DFT-based microkinetic modeling of ethanol dehydration in H-ZSM-5
[Display omitted] •Experimentally validated microkinetic model for bio-ethanol dehydration.•Reaction path analysis not only based on free energy profiles.•Novel water- and ethanol-assisted mechanisms for ethene formation.•No kinetic inhibition of water on bio-ethanol dehydration.•Carbon number depen...
Saved in:
| Published in: | Journal of catalysis Vol. 339; pp. 173 - 185 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
San Diego
Elsevier Inc
01.07.2016
Elsevier BV |
| Subjects: | |
| ISSN: | 0021-9517, 1090-2694 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•Experimentally validated microkinetic model for bio-ethanol dehydration.•Reaction path analysis not only based on free energy profiles.•Novel water- and ethanol-assisted mechanisms for ethene formation.•No kinetic inhibition of water on bio-ethanol dehydration.•Carbon number dependent activation entropies explain higher reactivity of butanol.
A detailed reaction network has been constructed for ethanol dehydration in H-ZSM-5 using periodic density functional theory (DFT) calculations with dispersion corrections. Apart from the direct conversion of ethanol to diethyl ether or ethene, where novel mechanisms have been explored, the decomposition of diethyl ether to ethene has also been investigated. Thermodynamic and kinetic parameters were computed using statistical thermodynamics for all elementary steps. By coupling this microkinetic model to a plug-flow reactor model, macroscopic predictions of conversion and selectivity have been obtained at different operating conditions. The results of these simulations have been validated for H-ZSM-5 at different temperatures where experimental data are available. Both theory and experiment show an increase in ethene selectivity with increasing temperature and the experimental conversion agrees very well with the theoretical one. A reaction path analysis for ethanol dehydration in H-ZSM-5 shows that at temperatures above 500K ethene is mainly produced via the direct dehydration of ethanol, while at temperatures lower than 500K the reaction path via diethyl ether contributes significantly to ethene formation. |
|---|---|
| AbstractList | A detailed reaction network has been constructed for ethanol dehydration in H-ZSM-5 using periodic density functional theory (DFT) calculations with dispersion corrections. Apart from the direct conversion of ethanol to diethyl ether or ethene, where novel mechanisms have been explored, the decomposition of diethyl ether to ethene has also been investigated. Thermodynamic and kinetic parameters were computed using statistical thermodynamics for all elementary steps. By coupling this microkinetic model to a plug-flow reactor model, macroscopic predictions of conversion and selectivity have been obtained at different operating conditions. The results of these simulations have been validated for H-ZSM-5 at different temperatures where experimental data are available. Both theory and experiment show an increase in ethene selectivity with increasing temperature and the experimental conversion agrees very well with the theoretical one. A reaction path analysis for ethanol dehydration in H-ZSM-5 shows that at temperatures above 500K ethene is mainly produced via the direct dehydration of ethanol, while at temperatures lower than 500K the reaction path via diethyl ether contributes significantly to ethene formation. Display Omitted * Experimentally validated microkinetic model for bio-ethanol dehydration. * Reaction path analysis not only based on free energy profiles. * Novel water- and ethanol-assisted mechanisms for ethene formation. * No kinetic inhibition of water on bio-ethanol dehydration. * Carbon number dependent activation entropies explain higher reactivity of butanol. A detailed reaction network has been constructed for ethanol dehydration in H-ZSM-5 using periodic density functional theory (DFT) calculations with dispersion corrections. Apart from the direct conversion of ethanol to diethyl ether or ethene, where novel mechanisms have been explored, the decomposition of diethyl ether to ethene has also been investigated. Thermodynamic and kinetic parameters were computed using statistical thermodynamics for all elementary steps. By coupling this microkinetic model to a plug-flow reactor model, macroscopic predictions of conversion and