DFT-based microkinetic modeling of ethanol dehydration in H-ZSM-5

[Display omitted] •Experimentally validated microkinetic model for bio-ethanol dehydration.•Reaction path analysis not only based on free energy profiles.•Novel water- and ethanol-assisted mechanisms for ethene formation.•No kinetic inhibition of water on bio-ethanol dehydration.•Carbon number depen...

Full description

Saved in:
Bibliographic Details
Published in:Journal of catalysis Vol. 339; pp. 173 - 185
Main Authors: Alexopoulos, Konstantinos, John, Mathew, Van der Borght, Kristof, Galvita, Vladimir, Reyniers, Marie-Françoise, Marin, Guy B.
Format: Journal Article
Language:English
Published: San Diego Elsevier Inc 01.07.2016
Elsevier BV
Subjects:
ISSN:0021-9517, 1090-2694
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •Experimentally validated microkinetic model for bio-ethanol dehydration.•Reaction path analysis not only based on free energy profiles.•Novel water- and ethanol-assisted mechanisms for ethene formation.•No kinetic inhibition of water on bio-ethanol dehydration.•Carbon number dependent activation entropies explain higher reactivity of butanol. A detailed reaction network has been constructed for ethanol dehydration in H-ZSM-5 using periodic density functional theory (DFT) calculations with dispersion corrections. Apart from the direct conversion of ethanol to diethyl ether or ethene, where novel mechanisms have been explored, the decomposition of diethyl ether to ethene has also been investigated. Thermodynamic and kinetic parameters were computed using statistical thermodynamics for all elementary steps. By coupling this microkinetic model to a plug-flow reactor model, macroscopic predictions of conversion and selectivity have been obtained at different operating conditions. The results of these simulations have been validated for H-ZSM-5 at different temperatures where experimental data are available. Both theory and experiment show an increase in ethene selectivity with increasing temperature and the experimental conversion agrees very well with the theoretical one. A reaction path analysis for ethanol dehydration in H-ZSM-5 shows that at temperatures above 500K ethene is mainly produced via the direct dehydration of ethanol, while at temperatures lower than 500K the reaction path via diethyl ether contributes significantly to ethene formation.
AbstractList A detailed reaction network has been constructed for ethanol dehydration in H-ZSM-5 using periodic density functional theory (DFT) calculations with dispersion corrections. Apart from the direct conversion of ethanol to diethyl ether or ethene, where novel mechanisms have been explored, the decomposition of diethyl ether to ethene has also been investigated. Thermodynamic and kinetic parameters were computed using statistical thermodynamics for all elementary steps. By coupling this microkinetic model to a plug-flow reactor model, macroscopic predictions of conversion and selectivity have been obtained at different operating conditions. The results of these simulations have been validated for H-ZSM-5 at different temperatures where experimental data are available. Both theory and experiment show an increase in ethene selectivity with increasing temperature and the experimental conversion agrees very well with the theoretical one. A reaction path analysis for ethanol dehydration in H-ZSM-5 shows that at temperatures above 500K ethene is mainly produced via the direct dehydration of ethanol, while at temperatures lower than 500K the reaction path via diethyl ether contributes significantly to ethene formation.
Display Omitted * Experimentally validated microkinetic model for bio-ethanol dehydration. * Reaction path analysis not only based on free energy profiles. * Novel water- and ethanol-assisted mechanisms for ethene formation. * No kinetic inhibition of water on bio-ethanol dehydration. * Carbon number dependent activation entropies explain higher reactivity of butanol. A detailed reaction network has been constructed for ethanol dehydration in H-ZSM-5 using periodic density functional theory (DFT) calculations with dispersion corrections. Apart from the direct conversion of ethanol to diethyl ether or ethene, where novel mechanisms have been explored, the decomposition of diethyl ether to ethene has also been investigated. Thermodynamic and kinetic parameters were computed using statistical thermodynamics for all elementary steps. By coupling this microkinetic model to a plug-flow reactor model, macroscopic predictions of conversion and selectivity have been obtained at different operating conditions. The results of these simulations have been validated for H-ZSM-5 at different temperatures where experimental data are available. Both theory and experiment show an increase in ethene selectivity with increasing temperature and the experimental conversion agrees very well with the theoretical one. A reaction path analysis for ethanol dehydration in H-ZSM-5 shows that at temperatures above 500K ethene is mainly produced via the direct dehydration of ethanol, while at temperatures lower than 500K the reaction path via diethyl ether contributes significantly to ethene formation.
[Display omitted] •Experimentally validated microkinetic model for bio-ethanol dehydration.•Reaction path analysis not only based on free energy profiles.•Novel water- and ethanol-assisted mechanisms for ethene formation.•No kinetic inhibition of water on bio-ethanol dehydration.•Carbon number dependent activation entropies explain higher reactivity of butanol. A detailed reaction network has been constructed for ethanol dehydration in H-ZSM-5 using periodic density functional theory (DFT) calculations with dispersion corrections. Apart from the direct conversion of ethanol to diethyl ether or ethene, where novel mechanisms have been explored, the decomposition of diethyl ether to ethene has also been investigated. Thermodynamic and kinetic parameters were computed using statistical thermodynamics for all elementary steps. By coupling this microkinetic model to a plug-flow reactor model, macroscopic predictions of conversion and selectivity have been obtained at different operating conditions. The results of these simulations have been validated for H-ZSM-5 at different temperatures where experimental data are available. Both theory and experiment show an increase in ethene selectivity with increasing temperature and the experimental conversion agrees very well with the theoretical one. A reaction path analysis for ethanol dehydration in H-ZSM-5 shows that at temperatures above 500K ethene is mainly produced via the direct dehydration of ethanol, while at temperatures lower than 500K the reaction path via diethyl ether contributes significantly to ethene formation.
Author Galvita, Vladimir
Van der Borght, Kristof
Reyniers, Marie-Françoise
Marin, Guy B.
Alexopoulos, Konstantinos
John, Mathew
Author_xml – sequence: 1
  givenname: Konstantinos
  surname: Alexopoulos
  fullname: Alexopoulos, Konstantinos
– sequence: 2
  givenname: Mathew
  orcidid: 0000-0002-9731-3278
  surname: John
  fullname: John, Mathew
– sequence: 3
  givenname: Kristof
  surname: Van der Borght
  fullname: Van der Borght, Kristof
– sequence: 4
  givenname: Vladimir
  surname: Galvita
  fullname: Galvita, Vladimir
– sequence: 5
  givenname: Marie-Françoise
  surname: Reyniers
  fullname: Reyniers, Marie-Françoise
  email: MarieFrancoise.Reyniers@UGent.be
– sequence: 6
  givenname: Guy B.
  surname: Marin
  fullname: Marin, Guy B.
BookMark eNp9kLFuFDEQQC0UJC6BH6BaiYZmlxmv196VaKJAEqQgiiQNjeXYs8TLnh1sH1L-Hl-OKkWqcfGeNfOO2VGIgRh7j9AhoPy0dIs1peP13YHogMMrtkGYoOVyEkdsA8CxnQZUb9hxzgsA4jCMG3b65fymvTOZXLP1NsXfPlDxttlGR6sPv5o4N1TuTYhr4-j-0SVTfAyND81l-_P6ezu8Za9ns2Z693-esNvzrzdnl-3Vj4tvZ6dXrRVSlLYnpYCTE1YOvUWhAAGmiePMB0OOo1GgaHQgp0pwNWA_znezAxrRKpD9Cft4-PchxT87ykVvfba0riZQ3GXNscdxlMD7in54hi5xl0LdTqOahOBylKpS44GqZ-ecaNbWl6frSjJ-1Qh631Yvet9W79tqELq2rSp_pj4kvzXp8WXp80GiWumvp6Sz9RQsOZ_IFu2if0n_BzCfkYQ
CitedBy_id crossref_primary_10_1002_adma_202406472
crossref_primary_10_1016_j_apcata_2020_117544
crossref_primary_10_1016_j_cattod_2017_09_020
crossref_primary_10_3390_catal9090700
crossref_primary_10_1039_D1CY02289J
crossref_primary_10_1002_anie_201607230
crossref_primary_10_3390_catal9110921
crossref_primary_10_1016_j_ces_2021_117042
crossref_primary_10_1016_j_ces_2019_07_015
crossref_primary_10_1016_j_fuel_2018_11_026
crossref_primary_10_1002_adfm_202110026
crossref_primary_10_1016_j_fuel_2024_131368
crossref_primary_10_3389_fchem_2025_1656180
crossref_primary_10_1016_j_apcatb_2021_120242
crossref_primary_10_1007_s00894_021_04979_8
crossref_primary_10_3390_catal12010051
crossref_primary_10_1016_j_apsusc_2023_157298
crossref_primary_10_1002_slct_202203031
crossref_primary_10_1002_cssc_201800864
crossref_primary_10_3390_catal7050159
crossref_primary_10_1002_ange_201607230
crossref_primary_10_1016_j_cej_2021_130493
crossref_primary_10_1016_j_matt_2020_06_025
crossref_primary_10_1134_S2070050424010033
crossref_primary_10_1002_cjce_24956
crossref_primary_10_1016_j_apcatb_2024_124351
crossref_primary_10_1039_D0CY02366C
crossref_primary_10_3389_fceng_2019_00002
crossref_primary_10_1038_s41467_019_09956_7
crossref_primary_10_1038_s41598_019_56373_3
crossref_primary_10_1002_aic_18616
crossref_primary_10_1002_cctc_202201387
crossref_primary_10_1016_j_apcata_2023_119065
crossref_primary_10_1016_j_jcat_2025_116343
crossref_primary_10_1039_D4CY00532E
crossref_primary_10_1007_s40242_022_1450_1
crossref_primary_10_1016_j_energy_2023_129910
crossref_primary_10_1016_j_jiec_2020_05_022
crossref_primary_10_1039_C8CY01564C
crossref_primary_10_1016_j_fuel_2025_136796
crossref_primary_10_1016_j_jcat_2020_03_020
crossref_primary_10_1016_j_cattod_2019_04_018
crossref_primary_10_1016_j_jcat_2022_07_025
crossref_primary_10_1016_j_ccst_2024_100357
crossref_primary_10_1016_j_micromeso_2022_111910
crossref_primary_10_1016_j_apcata_2017_03_036
crossref_primary_10_1016_j_apcata_2021_118122
crossref_primary_10_1016_j_micromeso_2020_110462
crossref_primary_10_1016_j_cej_2025_168334
Cites_doi 10.1103/PhysRevB.48.13115
10.1103/PhysRevB.54.11169
10.1016/j.jcat.2007.11.003
10.1021/ja9729037
10.1016/j.jcat.2014.04.006
10.1021/ie401157c
10.1016/S0166-9834(00)82282-4
10.1016/0021-9517(89)90217-0
10.1021/ja047760k
10.1002/jcc.20495
10.1016/j.commatsci.2005.04.010
10.1016/j.apcata.2007.06.003
10.1021/cs4002833
10.1021/acs.jpcc.5b01739
10.1039/ft9908603039
10.1016/j.jcat.2014.11.013
10.1021/ct500291x
10.1016/0927-0256(96)00008-0
