A Linear Decision-Based Approximation Approach to Stochastic Programming

Stochastic optimization, especially multistage models, is well known to be computationally excruciating. Moreover, such models require exact specifications of the probability distributions of the underlying uncertainties, which are often unavailable. In this paper, we propose tractable methods of ad...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Operations research Ročník 56; číslo 2; s. 344 - 357
Hlavní autoři: Chen, Xin, Sim, Melvyn, Sun, Peng, Zhang, Jiawei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Linthicum, MD INFORMS 01.03.2008
Institute for Operations Research and the Management Sciences
Témata:
ISSN:0030-364X, 1526-5463
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Stochastic optimization, especially multistage models, is well known to be computationally excruciating. Moreover, such models require exact specifications of the probability distributions of the underlying uncertainties, which are often unavailable. In this paper, we propose tractable methods of addressing a general class of multistage stochastic optimization problems, which assume only limited information of the distributions of the underlying uncertainties, such as known mean, support, and covariance. One basic idea of our methods is to approximate the recourse decisions via decision rules. We first examine linear decision rules in detail and show that even for problems with complete recourse, linear decision rules can be inadequate and even lead to infeasible instances. Hence, we propose several new decision rules that improve upon linear decision rules, while keeping the approximate models computationally tractable. Specifically, our approximate models are in the forms of the so-called second-order cone (SOC) programs, which could be solved efficiently both in theory and in practice. We also present computational evidence indicating that our approach is a viable alternative, and possibly advantageous, to existing stochastic optimization solution techniques in solving a two-stage stochastic optimization problem with complete recourse.
AbstractList Stochastic optimization, especially multistage models, is well known to be computationally excruciating. Moreover, such models require exact specifications of the probability distributions of the underlying uncertainties, which are often unavailable. In this paper, we propose tractable methods of addressing a general class of multistage stochastic optimization problems, which assume only limited information of the distributions of the underlying uncertainties, such as known mean, support, and covariance. One basic idea of our methods is to approximate the recourse decisions via decision rules. We first examine linear decision rules in detail and show that even for problems with complete recourse, linear decision rules can be inadequate and even lead to infeasible instances. Hence, we propose several new decision rules that improve upon linear decision rules, while keeping the approximate models computationally tractable. Specifically, our approximate models are in the forms of the so-called second-order cone (SOC) programs, which could be solved efficiently both in theory and in practice. We also present computational evidence indicating that our approach is a viable alternative, and possibly advantageous, to existing stochastic optimization solution techniques in solving a two-stage stochastic optimization problem with complete recourse.
Stochastic optimization, especially multistage models, is well known to be computationally excruciating. Moreover, such models require exact specifications of the probability distributions of the underlying uncertainties, which are often unavailable. In this paper, we propose tractable methods of addressing a general class of multistage stochastic optimization problems, which assume only limited information of the distributions of the underlying uncertainties, such as known mean, support, and covariance. One basic idea of our methods is to approximate the recourse decisions via decision rules. We first examine linear decision rules in detail and show that even for problems with complete recourse, linear decision rules can be inadequate and even lead to infeasible instances. Hence, we propose several new decision rules that improve upon linear decision rules, while keeping the approximate models computationally tractable. Specifically, our approximate models are in the forms of the so-called second-order cone (SOC) programs, which could be solved efficiently both in theory and in practice. We also present computational evidence indicating that our approach is a viable alternative, and possibly advantageous, to existing stochastic optimization solution techniques in solving a two-stage stochastic optimization problem with complete recourse. [PUBLICATION ABSTRACT]
Stochastic optimization, especially multistage models, is well known to be computationally excruciating. Moreover, such models require exact specifications of the probability distributions of the underlying uncertainties, which are often unavailable. In this paper, we propose tractable methods of addressing a general class of multistage stochastic optimization problems, which assume only limited information of the distributions of the underlying uncertainties, such as known mean, support, and covariance. One basic idea of our methods is to approximate the recourse decisions via decision rules. We first examine linear decision rules in detail and show that even for problems with complete recourse, linear decision rules can be inadequate and even lead to infeasible instances. Hence, we propose several new decision rules that improve upon linear decision rules, while keeping the approximate models computationally tractable. Specifically, our approximate models are in the forms of the so-called second-order cone (SOC) programs, which could be solved efficiently both in theory and in practice. We also present computational evidence indicating that our approach is a viable alternative, and possibly advantageous, to existing stochastic optimization solution techniques in solving a two-stage stochastic optimization problem with complete recourse. Subject classifications: programming: stochastic. Area of review: Stochastic Models.
Audience Trade
Author Zhang, Jiawei
Sim, Melvyn
Chen, Xin
Sun, Peng
Author_xml – sequence: 1
  fullname: Chen, Xin
– sequence: 2
  fullname: Sim, Melvyn
– sequence: 3
  fullname: Sun, Peng
– sequence: 4
  fullname: Zhang, Jiawei
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20296603$$DView record in Pascal Francis
BookMark eNqFUc9rFDEYDdKC2-rVmzAIepv1y8-ZHNf6o8JCC1XwFtJMMptlJlmTKdX_3oxT3UtFcgj5eO99L--doZMQg0XoBYY1Jm3zNh6SXWNoYA2MN0_QCnMias4EPUErAAo1FezbU3SW8x4AJBd8hS431dYHq1P13hqffQz1O51tV20OhxR_-FFPZba8tNlVU6xupmh2Ok_eVNcp9kmPow_9M3Tq9JDt84f7HH39-OHLxWW9vfr0-WKzrQ0TbKqJtIZKhyXW2nHhMKO8uyXgZAe2JQ67TlrGONMtdNhIbu0tbUnDGMMOW0HP0atFtxj6fmfzpPbxLoWyUpGiyiWwtoDqBdTrwSofXJySNr0NNumhpOZ8GW9wSwRwKmb8-hF8OZ0dvXmU8PrBhc5GDy7pUNJTh1QCSz8VASKFAFpwbMGZFHNO1injp9-RlgV-UBjU3J2au1Nzd2ru7ujnL-2P8j8JLxfCPk8xHX1wzJqSyjGQ-W9pzP_Xe7Pgd77f3fu0hDITZ2BWXCiiKGP0F4D6wps
CODEN OPREAI
CitedBy_id crossref_primary_10_1016_j_tre_2014_08_003
crossref_primary_10_1108_JM2_01_2019_0014
crossref_primary_10_1016_j_ijpe_2009_11_002
crossref_primary_10_1287_opre_1080_0570
crossref_primary_10_1287_opre_2023_0300
crossref_primary_10_1016_j_eneco_2018_03_014
crossref_primary_10_1287_mnsc_2020_3719
crossref_primary_10_1002_net_21880
crossref_primary_10_1016_j_apm_2017_11_039
crossref_primary_10_1080_00207543_2011_574503
crossref_primary_10_1109_TPWRS_2020_3032467
crossref_primary_10_1016_j_ejor_2012_06_001
crossref_primary_10_1287_opre_2015_1446
crossref_primary_10_1016_j_ijepes_2023_109643
crossref_primary_10_1287_moor_2020_1082
crossref_primary_10_1287_mnsc_1100_1208
crossref_primary_10_3390_en15051796
crossref_primary_10_3390_math11183883
crossref_primary_10_1016_j_ejor_2013_07_039
crossref_primary_10_1007_s10287_016_0249_2
crossref_primary_10_1021_acssuschemeng_6b00188
crossref_primary_10_1287_opre_2019_1873
crossref_primary_10_1007_s10107_019_01385_0
crossref_primary_10_1007_s11590_016_1095_4
crossref_primary_10_1016_j_est_2023_107080
crossref_primary_10_1080_0740817X_2011_587865
crossref_primary_10_1287_opre_2017_1714
crossref_primary_10_1287_opre_2015_1456
crossref_primary_10_1109_TSTE_2018_2847419
crossref_primary_10_1002_aic_16488
crossref_primary_10_1016_j_ejor_2013_01_014
crossref_primary_10_1287_opre_2021_2159
crossref_primary_10_1007_s10288_019_00407_z
crossref_primary_10_1137_16M1098486
crossref_primary_10_1287_opre_1120_1054
crossref_primary_10_1287_opre_2021_0654
crossref_primary_10_1007_s12667_015_0160_x
crossref_primary_10_1287_mnsc_2015_2391
crossref_primary_10_1016_j_ejor_2018_08_031
crossref_primary_10_1109_TAC_2011_2162878
crossref_primary_10_1287_opre_1120_1136
crossref_primary_10_2139_ssrn_4535983
crossref_primary_10_1002_nav_70013
crossref_primary_10_1007_s10107_017_1131_x
crossref_primary_10_1287_opre_2018_0505
crossref_primary_10_1287_opre_2018_1835
crossref_primary_10_1007_s00186_023_00810_7
crossref_primary_10_1049_iet_gtd_2019_1361
crossref_primary_10_1371_journal_pone_0125939
crossref_primary_10_1287_msom_2024_1317
crossref_primary_10_1080_24725854_2024_2381713
crossref_primary_10_1287_mnsc_2023_4810
crossref_primary_10_1016_j_ijpe_2017_12_012
crossref_primary_10_1016_j_energy_2021_122041
crossref_primary_10_1080_24725854_2025_2519839
crossref_primary_10_1109_TFUZZ_2014_2333094
crossref_primary_10_1111_poms_13239
crossref_primary_10_1287_trsc_2023_1204
crossref_primary_10_1016_j_compchemeng_2024_108632
crossref_primary_10_1287_msom_2020_0926
crossref_primary_10_1287_mnsc_2024_4988
crossref_primary_10_1109_TNET_2012_2185508
crossref_primary_10_1016_j_ejor_2017_12_007
crossref_primary_10_1007_s10107_023_02049_w
crossref_primary_10_1287_mnsc_2023_00053
crossref_primary_10_1287_opre_1090_0795
crossref_primary_10_1016_j_ejor_2021_10_038
crossref_primary_10_1016_j_tre_2024_103477
crossref_primary_10_1109_TPWRS_2022_3141993
crossref_primary_10_1016_j_epsr_2024_110793
crossref_primary_10_1080_24725854_2024_2381727
crossref_primary_10_1137_080734510
crossref_primary_10_1108_GS_10_2013_0023
crossref_primary_10_1016_j_cor_2024_106642
crossref_primary_10_1287_opre_1080_0605
crossref_primary_10_1080_24725854_2020_1741740
crossref_primary_10_1287_opre_2020_2044
crossref_primary_10_1287_opre_2018_1799
crossref_primary_10_1515_fcds_2017_0004
crossref_primary_10_1016_j_seps_2024_102066
crossref_primary_10_1287_opre_2016_1526
crossref_primary_10_1287_opre_1090_0746
crossref_primary_10_1049_stg2_12063
crossref_primary_10_1287_ijoc_2013_0552
crossref_primary_10_1002_aic_15370
crossref_primary_10_1016_j_ijepes_2014_02_026
crossref_primary_10_1016_j_eswa_2022_118180
crossref_primary_10_1007_s10107_017_1135_6
crossref_primary_10_1007_s10951_015_0425_1
crossref_primary_10_1016_j_epsr_2017_04_008
crossref_primary_10_1016_j_advwatres_2021_103961
crossref_primary_10_1016_j_compchemeng_2021_107286
crossref_primary_10_1287_mnsc_2023_4748
crossref_primary_10_1007_s10479_025_06545_4
crossref_primary_10_1287_opre_2022_2366
crossref_primary_10_1016_j_apenergy_2022_120392
crossref_primary_10_1007_s10287_018_0338_5
crossref_primary_10_1016_j_omega_2014_12_006
crossref_primary_10_1111_jebm_12599
crossref_primary_10_1371_journal_pone_0297223
crossref_primary_10_1287_opre_2016_1515
crossref_primary_10_2139_ssrn_4592562
crossref_primary_10_1287_ijoc_2021_0181
crossref_primary_10_1287_mnsc_2017_2952
crossref_primary_10_1016_j_conengprac_2022_105101
crossref_primary_10_1109_JSYST_2020_2989314
crossref_primary_10_1002_net_21693
crossref_primary_10_1109_ACCESS_2020_3007849
crossref_primary_10_1287_ijoc_2022_1163
crossref_primary_10_1287_moor_1100_0444
crossref_primary_10_1080_24725854_2017_1299958
crossref_primary_10_1155_2014_578280
crossref_primary_10_1137_130931011
crossref_primary_10_1287_opre_2022_2407
crossref_primary_10_1137_20M135090X
crossref_primary_10_1287_opre_2021_2238
crossref_primary_10_2139_ssrn_4106222
crossref_primary_10_3390_chemengineering9010004
crossref_primary_10_1109_TAC_2010_2046053
crossref_primary_10_1287_opre_1120_1132
crossref_primary_10_1007_s10107_021_01670_x
crossref_primary_10_1016_j_ejor_2020_11_027
crossref_primary_10_1109_ACCESS_2021_3123792
crossref_primary_10_1016_j_ejor_2017_01_044
crossref_primary_10_1007_s10107_011_0478_7
crossref_primary_10_1287_ijoc_2021_1061
crossref_primary_10_1007_s10107_009_0331_4
crossref_primary_10_1287_ijoc_2021_1063
crossref_primary_10_1287_opre_2023_0564
crossref_primary_10_1287_ijoo_2022_0076
crossref_primary_10_1016_j_ejor_2020_08_054
crossref_primary_10_1007_s10107_014_0789_6
crossref_primary_10_1287_opre_2017_1669
crossref_primary_10_1287_mnsc_1120_1543
crossref_primary_10_1016_j_compchemeng_2017_12_002
crossref_primary_10_1287_opre_1110_0944
crossref_primary_10_1016_j_eneco_2022_106371
crossref_primary_10_1287_mnsc_2016_2565
crossref_primary_10_1017_S0022109017000345
crossref_primary_10_1002_aic_15183
crossref_primary_10_1080_03155986_2021_2015825
crossref_primary_10_1109_TPWRS_2016_2521177
crossref_primary_10_1287_opre_2013_1172
crossref_primary_10_1287_opre_2022_2273
crossref_primary_10_1016_j_epsr_2024_110355
crossref_primary_10_1007_s10107_018_1339_4
crossref_primary_10_1287_mnsc_1120_1653
crossref_primary_10_1007_s10957_023_02331_z
crossref_primary_10_1016_j_ejor_2011_08_001
crossref_primary_10_1109_TPWRS_2016_2544795
crossref_primary_10_1007_s10957_012_0264_6
crossref_primary_10_1145_3080575
crossref_primary_10_1007_s10107_023_02053_0
crossref_primary_10_1002_2014WR015380
crossref_primary_10_1016_j_cie_2021_107160
crossref_primary_10_1016_j_renene_2018_11_094
crossref_primary_10_1007_s13675_017_0092_4
crossref_primary_10_3233_JIFS_169324
Cites_doi 10.1287/msom.1050.0081
10.1287/mnsc.1.3-4.197
10.1137/S0895479896298130
10.1007/s10107-005-0677-1
10.1111/j.2517-6161.1955.tb00191.x
10.1007/s10107-003-0454-y
10.1287/mnsc.6.1.73
10.1016/S0167-6377(99)00016-4
10.1007/0-387-26771-9_4
10.1007/s00186-006-0104-2
10.1007/s10107-005-0597-0
10.1007/s10107-003-0425-3
10.1287/opre.1070.0428
10.1287/moor.23.4.769
10.1007/s10107-003-0396-4
10.1287/opre.1070.0441
10.1080/02331930701421046
10.1287/opre.1030.0065
10.1007/s10107-003-0499-y
10.1287/moor.1040.0094
10.1287/opre.21.5.1154
10.1109/TAC.2006.875041
10.1137/S1052623403430099
10.1007/s10107-005-0678-0
10.1137/S1052623496305717
10.1007/PL00011380
ContentType Journal Article
Copyright Copyright 2008 INFORMS
2008 INIST-CNRS
COPYRIGHT 2008 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences Mar/Apr 2008
Copyright_xml – notice: Copyright 2008 INFORMS
– notice: 2008 INIST-CNRS
– notice: COPYRIGHT 2008 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences Mar/Apr 2008
DBID AAYXX
CITATION
IQODW
3V.
7WY
7WZ
7X7
7XB
87Z
88E
88F
8AL
8AO
8FE
8FG
8FI
8FJ
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
K9.
L.-
L6V
M0C
M0N
M0S
M1P
M1Q
M2O
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1287/opre.1070.0457
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Military Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Computing Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Military Database
Research Library
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

ProQuest Business Collection (Alumni Edition)

CrossRef


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Computer Science
Business
Mathematics
Applied Sciences
EISSN 1526-5463
EndPage 357
ExternalDocumentID 1473961151
A182605368
20296603
10_1287_opre_1070_0457
25147191
opre.1070.0457
opres_56_2_344
Genre Research Article
Feature
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 02
08R
123
1AW
1OL
29N
2AX
3V.
4.4
7WY
7X7
85S
88E
8AL
8AO
8FE
8FG
8FI
8FJ
8FL
8G5
8V8
92
AABCJ
ABBHK
ABDEX
ABEFU
ABJCF
ABPPZ
ABSIS
ABUWG
ABWPA
ACDCL
ACHQT
ACIWK
ACNCT
ACUWV
ACVYA
ADBBV
ADGDI
ADNFJ
AENEX
AEUPB
AFFNX
AFKRA
AJPNJ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AQNXB
AQSKT
ARAPS
AZQEC
B-7
BBAFP
BENPR
BEZIV
BGLVJ
BPHCQ
BVXVI
CBXGM
CCKSF
CS3
CWXUR
CYVLN
DWQXO
DZ
EBA
EBE
EBO
EBR
EBS
EBU
ECR
EHE
EJD
EMI
EMK
EPL
F20
F5P
FH7
FRNLG
FYUFA
G8K
GENNL
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUPYA
GUQSH
HCIFZ
H~9
IAO
ICJ
IEA
IGG
IOF
ITC
JAV
JBC
JPL
JSODD
JST
K6
K60
K6V
K7-
L6V
LI
M0C
M0N
M1P
M1Q
M2O
M7S
MBDVC
MV1
N95
NIEAY
P2P
P62
PQEST
PQQKQ
PQUKI
PRG
PROAC
PSQYO
PTHSS
QVA
RNS
RPU
SA0
TAE
TH9
TN5
U5U
VQA
WH7
X
XFK
XHC
XI7
XJT
XXP
YNT
YZZ
ZCG
AETEA
HGD
HVGLF
Y99
YHZ
ZY4
-DZ
-~X
18M
AAAZS
AAWTO
AAXLS
AAYOK
ABAWQ
ABDPE
ABKVW
ABLWH
ABXSQ
ABYYQ
ACGFO
ACHJO
ACSVP
ACXJH
ADEPB
ADMHC
ADMHG
ADNWM
ADULT
AEGXH
AEMOZ
AFAIT
AFTQD
AGKTX
AHAJD
AHQJS
AIAGR
ALIPV
APTMU
ASMEE
BAAKF
CCPQU
HF~
HMCUK
IPSME
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPPEU
K1G
K6~
PHGZM
PHGZT
PQBIZ
PQBZA
UKHRP
XOL
XSW
~02
~92
AADHG
AAYXX
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
YYP
IQODW
7XB
8FK
JQ2
K9.
L.-
PKEHL
PRINS
Q9U
ID FETCH-LOGICAL-c464t-29ec39f191aaf56f1435db20f9d0e82f1fd9e4454a80d1c95eeb38274441f1e63
IEDL.DBID K7-
ISICitedReferencesCount 169
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000255224300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0030-364X
IngestDate Mon Oct 06 17:25:18 EDT 2025
Sat Nov 29 12:51:20 EST 2025
Sat Nov 29 11:02:29 EST 2025
Mon Jul 21 09:15:12 EDT 2025
Sat Nov 29 01:36:22 EST 2025
Tue Nov 18 21:49:36 EST 2025
Thu Jun 19 16:02:47 EDT 2025
Tue Jan 05 23:29:22 EST 2021
Fri Jan 15 03:35:27 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Stochastic model
conic programming
Probabilistic approach
programming: stochastic
Stochastic approximation
Modeling
Stochastic programming
Decision rule
Uncertain system
Covariance
Limit distribution
Linear approximation
Model specification
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-29ec39f191aaf56f1435db20f9d0e82f1fd9e4454a80d1c95eeb38274441f1e63
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 219159048
PQPubID 37962
PageCount 14
ParticipantIDs proquest_journals_219159048
pascalfrancis_primary_20296603
highwire_informs_opres_56_2_344
gale_infotracacademiconefile_A182605368
crossref_citationtrail_10_1287_opre_1070_0457
jstor_primary_25147191
informs_primary_10_1287_opre_1070_0457
crossref_primary_10_1287_opre_1070_0457
gale_infotracgeneralonefile_A182605368
ProviderPackageCode Y99
RPU
NIEAY
PublicationCentury 2000
PublicationDate 2008-03-01
PublicationDateYYYYMMDD 2008-03-01
PublicationDate_xml – month: 03
  year: 2008
  text: 2008-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Linthicum, MD
PublicationPlace_xml – name: Linthicum, MD
– name: Linthicum
PublicationTitle Operations research
PublicationYear 2008
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B10
B32
B11
B12
B13
B14
B15
B16
B17
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
Beale E. M. L. (B2) 1955; 17
Ruszczynski A. (B29) 2003
Scarf H. (B30) 1958
Birge J. R. (B12) 1997
References_xml – ident: B12
– ident: B9
– ident: B14
– ident: B10
– ident: B3
– ident: B20
– ident: B1
– ident: B27
– ident: B7
– ident: B5
– ident: B29
– ident: B25
– ident: B23
– ident: B21
– ident: B18
– ident: B16
– ident: B31
– ident: B8
– ident: B11
– ident: B13
– ident: B2
– ident: B26
– ident: B4
– ident: B28
– ident: B6
– ident: B24
– ident: B22
– ident: B17
– ident: B32
– ident: B15
– ident: B30
– ident: B19
– ident: B6
  doi: 10.1287/msom.1050.0081
– start-page: 201
  volume-title: Studies in the Mathematical Theory of Inventory and Production
  year: 1958
  ident: B30
– ident: B19
  doi: 10.1287/mnsc.1.3-4.197
– ident: B22
  doi: 10.1137/S0895479896298130
– ident: B11
  doi: 10.1007/s10107-005-0677-1
– volume: 17
  start-page: 173
  year: 1955
  ident: B2
  publication-title: J. Roy. Statist. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1955.tb00191.x
– ident: B7
  doi: 10.1007/s10107-003-0454-y
– ident: B16
  doi: 10.1287/mnsc.6.1.73
– ident: B4
  doi: 10.1016/S0167-6377(99)00016-4
– volume-title: Introduction to Stochastic Programming
  year: 1997
  ident: B12
– ident: B31
  doi: 10.1007/0-387-26771-9_4
– ident: B25
  doi: 10.1007/s00186-006-0104-2
– ident: B21
  doi: 10.1007/s10107-005-0597-0
– ident: B26
  doi: 10.1007/s10107-003-0425-3
– volume-title: Stochastic Programming, Handbooks in Operations Research and Management Science
  year: 2003
  ident: B29
– ident: B1
  doi: 10.1287/opre.1070.0428
– ident: B3
  doi: 10.1287/moor.23.4.769
– ident: B8
  doi: 10.1007/s10107-003-0396-4
– ident: B17
  doi: 10.1287/opre.1070.0441
– ident: B27
  doi: 10.1080/02331930701421046
– ident: B9
  doi: 10.1287/opre.1030.0065
– ident: B13
  doi: 10.1007/s10107-003-0499-y
– ident: B20
  doi: 10.1287/moor.1040.0094
– ident: B32
  doi: 10.1287/opre.21.5.1154
– ident: B15
  doi: 10.1109/TAC.2006.875041
– ident: B28
  doi: 10.1137/S1052623403430099
– ident: B24
  doi: 10.1007/s10107-005-0678-0
– ident: B23
  doi: 10.1137/S1052623496305717
– ident: B5
  doi: 10.1007/PL00011380
SSID ssj0009565
Score 2.3409889
Snippet Stochastic optimization, especially multistage models, is well known to be computationally excruciating. Moreover, such models require exact specifications of...
SourceID proquest
gale
pascalfrancis
crossref
jstor
informs
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 344
SubjectTerms Analysis
Applied sciences
Approximation
Covariance
Decision making
Decision theory. Utility theory
Exact sciences and technology
Linear programming
Mathematical vectors
Mathematics
Matrices
Objective functions
Operational research and scientific management
Operational research. Management science
Optimization
programming
Random variables
Robust optimization
Sampling methods
stochastic
Stochastic models
Stochastic programming
Studies
Title A Linear Decision-Based Approximation Approach to Stochastic Programming
URI http://or.journal.informs.org/cgi/content/abstract/56/2/344
https://www.jstor.org/stable/25147191
https://www.proquest.com/docview/219159048
Volume 56
WOSCitedRecordID wos000255224300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: 7WY
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: M0C
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: P5Z
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: K7-
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: M7S
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: 7X7
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Military Database
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: M1Q
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/military
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: M2O
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSF4YKwwrQyKHxAfD2aJ4zjJE-rGpkmIUhiIjhfLdextErRjCYg_n7vEKav4euDlpDYnN_Gdz3fN-fcDeChzmwpjc64KF2GBkjk-zaeGy8yaaZqXhfSmIZvIRqN8MinGoTenCm2VXUxsAnU5t_Qf-Q6uLNx50d-en3_hRBpFL1cDg8YKrMVCxOTmLzN-CXNXtQQGCYYaJScBsxFrhB1iGMHCNYueYUqTLe1JXWTu4IKbY06UQFZdyyL1T5oKp9C33Be_hPFmbzpY_8-nugU3Q1LKhq0XbcAVN-vBta4nvgfrHfcDC6GgBzcuARn2YCN8X7EnAcf66W04HDKsdHElsReByIfv4p5ZsiHhmH8_aw9Ntp-MPWX1nB3Vc3tqCDqajdvGsc84_h14f7D_bu-QB-IGbqWSNReFs0nh8dmM8anylJOVUxH5ooxcLnzsy8JJmUqTR2Vsi9RhSZ8TVqGMfexUsgmrs_nMbQHDyVGOXo7TgTxhhIkjnxivsEzCzC5RfeCd6bQNqOZErvFJU3WDptZkak2m1mTqPjxe6J-3eB5_1iRP0GR8HNGacF4B74sgs_SQKjMMYSrvw6MlzZN2on-n-KDzKh18qvnRSqdKC51IiUN1F_51d5uNLy7UME_FPKOI-zBYcs6fCpEgJNakD9udK-oQryq98MO7f726DdfbfhnqwbsHq_XFV3cfrtpv9Vl1MYCV7MMxyUk2gLXd_dH47aBZkShfRXsk4zckxWuS2RHKcfrxB02oPKI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgngcKF2oCIXWB56H0DwcJzkgtFCqrdquimilvRmvY9NKsFua8PpR_EdmEnvpitepB47ZjCYPfzOe2cx8A3CfFzpLlC5CUZoIE5TchONirEKeazXOiqrkVrXDJvLhsBiNyv0F-O57Yais0vvE1lFXU03_kW-gZeHOi3h7fvIxpKFR9HHVT9DoULFjvn3BjK1-tr2Jy_sgSbZeHbwchG6oQKi54E2YlEanpUVtStlMWIoXqnES2bKKTJHY2Fal4TzjqoiqWJeZwXSzIB49HtvYiBT1XoCLHAMdMqi9-PUZjl_RDUxI0bUJPnIckZiTbNBEE0yU8-gphlD53B7odwJPT9y2VVHAWvsSSarXVDUume1mbfyybbR74dbSf_YWb8B1F3Szfmcly7BgJj247Gv-e7DkZ1sw5-p6cO0MUWMPlt3vNXvseLqf3IRBn2Emj0_DNt2govAFxgQV6xNP-9fjrim0O1L6iDVT9qaZ6iNF1NhsvyuM-4D6b8HhuTz9CixOphNzGxguhjD08Z8aDhOVqDiyqbIC00CMXFMRQOihIrVjbafhIe8lZW8ILUnQkgQtSdAK4NFM_qTjK_mzJCFPEthQo1auHwPviyjBZJ8yT3TRogjg4Zzku-5F_05w3aNYOgy3F61lJmQiU85RlT_xr7tbabE_E8M4HOOoMg5gbc4YfgpECTHNpgGseuhL549rOcP9nb-eXYcrg4O9Xbm7PdxZhatdbRDVG96Fxeb0k7kHl_Tn5rg-XWstn8Hb8zaSHz1ykWU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6Vgio4UBqoMIV2DzwPpn6s1_YBoUCIWgVFkQApt2Wz3qWVICm1ef00_h0z9m5oxOvUA0fHo_Vjv3k5M98A3OWFzhKli1CUJsIEJTfhrJipkOdazbKiKrlV7bCJfDwuptNysgbffS8MlVV6m9ga6mqh6Rv5PmoWel5imbWuKmIyGD49-RjSACn6o9VP0-gQMjLfvmD2Vj85HOBW30uS4YvXzw9CN2Ag1FzwJkxKo9PS4spK2UxYih2qWRLZsopMkdjYVqXhPOOqiKpYl5nB1LMgTj0e29iIFNe9ABfRCWekYqM8PMP3K7rhCSmaOcGnji8S85N9mm6CSXMePcZwKl_xh94reKritsWKgtfal0tS7aaqcftsN3fjFxfS-sXh5n_8Rq_BVReMs36nPVuwZuY92PC9AD3Y9DMvmDOBPbhyhsCxB1vu95o9dPzdj67DQZ9hho9PwwZugFH4DGOFivWJv_3rcdcs2h0pfcSaBXvVLPSRIspsNukK5j7g-jfgzbk8_TaszxdzcxMYbowwVBRAjYiJSlQc2VRZgekhRrSpCCD0sJHasbnTUJH3krI6hJkkmEmCmSSYBfBgKX_S8Zj8WZJQKAl4uKJWrk8D74uowmSfMlI03aII4P6K5LvuRf9OcM8jWjo8txetZSZkIlPOcSl_4l93t93qwVIM43OMr8o4gN0VxfgpECXEQJsGsOPVQDo7XculDtz669k92EDdkC8Px6MduNyVDFEZ4m1Yb04_mTtwSX9ujuvT3dYIMHh73jryA236meY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Linear+Decision-Based+Approximation+Approach+to+Stochastic+Programming&rft.jtitle=Operations+research&rft.date=2008-03-01&rft.pub=INFORMS&rft.issn=0030-364X&rft.eissn=1526-5463&rft.volume=56&rft.issue=2&rft.spage=344&rft.epage=357&rft_id=info:doi/10.1287%2Fopre.1070.0457&rft.externalDocID=opre.1070.0457
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-364X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-364X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-364X&client=summon