selectivity have been obtained at different operating conditions. The results of these simulations have been validated for H-ZSM-5 at different temperatures where experimental data are available. Both theory and experiment show an increase in ethene selectivity with increasing temperature and the experimental conversion agrees very well with the theoretical one. A reaction path analysis for ethanol dehydration in H-ZSM-5 shows that at temperatures above 500K ethene is mainly produced via the direct dehydration of ethanol, while at temperatures lower than 500K the reaction path via diethyl ether contributes significantly to ethene formation. [Display omitted] •Experimentally validated microkinetic model for bio-ethanol dehydration.•Reaction path analysis not only based on free energy profiles.•Novel water- and ethanol-assisted mechanisms for ethene formation.•No kinetic inhibition of water on bio-ethanol dehydration.•Carbon number dependent activation entropies explain higher reactivity of butanol. A detailed reaction network has been constructed for ethanol dehydration in H-ZSM-5 using periodic density functional theory (DFT) calculations with dispersion corrections. Apart from the direct conversion of ethanol to diethyl ether or ethene, where novel mechanisms have been explored, the decomposition of diethyl ether to ethene has also been investigated. Thermodynamic and kinetic parameters were computed using statistical thermodynamics for all elementary steps. By coupling this microkinetic model to a plug-flow reactor model, macroscopic predictions of conversion and selectivity have been obtained at different operating conditions. The results of these simulations have been validated for H-ZSM-5 at different temperatures where experimental data are available. Both theory and experiment show an increase in ethene selectivity with increasing temperature and the experimental conversion agrees very well with the theoretical one. A reaction path analysis for ethanol dehydration in H-ZSM-5 shows that at temperatures above 500K ethene is mainly produced via the direct dehydration of ethanol, while at temperatures lower than 500K the reaction path via diethyl ether contributes significantly to ethene formation. |
| Author | Galvita, Vladimir Van der Borght, Kristof Reyniers, Marie-Françoise Marin, Guy B. Alexopoulos, Konstantinos John, Mathew |
| Author_xml | – sequence: 1 givenname: Konstantinos surname: Alexopoulos fullname: Alexopoulos, Konstantinos – sequence: 2 givenname: Mathew orcidid: 0000-0002-9731-3278 surname: John fullname: John, Mathew – sequence: 3 givenname: Kristof surname: Van der Borght fullname: Van der Borght, Kristof – sequence: 4 givenname: Vladimir surname: Galvita fullname: Galvita, Vladimir – sequence: 5 givenname: Marie-Françoise surname: Reyniers fullname: Reyniers, Marie-Françoise email: MarieFrancoise.Reyniers@UGent.be – sequence: 6 givenname: Guy B. surname: Marin fullname: Marin, Guy B. |
| BookMark | eNp9kLFuFDEQQC0UJC6BH6BaiYZmlxmv196VaKJAEqQgiiQNjeXYs8TLnh1sH1L-Hl-OKkWqcfGeNfOO2VGIgRh7j9AhoPy0dIs1peP13YHogMMrtkGYoOVyEkdsA8CxnQZUb9hxzgsA4jCMG3b65fymvTOZXLP1NsXfPlDxttlGR6sPv5o4N1TuTYhr4-j-0SVTfAyND81l-_P6ezu8Za9ns2Z693-esNvzrzdnl-3Vj4tvZ6dXrRVSlLYnpYCTE1YOvUWhAAGmiePMB0OOo1GgaHQgp0pwNWA_znezAxrRKpD9Cft4-PchxT87ykVvfba0riZQ3GXNscdxlMD7in54hi5xl0LdTqOahOBylKpS44GqZ-ecaNbWl6frSjJ-1Qh631Yvet9W79tqELq2rSp_pj4kvzXp8WXp80GiWumvp6Sz9RQsOZ_IFu2if0n_BzCfkYQ |
| CitedBy_id | crossref_primary_10_1002_adma_202406472 crossref_primary_10_1016_j_apcata_2020_117544 crossref_primary_10_1016_j_cattod_2017_09_020 crossref_primary_10_3390_catal9090700 crossref_primary_10_1039_D1CY02289J crossref_primary_10_1002_anie_201607230 crossref_primary_10_3390_catal9110921 crossref_primary_10_1016_j_ces_2021_117042 crossref_primary_10_1016_j_ces_2019_07_015 crossref_primary_10_1016_j_fuel_2018_11_026 crossref_primary_10_1002_adfm_202110026 crossref_primary_10_1016_j_fuel_2024_131368 crossref_primary_10_3389_fchem_2025_1656180 crossref_primary_10_1016_j_apcatb_2021_120242 crossref_primary_10_1007_s00894_021_04979_8 crossref_primary_10_3390_catal12010051 crossref_primary_10_1016_j_apsusc_2023_157298 crossref_primary_10_1002_slct_202203031 crossref_primary_10_1002_cssc_201800864 crossref_primary_10_3390_catal7050159 crossref_primary_10_1002_ange_201607230 crossref_primary_10_1016_j_cej_2021_130493 crossref_primary_10_1016_j_matt_2020_06_025 crossref_primary_10_1134_S2070050424010033 