10.1021/jp050721q
10.1021/jp205508z
10.1016/j.cej.2015.03.008
10.1021/ct1005505
10.1039/b717744e
10.1039/b819435c
10.1002/jcc.21069
10.1103/PhysRevLett.77.3865
10.1021/ie100407d
10.1016/j.fuproc.2013.03.024
10.1063/1.480097
10.1134/S2070050410040161
10.1103/PhysRevB.59.1758
10.1063/1.1323224
10.1039/C004518G
10.1021/acs.jpcc.5b04485
10.1039/C5CP00628G
10.1021/acs.jpcc.6b00923
10.1021/jp513024z
10.1103/PhysRevB.50.17953
10.1021/ja807695p
10.1016/S0360-0564(08)60043-7
10.1002/cssc.201300214
10.1021/ja983470q
10.1021/jp107082t
10.1039/c000503g
10.1103/PhysRevB.49.14251
10.1021/jacs.5b09107
10.1021/ie9702542
10.1002/chem.201200497
10.1023/A:1011928218694
10.1016/j.renene.2013.03.029
10.1016/j.jcat.2015.07.005
10.1021/ja00181a012
10.1016/j.jcat.2010.01.021
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright_xml – notice: 2016 Elsevier Inc.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jcat.2016.04.020
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1090-2694
EndPage 185
ExternalDocumentID 4081073651
10_1016_j_jcat_2016_04_020
S0021951716300318
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
TAE
TWZ
UPT
VH1
WUQ
XFK
XPP
YQT
ZMT
ZU3
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c464t-3e7702ed4c653c14701009921f25aed21a707e8d069c65275138fbfd0e81c7063
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378453700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9517
IngestDate Sun Sep 28 02:52:17 EDT 2025
Sun Nov 09 06:58:16 EST 2025
Tue Nov 18 21:19:01 EST 2025
Sat Nov 29 05:01:14 EST 2025
Fri Feb 23 02:27:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Brønsted acid sites
Reaction mechanism
DFT
Dispersion energy
Microkinetic model
Zeolites
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c464t-3e7702ed4c653c14701009921f25aed21a707e8d069c65275138fbfd0e81c7063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9731-3278
PQID 1794426867
PQPubID 32080
PageCount 13
ParticipantIDs proquest_miscellaneous_2131886023
proquest_journals_1794426867
crossref_citationtrail_10_1016_j_jcat_2016_04_020
crossref_primary_10_1016_j_jcat_2016_04_020
elsevier_sciencedirect_doi_10_1016_j_jcat_2016_04_020
PublicationCentury 2000
PublicationDate 2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01
  day: 01
PublicationDecade 2010
PublicationPlace San Diego
PublicationPlace_xml – name: San Diego
PublicationTitle Journal of catalysis
PublicationYear 2016
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Kresse, Furthmüller (b0075) 1996; 54
Mirth, Lercher, Anderson, Kinowski (b0210) 1990; 86
Piccini, Alessio, Sauer, Zhi, Liu, Kolvenbach, Jentys, Lercher (b0155) 2015; 119
Kresse, Hafner (b0065) 1994; 49
Blöchl (b0080) 1994; 50
Piccini, Sauer (b0150) 2014; 10
De Moor, Ghysels, Reyniers, Speybroeck, Waroquier, Marin (b0125) 2011; 7
Zhao, Truhlar (b0130) 2008; 10
Kerber, Sierka, Sauer (b0100) 2008; 29
Brogaard, Henry, Schuurman, Medford, Moses, Beato, Svelle, Nørskov, Olsbye (b0185) 2014; 314
John, Alexopoulos, Reyniers, Marin (b0180) 2015; 330
Gayubo, Alonso, Valle, Aguayo, Bilbao (b0290) 2010; 49
Moser, Thompson, Chiang, Tong (b0285) 1989; 117
Kresse, Joubert (b0085) 1999; 59
Taarning, Osmundsen, Yang, Voss, Andersen, Christensen (b0005) 2011; 4
Grimme (b0095) 2006; 27
De Moor, Reyniers, Marin (b0170) 2009; 11
V. Coupard, N. Touchais, S. Fleurier, H. Gonzalez Penas, P. De Smedt, W. Vermeiren, C. Adam, D. Minoux, Process for dehydration of dilute ethanol into ethylene with low energy consumption without recycling of water. U.S. Patent Application 13/646,002.
Phillips, Datta (b0275) 1997; 36
Perdew, Burke, Ernzerhof (b0090) 1996; 77
Bhan, Gounder, Macht, Iglesia (b0270) 2008; 253
Nguyen, Reyniers, Marin (b0165) 2015; 322
Phung, Busca (b0255) 2015; 272
.
Grimme (b0140) 2012; 18
Berger, Stitt, Marin, Kapteijn, Moulijn (b0205) 2001; 5
Kondo, Nishioka, Yamazaki, Kubota, Domen, Tatsumi (b0245) 2010; 114
A.C. Hindmarsh, ODEPACK, A systematized collection of ODE solvers, in: Scientific Computing, R.S. Stepleman et al. (eds.), North-Holland, Amsterdam, 1983 (vol. 1 of IMACS Transactions on Scientific Computation), pp. 55–64.
Nguyen, Le Van Mao (b0280) 1990; 58
(accessed January 22, 2016).
Solcà, Dopfer (b0225) 2004; 126
Kostestkyy, Maheswari, Mpourmpakis (b0235) 2015; 119
Ribeiro, Marenich, Cramer, Truhlar (b0135) 2011; 115
Štich, Gale, Terakura, Payne (b0220) 1999; 121
Haro, Ollero, Trippe (b0010) 2013; 114
Alvarenga, Dewulf (b0015) 2013; 59
Zhang, Yu (b0035) 2013; 52
Kondo, Ito, Yoda, Wakabayashi, Domen (b0240) 2005; 109
Nguyen, Reyniers, Marin (b0055) 2010; 12
Angelici, Weckhuysen, Bruijnincx (b0020) 2013; 6
Chiang, Bhan (b0030) 2010; 271
Moser, Thompson, Chiang, Tong (b0200) 1989; 117
Kresse, Hafner (b0060) 1993; 48
Svelle, Tuma, Rozanska, Kerber, Sauer (b0050) 2009; 131
Bouchoux, Hoppilliard (b0230) 1990; 112
Henkelman, Jónsson (b0115) 2000; 113
Kim, Robichaud, Beckham, Paton, Nimlos (b0250) 2015; 119
Tret’yakov, Makarfi, Tret’yakov, Frantsuzova, Talyshinskii (b0025) 2010; 2
Bader (b0105) 1990
Henkelman, Arnaldsson, Jónsson (b0110) 2006; 36
Cramer (b0175) 2005
Kresse, Furthmüller (b0070) 1996; 6
Zhi, Shi, Mu, Liu, Mei, Camaioni, Lercher (b0265) 2015; 137
Jensen (b0145) 2015; 17
International Zeolite Association: Structural Databases
Henkelman, Jónsson (b0120) 1999; 111
Rodríguez-González, Hermes, Bertmer, Rodríguez-Castellón, Jiménez-López, Simon (b0195) 2007; 328
K. Alexopoulos, M.-S. Lee, Y. Liu, Y. Zhi, Y.S. Liu, M.-F. Reyniers, G.B. Marin, V.-A. Glezakou, R. Rousseau, J.A. Lercher, J. Phys. Chem. C.
Brändle, Sauer (b0045) 1998; 120
Zamaraev, Thomas (b0215) 1996; 41
Christiansen, Mpourmpakis, Vlachos (b0260) 2013; 3
Kresse (10.1016/j.jcat.2016.04.020_b0085) 1999; 59
Phung (10.1016/j.jcat.2016.04.020_b0255) 2015; 272
Cramer (10.1016/j.jcat.2016.04.020_b0175) 2005
Haro (10.1016/j.jcat.2016.04.020_b0010) 2013; 114
Brändle (10.1016/j.jcat.2016.04.020_b0045) 1998; 120
Perdew (10.1016/j.jcat.2016.04.020_b0090) 1996; 77
Chiang (10.1016/j.jcat.2016.04.020_b0030) 2010; 271
De Moor (10.1016/j.jcat.2016.04.020_b0125) 2011; 7
Zhang (10.1016/j.jcat.2016.04.020_b0035) 2013; 52
Kerber (10.1016/j.jcat.2016.04.020_b0100) 2008; 29
Brogaard (10.1016/j.jcat.2016.04.020_b0185) 2014; 314
Christiansen (10.1016/j.jcat.2016.04.020_b0260) 2013; 3
Kresse (10.1016/j.jcat.2016.04.020_b0060) 1993; 48
Henkelman (10.1016/j.jcat.2016.04.020_b0110) 2006; 36
Solcà (10.1016/j.jcat.2016.04.020_b0225) 2004; 126
Grimme (10.1016/j.jcat.2016.04.020_b0095) 2006; 27
Svelle (10.1016/j.jcat.2016.04.020_b0050) 2009; 131
Ribeiro (10.1016/j.jcat.2016.04.020_b0135) 2011; 115
10.1016/j.jcat.2016.04.020_b0190
Phillips (10.1016/j.jcat.2016.04.020_b0275) 1997; 36
Nguyen (10.1016/j.jcat.2016.04.020_b0280) 1990; 58
Piccini (10.1016/j.jcat.2016.04.020_b0155) 2015; 119
Štich (10.1016/j.jcat.2016.04.020_b0220) 1999; 121
Taarning (10.1016/j.jcat.2016.04.020_b0005) 2011; 4
Kondo (10.1016/j.jcat.2016.04.020_b0240) 2005; 109
Mirth (10.1016/j.jcat.2016.04.020_b0210) 1990; 86
Bhan (10.1016/j.jcat.2016.04.020_b0270) 2008; 253
Kresse (10.1016/j.jcat.2016.04.020_b0075) 1996; 54
Bouchoux (10.1016/j.jcat.2016.04.020_b0230) 1990; 112
Kresse (10.1016/j.jcat.2016.04.020_b0070) 1996; 6
10.1016/j.jcat.2016.04.020_b0160
Kondo (10.1016/j.jcat.2016.04.020_b0245) 2010; 114
Zhao (10.1016/j.jcat.2016.04.020_b0130) 2008; 10
10.1016/j.jcat.2016.04.020_b0040
Moser (10.1016/j.jcat.2016.04.020_b0200) 1989; 117
Tret’yakov (10.1016/j.jcat.2016.04.020_b0025) 2010; 2
Alvarenga (10.1016/j.jcat.2016.04.020_b0015) 2013; 59
Moser (10.1016/j.jcat.2016.04.020_b0285) 1989; 117
Gayubo (10.1016/j.jcat.2016.04.020_b0290) 2010; 49
Henkelman (10.1016/j.jcat.2016.04.020_b0115) 2000; 113
Piccini (10.1016/j.jcat.2016.04.020_b0150) 2014; 10
Bader (10.1016/j.jcat.2016.04.020_b0105) 1990
De Moor (10.1016/j.jcat.2016.04.020_b0170) 2009; 11
Nguyen (10.1016/j.jcat.2016.04.020_b0055) 2010; 12
Nguyen (10.1016/j.jcat.2016.04.020_b0165) 2015; 322
Kostestkyy (10.1016/j.jcat.2016.04.020_b0235) 2015; 119
Berger (10.1016/j.jcat.2016.04.020_b0205) 2001; 5
10.1016/j.jcat.2016.04.020_b0295
Rodríguez-González (10.1016/j.jcat.2016.04.020_b0195) 2007; 328
John (10.1016/j.jcat.2016.04.020_b0180) 2015; 330
Jensen (10.1016/j.jcat.2016.04.020_b0145) 2015; 17
Angelici (10.1016/j.jcat.2016.04.020_b0020) 2013; 6
Zamaraev (10.1016/j.jcat.2016.04.020_b0215) 1996; 41
Zhi (10.1016/j.jcat.2016.04.020_b0265) 2015; 137
Henkelman (10.1016/j.jcat.2016.04.020_b0120) 1999; 111
Kim (10.1016/j.jcat.2016.04.020_b0250) 2015; 119
Kresse (10.1016/j.jcat.2016.04.020_b0065) 1994; 49
Blöchl (10.1016/j.jcat.2016.04.020_b0080) 1994; 50
Grimme (10.1016/j.jcat.2016.04.020_b0140) 2012; 18
References_xml – volume: 328
  start-page: 174
  year: 2007
  ident: b0195
  publication-title: Appl. Catal. A
– volume: 77
  start-page: 3865
  year: 1996
  ident: b0090
  publication-title: Phys. Rev. Lett.
– volume: 49
  start-page: 10836
  year: 2010
  ident: b0290
  publication-title: Ind. Eng. Chem. Res.
– volume: 121
  start-page: 3292
  year: 1999
  ident: b0220
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 15781
  year: 2015
  ident: b0265
  publication-title: J. Am. Chem. Soc.
– year: 1990
  ident: b0105
  article-title: Atoms in Molecules – A Quantum Theory
– volume: 3
  start-page: 1965
  year: 2013
  ident: b0260
  publication-title: ACS Catal.
– reference: > (accessed January 22, 2016).
– volume: 314
  start-page: 159
  year: 2014
  ident: b0185
  publication-title: J. Catal.
– volume: 119
  start-page: 6128
  year: 2015
  ident: b0155
  publication-title: J. Phys. Chem. C
– volume: 86
  start-page: 3039
  year: 1990
  ident: b0210
  publication-title: J. Chem. Soc., Faraday Trans.
– volume: 41
  start-page: 335
  year: 1996
  ident: b0215
  publication-title: Adv. Catal.
– volume: 49
  start-page: 14251
  year: 1994
  ident: b0065
  publication-title: Phys. Rev. B
– volume: 322
  start-page: 91
  year: 2015
  ident: b0165
  publication-title: J. Catal.
– volume: 114
  start-page: 20107
  year: 2010
  ident: b0245
  publication-title: J. Phys. Chem. C
– volume: 27
  start-page: 1787
  year: 2006
  ident: b0095
  publication-title: J. Comput. Chem.
– reference: K. Alexopoulos, M.-S. Lee, Y. Liu, Y. Zhi, Y.S. Liu, M.-F. Reyniers, G.B. Marin, V.-A. Glezakou, R. Rousseau, J.A. Lercher, J. Phys. Chem. C.
– volume: 117
  start-page: 19
  year: 1989
  ident: b0200
  publication-title: J. Catal.
– volume: 120
  start-page: 1556
  year: 1998
  ident: b0045
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 402
  year: 2010
  ident: b0025
  publication-title: Catal. Ind.
– volume: 111
  start-page: 7010
  year: 1999
  ident: b0120
  publication-title: J. Chem. Phys.
– volume: 52
  start-page: 9505
  year: 2013
  ident: b0035
  publication-title: Ind. Eng. Chem. Res.
– volume: 117
  start-page: 19
  year: 1989
  ident: b0285
  publication-title: J. Catal.
– volume: 10
  start-page: 2813
  year: 2008
  ident: b0130
  publication-title: Phys. Chem. Chem. Phys.
– volume: 113
  start-page: 9978
  year: 2000
  ident: b0115
  publication-title: J. Chem. Phys.
– volume: 36
  start-page: 4466
  year: 1997
  ident: b0275
  publication-title: Ind. Eng. Chem. Res.
– volume: 18
  start-page: 9955
  year: 2012
  ident: b0140
  publication-title: Chem. Eur. J.
– volume: 112
  start-page: 9110
  year: 1990
  ident: b0230
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 17953
  year: 1994
  ident: b0080
  publication-title: Phys. Rev. B
– year: 2005
  ident: b0175
  article-title: Essentials of Computational Chemistry: Theories and Models
– volume: 115
  start-page: 14556
  year: 2011
  ident: b0135
  publication-title: J. Phys. Chem. B
– volume: 272
  start-page: 92
  year: 2015
  ident: b0255
  publication-title: Chem. Eng. J.
– volume: 119
  start-page: 16139
  year: 2015
  ident: b0235
  publication-title: J. Phys. Chem. C
– volume: 131
  start-page: 816
  year: 2009
  ident: b0050
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 11169
  year: 1996
  ident: b0075
  publication-title: Phys. Rev. B
– volume: 271
  start-page: 251
  year: 2010
  ident: b0030
  publication-title: J. Catal.
– volume: 6
  start-page: 15
  year: 1996
  ident: b0070
  publication-title: J. Comput. Mater. Sci.
– volume: 29
  start-page: 2088
  year: 2008
  ident: b0100
  publication-title: J. Comput. Chem.
– volume: 59
  start-page: 49
  year: 2013
  ident: b0015
  publication-title: Renew. Energy
– volume: 5
  start-page: 30
  year: 2001
  ident: b0205
  publication-title: Cattech
– volume: 7
  start-page: 1090
  year: 2011
  ident: b0125
  publication-title: J. Chem. Theory Comput.
– reference: A.C. Hindmarsh, ODEPACK, A systematized collection of ODE solvers, in: Scientific Computing, R.S. Stepleman et al. (eds.), North-Holland, Amsterdam, 1983 (vol. 1 of IMACS Transactions on Scientific Computation), pp. 55–64.
– volume: 6
  start-page: 1
  year: 2013
  ident: b0020
  publication-title: ChemSusChem
– volume: 17
  start-page: 12441
  year: 2015
  ident: b0145
  publication-title: Phys. Chem. Chem. Phys.
– volume: 253
  start-page: 221
  year: 2008
  ident: b0270
  publication-title: J. Catal.
– volume: 126
  start-page: 9520
  year: 2004
  ident: b0225
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 3604
  year: 2015
  ident: b0250
  publication-title: J. Phys. Chem. A
– volume: 4
  start-page: 793
  year: 2011
  ident: b0005
  publication-title: Energy Environ. Sci.
– volume: 48
  start-page: 13115
  year: 1993
  ident: b0060
  publication-title: Phys. Rev. B
– volume: 36
  start-page: 254
  year: 2006
  ident: b0110
  publication-title: Comput. Mater. Sci.
– volume: 10
  start-page: 2479
  year: 2014
  ident: b0150
  publication-title: J. Chem. Theory Comput.
– volume: 11
  start-page: 2939
  year: 2009
  ident: b0170
  publication-title: Phys. Chem. Chem. Phys.
– volume: 330
  start-page: 28
  year: 2015
  ident: b0180
  publication-title: J. Catal.
– reference: .
– reference: V. Coupard, N. Touchais, S. Fleurier, H. Gonzalez Penas, P. De Smedt, W. Vermeiren, C. Adam, D. Minoux, Process for dehydration of dilute ethanol into ethylene with low energy consumption without recycling of water. U.S. Patent Application 13/646,002.
– reference: International Zeolite Association: Structural Databases <
– volume: 59
  start-page: 1758
  year: 1999
  ident: b0085
  publication-title: Phys. Rev. B
– volume: 109
  start-page: 10969
  year: 2005
  ident: b0240
  publication-title: J. Phys. Chem. B
– volume: 58
  start-page: 119
  year: 1990
  ident: b0280
  publication-title: Appl. Catal.
– volume: 12
  start-page: 9481
  year: 2010
  ident: b0055
  publication-title: Phys. Chem. Chem. Phys.
– volume: 114
  start-page: 35
  year: 2013
  ident: b0010
  publication-title: Fuel Process. Technol.
– volume: 48
  start-page: 13115
  year: 1993
  ident: 10.1016/j.jcat.2016.04.020_b0060
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.13115
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.jcat.2016.04.020_b0075
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 253
  start-page: 221
  year: 2008
  ident: 10.1016/j.jcat.2016.04.020_b0270
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2007.11.003
– volume: 120
  start-page: 1556
  year: 1998
  ident: 10.1016/j.jcat.2016.04.020_b0045
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9729037
– volume: 314
  start-page: 159
  year: 2014
  ident: 10.1016/j.jcat.2016.04.020_b0185
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.04.006
– volume: 52
  start-page: 9505
  year: 2013
  ident: 10.1016/j.jcat.2016.04.020_b0035
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie401157c
– year: 1990
  ident: 10.1016/j.jcat.2016.04.020_b0105
– volume: 58
  start-page: 119
  year: 1990
  ident: 10.1016/j.jcat.2016.04.020_b0280
  publication-title: Appl. Catal.
  doi: 10.1016/S0166-9834(00)82282-4
– volume: 117
  start-page: 19
  year: 1989
  ident: 10.1016/j.jcat.2016.04.020_b0285
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(89)90217-0
– volume: 126
  start-page: 9520
  year: 2004
  ident: 10.1016/j.jcat.2016.04.020_b0225
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja047760k
– volume: 27
  start-page: 1787
  year: 2006
  ident: 10.1016/j.jcat.2016.04.020_b0095
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 117
  start-page: 19
  year: 1989
  ident: 10.1016/j.jcat.2016.04.020_b0200
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(89)90217-0
– volume: 36
  start-page: 254
  year: 2006
  ident: 10.1016/j.jcat.2016.04.020_b0110
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.04.010
– ident: 10.1016/j.jcat.2016.04.020_b0295
– volume: 328
  start-page: 174
  year: 2007
  ident: 10.1016/j.jcat.2016.04.020_b0195
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2007.06.003
– volume: 3
  start-page: 1965
  year: 2013
  ident: 10.1016/j.jcat.2016.04.020_b0260
  publication-title: ACS Catal.
  doi: 10.1021/cs4002833
– volume: 119
  start-page: 6128
  year: 2015
  ident: 10.1016/j.jcat.2016.04.020_b0155
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b01739
– volume: 86
  start-page: 3039
  year: 1990
  ident: 10.1016/j.jcat.2016.04.020_b0210
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/ft9908603039
– volume: 322
  start-page: 91
  year: 2015
  ident: 10.1016/j.jcat.2016.04.020_b0165
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.11.013
– volume: 10
  start-page: 2479
  year: 2014
  ident: 10.1016/j.jcat.2016.04.020_b0150
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct500291x
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.jcat.2016.04.020_b0070
  publication-title: J. Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 109
  start-page: 10969
  year: 2005
  ident: 10.1016/j.jcat.2016.04.020_b0240
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp050721q
– volume: 115
  start-page: 14556
  year: 2011
  ident: 10.1016/j.jcat.2016.04.020_b0135
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp205508z
– volume: 272
  start-page: 92
  year: 2015
  ident: 10.1016/j.jcat.2016.04.020_b0255
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.03.008
– volume: 7
  start-page: 1090
  year: 2011
  ident: 10.1016/j.jcat.2016.04.020_b0125
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct1005505
– volume: 10
  start-page: 2813
  year: 2008
  ident: 10.1016/j.jcat.2016.04.020_b0130
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b717744e
– volume: 11
  start-page: 2939
  year: 2009
  ident: 10.1016/j.jcat.2016.04.020_b0170
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b819435c
– volume: 29
  start-page: 2088
  year: 2008
  ident: 10.1016/j.jcat.2016.04.020_b0100
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21069
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.jcat.2016.04.020_b0090
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 49
  start-page: 10836
  year: 2010
  ident: 10.1016/j.jcat.2016.04.020_b0290
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie100407d
– volume: 114
  start-page: 35
  year: 2013
  ident: 10.1016/j.jcat.2016.04.020_b0010
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2013.03.024
– volume: 111
  start-page: 7010
  year: 1999
  ident: 10.1016/j.jcat.2016.04.020_b0120
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480097
– volume: 2
  start-page: 402
  year: 2010
  ident: 10.1016/j.jcat.2016.04.020_b0025
  publication-title: Catal. Ind.
  doi: 10.1134/S2070050410040161
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.jcat.2016.04.020_b0085
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 113
  start-page: 9978
  year: 2000
  ident: 10.1016/j.jcat.2016.04.020_b0115
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1323224
– volume: 4
  start-page: 793
  year: 2011
  ident: 10.1016/j.jcat.2016.04.020_b0005
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C004518G
– volume: 119
  start-page: 16139
  year: 2015
  ident: 10.1016/j.jcat.2016.04.020_b0235
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b04485
– volume: 17
  start-page: 12441
  year: 2015
  ident: 10.1016/j.jcat.2016.04.020_b0145
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP00628G
– ident: 10.1016/j.jcat.2016.04.020_b0160
  doi: 10.1021/acs.jpcc.6b00923
– volume: 119
  start-page: 3604
  year: 2015
  ident: 10.1016/j.jcat.2016.04.020_b0250
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp513024z
– volume: 50
  start-page: 17953
  year: 1994
  ident: 10.1016/j.jcat.2016.04.020_b0080
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 131
  start-page: 816
  year: 2009
  ident: 10.1016/j.jcat.2016.04.020_b0050
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja807695p
– ident: 10.1016/j.jcat.2016.04.020_b0040
– volume: 41
  start-page: 335
  year: 1996
  ident: 10.1016/j.jcat.2016.04.020_b0215
  publication-title: Adv. Catal.
  doi: 10.1016/S0360-0564(08)60043-7
– volume: 6
  start-page: 1
  year: 2013
  ident: 10.1016/j.jcat.2016.04.020_b0020
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300214
– volume: 121
  start-page: 3292
  year: 1999
  ident: 10.1016/j.jcat.2016.04.020_b0220
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja983470q
– volume: 114
  start-page: 20107
  year: 2010
  ident: 10.1016/j.jcat.2016.04.020_b0245
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp107082t
– volume: 12
  start-page: 9481
  year: 2010
  ident: 10.1016/j.jcat.2016.04.020_b0055
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c000503g
– volume: 49
  start-page: 14251
  year: 1994
  ident: 10.1016/j.jcat.2016.04.020_b0065
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.14251
– year: 2005
  ident: 10.1016/j.jcat.2016.04.020_b0175
– volume: 137
  start-page: 15781
  year: 2015
  ident: 10.1016/j.jcat.2016.04.020_b0265
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09107
– volume: 36
  start-page: 4466
  year: 1997
  ident: 10.1016/j.jcat.2016.04.020_b0275
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9702542
– volume: 18
  start-page: 9955
  year: 2012
  ident: 10.1016/j.jcat.2016.04.020_b0140
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201200497
– volume: 5
  start-page: 30
  year: 2001
  ident: 10.1016/j.jcat.2016.04.020_b0205
  publication-title: Cattech
  doi: 10.1023/A:1011928218694
– volume: 59
  start-page: 49
  year: 2013
  ident: 10.1016/j.jcat.2016.04.020_b0015
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.03.029
– ident: 10.1016/j.jcat.2016.04.020_b0190
– volume: 330
  start-page: 28
  year: 2015
  ident: 10.1016/j.jcat.2016.04.020_b0180
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.07.005
– volume: 112
  start-page: 9110
  year: 1990
  ident: 10.1016/j.jcat.2016.04.020_b0230
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00181a012
– volume: 271
  start-page: 251
  year: 2010
  ident: 10.1016/j.jcat.2016.04.020_b0030
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2010.01.021
SSID ssj0011558
Score 2.4688816
Snippet [Display omitted] •Experimentally validated microkinetic model for bio-ethanol dehydration.•Reaction path analysis not only based on free energy...
Display Omitted * Experimentally validated microkinetic model for bio-ethanol dehydration. * Reaction path analysis not only based on free energy profiles. *...
A detailed reaction network has been constructed for ethanol dehydration in H-ZSM-5 using periodic density functional theory (DFT) calculations with dispersion...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 173
SubjectTerms Brønsted acid sites
Chemical reactions
density functional theory
DFT
Dispersion energy
Ethanol
ethyl ether
ethylene
Kinetics
Microkinetic model
path analysis
prediction
Reaction mechanism
temperature
Thermodynamics
Zeolites
Title DFT-based microkinetic modeling of ethanol dehydration in H-ZSM-5
URI https://dx.doi.org/10.1016/j.jcat.2016.04.020
https://www.proquest.com/docview/1794426867
https://www.proquest.com/docview/2131886023
Volume 339
WOSCitedRecordID wos000378453700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1090-2694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011558
  issn: 0021-9517
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFgk4ICggUgoyEuISbeX1a-1jKIl4hIBEGkVcVrZ3rTq4duo8FH4O_5RZ79oxRY3gwMWK_JIz83nm8-w8EHrFvYQC7_axG4kAO04kcAQ4wjQQPLJku5Bq1uF0RMdjfzYLvnQ6P-tamE1G89zfboPFf1U17ANly9LZf1B3c1PYAb9B6bAFtcP2rxT_djjB0jfx3qVMtvsONFI2Za1G3ugUZyHj5UXW4-LiB9cQkD2v8Levn7B7A1-tAj2yf0mDkUxsi0WxzlSm3kfFNFdpXuzSEosLlSsseWYTLZ-GMgO37L0pSh0ZqExNkTTJQGG2SRWtnWYhTy_Tsh2dIF6TyapDZk3ZzLRthWVaiKtqNk-FMrxmYGJZVdu2zLbqc6RtK1EzT_6w-Sr8MD-dy1CtfIaqd61l7jxcvao__syG56MRmwxmk9-PVg7dAXoEFs9zyevFFZaDyeQCvp7ScgsdWtQNwHAe9t8PZh-apSogZMrd6z-lK7NUEuH1Z7qJ_VzjARW5mTxA97WWjb5C00PUEfkRunNWDwM8QvdafSsfoX6DMaONMaPGmFEkhsaY0cKYkeaGxthjdD4cTM7eYT2LA8eO56ywLSg1LcGd2HPtmDgUvuPh48IiieWGglskpCYVPje9AM4ASRHbT6KEm8InMQUe_AQd5EUuniIjtszAimhIA2o7nPMgIYkH5gKoKvG4mXQRqWXEYt2oXs5LyVidkThnUq5MypWZDgO5dlGvuWah2rTsPdutRc800VQEkgGm9l53UuuJ6Td-yaRHA5rre7SLXjaHQT1y5S3MRbFeMouA65TT3uzj_bd4hu7u3qITdLAq1-I5uh1vVumyfKGh9wvobq6K
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DFT-based+microkinetic+modeling+of+ethanol+dehydration+in+H-ZSM-5&rft.jtitle=Journal+of+catalysis&rft.au=Alexopoulos%2C+Konstantinos&rft.au=John%2C+Mathew&rft.au=Van+der+Borght%2C+Kristof&rft.au=Galvita%2C+Vladimir&rft.date=2016-07-01&rft.pub=Elsevier+BV&rft.issn=0021-9517&rft.eissn=1090-2694&rft.volume=339&rft.spage=173&rft_id=info:doi/10.1016%2Fj.jcat.2016.04.020&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4081073651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon