Machine Learning Consensus Clustering of Hospitalized Patients with Admission Hyponatremia

Background: The objective of this study was to characterize patients with hyponatremia at hospital admission into clusters using an unsupervised machine learning approach, and to evaluate the short- and long-term mortality risk among these distinct clusters. Methods: We performed consensus cluster a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Diseases Ročník 9; číslo 3; s. 54
Hlavní autori: Thongprayoon, Charat, Hansrivijit, Panupong, Mao, Michael A., Vaitla, Pradeep K., Kattah, Andrea G., Pattharanitima, Pattharawin, Vallabhajosyula, Saraschandra, Nissaisorakarn, Voravech, Petnak, Tananchai, Keddis, Mira T., Erickson, Stephen B., Dillon, John J., Garovic, Vesna D., Cheungpasitporn, Wisit
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.08.2021
MDPI
Predmet:
ISSN:2079-9721, 2079-9721
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background: The objective of this study was to characterize patients with hyponatremia at hospital admission into clusters using an unsupervised machine learning approach, and to evaluate the short- and long-term mortality risk among these distinct clusters. Methods: We performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 11,099 hospitalized adult hyponatremia patients with an admission serum sodium below 135 mEq/L. The standardized mean difference was utilized to identify each cluster’s key features. We assessed the association of each hyponatremia cluster with hospital and one-year mortality using logistic and Cox proportional hazard analysis, respectively. Results: There were three distinct clusters of hyponatremia patients: 2033 (18%) in cluster 1, 3064 (28%) in cluster 2, and 6002 (54%) in cluster 3. Among these three distinct clusters, clusters 3 patients were the youngest, had lowest comorbidity burden, and highest kidney function. Cluster 1 patients were more likely to be admitted for genitourinary disease, and have diabetes and end-stage kidney disease. Cluster 1 patients had the lowest kidney function, serum bicarbonate, and hemoglobin, but highest serum potassium and prevalence of acute kidney injury. In contrast, cluster 2 patients were the oldest and were more likely to be admitted for respiratory disease, have coronary artery disease, congestive heart failure, stroke, and chronic obstructive pulmonary disease. Cluster 2 patients had lowest serum sodium and serum chloride, but highest serum bicarbonate. Cluster 1 patients had the highest hospital mortality and one-year mortality, followed by cluster 2 and cluster 3, respectively. Conclusion: We identified three clinically distinct phenotypes with differing mortality risks in a heterogeneous cohort of hospitalized hyponatremic patients using an unsupervised machine learning approach.
AbstractList Background: The objective of this study was to characterize patients with hyponatremia at hospital admission into clusters using an unsupervised machine learning approach, and to evaluate the short- and long-term mortality risk among these distinct clusters. Methods: We performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 11,099 hospitalized adult hyponatremia patients with an admission serum sodium below 135 mEq/L. The standardized mean difference was utilized to identify each cluster’s key features. We assessed the association of each hyponatremia cluster with hospital and one-year mortality using logistic and Cox proportional hazard analysis, respectively. Results: There were three distinct clusters of hyponatremia patients: 2033 (18%) in cluster 1, 3064 (28%) in cluster 2, and 6002 (54%) in cluster 3. Among these three distinct clusters, clusters 3 patients were the youngest, had lowest comorbidity burden, and highest kidney function. Cluster 1 patients were more likely to be admitted for genitourinary disease, and have diabetes and end-stage kidney disease. Cluster 1 patients had the lowest kidney function, serum bicarbonate, and hemoglobin, but highest serum potassium and prevalence of acute kidney injury. In contrast, cluster 2 patients were the oldest and were more likely to be admitted for respiratory disease, have coronary artery disease, congestive heart failure, stroke, and chronic obstructive pulmonary disease. Cluster 2 patients had lowest serum sodium and serum chloride, but highest serum bicarbonate. Cluster 1 patients had the highest hospital mortality and one-year mortality, followed by cluster 2 and cluster 3, respectively. Conclusion: We identified three clinically distinct phenotypes with differing mortality risks in a heterogeneous cohort of hospitalized hyponatremic patients using an unsupervised machine learning approach.
The objective of this study was to characterize patients with hyponatremia at hospital admission into clusters using an unsupervised machine learning approach, and to evaluate the short- and long-term mortality risk among these distinct clusters.BACKGROUNDThe objective of this study was to characterize patients with hyponatremia at hospital admission into clusters using an unsupervised machine learning approach, and to evaluate the short- and long-term mortality risk among these distinct clusters.We performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 11,099 hospitalized adult hyponatremia patients with an admission serum sodium below 135 mEq/L. The standardized mean difference was utilized to identify each cluster's key features. We assessed the association of each hyponatremia cluster with hospital and one-year mortality using logistic and Cox proportional hazard analysis, respectively.METHODSWe performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 11,099 hospitalized adult hyponatremia patients with an admission serum sodium below 135 mEq/L. The standardized mean difference was utilized to identify each cluster's key features. We assessed the association of each hyponatremia cluster with hospital and one-year mortality using logistic and Cox proportional hazard analysis, respectively.There were three distinct clusters of hyponatremia patients: 2033 (18%) in cluster 1, 3064 (28%) in cluster 2, and 6002 (54%) in cluster 3. Among these three distinct clusters, clusters 3 patients were the youngest, had lowest comorbidity burden, and highest kidney function. Cluster 1 patients were more likely to be admitted for genitourinary disease, and have diabetes and end-stage kidney disease. Cluster 1 patients had the lowest kidney function, serum bicarbonate, and hemoglobin, but highest serum potassium and prevalence of acute kidney injury. In contrast, cluster 2 patients were the oldest and were more likely to be admitted for respiratory disease, have coronary artery disease, congestive heart failure, stroke, and chronic obstructive pulmonary disease. Cluster 2 patients had lowest serum sodium and serum chloride, but highest serum bicarbonate. Cluster 1 patients had the highest hospital mortality and one-year mortality, followed by cluster 2 and cluster 3, respectively.RESULTSThere were three distinct clusters of hyponatremia patients: 2033 (18%) in cluster 1, 3064 (28%) in cluster 2, and 6002 (54%) in cluster 3. Among these three distinct clusters, clusters 3 patients were the youngest, had lowest comorbidity burden, and highest kidney function. Cluster 1 patients were more likely to be admitted for genitourinary disease, and have diabetes and end-stage kidney disease. Cluster 1 patients had the lowest kidney function, serum bicarbonate, and hemoglobin, but highest serum potassium and prevalence of acute kidney injury. In contrast, cluster 2 patients were the oldest and were more likely to be admitted for respiratory disease, have coronary artery disease, congestive heart failure, stroke, and chronic obstructive pulmonary disease. Cluster 2 patients had lowest serum sodium and serum chloride, but highest serum bicarbonate. Cluster 1 patients had the highest hospital mortality and one-year mortality, followed by cluster 2 and cluster 3, respectively.We identified three clinically distinct phenotypes with differing mortality risks in a heterogeneous cohort of hospitalized hyponatremic patients using an unsupervised machine learning approach.CONCLUSIONWe identified three clinically distinct phenotypes with differing mortality risks in a heterogeneous cohort of hospitalized hyponatremic patients using an unsupervised machine learning approach.
Author Cheungpasitporn, Wisit
Kattah, Andrea G.
Vaitla, Pradeep K.
Vallabhajosyula, Saraschandra
Garovic, Vesna D.
Pattharanitima, Pattharawin
Erickson, Stephen B.
Mao, Michael A.
Keddis, Mira T.
Hansrivijit, Panupong
Nissaisorakarn, Voravech
Thongprayoon, Charat
Petnak, Tananchai
Dillon, John J.
AuthorAffiliation 9 Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Phoenix, AZ 85054, USA; keddis.mira@mayo.edu
1 Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA; kattah.andrea@mayo.edu (A.G.K.); Erickson.Stephen@mayo.edu (S.B.E.); Dillon.john@mayo.edu (J.J.D.); garovic.vesna@mayo.edu (V.D.G.)
8 Division of Pulmonary and Pulmonary Critical Care Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; petnak@yahoo.com
3 Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL 32224, USA; mao.michael@mayo.edu
5 Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 10120, Thailand
6 Department of Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; saraschandra21@gmail.com
7 MetroWest Medical Center, Department of Internal Medicine, Tufts University S
AuthorAffiliation_xml – name: 4 Department of Internal Medicine, Division of Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, USA; pvaitla@umc.edu
– name: 5 Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 10120, Thailand
– name: 1 Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA; kattah.andrea@mayo.edu (A.G.K.); Erickson.Stephen@mayo.edu (S.B.E.); Dillon.john@mayo.edu (J.J.D.); garovic.vesna@mayo.edu (V.D.G.)
– name: 2 Department of Internal Medicine, UPMC Pinnacle, Harrisburg, PA 17105, USA; hansrivijitp@upmc.edu
– name: 9 Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Phoenix, AZ 85054, USA; keddis.mira@mayo.edu
– name: 6 Department of Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; saraschandra21@gmail.com
– name: 7 MetroWest Medical Center, Department of Internal Medicine, Tufts University School of Medicine, Boston, MA 01760, USA; voravech.niss@gmail.com
– name: 3 Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL 32224, USA; mao.michael@mayo.edu
– name: 8 Division of Pulmonary and Pulmonary Critical Care Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; petnak@yahoo.com
Author_xml – sequence: 1
  givenname: Charat
  surname: Thongprayoon
  fullname: Thongprayoon, Charat
– sequence: 2
  givenname: Panupong
  orcidid: 0000-0002-5041-4290
  surname: Hansrivijit
  fullname: Hansrivijit, Panupong
– sequence: 3
  givenname: Michael A.
  orcidid: 0000-0003-1814-7003
  surname: Mao
  fullname: Mao, Michael A.
– sequence: 4
  givenname: Pradeep K.
  orcidid: 0000-0001-5234-6722
  surname: Vaitla
  fullname: Vaitla, Pradeep K.
– sequence: 5
  givenname: Andrea G.
  surname: Kattah
  fullname: Kattah, Andrea G.
– sequence: 6
  givenname: Pattharawin
  orcidid: 0000-0002-6010-0033
  surname: Pattharanitima
  fullname: Pattharanitima, Pattharawin
– sequence: 7
  givenname: Saraschandra
  orcidid: 0000-0002-1631-8238
  surname: Vallabhajosyula
  fullname: Vallabhajosyula, Saraschandra
– sequence: 8
  givenname: Voravech
  orcidid: 0000-0002-9389-073X
  surname: Nissaisorakarn
  fullname: Nissaisorakarn, Voravech
– sequence: 9
  givenname: Tananchai
  orcidid: 0000-0002-7633-4029
  surname: Petnak
  fullname: Petnak, Tananchai
– sequence: 10
  givenname: Mira T.
  orcidid: 0000-0001-8249-0848
  surname: Keddis
  fullname: Keddis, Mira T.
– sequence: 11
  givenname: Stephen B.
  surname: Erickson
  fullname: Erickson, Stephen B.
– sequence: 12
  givenname: John J.
  surname: Dillon
  fullname: Dillon, John J.
– sequence: 13
  givenname: Vesna D.
  surname: Garovic
  fullname: Garovic, Vesna D.
– sequence: 14
  givenname: Wisit
  orcidid: 0000-0001-9954-9711
  surname: Cheungpasitporn
  fullname: Cheungpasitporn, Wisit
BookMark eNp1kkFvEzEQhS1UREvpmetKXLiktdfeXfuCVEXQVAqCA1y4WBN7nDja2MH2gsqvxyEVopHwxdb4m6eZN_OSnIUYkJDXjF5zruiN9RkhY1aUU9qJZ-SipYOaqaFlZ_-8z8lVzltaj2Jctv0Lcs6FEKqT_IJ8-whm4wM2S4QUfFg38xgyhjzlZj5OuWA6BKNrFjHvfYHR_0LbfIbiMZTc_PRl09zanc_Zx9AsHvYxQEm48_CKPHcwZrx6vC_J1w_vv8wXs-Wnu_v57XJmRC_KrOWWCys6Sa3oZY9AV8IhReRqsNx0ICSatm-FGhjSVooVYwaZGRxYidDyS3J_1LURtnqf_A7Sg47g9Z9ATGsNqXgzol4JytANnTKMC8kodNbZzq2Uwt45a6rWu6PWflrt0JraY4LxiejTn-A3eh1_aMmrn4JWgbePAil-nzAXXa0xOI4QME5Zt13fU167YBV9c4Ju45RCtapSQ8_lAarUzZEyKeac0P0thlF9WAN9sgY1ozvJMHVupY6nVuzH_-b9BjtOu6k
CitedBy_id crossref_primary_10_3390_diseases11010018
crossref_primary_10_3390_medsci9040060
crossref_primary_10_1093_ckj_sfab190
crossref_primary_10_3390_diseases10020018
crossref_primary_10_1007_s40620_021_01163_2
crossref_primary_10_3390_jcm10194441
crossref_primary_10_3389_fneur_2025_1562247
crossref_primary_10_3390_medicina58121831
Cites_doi 10.1016/j.amjmed.2005.09.026
10.1097/01.mnh.0000447022.51722.f4
10.1016/j.ekir.2019.02.012
10.1093/ndt/gfz098
10.2174/1573403X15666190306111812
10.3390/jcm9041107
10.1681/ASN.2020030239
10.1038/s41598-017-16242-3
10.1152/ajprenal.00502.2007
10.1159/000442367
10.1053/j.ajkd.2012.09.019
10.1111/ijcp.13581
10.1093/bioinformatics/btq170
10.1016/S0733-8619(18)30797-7
10.1023/A:1023949509487
10.1139/gen-2020-0131
10.1093/qjmed/hcab194
10.7717/peerj.11745
10.1016/j.amjmed.2009.01.027
10.2215/CJN.12281019
10.1186/s12944-021-01475-z
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7T5
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
H94
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/diseases9030054
DatabaseName CrossRef
ProQuest Central (Corporate)
Immunology Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Biological Science Collection
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2079-9721
ExternalDocumentID oai_doaj_org_article_b401ef759c134810a5dfd5fb99e6ffdc
PMC8395840
10_3390_diseases9030054
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID -~X
5VS
85S
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABPPZ
ABUWG
ACPRK
ADBBV
ADFRT
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DWQXO
EMOBN
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
KQ8
LK8
M2O
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
3V.
7T5
7XB
8FK
H94
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c464t-23d34d4580d4686ea0b4fe0ee397d3c5a48ec2624971e0284b11ce1c7fad8ea23
IEDL.DBID M7P
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702282500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9721
IngestDate Fri Oct 03 12:53:43 EDT 2025
Tue Nov 04 01:38:59 EST 2025
Thu Oct 02 05:25:48 EDT 2025
Fri Jul 25 12:04:08 EDT 2025
Sat Nov 29 07:19:29 EST 2025
Tue Nov 18 22:01:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-23d34d4580d4686ea0b4fe0ee397d3c5a48ec2624971e0284b11ce1c7fad8ea23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1814-7003
0000-0002-6010-0033
0000-0002-7633-4029
0000-0001-8249-0848
0000-0001-9954-9711
0000-0002-5041-4290
0000-0001-5234-6722
0000-0002-1631-8238
0000-0002-9389-073X
OpenAccessLink https://www.proquest.com/docview/2576388413?pq-origsite=%requestingapplication%
PMID 34449583
PQID 2576388413
PQPubID 2032409
ParticipantIDs doaj_primary_oai_doaj_org_article_b401ef759c134810a5dfd5fb99e6ffdc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8395840
proquest_miscellaneous_2566032841
proquest_journals_2576388413
crossref_primary_10_3390_diseases9030054
crossref_citationtrail_10_3390_diseases9030054
PublicationCentury 2000
PublicationDate 20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 8
  year: 2021
  text: 20210801
  day: 1
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Diseases
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sun (ref_23) 2017; 7
Hannon (ref_1) 2014; 23
Wilkerson (ref_20) 2010; 26
Goh (ref_10) 2004; 69
Xue (ref_15) 2021; 20
Ravel (ref_22) 2017; 32
ref_13
Braun (ref_9) 2015; 91
Chewcharat (ref_3) 2020; 15
Yang (ref_18) 2021; 9
Waikar (ref_24) 2009; 122
Rhee (ref_21) 2019; 4
Riggs (ref_5) 1989; 7
Monti (ref_19) 2003; 52
MacEachern (ref_12) 2021; 64
Hoorn (ref_8) 2013; 62
Cheungpasitporn (ref_14) 2016; 187
ref_16
Thongprayoon (ref_2) 2020; 35
Renneboog (ref_6) 2006; 119
Zheng (ref_17) 2021; 32
Ayus (ref_7) 2008; 295
Rodriguez (ref_11) 2019; 15
Thongprayoon (ref_4) 2020; 74
References_xml – volume: 119
  start-page: 71.e1
  year: 2006
  ident: ref_6
  article-title: Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2005.09.026
– volume: 23
  start-page: 370
  year: 2014
  ident: ref_1
  article-title: Sodium homeostasis and bone
  publication-title: Curr. Opin. Nephrol. Hypertens.
  doi: 10.1097/01.mnh.0000447022.51722.f4
– volume: 4
  start-page: 769
  year: 2019
  ident: ref_21
  article-title: Hyponatremia in the Dialysis Population
  publication-title: Kidney Int. Rep.
  doi: 10.1016/j.ekir.2019.02.012
– volume: 35
  start-page: 1746
  year: 2020
  ident: ref_2
  article-title: Increased mortality risk associated with serum sodium variations and borderline hypo- and hypernatremia in hospitalized adults
  publication-title: Nephrol. Dial. Transplant.
  doi: 10.1093/ndt/gfz098
– volume: 15
  start-page: 252
  year: 2019
  ident: ref_11
  article-title: Hyponatremia in Heart Failure: Pathogenesis and Management
  publication-title: Curr. Cardiol. Rev.
  doi: 10.2174/1573403X15666190306111812
– ident: ref_13
  doi: 10.3390/jcm9041107
– volume: 32
  start-page: 639
  year: 2021
  ident: ref_17
  article-title: Subtyping CKD Patients by Consensus Clustering: The Chronic Renal Insufficiency Cohort (CRIC) Study
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2020030239
– volume: 7
  start-page: 15949
  year: 2017
  ident: ref_23
  article-title: Association of serum sodium and risk of all-cause mortality in patients with chronic kidney disease: A meta-analysis and sysematic review
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-16242-3
– volume: 295
  start-page: F619
  year: 2008
  ident: ref_7
  article-title: Brain cell volume regulation in hyponatremia: Role of sex, age, vasopressin, and hypoxia
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00502.2007
– volume: 91
  start-page: 299
  year: 2015
  ident: ref_9
  article-title: Diagnosis and management of sodium disorders: Hyponatremia and hypernatremia
  publication-title: Am. Fam. Physician
– volume: 187
  start-page: 73
  year: 2016
  ident: ref_14
  article-title: Electronic Data Systems and Acute Kidney Injury
  publication-title: Contrib. Nephrol.
  doi: 10.1159/000442367
– volume: 62
  start-page: 139
  year: 2013
  ident: ref_8
  article-title: Hyponatremia and mortality: Moving beyond associations
  publication-title: Am. J. Kidney Dis.
  doi: 10.1053/j.ajkd.2012.09.019
– volume: 74
  start-page: e13581
  year: 2020
  ident: ref_4
  article-title: The prognostic importance of serum sodium levels at hospital discharge and one-year mortality among hospitalized patients
  publication-title: Int. J. Clin. Pract.
  doi: 10.1111/ijcp.13581
– volume: 26
  start-page: 1572
  year: 2010
  ident: ref_20
  article-title: ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq170
– volume: 7
  start-page: 509
  year: 1989
  ident: ref_5
  article-title: Neurologic manifestations of fluid and electrolyte disturbances
  publication-title: Neurol. Clin.
  doi: 10.1016/S0733-8619(18)30797-7
– volume: 52
  start-page: 91
  year: 2003
  ident: ref_19
  article-title: Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
  publication-title: Mach. Learn.
  doi: 10.1023/A:1023949509487
– volume: 32
  start-page: 1224
  year: 2017
  ident: ref_22
  article-title: Serum sodium and mortality in a national peritoneal dialysis cohort
  publication-title: Nephrol. Dial. Transplant.
– volume: 64
  start-page: 416
  year: 2021
  ident: ref_12
  article-title: Machine learning for precision medicine
  publication-title: Genome
  doi: 10.1139/gen-2020-0131
– ident: ref_16
  doi: 10.1093/qjmed/hcab194
– volume: 9
  start-page: e11745
  year: 2021
  ident: ref_18
  article-title: Role of ferroptosis-related genes in prognostic prediction and tumor immune microenvironment in colorectal carcinoma
  publication-title: PeerJ
  doi: 10.7717/peerj.11745
– volume: 122
  start-page: 857
  year: 2009
  ident: ref_24
  article-title: Mortality after hospitalization with mild, moderate, and severe hyponatremia
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2009.01.027
– volume: 15
  start-page: 600
  year: 2020
  ident: ref_3
  article-title: Trajectories of Serum Sodium on In-Hospital and 1-Year Survival among Hospitalized Patients
  publication-title: Clin. J. Am. Soc. Nephrol.
  doi: 10.2215/CJN.12281019
– volume: 20
  start-page: 48
  year: 2021
  ident: ref_15
  article-title: Risk stratification of ST-segment elevation myocardial infarction (STEMI) patients using machine learning based on lipid profiles
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-021-01475-z
– volume: 69
  start-page: 2387
  year: 2004
  ident: ref_10
  article-title: Management of hyponatremia
  publication-title: Am. Fam. Physician
SSID ssj0000913826
Score 2.2206354
Snippet Background: The objective of this study was to characterize patients with hyponatremia at hospital admission into clusters using an unsupervised machine...
The objective of this study was to characterize patients with hyponatremia at hospital admission into clusters using an unsupervised machine learning approach,...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 54
SubjectTerms Algorithms
Artificial intelligence
Bicarbonates
Cardiovascular disease
Chronic obstructive pulmonary disease
Cluster analysis
Clustering
Congestive heart failure
Coronary artery
Coronary artery disease
Diabetes
Diabetes mellitus
End-stage renal disease
Hemoglobin
Hospitalization
Hyponatremia
Kidney diseases
Laboratories
Learning algorithms
Lung diseases
Machine learning
Mortality
Obstructive lung disease
Patients
Phenotypes
Potassium
Respiratory diseases
Sodium
Urine
Variance analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (WRLC)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3BatwwEECHEHoIlJI2LXWSBhVy6MWNvZIl-ZiEhhzakEMCoRcjS6N2IfWG9W4g_frO2N5lXQi99CrJII9G0ow0egNwbKSNtBEUaeHIRaFVUqU2oE-NM9JFqeosdJzZr-bqyt7dldcbqb44JqzHA_eCO6nJAcBoitLn_GY0c0WIoYh1WaKOMXhefcnq2XCmujW4ZLae7lk-kvz6k-G-oy0zBrSr0TbU0fpHJuY4QHJjx7nYhVeDqShO-y6-hi1s3sDL_pxN9M-H9uD7ty4aEsUASv0hOAUn569oxfn9kjEIXDiLYpUhZPobg7jucaqt4HNYwQRdjoZtxOXTAx-nz_HX1L2F24svN-eX6ZAvIfVKq0U6kUGqoAqbBaWtRpfVKmKGSDZHkL5wyqKfaHK4TI5kV6g6zz3m3kQXLLqJfAfbzazB9yAsiZynslWxVDWasog2RloYUWsvbZbA55X4Kj_AxDmnxX1FTgXLu_pL3gl8Wn_w0HM0nm96xuOxbsYA7K6A1KIa1KL6l1okcLgazWqYlW3FzpW0ljQygY_rapIwX5K4BmdLbqM1MwZVnoAZacGoQ-OaZvqzI3OTtUkGXbb_P_7gAHYmHD_TBRsewvZivsQP8MI_Lqbt_KhT9z_7egr_
  priority: 102
  providerName: Directory of Open Access Journals
Title Machine Learning Consensus Clustering of Hospitalized Patients with Admission Hyponatremia
URI https://www.proquest.com/docview/2576388413
https://www.proquest.com/docview/2566032841
https://pubmed.ncbi.nlm.nih.gov/PMC8395840
https://doaj.org/article/b401ef759c134810a5dfd5fb99e6ffdc
Volume 9
WOSCitedRecordID wos000702282500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2079-9721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913826
  issn: 2079-9721
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913826
  issn: 2079-9721
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2079-9721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913826
  issn: 2079-9721
  databaseCode: M7P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913826
  issn: 2079-9721
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913826
  issn: 2079-9721
  databaseCode: PIMPY
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2079-9721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913826
  issn: 2079-9721
  databaseCode: M2O
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVoywEJ8V0RKCsjceASmsRO7JwQrVoViV0iBNLCJXLscVmpJMtmFwl-PR7HuxAkuHDJwXYSy2OP34zHbwh5Jpi0biPI41w5E8VpSR5LAzoWSjBlGW8S43lm34jZTM7nZRUcbn0Iq9zqRK-oTafRR36MwJhJ6b72cvk1xqxReLoaUmjskQNkSWA-dK_a-ViQ89LB54HRhznr_jicevRlgjTtfLQZec7-EdAch0n-tu-c3_7fHt8htwLipK-GKXKXXIP2Hrk5uOvocAvpPvk09UGVQAPf6iXFTJ6YBqOnp1cbZFPAws7SbaKRxQ8wtBpYWXuK7lyKRLwYVNvSi-9L9Mqv4MtCPSAfzs_en17EIe1CrHnB13HGDOOG5zIxvJAFqKThFhIAB10M07niEnRWOLtNpODgCW_SVEOqhVVGgsrYIdlvuxYeEirBCtQIktuSNyDK3EprnX6FotBMJhF5sR3_WgdOckyNcVU72wQFVv8hsIg8372wHOg4_t70BAW6a4Y82r6gW13WYVnWjTMvXR_zUqd4IzlRubEmt01ZQmGt0RE52sq2Dou7r38JNiJPd9VuhPGsRbXQbbBNUSBVIU8jIkbTaNShcU27-OwJvh1odbgwefTvnz8mNzIMsPHRiEdkf73awBNyXX9bL_rVhOyJuZyQg5OzWfVu4l0N7jnN3k78GnE11etp9fEnp0kd8w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQkkxLsipYCRQOISmsRO4hwQgkK1VberPRSp4hIce1xWKsl2swsqP4rfiCePhSDBrQeutpM49nje_gbgWcqldYIg9mPlTBTHJYUvDWo_VSlXlosiMA3O7DidTOTJSTbdgB_9XRhKq-x5YsOoTaXJR75LijGX0r3t9fzcp6pRFF3tS2i0ZHGIF9-cyVa_Onjn9vd5FO2_P94b-V1VAV-LRCz9iBsujIhlYEQiE1RBISwGiE4yG65jJSTqKHFmSRqik76iCEONoU6tMhIVAR04ln_FqRGRbFIFp2ufDmFsOnW9RRDiPAt2uyhLnQUECy8Gwq-pETBQbIdpmb_Juf1b_9sK3YabnUbN3rRH4A5sYHkXbrTuSNbesroHH4-apFFkHZ7sKaNKpVTmo2Z7ZytCi6DGyrK-kMrsOxo2bVFna0buakZAw5Q0XLLRxZyiDgv8MlP34cOl_N4WbJZViQ-ASbQpcTwpbCYKTLPYSmud_MAk0VwGHrzs9zvXHeY6lf44y53tRQSS_0EgHrxYPzBv4Ub-PvQtEdB6GOGENw3V4jTv2E5eOPPZzTHOdEg3rgMVG2tiW2QZJtYa7cFOT0t5x7zq_BchefB03e1WmGJJqsRqRWOShKAYRehBOiDbwYSGPeXscwNg7pRyp_cG2__--BO4Njo-Gufjg8nhQ7geUTJRk3m5A5vLxQofwVX9dTmrF4-bU8jg02UT9U_2m3T5
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBSEkxBsRKGAkkLiETWIndg4IQcuqVctqDyBVXIJjj8tKJbtsdkHlp_Hr8OSxECS49cDVdhLH_jwPe_wNwBPJlfOKIA1T7V0ULyVFqCyaUGrJteOijGzDM3skJxN1fJxPt-BHfxeGwip7mdgIajs3tEc-IsOYK-XfNnJdWMR0b_xy8SWkDFJ00tqn02ghcohn37z7Vr842PNz_TRJxm_e7e6HXYaB0IhMrMKEWy6sSFVkRaYy1FEpHEaIXktbblItFJok8y6KjNFrYlHGscHYSKetQk2kB178X5BEWt6EDU43-zvEt-lN95ZNiPM8GnUnLnUeEUW8GCjCJl_AwMgdhmj-pvPG1_7n0boOVztLm71ql8YN2MLqJlxptylZe_vqFnx42wSTIut4Zk8YZTCl9B812z1dE4sEFc4d6xOszL6jZdOWjbZmtI3NiICYgokrtn-2oNOIJX6e6dvw_lx-7w5sV_MK7wJT6CRJQiVcLkqUeeqUc16vYJYZrqIAnvdzX5iOi51SgpwW3icjsBR_gCWAZ5sHFi0Nyd-bviYwbZoRf3hTMF-eFJ04KkrvVvs-prmJ6SZ2pFPrbOrKPMfMOWsC2OlxVXRCrS5-gSqAx5tqP8J0xqQrnK-pTZYRRaOIA5ADCA86NKypZp8aYnNvrHt7OLr3748_gksey8XRweTwPlxOKMaoCcjcge3Vco0P4KL5uprVy4fNgmTw8bwx_RPb_X22
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Consensus+Clustering+of+Hospitalized+Patients+with+Admission+Hyponatremia&rft.jtitle=Diseases&rft.au=Thongprayoon%2C+Charat&rft.au=Hansrivijit%2C+Panupong&rft.au=Mao%2C+Michael+A&rft.au=Vaitla%2C+Pradeep+K&rft.date=2021-08-01&rft.pub=MDPI+AG&rft.eissn=2079-9721&rft.volume=9&rft.issue=3&rft.spage=54&rft_id=info:doi/10.3390%2Fdiseases9030054&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9721&client=summon