crossref_primary_10_1002_cjce_24956 crossref_primary_10_1016_j_apcatb_2024_124351 crossref_primary_10_1039_D0CY02366C crossref_primary_10_3389_fceng_2019_00002 crossref_primary_10_1038_s41467_019_09956_7 crossref_primary_10_1038_s41598_019_56373_3 crossref_primary_10_1002_aic_18616 crossref_primary_10_1002_cctc_202201387 crossref_primary_10_1016_j_apcata_2023_119065 crossref_primary_10_1016_j_jcat_2025_116343 crossref_primary_10_1039_D4CY00532E crossref_primary_10_1007_s40242_022_1450_1 crossref_primary_10_1016_j_energy_2023_129910 crossref_primary_10_1016_j_jiec_2020_05_022 crossref_primary_10_1039_C8CY01564C crossref_primary_10_1016_j_fuel_2025_136796 crossref_primary_10_1016_j_jcat_2020_03_020 crossref_primary_10_1016_j_cattod_2019_04_018 crossref_primary_10_1016_j_jcat_2022_07_025 crossref_primary_10_1016_j_ccst_2024_100357 crossref_primary_10_1016_j_micromeso_2022_111910 crossref_primary_10_1016_j_apcata_2017_03_036 crossref_primary_10_1016_j_apcata_2021_118122 crossref_primary_10_1016_j_micromeso_2020_110462 crossref_primary_10_1016_j_cej_2025_168334 |
| Cites_doi | 10.1103/PhysRevB.48.13115 10.1103/PhysRevB.54.11169 10.1016/j.jcat.2007.11.003 10.1021/ja9729037 10.1016/j.jcat.2014.04.006 10.1021/ie401157c 10.1016/S0166-9834(00)82282-4 10.1016/0021-9517(89)90217-0 10.1021/ja047760k 10.1002/jcc.20495 10.1016/j.commatsci.2005.04.010 10.1016/j.apcata.2007.06.003 10.1021/cs4002833 10.1021/acs.jpcc.5b01739 10.1039/ft9908603039 10.1016/j.jcat.2014.11.013 10.1021/ct500291x 10.1016/0927-0256(96)00008-0 10.1021/jp050721q 10.1021/jp205508z 10.1016/j.cej.2015.03.008 10.1021/ct1005505 10.1039/b717744e 10.1039/b819435c 10.1002/jcc.21069 10.1103/PhysRevLett.77.3865 10.1021/ie100407d 10.1016/j.fuproc.2013.03.024 10.1063/1.480097 10.1134/S2070050410040161 10.1103/PhysRevB.59.1758 10.1063/1.1323224 10.1039/C004518G 10.1021/acs.jpcc.5b04485 10.1039/C5CP00628G 10.1021/acs.jpcc.6b00923 10.1021/jp513024z 10.1103/PhysRevB.50.17953 10.1021/ja807695p 10.1016/S0360-0564(08)60043-7 10.1002/cssc.201300214 10.1021/ja983470q 10.1021/jp107082t 10.1039/c000503g 10.1103/PhysRevB.49.14251 10.1021/jacs.5b09107 10.1021/ie9702542 10.1002/chem.201200497 10.1023/A:1011928218694 10.1016/j.renene.2013.03.029 10.1016/j.jcat.2015.07.005 10.1021/ja00181a012 10.1016/j.jcat.2010.01.021 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Inc. |
| Copyright_xml | – notice: 2016 Elsevier Inc. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jcat.2016.04.020 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1090-2694 |
| EndPage | 185 |
| ExternalDocumentID | 4081073651 10_1016_j_jcat_2016_04_020 S0021951716300318 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE ADFGL ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SCC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K TAE TWZ UPT VH1 WUQ XFK XPP YQT ZMT ZU3 ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c464t-3e7702ed4c653c14701009921f25aed21a707e8d069c65275138fbfd0e81c7063 |
| ISICitedReferencesCount | 75 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378453700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9517 |
| IngestDate | Sun Sep 28 02:52:17 EDT 2025 Sun Nov 09 06:58:16 EST 2025 Tue Nov 18 21:19:01 EST 2025 Sat Nov 29 05:01:14 EST 2025 Fri Feb 23 02:27:02 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Brønsted acid sites Reaction mechanism DFT Dispersion energy Microkinetic model Zeolites |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c464t-3e7702ed4c653c14701009921f25aed21a707e8d069c65275138fbfd0e81c7063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9731-3278 |
| PQID | 1794426867 |
| PQPubID | 32080 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2131886023 proquest_journals_1794426867 crossref_citationtrail_10_1016_j_jcat_2016_04_020 crossref_primary_10_1016_j_jcat_2016_04_020 elsevier_sciencedirect_doi_10_1016_j_jcat_2016_04_020 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-07-01 |
| PublicationDateYYYYMMDD | 2016-07-01 |
| PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | San Diego |
| PublicationPlace_xml | – name: San Diego |
| PublicationTitle | Journal of catalysis |
| PublicationYear | 2016 |
| Publisher | Elsevier Inc Elsevier BV |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
| References | Kresse, Furthmüller (b0075) 1996; 54 Mirth, Lercher, Anderson, Kinowski (b0210) 1990; 86 Piccini, Alessio, Sauer, Zhi, Liu, Kolvenbach, Jentys, Lercher (b0155) 2015; 119 Kresse, Hafner (b0065) 1994; 49 Blöchl (b0080) 1994; 50 Piccini, Sauer (b0150) 2014; 10 De Moor, Ghysels, Reyniers, Speybroeck, Waroquier, Marin (b0125) 2011; 7 Zhao, Truhlar (b0130) 2008; 10 Kerber, Sierka, Sauer (b0100) 2008; 29 Brogaard, Henry, Schuurman, Medford, Moses, Beato, Svelle, Nørskov, Olsbye (b0185) 2014; 314 John, Alexopoulos, Reyniers, Marin (b0180) 2015; 330 Gayubo, Alonso, Valle, Aguayo, Bilbao (b0290) 2010; 49 Moser, Thompson, Chiang, Tong (b0285) 1989; 117 Kresse, Joubert (b0085) 1999; 59 Taarning, Osmundsen, Yang, Voss, Andersen, Christensen (b0005) 2011; 4 Grimme (b0095) 2006; 27 De Moor, Reyniers, Marin (b0170) 2009; 11 V. Coupard, N. Touchais, S. Fleurier, H. Gonzalez Penas, P. De Smedt, W. Vermeiren, C. Adam, D. Minoux, Process for dehydration of dilute ethanol into ethylene with low energy consumption without recycling of water. U.S. Patent Application 13/646,002. Phillips, Datta (b0275) 1997; 36 Perdew, Burke, Ernzerhof (b0090) 1996; 77 Bhan, Gounder, Macht, Iglesia (b0270) 2008; 253 Nguyen, Reyniers, Marin (b0165) 2015; 322 Phung, Busca (b0255) 2015; 272 . Grimme (b0140) 2012; 18 Berger, Stitt, Marin, Kapteijn, Moulijn (b0205) 2001; 5 Kondo, Nishioka, Yamazaki, Kubota, Domen, Tatsumi (b0245) 2010; 114 A.C. Hindmarsh, ODEPACK, A systematized collection of ODE solvers, in: Scientific Computing, R.S. Stepleman et al. (eds.), North-Holland, Amsterdam, 1983 (vol. 1 of IMACS Transactions on Scientific Computation), pp. 55–64. Nguyen, Le Van Mao (b0280) 1990; 58 (accessed January 22, 2016). Solcà, Dopfer (b0225) 2004; 126 Kostestkyy, Maheswari, Mpourmpakis (b0235) 2015; 119 Ribeiro, Marenich, Cramer, Truhlar (b0135) 2011; 115 Štich, Gale, Terakura, Payne (b0220) 1999; 121 Haro, Ollero, Trippe (b0010) 2013; 114 Alvarenga, Dewulf (b0015) 2013; 59 Zhang, Yu (b0035) 2013; 52 Kondo, Ito, Yoda, Wakabayashi, Domen (b0240) 2005; 109 Nguyen, Reyniers, Marin (b0055) 2010; 12 Angelici, Weckhuysen, Bruijnincx (b0020) 2013; 6 Chiang, Bhan (b0030) 2010; 271 Moser, Thompson, Chiang, Tong (b0200) 1989; 117 Kresse, Hafner (b0060) 1993; 48 Svelle, Tuma, Rozanska, Kerber, Sauer (b0050) 2009; 131 Bouchoux, Hoppilliard (b0230) 1990; 112 Henkelman, Jónsson (b0115) 2000; 113 Kim, Robichaud, Beckham, Paton, Nimlos (b0250) 2015; 119 Tret’yakov, Makarfi, Tret’yakov, Frantsuzova, Talyshinskii (b0025) 2010; 2 Bader (b0105) 1990 Henkelman, Arnaldsson, Jónsson (b0110) 2006; 36 Cramer (b0175) 2005 Kresse, Furthmüller (b0070) 1996; 6 Zhi, Shi, Mu, Liu, Mei, Camaioni, Lercher (b0265) 2015; 137 Jensen (b0145) 2015; 17 International Zeolite Association: Structural Databases Henkelman, Jónsson (b0120) 1999; 111 Rodríguez-González, Hermes, Bertmer, Rodríguez-Castellón, Jiménez-López, Simon (b0195) 2007; 328 K. Alexopoulos, M.-S. Lee, Y. Liu, Y. Zhi, Y.S. Liu, M.-F. Reyniers, G.B. Marin, V.-A. Glezakou, R. Rousseau, J.A. Lercher, J. Phys. Chem. C. Brändle, Sauer (b0045) 1998; 120 Zamaraev, Thomas (b0215) 1996; 41 Christiansen, Mpourmpakis, Vlachos (b0260) 2013; 3 Kresse (10.1016/j.jcat.2016.04.020_b0085) 1999; 59 Phung (10.1016/j.jcat.2016.04.020_b0255) 2015; 272 Cramer (10.1016/j.jcat.2016.04.020_b0175) 2005 Haro (10.1016/j.jcat.2016.04.020_b0010) 2013; 114 Brändle (10.1016/j.jcat.2016.04.020_b0045) 1998; 120 Perdew (10.1016/j.jcat.2016.04.020_b0090) 1996; 77 Chiang (10.1016/j.jcat.2016.04.020_b0030) 2010; 271 De Moor (10.1016/j.jcat.2016.04.020_b0125) 2011; 7 Zhang (10.1016/j.jcat.2016.04.020_b0035) 2013; 52 Kerber (10.1016/j.jcat.2016.04.020_b0100) 2008; 29 Brogaard (10.1016/j.jcat.2016.04.020_b0185) 2014; 314 Christiansen (10.1016/j.jcat.2016.04.020_b0260) 2013; 3 Kresse (10.1016/j.jcat.2016.04.020_b0060) 1993; 48 Henkelman (10.1016/j.jcat.2016.04.020_b0110) 2006; 36 Solcà (10.1016/j.jcat.2016.04.020_b0225) 2004; 126 Grimme (10.1016/j.jcat.2016.04.020_b0095) 2006; 27 Svelle (10.1016/j.jcat.2016.04.020_b0050) 2009; 131 Ribeiro (10.1016/j.jcat.2016.04.020_b0135) 2011; 115 10.1016/j.jcat.2016.04.020_b0190 Phillips (10.1016/j.jcat.2016.04.020_b0275) 1997; 36 Nguyen (10.1016/j.jcat.2016.04.020_b0280) 1990; 58 Piccini (10.1016/j.jcat.2016.04.020_b0155) 2015; 119 Štich (10.1016/j.jcat.2016.04.020_b0220) 1999; 121 Taarning (10.1016/j.jcat.2016.04.020_b0005) 2011; 4 Kondo (10.1016/j.jcat.2016.04.020_b0240) 2005; 109 Mirth (10.1016/j.jcat.2016.04.020_b0210) 1990; 86 Bhan (10.1016/j.jcat.2016.04.020_b0270) 2008; 253 Kresse (10.1016/j.jcat.2016.04.020_b0075) 1996; 54 Bouchoux (10.1016/j.jcat.2016.04.020_b0230) 1990; 112 Kresse (10.1016/j.jcat.2016.04.020_b0070) 1996; 6 10.1016/j.jcat.2016.04.020_b0160 Kondo (10.1016/j.jcat.2016.04.020_b0245) 2010; 114 Zhao (10.1016/j.jcat.2016.04.020_b0130) 2008; 10 10.1016/j.jcat.2016.04.020_b0040 Moser (10.1016/j.jcat.2016.04.020_b0200) 1989; 117 Tret’yakov (10.1016/j.jcat.2016.04.020_b0025) 2010; 2 Alvarenga (10.1016/j.jcat.2016.04.020_b0015) 2013; 59 Moser (10.1016/j.jcat.2016.04.020_b0285) 1989; 117 Gayubo (10.1016/j.jcat.2016.04.020_b0290) 2010; 49 Henkelman (10.1016/j.jcat.2016.04.020_b0115) 2000; 113 Piccini (10.1016/j.jcat.2016.04.020_b0150) 2014; 10 Bader (10.1016/j.jcat.2016.04.020_b0105) 1990 De Moor (10.1016/j.jcat.2016.04.020_b0170) 2009; 11 Nguyen (10.1016/j.jcat.2016.04.020_b0055) 2010; 12 Nguyen (10.1016/j.jcat.2016.04.020_b0165) 2015; 322 Kostestkyy (10.1016/j.jcat.2016.04.020_b0235) 2015; 119 Berger (10.1016/j.jcat.2016.04.020_b0205) 2001; 5 10.1016/j.jcat.2016.04.020_b0295 Rodríguez-González (10.1016/j.jcat.2016.04.020_b0195) 2007; 328 John (10.1016/j.jcat.2016.04.020_b0180) 2015; 330 Jensen (10.1016/j.jcat.2016.04.020_b0145) 2015; 17 Angelici (10.1016/j.jcat.2016.04.020_b0020) 2013; 6 Zamaraev (10.1016/j.jcat.2016.04.020_b0215) 1996; 41 Zhi (10.1016/j.jcat.2016.04.020_b0265) 2015; 137 Henkelman (10.1016/j.jcat.2016.04.020_b0120) 1999; 111 Kim (10.1016/j.jcat.2016.04.020_b0250) 2015; 119 Kresse (10.1016/j.jcat.2016.04.020_b0065) 1994; 49 Blöchl (10.1016/j.jcat.2016.04.020_b0080) 1994; 50 Grimme (10.1016/j.jcat.2016.04.020_b0140) 2012; 18 |
| References_xml | – volume: 328 start-page: 174 year: 2007 ident: b0195 publication-title: Appl. Catal. A – volume: 77 start-page: 3865 year: 1996 ident: b0090 publication-title: Phys. Rev. Lett. – volume: 49 start-page: 10836 year: 2010 ident: b0290 publication-title: Ind. Eng. Chem. Res. – volume: 121 start-page: 3292 year: 1999 ident: b0220 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 15781 year: 2015 ident: b0265 publication-title: J. Am. Chem. Soc. – year: 1990 ident: b0105 article-title: Atoms in Molecules – A Quantum Theory – volume: 3 start-page: 1965 year: 2013 ident: b0260 publication-title: ACS Catal. – reference: > (accessed January 22, 2016). – volume: 314 start-page: 159 year: 2014 ident: b0185 publication-title: J. Catal. – volume: 119 start-page: 6128 year: 2015 ident: b0155 publication-title: J. Phys. Chem. C – volume: 86 start-page: 3039 year: 1990 ident: b0210 publication-title: J. Chem. Soc., Faraday Trans. – volume: 41 start-page: 335 year: 1996 ident: b0215 publication-title: Adv. Catal. – volume: 49 start-page: 14251 year: 1994 ident: b0065 publication-title: Phys. Rev. B – volume: 322 start-page: 91 year: 2015 ident: b0165 publication-title: J. Catal. – volume: 114 start-page: 20107 year: 2010 ident: b0245 publication-title: J. Phys. Chem. C – volume: 27 start-page: 1787 year: 2006 ident: b0095 publication-title: J. Comput. Chem. – reference: K. Alexopoulos, M.-S. Lee, Y. Liu, Y. Zhi, Y.S. Liu, M.-F. Reyniers, G.B. Marin, V.-A. Glezakou, R. Rousseau, J.A. Lercher, J. Phys. Chem. C. – volume: 117 start-page: 19 year: 1989 ident: b0200 publication-title: J. Catal. – volume: 120 start-page: 1556 year: 1998 ident: b0045 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 402 year: 2010 ident: b0025 publication-title: Catal. Ind. – volume: 111 start-page: 7010 year: 1999 ident: b0120 publication-title: J. Chem. Phys. – volume: 52 start-page: 9505 year: 2013 ident: b0035 publication-title: Ind. Eng. Chem. Res. – volume: 117 start-page: 19 year: 1989 ident: b0285 publication-title: J. Catal. – volume: 10 start-page: 2813 year: 2008 ident: b0130 publication-title: Phys. Chem. Chem. Phys. – volume: 113 start-page: 9978 year: 2000 ident: b0115 publication-title: J. Chem. Phys. – volume: 36 start-page: 4466 year: 1997 ident: b0275 publication-title: Ind. Eng. Chem. Res. – volume: 18 start-page: 9955 year: 2012 ident: b0140 publication-title: Chem. Eur. J. – volume: 112 start-page: 9110 year: 1990 ident: b0230 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 17953 year: 1994 ident: b0080 publication-title: Phys. Rev. B – year: 2005 ident: b0175 article-title: Essentials of Computational Chemistry: Theories and Models – volume: 115 start-page: 14556 year: 2011 ident: b0135 publication-title: J. Phys. Chem. B – volume: 272 start-page: 92 year: 2015 ident: b0255 publication-title: Chem. Eng. J. – volume: 119 start-page: 16139 year: 2015 ident: b0235 publication-title: J. Phys. Chem. C – volume: 131 start-page: 816 year: 2009 ident: b0050 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 11169 year: 1996 ident: b0075 publication-title: Phys. Rev. B – volume: 271 start-page: 251 year: 2010 ident: b0030 publication-title: J. Catal. – volume: 6 start-page: 15 year: 1996 ident: b0070 publication-title: J. Comput. Mater. Sci. – volume: 29 start-page: 2088 year: 2008 ident: b0100 publication-title: J. Comput. Chem. – volume: 59 start-page: 49 year: 2013 ident: b0015 publication-title: Renew. Energy – volume: 5 start-page: 30 year: 2001 ident: b0205 publication-title: Cattech – volume: 7 start-page: 1090 year: 2011 ident: b0125 publication-title: J. Chem. Theory Comput. – reference: A.C. Hindmarsh, ODEPACK, A systematized collection of ODE solvers, in: Scientific Computing, R.S. Stepleman et al. (eds.), North-Holland, Amsterdam, 1983 (vol. 1 of IMACS Transactions on Scientific Computation), pp. 55–64. – volume: 6 start-page: 1 year: 2013 ident: b0020 publication-title: ChemSusChem – volume: 17 start-page: 12441 year: 2015 ident: b0145 publication-title: Phys. Chem. Chem. Phys. – volume: 253 start-page: 221 year: 2008 ident: b0270 publication-title: J. Catal. – volume: 126 start-page: 9520 year: 2004 ident: b0225 publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 3604 year: 2015 ident: b0250 publication-title: J. Phys. Chem. A – volume: 4 start-page: 793 year: 2011 ident: b0005 publication-title: Energy Environ. Sci. – volume: 48 start-page: 13115 year: 1993 ident: b0060 publication-title: Phys. Rev. B – volume: 36 start-page: 254 year: 2006 ident: b0110 publication-title: Comput. Mater. Sci. – volume: 10 start-page: 2479 year: 2014 ident: b0150 publication-title: J. Chem. Theory Comput. – volume: 11 start-page: 2939 year: 2009 ident: b0170 publication-title: Phys. Chem. Chem. Phys. – volume: 330 start-page: 28 year: 2015 ident: b0180 publication-title: J. Catal. – reference: . – reference: V. Coupard, N. Touchais, S. Fleurier, H. Gonzalez Penas, P. De Smedt, W. Vermeiren, C. Adam, D. Minoux, Process for dehydration of dilute ethanol into ethylene with low energy consumption without recycling of water. U.S. Patent Application 13/646,002. – reference: International Zeolite Association: Structural Databases < – volume: 59 start-page: 1758 year: 1999 ident: b0085 publication-title: Phys. Rev. B – volume: 109 start-page: 10969 year: 2005 ident: b0240 publication-title: J. Phys. Chem. B – volume: 58 start-page: 119 year: 1990 ident: b0280 publication-title: Appl. Catal. – volume: 12 start-page: 9481 year: 2010 ident: b0055 publication-title: Phys. Chem. Chem. Phys. – volume: 114 start-page: 35 year: 2013 ident: b0010 publication-title: Fuel Process. Technol. – volume: 48 start-page: 13115 year: 1993 ident: 10.1016/j.jcat.2016.04.020_b0060 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.13115 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.jcat.2016.04.020_b0075 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 253 start-page: 221 year: 2008 ident: 10.1016/j.jcat.2016.04.020_b0270 publication-title: J. Catal. doi: 10.1016/j.jcat.2007.11.003 – volume: 120 start-page: 1556 year: 1998 ident: 10.1016/j.jcat.2016.04.020_b0045 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9729037 – volume: 314 start-page: 159 year: 2014 ident: 10.1016/j.jcat.2016.04.020_b0185 publication-title: J. Catal. doi: 10.1016/j.jcat.2014.04.006 – volume: 52 start-page: 9505 year: 2013 ident: 10.1016/j.jcat.2016.04.020_b0035 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie401157c – year: 1990 ident: 10.1016/j.jcat.2016.04.020_b0105 – volume: 58 start-page: 119 year: 1990 ident: 10.1016/j.jcat.2016.04.020_b0280 publication-title: Appl. Catal. doi: 10.1016/S0166-9834(00)82282-4 – volume: 117 start-page: 19 year: 1989 ident: 10.1016/j.jcat.2016.04.020_b0285 publication-title: J. Catal. doi: 10.1016/0021-9517(89)90217-0 – volume: 126 start-page: 9520 year: 2004 ident: 10.1016/j.jcat.2016.04.020_b0225 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja047760k – volume: 27 start-page: 1787 year: 2006 ident: 10.1016/j.jcat.2016.04.020_b0095 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 117 start-page: 19 year: 1989 ident: 10.1016/j.jcat.2016.04.020_b0200 publication-title: J. Catal. doi: 10.1016/0021-9517(89)90217-0 – volume: 36 start-page: 254 year: 2006 ident: 10.1016/j.jcat.2016.04.020_b0110 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2005.04.010 – ident: 10.1016/j.jcat.2016.04.020_b0295 – volume: 328 start-page: 174 year: 2007 ident: 10.1016/j.jcat.2016.04.020_b0195 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2007.06.003 – volume: 3 start-page: 1965 year: 2013 ident: 10.1016/j.jcat.2016.04.020_b0260 publication-title: ACS Catal. doi: 10.1021/cs4002833 – volume: 119 start-page: 6128 year: 2015 ident: 10.1016/j.jcat.2016.04.020_b0155 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b01739 – volume: 86 start-page: 3039 year: 1990 ident: 10.1016/j.jcat.2016.04.020_b0210 publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/ft9908603039 – volume: 322 start-page: 91 year: 2015 ident: 10.1016/j.jcat.2016.04.020_b0165 publication-title: J. Catal. doi: 10.1016/j.jcat.2014.11.013 – volume: 10 start-page: 2479 year: 2014 ident: 10.1016/j.jcat.2016.04.020_b0150 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct500291x – volume: 6 start-page: 15 year: 1996 ident: 10.1016/j.jcat.2016.04.020_b0070 publication-title: J. Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 109 start-page: 10969 year: 2005 ident: 10.1016/j.jcat.2016.04.020_b0240 publication-title: J. Phys. Chem. B doi: 10.1021/jp050721q – volume: 115 start-page: 14556 year: 2011 ident: 10.1016/j.jcat.2016.04.020_b0135 publication-title: J. Phys. Chem. B doi: 10.1021/jp205508z – volume: 272 start-page: 92 year: 2015 ident: 10.1016/j.jcat.2016.04.020_b0255 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.03.008 – volume: 7 start-page: 1090 year: 2011 ident: 10.1016/j.jcat.2016.04.020_b0125 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct1005505 – volume: 10 start-page: 2813 year: 2008 ident: 10.1016/j.jcat.2016.04.020_b0130 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b717744e – volume: 11 start-page: 2939 year: 2009 ident: 10.1016/j.jcat.2016.04.020_b0170 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b819435c – volume: 29 start-page: 2088 year: 2008 ident: 10.1016/j.jcat.2016.04.020_b0100 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21069 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.jcat.2016.04.020_b0090 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 49 start-page: 10836 year: 2010 ident: 10.1016/j.jcat.2016.04.020_b0290 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie100407d – volume: 114 start-page: 35 year: 2013 ident: 10.1016/j.jcat.2016.04.020_b0010 publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2013.03.024 – volume: 111 start-page: 7010 year: 1999 ident: 10.1016/j.jcat.2016.04.020_b0120 publication-title: J. Chem. Phys. doi: 10.1063/1.480097 – volume: 2 start-page: 402 year: 2010 ident: 10.1016/j.jcat.2016.04.020_b0025 publication-title: Catal. Ind. doi: 10.1134/S2070050410040161 – volume: 59 start-page: 1758 year: 1999 ident: 10.1016/j.jcat.2016.04.020_b0085 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 113 start-page: 9978 year: 2000 ident: 10.1016/j.jcat.2016.04.020_b0115 publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 4 start-page: 793 year: 2011 ident: 10.1016/j.jcat.2016.04.020_b0005 publication-title: Energy Environ. Sci. doi: 10.1039/C004518G – volume: 119 start-page: 16139 year: 2015 ident: 10.1016/j.jcat.2016.04.020_b0235 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b04485 – volume: 17 start-page: 12441 year: 2015 ident: 10.1016/j.jcat.2016.04.020_b0145 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP00628G – ident: 10.1016/j.jcat.2016.04.020_b0160 doi: 10.1021/acs.jpcc.6b00923 – volume: 119 start-page: 3604 year: 2015 ident: 10.1016/j.jcat.2016.04.020_b0250 publication-title: J. Phys. Chem. A doi: 10.1021/jp513024z – volume: 50 start-page: 17953 year: 1994 ident: 10.1016/j.jcat.2016.04.020_b0080 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 131 start-page: 816 year: 2009 ident: 10.1016/j.jcat.2016.04.020_b0050 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja807695p – ident: 10.1016/j.jcat.2016.04.020_b0040 – volume: 41 start-page: 335 year: 1996 ident: 10.1016/j.jcat.2016.04.020_b0215 publication-title: Adv. Catal. doi: 10.1016/S0360-0564(08)60043-7 – volume: 6 start-page: 1 year: 2013 ident: 10.1016/j.jcat.2016.04.020_b0020 publication-title: ChemSusChem doi: 10.1002/cssc.201300214 – volume: 121 start-page: 3292 year: 1999 ident: 10.1016/j.jcat.2016.04.020_b0220 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja983470q – volume: 114 start-page: 20107 year: 2010 ident: 10.1016/j.jcat.2016.04.020_b0245 publication-title: J. Phys. Chem. C doi: 10.1021/jp107082t – volume: 12 start-page: 9481 year: 2010 ident: 10.1016/j.jcat.2016.04.020_b0055 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c000503g – volume: 49 start-page: 14251 year: 1994 ident: 10.1016/j.jcat.2016.04.020_b0065 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.14251 – year: 2005 ident: 10.1016/j.jcat.2016.04.020_b0175 – volume: 137 start-page: 15781 year: 2015 ident: 10.1016/j.jcat.2016.04.020_b0265 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b09107 – volume: 36 start-page: 4466 year: 1997 ident: 10.1016/j.jcat.2016.04.020_b0275 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9702542 – volume: 18 start-page: 9955 year: 2012 ident: 10.1016/j.jcat.2016.04.020_b0140 publication-title: Chem. Eur. J. doi: 10.1002/chem.201200497 – volume: 5 start-page: 30 year: 2001 ident: 10.1016/j.jcat.2016.04.020_b0205 publication-title: Cattech doi: 10.1023/A:1011928218694 – volume: 59 start-page: 49 year: 2013 ident: 10.1016/j.jcat.2016.04.020_b0015 publication-title: Renew. Energy doi: 10.1016/j.renene.2013.03.029 – ident: 10.1016/j.jcat.2016.04.020_b0190 – volume: 330 start-page: 28 year: 2015 ident: 10.1016/j.jcat.2016.04.020_b0180 publication-title: J. Catal. doi: 10.1016/j.jcat.2015.07.005 – volume: 112 start-page: 9110 year: 1990 ident: 10.1016/j.jcat.2016.04.020_b0230 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00181a012 – volume: 271 start-page: 251 year: 2010 ident: 10.1016/j.jcat.2016.04.020_b0030 publication-title: J. Catal. doi: 10.1016/j.jcat.2010.01.021 |
| SSID | ssj0011558 |
| Score | 2.4688816 |
| Snippet | [Display omitted]
•Experimentally validated microkinetic model for bio-ethanol dehydration.•Reaction path analysis not only based on free energy... Display Omitted * Experimentally validated microkinetic model for bio-ethanol dehydration. * Reaction path analysis not only based on free energy profiles. *... A detailed reaction network has been constructed for ethanol dehydration in H-ZSM-5 using periodic density functional theory (DFT) calculations with dispersion... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 173 |
| SubjectTerms | Brønsted acid sites Chemical reactions density functional theory DFT Dispersion energy Ethanol ethyl ether ethylene Kinetics Microkinetic model path analysis prediction Reaction mechanism temperature Thermodynamics Zeolites |
| Title | DFT-based microkinetic modeling of ethanol dehydration in H-ZSM-5 |
| URI | https://dx.doi.org/10.1016/j.jcat.2016.04.020 https://www.proquest.com/docview/1794426867 https://www.proquest.com/docview/2131886023 |
| Volume | 339 |
| WOSCitedRecordID | wos000378453700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1090-2694 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011558 issn: 0021-9517 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFgk4ICggUgoyEuISbeX1a-1jKIl4hIBEGkVcVrZ3rTq4duo8FH4O_5RZ79oxRY3gwMWK_JIz83nm8-w8EHrFvYQC7_axG4kAO04kcAQ4wjQQPLJku5Bq1uF0RMdjfzYLvnQ6P-tamE1G89zfboPFf1U17ANly9LZf1B3c1PYAb9B6bAFtcP2rxT_djjB0jfx3qVMtvsONFI2Za1G3ugUZyHj5UXW4-LiB9cQkD2v8Levn7B7A1-tAj2yf0mDkUxsi0WxzlSm3kfFNFdpXuzSEosLlSsseWYTLZ-GMgO37L0pSh0ZqExNkTTJQGG2SRWtnWYhTy_Tsh2dIF6TyapDZk3ZzLRthWVaiKtqNk-FMrxmYGJZVdu2zLbqc6RtK1EzT_6w-Sr8MD-dy1CtfIaqd61l7jxcvao__syG56MRmwxmk9-PVg7dAXoEFs9zyevFFZaDyeQCvp7ScgsdWtQNwHAe9t8PZh-apSogZMrd6z-lK7NUEuH1Z7qJ_VzjARW5mTxA97WWjb5C00PUEfkRunNWDwM8QvdafSsfoX6DMaONMaPGmFEkhsaY0cKYkeaGxthjdD4cTM7eYT2LA8eO56ywLSg1LcGd2HPtmDgUvuPh48IiieWGglskpCYVPje9AM4ASRHbT6KEm8InMQUe_AQd5EUuniIjtszAimhIA2o7nPMgIYkH5gKoKvG4mXQRqWXEYt2oXs5LyVidkThnUq5MypWZDgO5dlGvuWah2rTsPdutRc800VQEkgGm9l53UuuJ6Td-yaRHA5rre7SLXjaHQT1y5S3MRbFeMouA65TT3uzj_bd4hu7u3qITdLAq1-I5uh1vVumyfKGh9wvobq6K |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DFT-based+microkinetic+modeling+of+ethanol+dehydration+in+H-ZSM-5&rft.jtitle=Journal+of+catalysis&rft.au=Alexopoulos%2C+Konstantinos&rft.au=John%2C+Mathew&rft.au=Van+der+Borght%2C+Kristof&rft.au=Galvita%2C+Vladimir&rft.date=2016-07-01&rft.pub=Elsevier+BV&rft.issn=0021-9517&rft.eissn=1090-2694&rft.volume=339&rft.spage=173&rft_id=info:doi/10.1016%2Fj.jcat.2016.04.020&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4081073651 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon |