_10_1137_23M1578371
Cites_doi 10.1109/4235.797969
10.1109/JPROC.2015.2494218
10.1007/s00158-004-0389-9
10.1007/978-3-319-15892-1_8
10.1609/aimag.v29i4.2198
10.1007/978-3-642-19893-9_9
10.2514/1.16875
10.1007/BF01442131
10.1109/TEVC.2003.810758
10.1109/4235.996017
10.1002/asmb.874
10.1109/TEVC.2005.851274
10.1023/A:1008306431147
10.1109/TCYB.2014.2307319
10.1162/08997660151134343
10.1214/ss/1177012413
10.1515/amcs-2015-0010
10.1080/00207721.2012.702244
10.1002/cssc.201700927
10.1115/1.3653121
10.1023/A:1012771025575
10.1080/03052150512331303436
10.2307/2332286
10.1080/00401706.2000.10485979
10.1080/00401706.1987.10488205
10.1016/j.paerosci.2008.11.001
10.1007/978-3-540-87700-4_78
10.1007/978-3-319-29975-4_12
10.1007/978-3-642-12775-5_7
10.1007/978-3-642-34106-9_18
10.1007/978-0-387-30164-8_630
10.1515/9781400881994
10.1007/978-3-540-28650-9_4
10.1109/CEC.2011.5949880
10.1109/ISDA.2005.15
10.1007/978-3-662-38527-2_55
10.1007/978-3-319-15892-1_5
10.1007/978-3-319-54157-0_46
10.1007/BF00047572
10.7551/mitpress/3206.001.0001
10.1007/978-3-642-04045-0_27
10.1007/3-540-61723-X_1022
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
COPYRIGHT 2018 Springer
Journal of Global Optimization is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: COPYRIGHT 2018 Springer
– notice: Journal of Global Optimization is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-018-0609-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 438
ExternalDocumentID A718421928
10_1007_s10898_018_0609_2
GrantInformation_xml – fundername: H2020 Marie Sklodowska-Curie Actions
  grantid: 636820
  funderid: http://dx.doi.org/10.13039/100010665
– fundername: ERASMUS+
– fundername: Ernest-Solvay-Foundation
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c464t-42df7ac4103184b135a95ff9c453493d88a31c7ad0baf32a4c4bef607a8d9e733
IEDL.DBID M0C
ISICitedReferencesCount 205
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431888700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-5001
IngestDate Tue Nov 04 22:20:39 EST 2025
Sat Nov 29 10:09:47 EST 2025
Tue Nov 18 22:40:11 EST 2025
Sat Nov 29 01:59:34 EST 2025
Fri Feb 21 02:42:30 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Global optimization
Bayesian optimization
Expensive-to-evaluate functions
Kriging
Hypervolume
Response surfaces
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-42df7ac4103184b135a95ff9c453493d88a31c7ad0baf32a4c4bef607a8d9e733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7621-0889
0000-0002-0803-0576
0000-0001-8885-6847
OpenAccessLink https://doi.org/10.17863/cam.22957
PQID 2002589592
PQPubID 29930
PageCount 32
ParticipantIDs proquest_journals_2002589592
gale_infotracacademiconefile_A718421928
crossref_primary_10_1007_s10898_018_0609_2
crossref_citationtrail_10_1007_s10898_018_0609_2
springer_journals_10_1007_s10898_018_0609_2
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2018
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Matérn (CR38) 2013
Kushner (CR21) 1964; 86
Forrester, Keane (CR16) 2009; 45
Schaffer (CR59) 1985
Farmani, Savic, Walters (CR1) 2005; 37
McKay, Beckman, Conover (CR10) 2000; 42
Stein (CR50) 1987; 29
CR35
CR33
Sundararajan, Keerthi (CR39) 2001; 13
Jones, Schonlau, Welch (CR12) 1998; 13
Bochner (CR41) 1959
CR71
CR70
Knowles, Thiele, Zitzler (CR64) 2006; 214
Zitzler (CR68) 1999
Knowles (CR19) 2006; 10
Zitzler, Thiele (CR3) 1999; 3
Rahimi, Recht, Platt, Koller, Singer, Roweis (CR42) 2007
Žilinskas (CR31) 2014; 45
CR49
Rasmussen, Williams (CR34) 2005
CR48
CR47
CR46
Ishibuchi, Masuda, Tanigaki, Nojima (CR66) 2015
CR40
Yang, Maciejowski (CR37) 2015; 25
Deb, Pratap, Agarwal, Meyarivan (CR18) 2002; 6
Jiang, Ong, Zhang, Feng (CR69) 2014; 44
Simpson, Booker, Ghosh, Giunta, Koch, Yang (CR9) 2004; 27
Chapelle, Li, Shawe-Taylor, Zemel, Bartlett, Pereira, Weinberger (CR44) 2011
Ehrgott (CR4) 2009; 29
Jones (CR15) 2001; 21
CR17
CR14
CR58
CR13
CR57
CR56
CR55
Davis (CR6) 1991
Shahriari, Swersky, Wang, Adams, de Freitas (CR11) 2016; 104
CR54
CR53
CR52
Kennedy, Sammut, Webb (CR7) 2011
Thompson (CR29) 1933; 25
Helmdach, Yaseneva, Heer, Schweidtmann, Lapkin (CR32) 2017; 10
Censor (CR2) 1977; 4
Scott (CR45) 2010; 26
Gorissen, Couckuyt, Demeester, Dhaene, Crombecq (CR61) 2010; 11
Hwang (CR5) 1988; 12
Sacks, Welch, Mitchell, Wynn (CR8) 1989; 4
CR28
CR27
CR26
CR25
CR24
CR23
CR67
Keane (CR22) 2006; 44
Lázaro-Gredilla, Quiñonero-Candela, Rasmussen, Figueiras-Vidal (CR43) 2010; 11
CR65
CR20
Zhigljavsky, Zilinskas (CR30) 2007
CR62
CR60
Zitzler, Thiele, Laumanns, Fonseca, Da Fonseca (CR63) 2003; 7
Rasmussen (CR36) 2006
Emmerich, Fonseca, Takahashi, Deb, Wanner, Greco (CR51) 2011
609_CR53
Y Censor (609_CR2) 1977; 4
609_CR52
609_CR55
609_CR54
M Stein (609_CR50) 1987; 29
J Knowles (609_CR64) 2006; 214
E Zitzler (609_CR63) 2003; 7
JD Schaffer (609_CR59) 1985
A Žilinskas (609_CR31) 2014; 45
609_CR13
609_CR57
K Deb (609_CR18) 2002; 6
609_CR56
609_CR14
WR Thompson (609_CR29) 1933; 25
609_CR58
609_CR17
M Lázaro-Gredilla (609_CR43) 2010; 11
609_CR60
A Zhigljavsky (609_CR30) 2007
609_CR62
E Zitzler (609_CR3) 1999; 3
609_CR20
J Kennedy (609_CR7) 2011
DR Jones (609_CR12) 1998; 13
609_CR65
S Jiang (609_CR69) 2014; 44
L Davis (609_CR6) 1991
MD McKay (609_CR10) 2000; 42
B Shahriari (609_CR11) 2016; 104
CE Rasmussen (609_CR36) 2006
C-R Hwang (609_CR5) 1988; 12
S Sundararajan (609_CR39) 2001; 13
609_CR24
609_CR23
609_CR67
609_CR26
O Chapelle (609_CR44) 2011
609_CR25
HJ Kushner (609_CR21) 1964; 86
609_CR28
609_CR27
M Emmerich (609_CR51) 2011
E Zitzler (609_CR68) 1999
609_CR71
AJ Keane (609_CR22) 2006; 44
609_CR70
DR Jones (609_CR15) 2001; 21
609_CR33
H Ishibuchi (609_CR66) 2015
B Matérn (609_CR38) 2013
M Ehrgott (609_CR4) 2009; 29
D Gorissen (609_CR61) 2010; 11
R Farmani (609_CR1) 2005; 37
609_CR35
D Helmdach (609_CR32) 2017; 10
X Yang (609_CR37) 2015; 25
TW Simpson (609_CR9) 2004; 27
AI Forrester (609_CR16) 2009; 45
609_CR40
S Bochner (609_CR41) 1959
J Sacks (609_CR8) 1989; 4
J Knowles (609_CR19) 2006; 10
CE Rasmussen (609_CR34) 2005
609_CR46
609_CR48
609_CR47
A Rahimi (609_CR42) 2007
609_CR49
SL Scott (609_CR45) 2010; 26
References_xml – volume: 3
  start-page: 257
  issue: 4
  year: 1999
  end-page: 271
  ident: CR3
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– ident: CR70
– volume: 104
  start-page: 148
  issue: 1
  year: 2016
  end-page: 175
  ident: CR11
  article-title: Taking the human out of the loop: a review of bayesian optimization
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 27
  start-page: 302
  issue: 5
  year: 2004
  end-page: 313
  ident: CR9
  article-title: Approximation methods in multidisciplinary analysis and optimization: a panel discussion
  publication-title: Struct. Multidiscipl. Optim.
  doi: 10.1007/s00158-004-0389-9
– ident: CR49
– start-page: 2249
  year: 2011
  end-page: 2257
  ident: CR44
  article-title: An empirical evaluation of Thompson sampling
  publication-title: Advances in Neural Information Processing Systems 24
– year: 1991
  ident: CR6
  publication-title: Handbook of Genetic Algorithms
– volume: 214
  start-page: 327
  year: 2006
  end-page: 332
  ident: CR64
  article-title: A tutorial on the performance assessment of stochastic multiobjective optimizers
  publication-title: Tik Rep.
– ident: CR35
– year: 2015
  ident: CR66
  publication-title: Modified Distance Calculation in Generational Distance and Inverted Generational Distance
  doi: 10.1007/978-3-319-15892-1_8
– ident: CR54
– ident: CR58
– volume: 11
  start-page: 2051
  issue: Jul
  year: 2010
  end-page: 2055
  ident: CR61
  article-title: A surrogate modeling and adaptive sampling toolbox for computer based design
  publication-title: J. Mach. Learn. Res
– ident: CR25
– volume: 29
  start-page: 47
  issue: 4
  year: 2009
  ident: CR4
  article-title: Multiobjective optimization
  publication-title: AI Mag.
  doi: 10.1609/aimag.v29i4.2198
– start-page: 760
  year: 2011
  end-page: 766
  ident: CR7
  article-title: Particle swarm optimization
  publication-title: Encyclopedia of Machine Learning
– start-page: 121
  year: 2011
  end-page: 135
  ident: CR51
  article-title: Computing hypervolume contributions in low dimensions: asymptotically optimal algorithm and complexity results
  publication-title: Evolutionary Multi-Criterion Optimization
  doi: 10.1007/978-3-642-19893-9_9
– year: 1959
  ident: CR41
  publication-title: Lectures on Fourier Integrals
– volume: 44
  start-page: 879
  issue: 4
  year: 2006
  end-page: 891
  ident: CR22
  article-title: Statistical improvement criteria for use in multiobjective design optimization
  publication-title: AIAA J.
  doi: 10.2514/1.16875
– ident: CR46
– ident: CR71
– volume: 4
  start-page: 41
  issue: 1
  year: 1977
  end-page: 59
  ident: CR2
  article-title: Pareto optimality in multiobjective problems
  publication-title: Appl. Math. Optim.
  doi: 10.1007/BF01442131
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  end-page: 132
  ident: CR63
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810758
– year: 2013
  ident: CR38
  publication-title: Spatial Variation
– volume: 11
  start-page: 1865
  issue: 6
  year: 2010
  end-page: 1881
  ident: CR43
  article-title: Sparse spectrum Gaussian process regression
  publication-title: J. Mach. Learn. Res.
– year: 2007
  ident: CR30
  publication-title: Stochastic Global Optimization
– ident: CR67
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  end-page: 197
  ident: CR18
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 26
  start-page: 639
  issue: 6
  year: 2010
  end-page: 658
  ident: CR45
  article-title: A modern Bayesian look at the multi-armed bandit
  publication-title: Appl. Stoch. Models Bus. Ind.
  doi: 10.1002/asmb.874
– ident: CR57
– ident: CR60
– volume: 10
  start-page: 50
  issue: 1
  year: 2006
  end-page: 66
  ident: CR19
  article-title: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.851274
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  end-page: 492
  ident: CR12
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– ident: CR26
– year: 1999
  ident: CR68
  publication-title: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications
– volume: 44
  start-page: 2391
  issue: 12
  year: 2014
  end-page: 2404
  ident: CR69
  article-title: Consistencies and contradictions of performance metrics in multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2307319
– volume: 13
  start-page: 1103
  issue: 5
  year: 2001
  end-page: 1118
  ident: CR39
  article-title: Predictive approaches for choosing hyperparameters in Gaussian processes
  publication-title: Neural Comput.
  doi: 10.1162/08997660151134343
– year: 2006
  ident: CR36
  publication-title: Gaussian Processes for Machine Learning
– ident: CR47
– volume: 4
  start-page: 409
  issue: 4
  year: 1989
  end-page: 423
  ident: CR8
  article-title: Design and analysis of computer experiments
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1177012413
– ident: CR14
– ident: CR53
– volume: 25
  start-page: 133
  issue: 1
  year: 2015
  end-page: 148
  ident: CR37
  article-title: Fault tolerant control using Gaussian processes and model predictive control
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.1515/amcs-2015-0010
– volume: 45
  start-page: 82
  issue: 1
  year: 2014
  end-page: 93
  ident: CR31
  article-title: A statistical model-based algorithm for ‘black-box’multi-objective optimisation
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2012.702244
– volume: 10
  start-page: 3632
  issue: 18
  year: 2017
  end-page: 3643
  ident: CR32
  article-title: A multi-objective optimisation including results of life cycle assessment in developing bio-renewables-based processes
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201700927
– ident: CR33
– ident: CR56
– ident: CR40
– volume: 86
  start-page: 97
  issue: 1
  year: 1964
  end-page: 106
  ident: CR21
  article-title: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3653121
– year: 2005
  ident: CR34
  publication-title: Gaussian Processes for Machine Learning
– ident: CR27
– volume: 21
  start-page: 345
  issue: 4
  year: 2001
  end-page: 383
  ident: CR15
  article-title: A taxonomy of global optimization methods based on response surfaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1012771025575
– ident: CR23
– volume: 37
  start-page: 167
  issue: 2
  year: 2005
  end-page: 183
  ident: CR1
  article-title: Evolutionary multi-objective optimization in water distribution network design
  publication-title: Eng. Optim.
  doi: 10.1080/03052150512331303436
– volume: 25
  start-page: 285
  issue: 3/4
  year: 1933
  end-page: 294
  ident: CR29
  article-title: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples
  publication-title: Biometrika
  doi: 10.2307/2332286
– ident: CR48
– year: 1985
  ident: CR59
  publication-title: Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms
– ident: CR65
– ident: CR52
– ident: CR17
– start-page: 1177
  year: 2007
  end-page: 1184
  ident: CR42
  article-title: Random features for large-scale kernel machines
  publication-title: Advances in Neural Information Processing Systems 20
– ident: CR13
– volume: 12
  start-page: 108
  issue: 1
  year: 1988
  end-page: 111
  ident: CR5
  article-title: Simulated annealing: theory and applications
  publication-title: Acta Appl. Math.
– volume: 42
  start-page: 55
  issue: 1
  year: 2000
  end-page: 61
  ident: CR10
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10485979
– volume: 29
  start-page: 143
  issue: 2
  year: 1987
  end-page: 151
  ident: CR50
  article-title: Large sample properties of simulations using Latin hypercube sampling
  publication-title: Technometrics
  doi: 10.1080/00401706.1987.10488205
– ident: CR55
– volume: 45
  start-page: 50
  issue: 1
  year: 2009
  end-page: 79
  ident: CR16
  article-title: Recent advances in surrogate-based optimization
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2008.11.001
– ident: CR28
– ident: CR62
– ident: CR24
– ident: CR20
– volume: 13
  start-page: 1103
  issue: 5
  year: 2001
  ident: 609_CR39
  publication-title: Neural Comput.
  doi: 10.1162/08997660151134343
– ident: 609_CR20
  doi: 10.1007/978-3-540-87700-4_78
– volume: 44
  start-page: 879
  issue: 4
  year: 2006
  ident: 609_CR22
  publication-title: AIAA J.
  doi: 10.2514/1.16875
– volume-title: Stochastic Global Optimization
  year: 2007
  ident: 609_CR30
– ident: 609_CR14
– volume: 10
  start-page: 50
  issue: 1
  year: 2006
  ident: 609_CR19
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.851274
– volume: 4
  start-page: 409
  issue: 4
  year: 1989
  ident: 609_CR8
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1177012413
– ident: 609_CR53
– ident: 609_CR27
  doi: 10.1007/978-3-319-29975-4_12
– ident: 609_CR56
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 609_CR12
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– volume: 104
  start-page: 148
  issue: 1
  year: 2016
  ident: 609_CR11
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: 609_CR36
– ident: 609_CR40
– volume: 45
  start-page: 82
  issue: 1
  year: 2014
  ident: 609_CR31
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2012.702244
– ident: 609_CR23
– volume: 26
  start-page: 639
  issue: 6
  year: 2010
  ident: 609_CR45
  publication-title: Appl. Stoch. Models Bus. Ind.
  doi: 10.1002/asmb.874
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 609_CR3
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– ident: 609_CR17
  doi: 10.1007/978-3-642-12775-5_7
– ident: 609_CR48
– ident: 609_CR65
– volume: 45
  start-page: 50
  issue: 1
  year: 2009
  ident: 609_CR16
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2008.11.001
– volume: 29
  start-page: 47
  issue: 4
  year: 2009
  ident: 609_CR4
  publication-title: AI Mag.
  doi: 10.1609/aimag.v29i4.2198
– volume: 42
  start-page: 55
  issue: 1
  year: 2000
  ident: 609_CR10
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10485979
– start-page: 121
  volume-title: Evolutionary Multi-Criterion Optimization
  year: 2011
  ident: 609_CR51
  doi: 10.1007/978-3-642-19893-9_9
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  ident: 609_CR63
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810758
– ident: 609_CR55
– ident: 609_CR62
– ident: 609_CR47
  doi: 10.1007/978-3-642-34106-9_18
– start-page: 760
  volume-title: Encyclopedia of Machine Learning
  year: 2011
  ident: 609_CR7
  doi: 10.1007/978-0-387-30164-8_630
– ident: 609_CR24
– volume: 37
  start-page: 167
  issue: 2
  year: 2005
  ident: 609_CR1
  publication-title: Eng. Optim.
  doi: 10.1080/03052150512331303436
– volume-title: Modified Distance Calculation in Generational Distance and Inverted Generational Distance
  year: 2015
  ident: 609_CR66
  doi: 10.1007/978-3-319-15892-1_8
– volume-title: Lectures on Fourier Integrals
  year: 1959
  ident: 609_CR41
  doi: 10.1515/9781400881994
– ident: 609_CR33
  doi: 10.1007/978-3-540-28650-9_4
– volume: 27
  start-page: 302
  issue: 5
  year: 2004
  ident: 609_CR9
  publication-title: Struct. Multidiscipl. Optim.
  doi: 10.1007/s00158-004-0389-9
– ident: 609_CR49
– ident: 609_CR25
  doi: 10.1109/CEC.2011.5949880
– ident: 609_CR35
– start-page: 1177
  volume-title: Advances in Neural Information Processing Systems 20
  year: 2007
  ident: 609_CR42
– ident: 609_CR54
– ident: 609_CR58
– ident: 609_CR71
  doi: 10.1109/ISDA.2005.15
– ident: 609_CR13
  doi: 10.1007/978-3-662-38527-2_55
– ident: 609_CR26
  doi: 10.1007/978-3-319-15892-1_5
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 609_CR18
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 11
  start-page: 1865
  issue: 6
  year: 2010
  ident: 609_CR43
  publication-title: J. Mach. Learn. Res.
– start-page: 2249
  volume-title: Advances in Neural Information Processing Systems 24
  year: 2011
  ident: 609_CR44
– ident: 609_CR46
– volume: 44
  start-page: 2391
  issue: 12
  year: 2014
  ident: 609_CR69
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2307319
– ident: 609_CR28
  doi: 10.1007/978-3-319-54157-0_46
– volume: 4
  start-page: 41
  issue: 1
  year: 1977
  ident: 609_CR2
  publication-title: Appl. Math. Optim.
  doi: 10.1007/BF01442131
– volume-title: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications
  year: 1999
  ident: 609_CR68
– volume: 12
  start-page: 108
  issue: 1
  year: 1988
  ident: 609_CR5
  publication-title: Acta Appl. Math.
  doi: 10.1007/BF00047572
– volume-title: Gaussian Processes for Machine Learning
  year: 2005
  ident: 609_CR34
  doi: 10.7551/mitpress/3206.001.0001
– ident: 609_CR67
– volume: 25
  start-page: 133
  issue: 1
  year: 2015
  ident: 609_CR37
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.1515/amcs-2015-0010
– ident: 609_CR52
  doi: 10.1007/978-3-642-04045-0_27
– ident: 609_CR57
– volume-title: Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms
  year: 1985
  ident: 609_CR59
– volume-title: Handbook of Genetic Algorithms
  year: 1991
  ident: 609_CR6
– volume: 29
  start-page: 143
  issue: 2
  year: 1987
  ident: 609_CR50
  publication-title: Technometrics
  doi: 10.1080/00401706.1987.10488205
– volume: 86
  start-page: 97
  issue: 1
  year: 1964
  ident: 609_CR21
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3653121
– volume-title: Spatial Variation
  year: 2013
  ident: 609_CR38
– ident: 609_CR60
– volume: 21
  start-page: 345
  issue: 4
  year: 2001
  ident: 609_CR15
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1012771025575
– volume: 10
  start-page: 3632
  issue: 18
  year: 2017
  ident: 609_CR32
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201700927
– ident: 609_CR70
  doi: 10.1007/3-540-61723-X_1022
– volume: 25
  start-page: 285
  issue: 3/4
  year: 1933
  ident: 609_CR29
  publication-title: Biometrika
  doi: 10.2307/2332286
– volume: 11
  start-page: 2051
  issue: Jul
  year: 2010
  ident: 609_CR61
  publication-title: J. Mach. Learn. Res
– volume: 214
  start-page: 327
  year: 2006
  ident: 609_CR64
  publication-title: Tik Rep.
SSID ssj0009852
Score 2.596456
Snippet Many engineering problems require the optimization of expensive, black-box functions involving multiple conflicting criteria, such that commonly used methods...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 407
SubjectTerms Algorithms
Computer Science
Gaussian process
Gaussian processes
Genetic algorithms
Genetic research
Iterative methods
Mathematical analysis
Mathematics
Mathematics and Statistics
Multiple objective analysis
Operations Research/Decision Theory
Optimization
Real Functions
Sampling
Scaling
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RpQc4ULq0YqFFPiBRaCPlYSf2sUItXKgQUNRb5PjRh7q71WaX38-M43RbCpXoIYcozsRyxjMjjb_vA3gry0orI4vEikYl1L9NNFYJSZk6zK-cxPdMEJuojo7kyYn6GnHcbX_avW9Jhkh9A-wmCQ6W4VVSW2AFHhN3CckWfPv-c8m0K4PMTqpykQgMwn0r828mbiWjP0Pynd5oSDmHaw-a7HN4FitMtt-5xDo8cpMhrPXqDSxu5iE8vUFFiHdfrvlb2yGsx1Et24m81O9fwPgg0E1glmLhGOK0ueiiJZti3BlHQCdzQUMYjbJPetESRpNddWgE1-6xgOxEe6zVdJYdR-mJZZqhHxOckunL0-nsfH423oDjw4MfHz8nUa0hMbzkc_zP1lfacNKNkLzJCqGV8F4ZLgquCiulLjJTaZs22he55oY3zpdppaVVriqKTRhMphP3Epi3PPNYSmgsFrnCiqRKfeaUtUZkvlTlCNL-t9UmUpmTosZlvSRhpvWvcf1rWv86H8GH61euOh6P-wa_I1-oaY-jXaMjVAFnR2xZ9T4mdI6hPpcj2OrdpY6bvyVlz1xIJRQa2u3dY_n4n5999V-jX8OTvPMvdLMtGMxnC7cNq-bX_LydvQl74jdFEgVF
  priority: 102
  providerName: Springer Nature
Title Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm
URI https://link.springer.com/article/10.1007/s10898-018-0609-2
https://www.proquest.com/docview/2002589592
Volume 71
WOSCitedRecordID wos000431888700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgM9AC0gFsrKBySeEXnYsX1CpdqChFhWLY-WS-TYcQF1HzRbfj8zjsPyEL1wyEhREsfSjGdGHs_3AdxXpTTaqiJxotYJ1W8Tg1lCUqYNxldO5Hs2kE3I8VgdHelJ3HBr47HK3icGR-3mlvbIn9FhAqG00PnzxbeEWKOouhopNNZggzIbws5_k-6tQHdVYNxJdS4Sgf64r2p2rXOKmssyvEoqMvwWl_70zn-VSUP02b_2v_O-Dldj3sl2O0PZgkvNbBs2f0Ej3IatuM5b9jCCUT-6AdNRwJjA0MTC2cN5_bVzkWyOzmYauzhZE4iDcRj20py31JjJFl0LQtM-ZaGdE8djraED7PiWmTlmGBov9VAyc3qCU15-nt6E9_ujd3uvkkjRkFhe8iUq13lpLCeyCMXrrBBGC--15aLgunBKmSKz0ri0Nr7IDbe8bnyZSqOcbmRR3IL12XzW3AbmHc885g8GM0SuMQ2Rqc8a7ZwVmS91OYC0V1BlI3450WicVivkZdJphTqtSKdVPoDHPz9ZdOAdF738gLRe0cLGca2J_Qk4O4LIqnYxinP077kawE6v6iqu-LZa6XkAT3pjWT3-52_vXDzYXbiSd0aKtroD68uz8-YeXLbfl1_asyGsyY_HQ9h4MRpPDvDutUyGYQmQzN8GOSEpD1FOxCeUB4cffgAHiQ0o
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1FAQk4AAkghgToA4gtFl667e4DQhEkJEoY5RCkiEun3QuLMgvxJIif4hupatsMi8gtBw5zGk-P1fPqVY2rXz2AB7KsjLKySJyoVUL928RglZCUqcf8ysl8z0aziWo4lAcHam8BvvdaGDpW2XNiJGo3sfSM_DkdJhBSCZW_nH5JyDWKuqu9hUYLix3_7Sv-ZWtebL_G3_dhnm9u7L_aSjpXgcTyks_wflyojOXkbyB5nRXCKBGCslwUXBVOSlNktjIurU0ocsMtr30o08pIp3xFD0CR8i9gGaGICPbE-_mQXxkdflKVi0Qg__dd1FaqJ0nMluGrpKbGb3nwz2zwV1s2ZrvNa__bPl2Hq11dzdbbQFiCBT9ehiu_TFtchqWOxxr2uBu2_eQGjDbiDA1MvSyerZzUn9sUwCZIpqNOpcp8NEbGZdgbc9KQ8JRNW4mFb9ZYlKvieqwxdEAfrzJjxwzD4CSNKDNHH3CLZh9HN-HduWzCLVgcT8b-NrDgeBawPjJYAXOFZVaVhswr56zIQqnKAaQ9ILTt5rOTTciRnk-WJgxpxJAmDOl8AE9_fmTaDic56-JHhDJNxIXrWtPpL_DuaASYXscqhWP-yuUAVnto6Y7RGj3H1QCe9eCcv_3Pr71z9mL34dLW_ttdvbs93FmBy3kbIBgnq7A4Oz7xd-GiPZ19ao7vxVBjcHjemP0BhmhiJg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBSF6AFpALBTwAcSjRE0cJ7EPCFW0C1Vh6QGk3ozjRwF1HzRbEH-NX8eMk7A8RG89cNhTvE7k_eaxmfnmA7gny8ooK_PEFbVKqH6bGMwSkjL1GF8Fie_ZKDZRjUby4EDtL8H3ngtDbZW9T4yO2k0tvSPfpGaCQqpC8c3QtUXsbw-fzT4npCBFldZeTqOFyJ7_9hX_vjVPd7fxt77P-XDn7fOXSacwkFhRijk-mwuVsYK0DqSos7wwqghBWVHkQuVOSpNntjIurU3IuRFW1D6UaWWkU76il6Ho_s9VuJzaCV_zN4uBvzKq_aSKF0mBsaCvqLa0PUnEtgw_JRU4fouJf0aGv0q0MfINL__PZ3YFLnX5NttqDWQVlvxkDVZ-mcK4Bqudf2vYw24I96OrMN6JszUwJLPYczmtP7WhgU3RyY479irzUTAZt2EvzElDhFQ2a6kXvnnCIo0V92ONocZ9XGUmjhmGRkvcUWaODvGI5h_G1-DdmRzCdVieTCf-BrDgRBYwbzKYGQuF6VeVhswr52yRhVKVA0h7cGjbzW0n-ZAjvZg4TXjSiCdNeNJ8AI9_fmXWDi05bfEDQpwmh4b7WtPxMvDpaDSY3sLsRWBc43IA6z3MdOfpGr3A2AA2eqAuLv_ztjdP3-wuXECo6le7o71bcJG3toImsw7L8-MTfxvO2y_zj83xnWh1DN6fNWR_ABgbasc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+multiobjective+optimization+employing+Gaussian+processes%2C+spectral+sampling+and+a+genetic+algorithm&rft.jtitle=Journal+of+global+optimization&rft.au=Bradford%2C+Eric&rft.au=Schweidtmann%2C+Artur+M.&rft.au=Lapkin%2C+Alexei&rft.date=2018-06-01&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=71&rft.issue=2&rft.spage=407&rft.epage=438&rft_id=info:doi/10.1007%2Fs10898-018-0609-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10898_018_0609_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon