Chemical Imaging of Spatial Heterogeneities in Catalytic Solids at Different Length and Time Scales
Catalytic solids in the spotlight: Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally new ones. Such insight can be provided by making use of chemical imaging techniques, which yield spatiotemporal information about the workings...
Uloženo v:
| Vydáno v: | Angewandte Chemie (International ed.) Ročník 48; číslo 27; s. 4910 - 4943 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Weinheim
Wiley-VCH Verlag
22.06.2009
WILEY‐VCH Verlag |
| Témata: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Catalytic solids in the spotlight: Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally new ones. Such insight can be provided by making use of chemical imaging techniques, which yield spatiotemporal information about the workings of catalytic solids at different length scales: at the level of reactors, catalyst bodies, catalyst grains, and nanoparticles.Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic processes. Heterogeneities resulting in space- and time-dependent phenomena occur at different length scales; that is, at the level of catalytic reactors (mm to m), catalyst bodies (μm to mm), catalyst grains (nm to μm), and active sites and metal (oxide) particles (Å to nm). This Review documents the recent advances in the development of space- and time-resolved spectroscopic methods for imaging spatial heterogeneities within catalytic processes at these four length scales. Particular emphasis will be on the use of magnetic resonance, optical, and synchrotron-based methods, their capabilities in providing spatial resolution (1D and 2D imaging) and depth profiling (3D imaging) as well as on their time-resolved application, potential for single-molecule and nanoparticle detection, and use under reaction conditions. The Review ends with future prospects on spectroscopic markers for catalytic activity, label-free spectroscopy, tomography at the nanoscale, and correlative microscopic approaches. |
|---|---|
| AbstractList | Catalytic solids in the spotlight: Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally new ones. Such insight can be provided by making use of chemical imaging techniques, which yield spatiotemporal information about the workings of catalytic solids at different length scales: at the level of reactors, catalyst bodies, catalyst grains, and nanoparticles.Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic processes. Heterogeneities resulting in space- and time-dependent phenomena occur at different length scales; that is, at the level of catalytic reactors (mm to m), catalyst bodies (μm to mm), catalyst grains (nm to μm), and active sites and metal (oxide) particles (Å to nm). This Review documents the recent advances in the development of space- and time-resolved spectroscopic methods for imaging spatial heterogeneities within catalytic processes at these four length scales. Particular emphasis will be on the use of magnetic resonance, optical, and synchrotron-based methods, their capabilities in providing spatial resolution (1D and 2D imaging) and depth profiling (3D imaging) as well as on their time-resolved application, potential for single-molecule and nanoparticle detection, and use under reaction conditions. The Review ends with future prospects on spectroscopic markers for catalytic activity, label-free spectroscopy, tomography at the nanoscale, and correlative microscopic approaches. Catalytic solids in the spotlight: Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally new ones. Such insight can be provided by making use of chemical imaging techniques, which yield spatiotemporal information about the workings of catalytic solids at different length scales: at the level of reactors, catalyst bodies, catalyst grains, and nanoparticles.Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic processes. Heterogeneities resulting in space- and time-dependent phenomena occur at different length scales; that is, at the level of catalytic reactors (mm to m), catalyst bodies (µm to mm), catalyst grains (nm to µm), and active sites and metal (oxide) particles (Ã... to nm). This Review documents the recent advances in the development of space- and time-resolved spectroscopic methods for imaging spatial heterogeneities within catalytic processes at these four length scales. Particular emphasis will be on the use of magnetic resonance, optical, and synchrotron-based methods, their capabilities in providing spatial resolution (1D and 2D imaging) and depth profiling (3D imaging) as well as on their time-resolved application, potential for single-molecule and nanoparticle detection, and use under reaction conditions. The Review ends with future prospects on spectroscopic markers for catalytic activity, label-free spectroscopy, tomography at the nanoscale, and correlative microscopic approaches. Catalytic solids in the spotlight : Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally new ones. Such insight can be provided by making use of chemical imaging techniques, which yield spatiotemporal information about the workings of catalytic solids at different length scales: at the level of reactors, catalyst bodies, catalyst grains, and nanoparticles. magnified image Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic processes. Heterogeneities resulting in space‐ and time‐dependent phenomena occur at different length scales; that is, at the level of catalytic reactors (mm to m), catalyst bodies (μm to mm), catalyst grains (nm to μm), and active sites and metal (oxide) particles (Å to nm). This Review documents the recent advances in the development of space‐ and time‐resolved spectroscopic methods for imaging spatial heterogeneities within catalytic processes at these four length scales. Particular emphasis will be on the use of magnetic resonance, optical, and synchrotron‐based methods, their capabilities in providing spatial resolution (1D and 2D imaging) and depth profiling (3D imaging) as well as on their time‐resolved application, potential for single‐molecule and nanoparticle detection, and use under reaction conditions. The Review ends with future prospects on spectroscopic markers for catalytic activity, label‐free spectroscopy, tomography at the nanoscale, and correlative microscopic approaches. Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic processes. Heterogeneities resulting in space- and time-dependent phenomena occur at different length scales; that is, at the level of catalytic reactors (mm to m), catalyst bodies (microm to mm), catalyst grains (nm to microm), and active sites and metal (oxide) particles (A to nm). This Review documents the recent advances in the development of space- and time-resolved spectroscopic methods for imaging spatial heterogeneities within catalytic processes at these four length scales. Particular emphasis will be on the use of magnetic resonance, optical, and synchrotron-based methods, their capabilities in providing spatial resolution (1D and 2D imaging) and depth profiling (3D imaging) as well as on their time-resolved application, potential for single-molecule and nanoparticle detection, and use under reaction conditions. The Review ends with future prospects on spectroscopic markers for catalytic activity, label-free spectroscopy, tomography at the nanoscale, and correlative microscopic approaches. Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic processes. Heterogeneities resulting in space- and time-dependent phenomena occur at different length scales; that is, at the level of catalytic reactors (mm to m), catalyst bodies (microm to mm), catalyst grains (nm to microm), and active sites and metal (oxide) particles (A to nm). This Review documents the recent advances in the development of space- and time-resolved spectroscopic methods for imaging spatial heterogeneities within catalytic processes at these four length scales. Particular emphasis will be on the use of magnetic resonance, optical, and synchrotron-based methods, their capabilities in providing spatial resolution (1D and 2D imaging) and depth profiling (3D imaging) as well as on their time-resolved application, potential for single-molecule and nanoparticle detection, and use under reaction conditions. The Review ends with future prospects on spectroscopic markers for catalytic activity, label-free spectroscopy, tomography at the nanoscale, and correlative microscopic approaches.Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic processes. Heterogeneities resulting in space- and time-dependent phenomena occur at different length scales; that is, at the level of catalytic reactors (mm to m), catalyst bodies (microm to mm), catalyst grains (nm to microm), and active sites and metal (oxide) particles (A to nm). This Review documents the recent advances in the development of space- and time-resolved spectroscopic methods for imaging spatial heterogeneities within catalytic processes at these four length scales. Particular emphasis will be on the use of magnetic resonance, optical, and synchrotron-based methods, their capabilities in providing spatial resolution (1D and 2D imaging) and depth profiling (3D imaging) as well as on their time-resolved application, potential for single-molecule and nanoparticle detection, and use under reaction conditions. The Review ends with future prospects on spectroscopic markers for catalytic activity, label-free spectroscopy, tomography at the nanoscale, and correlative microscopic approaches. Catalytic solids in the spotlight: Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally new ones. Such insight can be provided by making use of chemical imaging techniques, which yield spatiotemporal information about the workings of catalytic solids at different length scales: at the level of reactors, catalyst bodies, catalyst grains, and nanoparticles. Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic processes. Heterogeneities resulting in space‐ and time‐dependent phenomena occur at different length scales; that is, at the level of catalytic reactors (mm to m), catalyst bodies (μm to mm), catalyst grains (nm to μm), and active sites and metal (oxide) particles (Å to nm). This Review documents the recent advances in the development of space‐ and time‐resolved spectroscopic methods for imaging spatial heterogeneities within catalytic processes at these four length scales. Particular emphasis will be on the use of magnetic resonance, optical, and synchrotron‐based methods, their capabilities in providing spatial resolution (1D and 2D imaging) and depth profiling (3D imaging) as well as on their time‐resolved application, potential for single‐molecule and nanoparticle detection, and use under reaction conditions. The Review ends with future prospects on spectroscopic markers for catalytic activity, label‐free spectroscopy, tomography at the nanoscale, and correlative microscopic approaches. Catalytic solids in the spotlight: Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally new ones. Such insight can be provided by making use of chemical imaging techniques, which yield spatiotemporal information about the workings of catalytic solids at different length scales: at the level of reactors, catalyst bodies, catalyst grains, and nanoparticles. |
| Author | Weckhuysen, Bert M |
| Author_xml | – sequence: 1 fullname: Weckhuysen, Bert M |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19536746$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc9r2zAYhkXpWNts1x43nXZzJlk_bB9L1q2B0B3SnsVn6bOrYcuZpVDy308lXRmD0pOEeJ4X9L4X5DRMAQm55GzJGSu_QvC4LBlrGBOiOSHnXJW8EFUlTvNdClFUteJn5CLGX5mva6bfkzPeKKErqc-JXT3g6C0MdD1C70NPp45ud5B8frrBhPPUY0CfPEbqA11BguGQvKXbafAuUkj0m-86nDEkusHQpwcKwdE7PyLd5mCMH8i7DoaIH5_PBbn_fn23uik2P3-sV1ebwkotm0JC5RBkZ5mVrVLQOlnpVoPlVe2YAqvLlmsJkmvuupI7gcCVZKKVUjpwYkG-HHN38_R7jzGZ0UeLwwABp300-ccl45q9CUotSq5yoQvy6RnctyM6s5v9CPPB_O0vA_II2HmKccbOWJ9yeVNIM_jBcGaeZjJPM5mXmbK2_E97SX5NaI7Cox_w8AZtrm7X1_-6n49uB5OBfvbR3G9zESJ3obhqavEHxr2uHQ |
| CitedBy_id | crossref_primary_10_1021_ja211492b crossref_primary_10_1002_anie_201003273 crossref_primary_10_1002_adma_201807381 crossref_primary_10_1039_c3cs35326e crossref_primary_10_1002_cmtd_202300027 crossref_primary_10_1016_j_cattod_2010_12_034 crossref_primary_10_1016_j_cattod_2013_05_008 crossref_primary_10_1016_j_cattod_2015_05_004 crossref_primary_10_1038_s41929_021_00718_7 crossref_primary_10_1038_ncomms11811 crossref_primary_10_1080_08940886_2010_516739 crossref_primary_10_1039_D4SC03640A crossref_primary_10_1002_cite_201000208 crossref_primary_10_1038_ncomms14524 crossref_primary_10_1038_nmat3917 crossref_primary_10_1016_j_apcata_2010_06_027 crossref_primary_10_1038_ncomms9633 crossref_primary_10_1088_1361_648X_ac718b crossref_primary_10_1016_j_micromeso_2013_10_015 crossref_primary_10_3390_app151810269 crossref_primary_10_1002_cctc_201800230 crossref_primary_10_1039_c0cp01227k crossref_primary_10_1039_c3cp44293d crossref_primary_10_1002_ange_200906752 crossref_primary_10_1002_ange_202104114 crossref_primary_10_1002_cctc_201500710 crossref_primary_10_1016_j_coche_2016_02_002 crossref_primary_10_1016_j_ultramic_2016_11_005 crossref_primary_10_1021_jacs_6b06083 crossref_primary_10_1016_j_jhazmat_2023_132778 crossref_primary_10_1039_C9CY00464E crossref_primary_10_1002_anie_201710798 crossref_primary_10_1016_j_jcat_2015_01_002 crossref_primary_10_1016_j_cattod_2023_114255 crossref_primary_10_1364_OE_19_015069 crossref_primary_10_1002_chem_201102949 crossref_primary_10_1021_jacs_5c00167 crossref_primary_10_1016_j_micromeso_2010_03_017 crossref_primary_10_1038_s41467_020_20377_9 crossref_primary_10_1002_ange_201306370 crossref_primary_10_1016_j_cattod_2018_12_020 crossref_primary_10_1021_ja412740p crossref_primary_10_1002_ange_201712952 crossref_primary_10_1016_j_ccr_2020_213656 crossref_primary_10_1016_j_micromeso_2011_05_024 crossref_primary_10_1002_smll_201600619 crossref_primary_10_1038_nnano_2010_92 crossref_primary_10_1002_cctc_201000066 crossref_primary_10_1021_jacs_2c09159 crossref_primary_10_1021_jacs_7b02177 crossref_primary_10_1002_cctc_201000061 crossref_primary_10_1021_ja401666p crossref_primary_10_1038_s41929_023_00913_8 crossref_primary_10_1038_nchem_1148 crossref_primary_10_1002_anie_201712952 crossref_primary_10_1002_anie_201410016 crossref_primary_10_1021_ja907329j crossref_primary_10_1134_S096554411714002X crossref_primary_10_1016_j_ccr_2014_05_008 crossref_primary_10_1002_cphc_201701090 crossref_primary_10_1016_j_apcata_2011_08_002 crossref_primary_10_1039_c2cp22848c crossref_primary_10_1002_smll_201901979 crossref_primary_10_1039_C1CP22586C crossref_primary_10_1007_s10562_014_1416_0 crossref_primary_10_1021_ja201415j crossref_primary_10_1038_s41467_020_17355_6 crossref_primary_10_1002_cphc_201300529 crossref_primary_10_1039_c0cs00089b crossref_primary_10_1016_j_micromeso_2012_08_007 crossref_primary_10_1002_anie_201409482 crossref_primary_10_1016_j_apcata_2012_01_016 crossref_primary_10_1002_ange_201410016 crossref_primary_10_1002_smll_202004289 crossref_primary_10_1016_j_apcata_2014_01_018 crossref_primary_10_1002_ange_201506954 crossref_primary_10_1002_cctc_201900441 crossref_primary_10_1002_ange_201506718 crossref_primary_10_1002_cctc_201100333 crossref_primary_10_1016_j_jcat_2018_04_013 crossref_primary_10_1107_S0021889812042781 crossref_primary_10_1021_jacs_3c14305 crossref_primary_10_1016_j_jcat_2014_12_031 crossref_primary_10_1002_cctc_201200356 crossref_primary_10_1002_cctc_201700026 crossref_primary_10_1021_ja105517d crossref_primary_10_1002_anie_200904282 crossref_primary_10_1039_b909052p crossref_primary_10_1017_S1431927615015573 crossref_primary_10_1002_anie_201506954 crossref_primary_10_1002_anie_201606046 crossref_primary_10_1016_j_nantod_2018_04_004 crossref_primary_10_3390_catal8090356 crossref_primary_10_1002_anie_201506718 crossref_primary_10_1021_jacs_2c03088 crossref_primary_10_1021_ja102566b crossref_primary_10_1002_cctc_200900329 crossref_primary_10_1038_s41563_021_01118_9 crossref_primary_10_1002_cctc_201900659 crossref_primary_10_1002_cphc_201700583 crossref_primary_10_1039_c3cp52587b crossref_primary_10_1002_cphc_201402340 crossref_primary_10_1002_anie_201210030 crossref_primary_10_1002_anie_201902859 crossref_primary_10_1021_jacs_5b01698 crossref_primary_10_1107_S160057751900660X crossref_primary_10_1107_S1600576722011359 crossref_primary_10_1039_C5CS00029G crossref_primary_10_1002_adma_202104530 crossref_primary_10_1016_j_surfrep_2015_01_001 crossref_primary_10_1088_2752_5724_ade39c crossref_primary_10_1016_j_cattod_2018_02_007 crossref_primary_10_1039_b919711g crossref_primary_10_1155_2010_401854 crossref_primary_10_1039_C4CS00146J crossref_primary_10_1002_ange_201606046 crossref_primary_10_1002_ange_200904944 crossref_primary_10_1002_ange_201210030 crossref_primary_10_1007_s10450_020_00292_7 crossref_primary_10_1002_anie_200904944 crossref_primary_10_1017_S1431927613013731 crossref_primary_10_1039_c0cs00088d crossref_primary_10_1107_S1600577523001613 crossref_primary_10_1002_chem_201101361 crossref_primary_10_1038_nnano_2012_131 crossref_primary_10_1093_nsr_nwac151 crossref_primary_10_1002_adfm_202307518 crossref_primary_10_1016_j_pnmrs_2023_11_001 crossref_primary_10_1002_ange_201409482 crossref_primary_10_1016_j_micromeso_2013_11_023 crossref_primary_10_1039_c0cs00064g crossref_primary_10_1002_anie_200905181 crossref_primary_10_1038_s41929_018_0024_6 crossref_primary_10_1002_cphc_201201015 crossref_primary_10_1002_cnma_201700301 crossref_primary_10_1016_j_powtec_2018_03_062 crossref_primary_10_1039_b919540h crossref_primary_10_1002_ange_200904282 crossref_primary_10_1002_ange_201410738 crossref_primary_10_1007_s12200_014_0423_5 crossref_primary_10_1038_s41578_018_0044_5 crossref_primary_10_1016_j_apcata_2011_06_030 crossref_primary_10_1002_ange_201708284 crossref_primary_10_1002_cctc_201100094 crossref_primary_10_1038_s41929_022_00842_y crossref_primary_10_1002_chem_201000995 crossref_primary_10_1039_C6CC07862A crossref_primary_10_1007_s11244_016_0689_5 crossref_primary_10_1002_anie_202408668 crossref_primary_10_1002_ange_201902859 crossref_primary_10_1016_j_cattod_2016_02_030 crossref_primary_10_1021_ja309948y crossref_primary_10_1021_ja2088025 crossref_primary_10_1002_cctc_201600996 crossref_primary_10_1021_ja405283k crossref_primary_10_1038_nmat2530 crossref_primary_10_1063_1_4807020 crossref_primary_10_1002_ange_200905039 crossref_primary_10_1002_anie_202104114 crossref_primary_10_1021_jacs_4c12145 crossref_primary_10_1002_anie_201004976 crossref_primary_10_1039_c0cs00100g crossref_primary_10_1016_j_trechm_2021_04_003 crossref_primary_10_1021_ja410044r crossref_primary_10_1038_s41524_020_00376_6 crossref_primary_10_1016_j_cattod_2010_06_026 crossref_primary_10_3390_catal10111331 crossref_primary_10_1038_s41570_021_00340_y crossref_primary_10_1039_b919698f crossref_primary_10_1002_cphc_201201023 crossref_primary_10_1073_pnas_1502005112 crossref_primary_10_1515_pac_2023_1126 crossref_primary_10_1002_chem_201503551 crossref_primary_10_1039_C9CY00948E crossref_primary_10_1002_cphc_200901023 crossref_primary_10_1007_s10450_020_00290_9 crossref_primary_10_1107_S1600576719013839 crossref_primary_10_1002_cctc_201200131 crossref_primary_10_1002_anie_200905039 crossref_primary_10_1016_j_trechm_2020_02_003 crossref_primary_10_1039_b919541f crossref_primary_10_1002_ange_201004976 crossref_primary_10_1002_ange_201502069 crossref_primary_10_1016_j_jcat_2014_09_006 crossref_primary_10_1039_D1NR01272J crossref_primary_10_1039_b919689g crossref_primary_10_1002_cctc_201600657 crossref_primary_10_1002_anie_200906752 crossref_primary_10_1039_c2cc30597f crossref_primary_10_1002_cphc_200900489 crossref_primary_10_1039_b926886c crossref_primary_10_1002_ange_202408668 crossref_primary_10_1002_ange_201710798 crossref_primary_10_1002_smll_201303166 crossref_primary_10_1002_cctc_201100506 crossref_primary_10_1002_cctc_201402897 crossref_primary_10_1038_nchem_1478 crossref_primary_10_1002_cphc_201000065 crossref_primary_10_1039_c1cp21324e crossref_primary_10_1002_cite_201500037 crossref_primary_10_1038_nnano_2012_18 crossref_primary_10_1002_anie_201502069 crossref_primary_10_1007_s11705_018_1740_9 crossref_primary_10_1002_anie_201306370 crossref_primary_10_1021_ja2085405 crossref_primary_10_3390_catal11040459 crossref_primary_10_1039_b919543m crossref_primary_10_1088_1674_1056_23_8_087801 crossref_primary_10_1103_PhysRevLett_126_126001 crossref_primary_10_1039_c3fd00024a crossref_primary_10_1016_j_pnmrs_2011_12_001 crossref_primary_10_1002_ange_200905181 crossref_primary_10_1039_C5CP06477E crossref_primary_10_1002_anie_201708284 crossref_primary_10_1002_cctc_202400352 crossref_primary_10_1007_s10562_014_1436_9 crossref_primary_10_1002_anie_201203105 crossref_primary_10_1039_B915753K crossref_primary_10_1002_chem_201500473 crossref_primary_10_1039_C9SC01666J crossref_primary_10_1039_D1CY00258A crossref_primary_10_1002_chem_201002624 crossref_primary_10_1016_j_jcat_2018_06_014 crossref_primary_10_1039_c0cs00047g crossref_primary_10_1007_s11244_013_0049_7 crossref_primary_10_1002_chem_201203491 crossref_primary_10_1002_cctc_201700753 crossref_primary_10_1021_ja108625z crossref_primary_10_1021_ja9107512 crossref_primary_10_1039_C5CS00396B crossref_primary_10_1002_ange_201003273 crossref_primary_10_1002_cctc_201801378 crossref_primary_10_1039_c2jm31357j crossref_primary_10_1002_anie_201711314 crossref_primary_10_1002_cite_202200082 crossref_primary_10_1002_smll_201001745 crossref_primary_10_1039_c2cc31260c crossref_primary_10_1016_j_ces_2011_08_049 crossref_primary_10_1002_ange_201203105 crossref_primary_10_1016_j_matchemphys_2021_124674 crossref_primary_10_1002_chem_201203351 crossref_primary_10_1021_es2010946 crossref_primary_10_1039_c0cs00036a crossref_primary_10_1039_C5CC09220E crossref_primary_10_1039_C7CP02344H crossref_primary_10_1002_ange_201711314 crossref_primary_10_1038_nchem_453 crossref_primary_10_1002_anie_201410738 crossref_primary_10_1017_S1431927617000332 crossref_primary_10_1021_ja110320y crossref_primary_10_1016_j_micromeso_2011_04_037 crossref_primary_10_1039_c0cs00080a |
| Cites_doi | 10.1038/458844a 10.1002/ange.200604336 10.1021/jp051066p 10.1021/jp051037e 10.1002/anie.200801327 10.1143/APEX.1.117003 10.1016/j.cattod.2006.09.034 10.1081/CR-120015739 10.1021/j100007a039 10.1529/biophysj.106.091116 10.1016/S0360-0564(06)51001-6 10.1021/ja029684w 10.1002/anie.200800480 10.1016/j.jcat.2006.06.004 10.1038/nature07516 10.1002/anie.200705562 10.1126/science.1150124 10.1021/ja804158n 10.1021/ja001429t 10.1016/S0360-0564(06)51005-3 10.1016/j.cattod.2006.10.001 10.1002/anie.200806003 10.1021/jp060371n 10.1002/chem.200700990 10.1039/B306045B 10.1002/anie.200705597 10.1002/ange.200701419 10.1080/08940880701631344 10.1002/ange.200601184 10.1038/nmat2319 10.1126/science.275.5303.1102 10.1016/j.micron.2007.09.010 10.1002/ange.200602593 10.1016/S0022-0728(03)00242-0 10.1364/OL.22.000742 10.1021/ja0689233 10.1016/j.cattod.2004.06.152 10.1021/jp055767y 10.1021/jp045206r 10.1039/b414427a 10.1007/s11244-005-2908-3 10.1021/ja044460u 10.1016/S0039-6028(96)01346-5 10.1002/1521-4095(200109)13:18<1374::AID-ADMA1374>3.0.CO;2-A 10.1002/1521-3757(20010817)113:16<3040::AID-ANGE3040>3.0.CO;2-1 10.1146/annurev.anchem.1.031207.112754 10.1016/S0030-4018(96)00771-7 10.1021/ja7113147 10.1002/ange.200700830 10.1016/j.cattod.2006.08.065 10.1016/j.jsb.2008.02.003 10.1016/j.jcat.2003.11.002 10.1103/PhysRevLett.82.4142 10.1002/cphc.200700202 10.1016/j.jcat.2007.02.013 10.1126/science.1151787 10.1016/j.ultramic.2008.04.014 10.1366/0003702021954665 10.1002/anie.200250351 10.1002/chem.200701591 10.1021/cr940044o 10.1002/ange.200702473 10.1080/08940880802667924 10.1063/1.2912503 10.1002/ange.200703085 10.1016/S0926-860X(02)00064-9 10.1021/ja801120u 10.1039/b107686h 10.1039/b820052a 10.1002/anie.200703673 10.1021/ja804606m 10.1002/ange.200801433 10.1002/ange.200801605 10.1002/anie.200702473 10.1016/j.jcat.2006.07.022 10.1038/nmeth929 10.1063/1.2949389 10.1002/anie.200462473 10.1016/j.jcat.2007.09.003 10.1016/j.tcb.2005.02.003 10.1016/j.cattod.2005.11.006 10.1038/nnano.2008.399 10.1006/jmre.2000.2212 10.1016/S0167-2991(08)64149-X 10.1002/anie.200801605 10.1007/BF03161992 10.1038/nmat1924 10.1021/ja0739887 10.1021/jp810428e 10.1126/science.1146598 10.1201/b21367 10.1002/1438-5171(200211)3:5/6<285::AID-SIMO285>3.0.CO;2-X 10.1016/j.cej.2006.06.014 10.1002/ange.200702012 10.1103/PhysRevLett.92.096101 10.1016/S1381-1169(03)00335-2 10.1002/ange.200700980 10.1016/0926-860X(93)80180-X 10.1126/science.1153529 10.1002/chem.200801380 10.1107/S0909049507047966 10.1038/439548a 10.1039/b602311h 10.1007/978-1-59745-294-6_12 10.1038/456454a 10.1002/aic.10731 10.1002/anie.200701399 10.1016/j.cattod.2005.11.076 10.1006/jcat.2002.3639 10.1002/chem.200801293 10.1039/b504027b 10.1016/j.jcat.2006.12.018 10.1002/anie.200700980 10.1021/ac034296d 10.1103/PhysRevLett.78.1667 10.1002/anie.200702012 10.1002/ange.200701399 10.1021/ar800121r 10.1016/S0920-5861(01)00328-5 10.1039/b501698c 10.1016/j.jcat.2004.08.003 10.1039/b707746g 10.1039/b405694a 10.1038/nature03719 10.1039/B512780G 10.1002/cphc.200800065 10.1063/1.1517146 10.1002/anie.200602892 10.1002/ange.200602892 10.1039/b315779b 10.1016/j.cattod.2007.03.003 10.1016/j.jsb.2008.07.003 10.1091/mbc.E03-07-0522 10.1002/anie.200801433 10.1006/jsbi.1998.4037 10.1016/S0920-5861(99)00046-2 10.1107/S0909049508023327 10.1021/ar700217y 10.1021/ja8048767 10.1021/la703406d 10.1080/08940880701631369 10.1016/j.nimb.2005.07.177 10.1002/ange.200800480 10.1021/jp711527v 10.1016/j.sbi.2005.08.008 10.1002/anie.200701419 10.1023/B:CATL.0000014338.20674.bf 10.1016/j.nima.2007.08.083 10.1016/j.cattod.2007.03.007 10.1021/jp035693v 10.1021/jp801562g 10.1002/ange.200801327 10.1039/b107005c 10.1039/b313208k 10.1002/ange.200806003 10.1039/b706294j 10.1002/anie.200602593 10.1002/ange.200803427 10.1002/chem.200600678 10.1021/jp8039737 10.1006/jcat.2000.2930 10.1002/ange.200805994 10.1016/j.jcat.2005.11.005 10.1002/anie.200604336 10.1126/science.1158573 10.1021/jp710676v 10.1002/ange.200705562 10.1016/j.ces.2004.07.103 10.1016/j.cattod.2007.06.037 10.1016/j.jsb.2007.07.011 10.1039/b210679p 10.1002/anie.200601184 10.1002/anie.200700830 10.1039/b309650p 10.1021/jp040708q 10.1038/nature06398 10.1021/nl802086x 10.1016/S0920-5861(99)00047-4 10.1021/cc049957e 10.1016/j.jcat.2008.01.033 10.1002/ange.200703673 10.1002/(SICI)1521-3757(19991216)111:24<3800::AID-ANGE3800>3.0.CO;2-1 10.1021/jp010777u 10.1016/S0360-0564(06)51002-8 10.1002/(SICI)1521-3773(19991216)38:24<3588::AID-ANIE3588>3.0.CO;2-4 10.1002/9783527611348 10.1088/0957-0233/16/1/040 10.1038/nm0297-235 10.1007/s10562-005-7522-2 10.1016/S0167-2991(06)80905-5 10.1016/S0360-0564(06)50001-X 10.1016/j.jcat.2004.10.016 10.1126/science.1062883 10.1002/chem.200700568 10.1023/A:1018956520929 10.1038/nbt899 10.1364/OL.24.000954 10.1021/ja062580r 10.1002/anie.200703085 10.1021/cr040083s 10.1021/jp030989m 10.1126/science.1063597 10.1002/ange.200462473 10.1002/ange.200250351 10.1038/nmat1861 10.1039/b305264h 10.1007/BF00772594 10.1111/j.1365-2818.2008.01893.x 10.1021/ac015513i 10.1021/ja808335b 10.1364/OL.19.000780 10.1073/pnas.0812068106 10.1002/anie.200804077 10.1126/science.1161183 10.1021/ja053456v 10.1016/S0920-5861(02)00337-1 10.1126/science.1137395 10.1016/j.cattod.2004.12.017 10.1002/anie.200803427 10.1002/anie.200803122 10.1002/ange.200800977 10.1002/anie.200700246 10.1038/354465a0 10.1073/pnas.97.15.8206 10.1038/456185a 10.1016/j.cattod.2006.07.034 10.1002/anie.200800977 10.1126/science.1143093 10.1016/j.micromeso.2007.05.028 10.1016/S0021-9517(02)00133-1 10.1039/B305786K 10.1016/j.apcata.2004.02.040 10.1002/ange.200700246 10.1002/1521-3773(20010817)40:16<2954::AID-ANIE2954>3.0.CO;2-# 10.1016/j.apcata.2008.02.034 10.1002/ange.200804077 10.1021/cm0401645 10.1021/ja040107c 10.1021/jp802827t 10.1002/ange.200705597 10.1126/science.1059478 10.1021/ja075927e 10.1002/cphc.200800757 10.1021/jp062618m 10.1126/science.1140484 10.1016/j.ccr.2007.06.008 10.1073/pnas.0708066104 10.1016/j.bbamem.2006.06.008 10.1039/b706637f 10.1002/anie.200805994 10.1557/mrs2007.213 10.1039/B418790C 10.1366/000370202321274944 10.1002/chem.200500116 10.1016/j.cattod.2004.12.019 10.1039/b604515d 10.1126/science.1165758 10.1016/j.cattod.2005.11.015 10.1002/ange.200803122 10.1016/S0360-0564(06)50005-7 10.1038/nnano.2008.100 10.1038/nature04502 10.1073/pnas.0610755104 10.1038/nbt895 |
| ContentType | Journal Article |
| Copyright | Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | FBQ AAYXX CITATION NPM 7S9 L.6 7X8 |
| DOI | 10.1002/anie.200900339 |
| DatabaseName | AGRIS CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | AGRICOLA CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| EndPage | 4943 |
| ExternalDocumentID | 19536746 10_1002_anie_200900339 ANIE200900339 US201301651598 |
| Genre | reviewArticle Journal Article |
| GrantInformation_xml | – fundername: Toyota – fundername: Total – fundername: Albemarle Catalysts – fundername: Dow Chemicals – fundername: Netherlands Organization for Scientific Research – fundername: Advanced Chemical Technology for Sustainability program – fundername: Top Research School Combination Catalysis – fundername: SK Energy – fundername: BASF – fundername: Shell |
| GroupedDBID | --- -DZ -~X .3N .GA .GJ .HR .Y3 05W 0R~ 0ZS 10A 186 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 9M8 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAYJJ AAYOK AAZKR ABCQN ABCUV ABEFU ABEML ABHUG ABIJN ABLJU ABPPZ ABPVW ABTAH ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AETEA AEUQT AEUYR AFBPY AFDAS AFFNX AFFPM AFGKR AFMIJ AFPWT AFRAH AFVGU AFZJQ AGCDD AGJLS AHMBA AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FBQ FEDTE G-S G.N G8K GNP GODZA H.T H.X HBH HF~ HHY HHZ HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NNB O66 O9- OHT P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWH RWI RX1 RYL S10 SAMSI SUPJJ TN5 UB1 UPT UQL V2E VH1 VQA W8V W99 WBFHL WBKPD WH7 WHG WIB WIH WIK WJL WOHZO WQJ WRC WSR WXSBR WYISQ XFK XG1 XOL XPP XSW XV2 YCJ YYP YZZ ZCG ZE2 ZGI ZXP ZY4 ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AHBTC AITYG ALVPJ HGLYW OIG AAYXX ABDBF ABJNI ABUFD AEYWJ AGQPQ AGYGG CITATION O8X ABDPE AGHNM NPM 7S9 L.6 7X8 |
| ID | FETCH-LOGICAL-c4649-4a7dea4fc0c4b55abd476b6ac178d05ac62b164a4161df21d3ea15403b444dad3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 301 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000267713800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Sun Nov 09 13:25:19 EST 2025 Sun Nov 09 11:51:44 EST 2025 Thu Apr 03 07:04:06 EDT 2025 Tue Nov 18 22:11:20 EST 2025 Sat Nov 29 05:36:53 EST 2025 Wed Jan 22 16:25:46 EST 2025 Wed Dec 27 19:19:22 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 27 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4649-4a7dea4fc0c4b55abd476b6ac178d05ac62b164a4161df21d3ea15403b444dad3 |
| Notes | http://dx.doi.org/10.1002/anie.200900339 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 19536746 |
| PQID | 46321503 |
| PQPubID | 24069 |
| PageCount | 34 |
| ParticipantIDs | proquest_miscellaneous_67420160 proquest_miscellaneous_46321503 pubmed_primary_19536746 crossref_citationtrail_10_1002_anie_200900339 crossref_primary_10_1002_anie_200900339 wiley_primary_10_1002_anie_200900339_ANIE200900339 fao_agris_US201301651598 |
| PublicationCentury | 2000 |
| PublicationDate | June 22, 2009 |
| PublicationDateYYYYMMDD | 2009-06-22 |
| PublicationDate_xml | – month: 06 year: 2009 text: June 22, 2009 day: 22 |
| PublicationDecade | 2000 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany |
| PublicationTitle | Angewandte Chemie (International ed.) |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2009 |
| Publisher | Wiley-VCH Verlag WILEY‐VCH Verlag |
| Publisher_xml | – name: Wiley-VCH Verlag – name: WILEY‐VCH Verlag |
| References | 2006 2007; 91 104 2004 2006 2007 2008; 113 105 9 2008 2008 2001 2001 2001; 120 47 294 293 292 2005 2007; 109 13 2008 2008; 8 456 2007 2007; 104 126 2002; 56 2004 2006 2008; 126 162 130 2008; 39 2005 2006; 109 110 2008; 108 2005 2005; 127 109 2008; 3 2008 2008 2007 2007 2007 2007 2007 2008 2008 2007 2006 2006 2008 2007 2007 2008 2005 2005; 120 47 251 119 46 119 46 120 47 129 118 45 340 252 247 41 117 44 1997 1991 1993 2000; 44 354 20 194 2000 2001 2002 2003 2008 2006 2001 2004 2004 2005; 122 73 56 75 79 52 67 6 222 16 2007 2007 2006 1997 1997; 20 20 1758 22 3 2005 2005; 241 32 2008 2007 2006 2004 2008 2007 2006 2005 2003 2005 2004 2003 2006 2003 2006 2008 2003 2007 2008 2008 2003 2003; 112 126 118 96 112 246 110 100 78 109 108 8 204 237 255 125 9 120 47 115 42 2006 2006; 118 45 2009 2009; 106 458 2007 2007 2007 2007; 316 316 119 46 1994 1999 2000 2007; 19 24 97 316 2005 2008 2004 2008; 15 162 15 15 2001 2004; 227 2007 2007 2006; 160 121 2001; 105 1999 2004 2008 2008 2007; 82 108 112 1 8 2002 2000; 73 147 2002 2003 2001 2001 2005 2007 2007 2002 1999 1999 2003; 5 113 40 100 51 51 111 38 216 2009; 10 2003; 92 2008 2009; 7 11 2000 2007 2007 2004; 126 130 267 2003 2006 2009; 45 113 22 2005; 103 2008; 319 2007; 450 1998 2005; 123 15 2005 2006; 229 50 2006; 242 2007; 6 2003; 5 1999; 51 2003 2005 2006; 5 7 8 2008; 112 2002 2006; 232 50 2001; 13 2006; 243 2009; 15 2007; 126 1993; 106 1997 2003; 137 21 2006 2007 2008 2009; 8 318 24 4 2005 2006 2007; 113 51 2002 2004 2008; 14 2008 1997 2007 2006; 110 2008 1997 1997; 41 275 78 2005 2009; 131 2008; 322 2007 2005 2008 2008; 582 435 92 1 2008; 164 2007; 13 2009 2009; 121 48 2006 2005 1999 2008 2008; 321 321 2004; 16 2006 2008 2009; 128 15 113 2004; 59 2005; 127 2006 2006; 439 439 2004 2007 2007 2007 2007 2007 2008 2008; 126 6 119 46 32 37 138 2003 2002 2008 2008 2004 2008; 554–555 3 120 47 92 229 1991 1995 1997; 99 12 2008 2008 2008 2008; 120 47 120 47 1994 2002 1997 2004 2007 2008 2008; 84 209 377–379 129 120 47 2007 2007; 119 46 2008 2008; 120 47 2006 2007; 3 317 2005; 11 2008; 130 2003; 21 1996 1999 2005 2007 2007; 96 51 105 119 46 2008 2008 2009 2009; 456 456 121 48 e_1_2_5_46_2 e_1_2_5_101_2 e_1_2_5_23_2 e_1_2_5_84_5 e_1_2_5_84_4 e_1_2_5_109_2 e_1_2_5_69_2 e_1_2_5_109_3 e_1_2_5_69_3 e_1_2_5_69_4 e_1_2_5_61_2 e_1_2_5_84_3 e_1_2_5_84_2 e_1_2_5_7_6 e_1_2_5_11_5 e_1_2_5_7_5 e_1_2_5_11_4 e_1_2_5_7_4 e_1_2_5_11_7 e_1_2_5_7_3 e_1_2_5_11_6 e_1_2_5_57_2 e_1_2_5_7_2 e_1_2_5_34_2 e_1_2_5_11_3 e_1_2_5_11_2 e_1_2_5_11_9 e_1_2_5_11_8 e_1_2_5_19_2 (e_1_2_5_104_3) 2005 e_1_2_5_72_2 e_1_2_5_95_2 e_1_2_5_68_6 e_1_2_5_45_3 e_1_2_5_22_2 e_1_2_5_45_2 e_1_2_5_100_3 e_1_2_5_100_2 e_1_2_5_83_5 e_1_2_5_68_2 e_1_2_5_108_3 e_1_2_5_68_3 e_1_2_5_108_4 e_1_2_5_68_4 e_1_2_5_68_5 e_1_2_5_108_2 e_1_2_5_108_5 e_1_2_5_60_2 e_1_2_5_60_3 e_1_2_5_83_2 e_1_2_5_83_3 e_1_2_5_83_4 e_1_2_5_9_12 e_1_2_5_9_10 e_1_2_5_9_11 e_1_2_5_10_6 e_1_2_5_10_5 e_1_2_5_10_8 e_1_2_5_10_7 e_1_2_5_10_2 e_1_2_5_33_2 e_1_2_5_56_2 e_1_2_5_10_4 e_1_2_5_10_3 e_1_2_5_71_6 e_1_2_5_18_2 e_1_2_5_79_2 e_1_2_5_10_9 e_1_2_5_18_4 e_1_2_5_18_3 e_1_2_5_71_2 e_1_2_5_94_2 e_1_2_5_71_3 e_1_2_5_71_4 e_1_2_5_71_5 e_1_2_5_94_3 e_1_2_5_48_2 e_1_2_5_25_2 e_1_2_5_86_3 e_1_2_5_86_2 e_1_2_5_107_4 e_1_2_5_107_5 e_1_2_5_107_2 e_1_2_5_107_3 e_1_2_5_107_6 e_1_2_5_107_7 (e_1_2_5_1_2) 2008 e_1_2_5_63_2 e_1_2_5_40_3 e_1_2_5_40_2 e_1_2_5_13_2 e_1_2_5_59_2 e_1_2_5_36_2 e_1_2_5_111_3 e_1_2_5_111_2 e_1_2_5_74_3 e_1_2_5_97_3 e_1_2_5_74_4 e_1_2_5_97_2 e_1_2_5_74_5 e_1_2_5_97_5 e_1_2_5_97_4 e_1_2_5_74_2 e_1_2_5_51_2 Thomas J. M. (e_1_2_5_5_2) 1997 (e_1_2_5_4_2) 2005 e_1_2_5_47_3 e_1_2_5_24_2 e_1_2_5_47_2 Zu Y. (e_1_2_5_37_2) 1991 e_1_2_5_106_2 e_1_2_5_62_2 e_1_2_5_85_2 e_1_2_5_62_3 e_1_2_5_12_4 e_1_2_5_12_3 e_1_2_5_12_6 e_1_2_5_35_2 e_1_2_5_58_2 e_1_2_5_12_5 e_1_2_5_35_3 e_1_2_5_6_2 e_1_2_5_12_2 e_1_2_5_110_2 e_1_2_5_96_4 e_1_2_5_96_3 e_1_2_5_73_2 e_1_2_5_96_2 e_1_2_5_50_3 e_1_2_5_50_2 e_1_2_5_27_2 e_1_2_5_42_3 e_1_2_5_42_2 e_1_2_5_105_2 e_1_2_5_65_2 e_1_2_5_105_3 e_1_2_5_88_3 e_1_2_5_88_2 (e_1_2_5_8_3) 2004 e_1_2_5_88_5 e_1_2_5_105_6 e_1_2_5_88_4 e_1_2_5_105_7 e_1_2_5_105_4 e_1_2_5_105_5 e_1_2_5_80_2 e_1_2_5_105_8 e_1_2_5_38_2 e_1_2_5_15_3 e_1_2_5_15_2 e_1_2_5_53_3 e_1_2_5_53_2 e_1_2_5_3_2 e_1_2_5_76_2 e_1_2_5_76_3 e_1_2_5_99_3 e_1_2_5_99_2 e_1_2_5_15_5 e_1_2_5_15_4 e_1_2_5_91_3 e_1_2_5_91_2 e_1_2_5_91_5 e_1_2_5_91_4 Kaupp G. (e_1_2_5_104_2) 2006 e_1_2_5_30_2 e_1_2_5_26_2 e_1_2_5_49_2 e_1_2_5_26_3 e_1_2_5_41_3 e_1_2_5_64_2 e_1_2_5_87_2 e_1_2_5_64_3 e_1_2_5_64_4 e_1_2_5_87_4 e_1_2_5_64_5 e_1_2_5_87_3 e_1_2_5_41_2 e_1_2_5_16_11 e_1_2_5_16_10 e_1_2_5_10_12 e_1_2_5_14_2 e_1_2_5_10_13 e_1_2_5_37_3 e_1_2_5_10_10 e_1_2_5_10_11 e_1_2_5_14_3 e_1_2_5_10_16 e_1_2_5_10_17 e_1_2_5_52_5 e_1_2_5_10_14 e_1_2_5_52_4 e_1_2_5_10_15 e_1_2_5_52_3 e_1_2_5_75_2 e_1_2_5_98_2 e_1_2_5_75_3 e_1_2_5_10_18 e_1_2_5_10_19 e_1_2_5_98_3 e_1_2_5_37_4 e_1_2_5_90_2 Hagen J. (e_1_2_5_2_2) 1999 e_1_2_5_90_4 e_1_2_5_90_3 e_1_2_5_52_2 e_1_2_5_11_14 e_1_2_5_11_13 e_1_2_5_11_12 e_1_2_5_11_11 e_1_2_5_11_18 e_1_2_5_21_3 e_1_2_5_11_17 e_1_2_5_44_2 e_1_2_5_11_16 e_1_2_5_11_15 e_1_2_5_21_2 e_1_2_5_103_2 e_1_2_5_11_19 e_1_2_5_67_2 e_1_2_5_67_3 e_1_2_5_29_2 e_1_2_5_82_2 e_1_2_5_82_3 e_1_2_5_11_21 e_1_2_5_11_20 e_1_2_5_9_4 e_1_2_5_9_3 e_1_2_5_9_2 Takizawa T. (e_1_2_5_100_4) 2006; 121 e_1_2_5_32_3 e_1_2_5_55_2 e_1_2_5_32_2 e_1_2_5_93_7 e_1_2_5_93_6 e_1_2_5_93_9 e_1_2_5_78_2 e_1_2_5_93_8 e_1_2_5_17_3 e_1_2_5_78_3 e_1_2_5_17_2 e_1_2_5_70_2 e_1_2_5_93_3 e_1_2_5_93_2 e_1_2_5_93_5 e_1_2_5_93_4 e_1_2_5_9_9 e_1_2_5_9_8 e_1_2_5_11_10 e_1_2_5_9_7 e_1_2_5_9_6 e_1_2_5_9_5 e_1_2_5_102_2 e_1_2_5_20_2 e_1_2_5_43_2 e_1_2_5_66_2 e_1_2_5_89_2 e_1_2_5_66_3 e_1_2_5_89_3 e_1_2_5_28_2 e_1_2_5_81_2 e_1_2_5_11_23 e_1_2_5_16_2 e_1_2_5_11_22 e_1_2_5_31_4 e_1_2_5_31_2 e_1_2_5_54_2 e_1_2_5_31_3 e_1_2_5_16_8 e_1_2_5_16_7 e_1_2_5_77_2 e_1_2_5_16_9 e_1_2_5_77_3 e_1_2_5_16_4 e_1_2_5_16_3 e_1_2_5_16_6 e_1_2_5_39_2 e_1_2_5_16_5 e_1_2_5_92_2 (e_1_2_5_8_2) 2002 |
| References_xml | – volume: 137 21 start-page: 127 1369 year: 1997 2003 publication-title: Opt. Commun. Nat. Biotechnol. – volume: 112 start-page: 7201 year: 2008 publication-title: J. Phys. Chem. C – volume: 15 start-page: 1661 year: 2009 publication-title: Chem. Eur. J. – volume: 106 start-page: 239 year: 1993 publication-title: Appl. Catal. A – year: 2005 – volume: 128 15 113 start-page: 12386 632 4890 year: 2006 2008 2009 publication-title: J. Am. Chem. Soc. J. Synchrotron Radiat. J. Phys. Chem. C – volume: 73 147 start-page: 4329 371 year: 2002 2000 publication-title: Rev. Sci. Instrum. J. Magn. Reson. – volume: 3 start-page: 261 year: 2008 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 4441 year: 2003 publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 303 year: 2007 publication-title: Nat. Mater. – volume: 21 start-page: 1347 year: 2003 publication-title: Nat. Biotechnol. – volume: 104 126 start-page: 12603 44 year: 2007 2007 publication-title: Proc. Natl. Acad. Sci. USA Catal. Today – volume: 582 435 92 1 start-page: 96 1210 221114 117003 year: 2007 2005 2008 2008 publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Nature Appl. Phys. Lett. Appl. Phys. Express – volume: 103 start-page: 1 year: 2005 publication-title: Catal. Lett. – volume: 554–555 3 120 47 92 229 start-page: 293 285 8298 8178 096101 240 year: 2003 2002 2008 2008 2004 2008 publication-title: J. Electroanal. Chem. Single Mol. Angew. Chem. Angew. Chem. Int. Ed. Phys. Rev. Lett. J. Microsc. – volume: 105 start-page: 10217 year: 2001 publication-title: J. Phys. Chem. B – volume: 127 start-page: 11916 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 99 12 start-page: 293 2038 68 year: 1991 1995 1997 publication-title: Chem. Lett. J. Phys. Chem. Appl. Magn. Reson. – volume: 243 start-page: 292 year: 2006 publication-title: J. Catal. – volume: 119 46 start-page: 7366 7228 year: 2007 2007 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 19 24 97 316 start-page: 780 954 8206 1153 year: 1994 1999 2000 2007 publication-title: Opt. Lett. Opt. Lett. Proc. Natl. Acad. Sci. USA Science – year: 2008 – volume: 319 start-page: 442 year: 2008 publication-title: Science – volume: 91 104 start-page: 4258 17370 year: 2006 2007 publication-title: Biophys. J. Proc. Natl. Acad. Sci. USA – volume: 110 start-page: 8674 year: 2006 publication-title: J. Phys. Chem. B – volume: 112 start-page: 9548 year: 2008 publication-title: J. Phys. Chem. C – volume: 242 start-page: 287 year: 2006 publication-title: J. Catal. – volume: 11 start-page: 4591 year: 2005 publication-title: Chem. Eur. J. – volume: 84 209 377–379 129 120 47 start-page: 485 385 140 907 15192 5407 5327 year: 1994 2002 1997 2004 2007 2008 2008 publication-title: Stud. Surf. Sci. Catal. J. Catal. Surf. Sci. Chem. Commun. J. Am. Chem. Soc. Angew. Chem. Angew. Chem. Int. Ed. – volume: 8 456 start-page: 3766 454 year: 2008 2008 publication-title: Nano Lett. Nature – volume: 10 start-page: 625 year: 2009 publication-title: ChemPhysChem – volume: 5 113 40 100 51 51 111 38 216 start-page: 97 4351 3040 2954 71 1 75 2921 3800 3588 155 year: 2002 2003 2001 2001 2005 2007 2007 2002 1999 1999 2003 publication-title: Chem. Commun. Phys. Chem. Chem. Phys. Angew. Chem. Angew. Chem. Int. Ed. Catal. Today Adv. Catal. Adv. Catal. Chem. Commun. Angew. Chem. Angew. Chem. Int. Ed. J. Catal. – volume: 456 456 121 48 start-page: 222 185 3962 3904 year: 2008 2008 2009 2009 publication-title: Nature Nature Angew. Chem. Angew. Chem. Int. Ed. – year: 2007 – volume: 44 354 20 194 start-page: 23 465 23 452 year: 1997 1991 1993 2000 publication-title: Catal. Lett. Nature Catal. Lett. J. Catal. – volume: 227 start-page: 2122 384 year: 2001 2004 publication-title: Chem. Commun. J. Catal. – volume: 119 46 start-page: 7362 7224 year: 2007 2007 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 130 start-page: 1638 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 223 year: 1999 publication-title: Catal. Today – volume: 41 275 78 start-page: 1742 1102 1667 year: 2008 1997 1997 publication-title: Acc. Chem. Res. Science Phys. Rev. Lett. – volume: 119 46 start-page: 4142 4064 year: 2007 2007 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 16 start-page: 3552 year: 2004 publication-title: Chem. Mater. – volume: 439 439 start-page: 572 548 year: 2006 2006 publication-title: Nature Nature – volume: 113 51 start-page: 1761 16 265 year: 2005 2006 2007 publication-title: Chem. Commun. Catal. Today Adv. Catal. – volume: 7 11 start-page: 992 2767 year: 2008 2009 publication-title: Nat. Mater. Phys. Chem. Chem. Phys. – volume: 13 start-page: 1374 year: 2001 publication-title: Adv. Mater. – volume: 126 6 119 46 32 37 138 start-page: 2382 64 528 5452 5356 1038 2644 287 year: 2004 2007 2007 2007 2007 2007 2008 2008 publication-title: Chem. Commun. Catal. Today Nat. Mater. Angew. Chem. Angew. Chem. Int. Ed. MRS Bull. Chem. Soc. Rev. Faraday Discuss. – volume: 130 start-page: 7188 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 20 20 1758 22 3 start-page: 13 25 814 742 235 year: 2007 2007 2006 1997 1997 publication-title: Synchrotron Radiat. News Synchrotron Radiat. News Biochim. Biophys. Acta Biomembr. Opt. Lett. Nat. Med. – volume: 14 start-page: 11320 year: 2008 publication-title: Chem. Eur. J. – volume: 120 47 120 47 start-page: 3599 3543 9328 9188 year: 2008 2008 2008 2008 publication-title: Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. – volume: 120 47 start-page: 4018 3954 year: 2008 2008 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – year: 2006 2005 – volume: 450 start-page: 705 year: 2007 publication-title: Nature – volume: 56 start-page: 192 year: 2002 publication-title: Appl. Spectrosc. – start-page: 2741 year: 2005 publication-title: Chem. Commun. – volume: 112 126 118 96 112 246 110 100 78 109 108 8 204 237 255 125 9 120 47 115 42 start-page: 11441 96 279 251 11363 370 9593 79 13 8987 2345 2082 2453 527 220 153 7629 4854 3578 3524 1558 1520 year: 2008 2007 2006 2004 2008 2007 2006 2005 2003 2005 2004 2003 2006 2003 2006 2008 2003 2007 2008 2008 2003 2003 publication-title: J. Phys. Chem. C Catal. Today Catal. Today Catal. Today J. Phys. Chem. C J. Catal. J. Phys. Chem. B Catal. Today Catal. Today J. Phys. Chem. B J. Phys. Chem. B Chem. Commun. Phys. Chem. Chem. Phys. J. Mol. Catal. A J. Catal. J. Catal. J. Am. Chem. Soc. Phys. Chem. Chem. Phys. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. – volume: 96 51 105 119 46 start-page: 3327 215 115 1487 1465 year: 1996 1999 2005 2007 2007 publication-title: Chem. Rev. Catal. Today Chem. Rev. Angew. Chem. Angew. Chem. Int. Ed. – volume: 321 321 start-page: 379 352 year: 2008 2008 publication-title: Science Science – volume: 122 73 56 75 79 52 67 6 222 16 start-page: 7422 4434 1044 4676 074101 1516 357 420 174 302 year: 2000 2001 2002 2003 2008 2006 2001 2004 2004 2005 publication-title: J. Am. Chem. Soc. Anal. Chem. Appl. Spectrosc. Anal. Chem. Rev. Sci. Instrum. AIChE J. Catal. Today J. Comb. Chem. J. Catal. Meas. Sci. Technol. – volume: 126 start-page: 54 year: 2007 publication-title: Catal. Today – volume: 319 start-page: 810 year: 2008 publication-title: Science – volume: 92 start-page: 93 year: 2003 publication-title: Catal. Lett. – volume: 120 47 294 293 292 start-page: 3578 3524 134 1635 1357 year: 2008 2008 2001 2001 2001 publication-title: Angew. Chem. Angew. Chem. Int. Ed. Science Science Science – volume: 82 108 112 1 8 start-page: 4142 827 1576 883 2156 year: 1999 2004 2008 2008 2007 publication-title: Phys. Rev. Lett. J. Phys. Chem. B J. Phys. Chem. B Annu. Rev. Anal. Chem. ChemPhysChem – volume: 131 start-page: 934 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 15 162 15 15 start-page: 593 380 957 26 year: 2005 2008 2004 2008 publication-title: Curr. Opin. Struct. Biol. J. Struct. Biol. Mol. Biol. Cell J. Synchrotron Radiat. – year: 1997 – volume: 109 110 start-page: 4042 17671 year: 2005 2006 publication-title: J. Phys. Chem. B J. Phys. Chem. B – volume: 130 start-page: 11592 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 109 13 start-page: 12663 2440 year: 2005 2007 publication-title: J. Phys. Chem. B Chem. Eur. J. – volume: 14 start-page: 1718 year: 2008 publication-title: Chem. Eur. J. – volume: 108 start-page: 993 year: 2008 publication-title: Ultramicroscopy – volume: 106 458 start-page: 1313 844 year: 2009 2009 publication-title: Proc. Nat. Acad. Sci. Nature – volume: 118 45 start-page: 8010 7846 year: 2006 2006 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 160 121 start-page: 135 229 351 year: 2007 2007 2006 publication-title: J. Struct. Biol. Methods Mol. Med. – volume: 120 47 start-page: 5719 5637 year: 2008 2008 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 14 start-page: 2363 year: 2008 publication-title: Chem. Eur. J. – volume: 130 start-page: 13192 year: 2008 publication-title: J. Am. Chem. Soc. – year: 2002 2004 – volume: 5 7 8 start-page: 4361 211 2413 year: 2003 2005 2006 publication-title: Phys. Chem. Chem. Phys. Phys. Chem. Chem. Phys. Phys. Chem. Chem. Phys. – start-page: 3015 year: 2005 publication-title: Chem. Commun. – volume: 123 15 start-page: 236 207 year: 1998 2005 publication-title: J. Struct. Biol. Trends Cell Biol. – volume: 45 113 22 start-page: 97 3 22 year: 2003 2006 2009 publication-title: Catal. Rev. Sci. Eng. Catal. Today Synchrotron Radiat. News – volume: 120 47 start-page: 9396 9256 year: 2008 2008 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – year: 2000 – volume: 127 109 start-page: 5024 14513 year: 2005 2005 publication-title: J. Am. Chem. Soc. J. Phys. Chem. B – volume: 126 162 130 start-page: 14548 175 117 year: 2004 2006 2008 publication-title: J. Am. Chem. Soc. Stud. Surf. Sci. Catal. Catal. Today – volume: 119 46 start-page: 8988 8832 year: 2007 2007 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 130 start-page: 13516 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 7057 year: 2007 publication-title: Chem. Eur. J. – volume: 229 50 start-page: 55 227 year: 2005 2006 publication-title: J. Catal. Adv. Catal. – volume: 120 47 251 119 46 119 46 120 47 129 118 45 340 252 247 41 117 44 start-page: 9392 9252 2702 9413 9253 7358 7220 9400 9260 8094 4767 4651 196 18 277 708 6614 6456 year: 2008 2008 2007 2007 2007 2007 2007 2008 2008 2007 2006 2006 2008 2007 2007 2008 2005 2005 publication-title: Angew. Chem. Angew. Chem. Int. Ed. Coord. Chem. Rev. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. J. Am. Chem. Soc. Angew. Chem. Angew. Chem. Int. Ed. Appl. Catal. A J. Catal. J. Catal. Acc. Chem. Res. Angew. Chem. Angew. Chem. Int. Ed. – volume: 119 46 start-page: 3726 3652 year: 2007 2007 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 164 start-page: 183 year: 2008 publication-title: J. Struct. Biol. – volume: 8 318 24 4 start-page: 753 1750 6946 153 year: 2006 2007 2008 2009 publication-title: Phys. Chem. Chem. Phys. Science Langmuir Nat. Nanotechnol. – volume: 126 130 267 start-page: 37 101 143 year: 2007 2007 2004 publication-title: Catal. Today Chem. Eng. J. Appl. Catal. A – volume: 121 48 start-page: 3686 3632 year: 2009 2009 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 39 start-page: 741 year: 2008 publication-title: Micron – volume: 113 105 9 start-page: 584 102 132 1107 year: 2004 2006 2007 2008 publication-title: Chem. Commun. Catal. Today Microporous Mesoporous Mater. ChemPhysChem – volume: 316 316 119 46 start-page: 732 699 7291 7157 year: 2007 2007 2007 2007 publication-title: Science Science Angew. Chem. Angew. Chem. Int. Ed. – volume: 130 start-page: 5763 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 3 317 start-page: 793 1749 year: 2006 2007 publication-title: Nat. Methods Science – volume: 232 50 start-page: 29 1 year: 2002 2006 publication-title: Appl. Catal. A Adv. Catal. – volume: 322 start-page: 1857 year: 2008 publication-title: Science – volume: 241 32 start-page: 331 263 year: 2005 2005 publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Top. Catal. – volume: 59 start-page: 5487 year: 2004 publication-title: Chem. Eng. Sci. – volume: 119 46 start-page: 1736 1706 year: 2007 2007 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – year: 1999 – ident: e_1_2_5_97_4 – ident: e_1_2_5_111_3 doi: 10.1038/458844a – ident: e_1_2_5_45_2 doi: 10.1002/ange.200604336 – ident: e_1_2_5_14_2 doi: 10.1021/jp051066p – volume-title: In‐Situ Spectroscopy in Heterogeneous Catalysis year: 2002 ident: e_1_2_5_8_2 – ident: e_1_2_5_32_3 doi: 10.1021/jp051037e – ident: e_1_2_5_52_5 doi: 10.1002/anie.200801327 – ident: e_1_2_5_84_5 doi: 10.1143/APEX.1.117003 – ident: e_1_2_5_93_3 doi: 10.1016/j.cattod.2006.09.034 – ident: e_1_2_5_87_2 doi: 10.1081/CR-120015739 – ident: e_1_2_5_37_3 doi: 10.1021/j100007a039 – ident: e_1_2_5_75_2 doi: 10.1529/biophysj.106.091116 – ident: e_1_2_5_9_7 doi: 10.1016/S0360-0564(06)51001-6 – ident: e_1_2_5_11_18 doi: 10.1021/ja029684w – ident: e_1_2_5_11_21 doi: 10.1002/anie.200800480 – ident: e_1_2_5_38_2 doi: 10.1016/j.jcat.2006.06.004 – ident: e_1_2_5_64_2 doi: 10.1038/nature07516 – ident: e_1_2_5_52_3 doi: 10.1002/anie.200705562 – ident: e_1_2_5_108_3 doi: 10.1126/science.1150124 – ident: e_1_2_5_72_2 doi: 10.1021/ja804158n – ident: e_1_2_5_16_2 doi: 10.1021/ja001429t – ident: e_1_2_5_96_4 doi: 10.1016/S0360-0564(06)51005-3 – ident: e_1_2_5_18_2 doi: 10.1016/j.cattod.2006.10.001 – ident: e_1_2_5_66_3 doi: 10.1002/anie.200806003 – ident: e_1_2_5_23_2 doi: 10.1021/jp060371n – ident: e_1_2_5_36_2 doi: 10.1002/chem.200700990 – ident: e_1_2_5_92_2 doi: 10.1039/B306045B – ident: e_1_2_5_42_3 doi: 10.1002/anie.200705597 – ident: e_1_2_5_93_5 doi: 10.1002/ange.200701419 – ident: e_1_2_5_68_2 doi: 10.1080/08940880701631344 – ident: e_1_2_5_10_12 doi: 10.1002/ange.200601184 – ident: e_1_2_5_62_2 doi: 10.1038/nmat2319 – ident: e_1_2_5_69_3 doi: 10.1126/science.275.5303.1102 – ident: e_1_2_5_81_2 doi: 10.1016/j.micron.2007.09.010 – ident: e_1_2_5_7_5 doi: 10.1002/ange.200602593 – ident: e_1_2_5_107_2 doi: 10.1016/S0022-0728(03)00242-0 – ident: e_1_2_5_68_5 doi: 10.1364/OL.22.000742 – ident: e_1_2_5_10_11 doi: 10.1021/ja0689233 – ident: e_1_2_5_11_5 doi: 10.1016/j.cattod.2004.06.152 – ident: e_1_2_5_11_8 doi: 10.1021/jp055767y – ident: e_1_2_5_98_2 doi: 10.1021/jp045206r – volume-title: Principles and Practice of Heterogeneous Catalysis year: 1997 ident: e_1_2_5_5_2 – ident: e_1_2_5_90_3 doi: 10.1039/b414427a – ident: e_1_2_5_82_3 doi: 10.1007/s11244-005-2908-3 – ident: e_1_2_5_32_2 doi: 10.1021/ja044460u – ident: e_1_2_5_105_4 doi: 10.1016/S0039-6028(96)01346-5 – ident: e_1_2_5_48_2 doi: 10.1002/1521-4095(200109)13:18<1374::AID-ADMA1374>3.0.CO;2-A – ident: e_1_2_5_9_4 doi: 10.1002/1521-3757(20010817)113:16<3040::AID-ANGE3040>3.0.CO;2-1 – ident: e_1_2_5_71_5 doi: 10.1146/annurev.anchem.1.031207.112754 – ident: e_1_2_5_77_2 doi: 10.1016/S0030-4018(96)00771-7 – ident: e_1_2_5_49_2 doi: 10.1021/ja7113147 – ident: e_1_2_5_21_2 doi: 10.1002/ange.200700830 – ident: e_1_2_5_24_2 doi: 10.1016/j.cattod.2006.08.065 – ident: e_1_2_5_83_3 doi: 10.1016/j.jsb.2008.02.003 – ident: e_1_2_5_16_10 doi: 10.1016/j.jcat.2003.11.002 – ident: e_1_2_5_71_2 doi: 10.1103/PhysRevLett.82.4142 – ident: e_1_2_5_71_6 doi: 10.1002/cphc.200700202 – ident: e_1_2_5_10_16 doi: 10.1016/j.jcat.2007.02.013 – ident: e_1_2_5_22_2 doi: 10.1126/science.1151787 – ident: e_1_2_5_12_3 doi: 10.1002/anie.200800480 – ident: e_1_2_5_65_2 doi: 10.1016/j.ultramic.2008.04.014 – ident: e_1_2_5_106_2 doi: 10.1366/0003702021954665 – ident: e_1_2_5_11_23 doi: 10.1002/anie.200250351 – ident: e_1_2_5_54_2 doi: 10.1002/chem.200701591 – ident: e_1_2_5_7_2 doi: 10.1021/cr940044o – ident: e_1_2_5_15_4 doi: 10.1002/ange.200702473 – ident: e_1_2_5_87_4 doi: 10.1080/08940880802667924 – ident: e_1_2_5_84_4 doi: 10.1063/1.2912503 – ident: e_1_2_5_10_5 doi: 10.1002/ange.200703085 – ident: e_1_2_5_17_2 doi: 10.1016/S0926-860X(02)00064-9 – ident: e_1_2_5_101_2 doi: 10.1021/ja801120u – ident: e_1_2_5_9_2 doi: 10.1039/b107686h – ident: e_1_2_5_62_3 doi: 10.1039/b820052a – ident: e_1_2_5_40_3 doi: 10.1002/anie.200703673 – ident: e_1_2_5_61_2 doi: 10.1021/ja804606m – ident: e_1_2_5_53_2 doi: 10.1002/ange.200801433 – ident: e_1_2_5_107_4 doi: 10.1002/ange.200801605 – ident: e_1_2_5_15_5 doi: 10.1002/anie.200702473 – ident: e_1_2_5_39_2 doi: 10.1016/j.jcat.2006.07.022 – ident: e_1_2_5_76_2 doi: 10.1038/nmeth929 – ident: e_1_2_5_16_6 doi: 10.1063/1.2949389 – ident: e_1_2_5_10_19 doi: 10.1002/anie.200462473 – ident: e_1_2_5_10_15 doi: 10.1016/j.jcat.2007.09.003 – ident: e_1_2_5_78_3 doi: 10.1016/j.tcb.2005.02.003 – ident: e_1_2_5_96_3 doi: 10.1016/j.cattod.2005.11.006 – ident: e_1_2_5_108_5 doi: 10.1038/nnano.2008.399 – ident: e_1_2_5_99_3 doi: 10.1006/jmre.2000.2212 – ident: e_1_2_5_105_2 doi: 10.1016/S0167-2991(08)64149-X – ident: e_1_2_5_107_5 doi: 10.1002/anie.200801605 – ident: e_1_2_5_37_4 doi: 10.1007/BF03161992 – ident: e_1_2_5_93_4 doi: 10.1038/nmat1924 – ident: e_1_2_5_105_6 doi: 10.1021/ja0739887 – ident: e_1_2_5_97_5 doi: 10.1021/jp810428e – ident: e_1_2_5_76_3 doi: 10.1126/science.1146598 – ident: e_1_2_5_3_2 doi: 10.1201/b21367 – ident: e_1_2_5_107_3 doi: 10.1002/1438-5171(200211)3:5/6<285::AID-SIMO285>3.0.CO;2-X – start-page: 293 year: 1991 ident: e_1_2_5_37_2 publication-title: Chem. Lett. – ident: e_1_2_5_18_3 doi: 10.1016/j.cej.2006.06.014 – ident: e_1_2_5_47_2 doi: 10.1002/ange.200702012 – ident: e_1_2_5_107_6 doi: 10.1103/PhysRevLett.92.096101 – ident: e_1_2_5_11_15 doi: 10.1016/S1381-1169(03)00335-2 – ident: e_1_2_5_10_7 doi: 10.1002/ange.200700980 – ident: e_1_2_5_30_2 doi: 10.1016/0926-860X(93)80180-X – ident: e_1_2_5_80_2 doi: 10.1126/science.1153529 – ident: e_1_2_5_59_2 doi: 10.1002/chem.200801380 – ident: e_1_2_5_83_5 doi: 10.1107/S0909049507047966 – ident: e_1_2_5_60_3 doi: 10.1038/439548a – ident: e_1_2_5_90_4 doi: 10.1039/b602311h – ident: e_1_2_5_100_3 doi: 10.1007/978-1-59745-294-6_12 – ident: e_1_2_5_109_3 doi: 10.1038/456454a – ident: e_1_2_5_16_7 doi: 10.1002/aic.10731 – ident: e_1_2_5_35_3 doi: 10.1002/anie.200701399 – ident: e_1_2_5_87_3 doi: 10.1016/j.cattod.2005.11.076 – ident: e_1_2_5_105_3 doi: 10.1006/jcat.2002.3639 – ident: e_1_2_5_55_2 doi: 10.1002/chem.200801293 – ident: e_1_2_5_95_2 doi: 10.1039/b504027b – ident: e_1_2_5_11_7 doi: 10.1016/j.jcat.2006.12.018 – ident: e_1_2_5_10_8 doi: 10.1002/anie.200700980 – ident: e_1_2_5_16_5 doi: 10.1021/ac034296d – ident: e_1_2_5_69_4 doi: 10.1103/PhysRevLett.78.1667 – ident: e_1_2_5_47_3 doi: 10.1002/anie.200702012 – ident: e_1_2_5_35_2 doi: 10.1002/ange.200701399 – ident: e_1_2_5_69_2 doi: 10.1021/ar800121r – ident: e_1_2_5_16_8 doi: 10.1016/S0920-5861(01)00328-5 – ident: e_1_2_5_19_2 doi: 10.1039/b501698c – ident: e_1_2_5_89_3 doi: 10.1016/j.jcat.2004.08.003 – ident: e_1_2_5_93_8 doi: 10.1039/b707746g – ident: e_1_2_5_93_2 doi: 10.1039/b405694a – volume-title: Industrial Catalysis: A Practical Approach year: 1999 ident: e_1_2_5_2_2 – ident: e_1_2_5_84_3 doi: 10.1038/nature03719 – ident: e_1_2_5_108_2 doi: 10.1039/B512780G – ident: e_1_2_5_91_5 doi: 10.1002/cphc.200800065 – ident: e_1_2_5_99_2 doi: 10.1063/1.1517146 – ident: e_1_2_5_41_3 doi: 10.1002/anie.200602892 – ident: e_1_2_5_41_2 doi: 10.1002/ange.200602892 – ident: e_1_2_5_91_2 doi: 10.1039/b315779b – ident: e_1_2_5_11_3 doi: 10.1016/j.cattod.2007.03.003 – ident: e_1_2_5_102_2 doi: 10.1016/j.jsb.2008.07.003 – ident: e_1_2_5_83_4 doi: 10.1091/mbc.E03-07-0522 – ident: e_1_2_5_53_3 doi: 10.1002/anie.200801433 – ident: e_1_2_5_78_2 doi: 10.1006/jsbi.1998.4037 – ident: e_1_2_5_25_2 – volume-title: Atomic Force Microscopy, Scanning Near‐Field Optical Microscopy and Nanoscratching year: 2006 ident: e_1_2_5_104_2 – ident: e_1_2_5_7_3 doi: 10.1016/S0920-5861(99)00046-2 – ident: e_1_2_5_97_3 doi: 10.1107/S0909049508023327 – ident: e_1_2_5_10_17 doi: 10.1021/ar700217y – ident: e_1_2_5_46_2 doi: 10.1021/ja8048767 – ident: e_1_2_5_108_4 doi: 10.1021/la703406d – volume: 121 start-page: 351 year: 2006 ident: e_1_2_5_100_4 publication-title: Methods Mol. Med. – ident: e_1_2_5_68_3 doi: 10.1080/08940880701631369 – ident: e_1_2_5_82_2 doi: 10.1016/j.nimb.2005.07.177 – volume-title: Handbook of Heterogeneous Catalysis year: 2008 ident: e_1_2_5_1_2 – ident: e_1_2_5_11_20 doi: 10.1002/ange.200800480 – ident: e_1_2_5_71_4 doi: 10.1021/jp711527v – ident: e_1_2_5_85_2 – ident: e_1_2_5_83_2 doi: 10.1016/j.sbi.2005.08.008 – ident: e_1_2_5_93_6 doi: 10.1002/anie.200701419 – ident: e_1_2_5_70_2 doi: 10.1023/B:CATL.0000014338.20674.bf – ident: e_1_2_5_84_2 doi: 10.1016/j.nima.2007.08.083 – ident: e_1_2_5_67_3 doi: 10.1016/j.cattod.2007.03.007 – ident: e_1_2_5_71_3 doi: 10.1021/jp035693v – ident: e_1_2_5_11_6 doi: 10.1021/jp801562g – ident: e_1_2_5_52_4 doi: 10.1002/ange.200801327 – ident: e_1_2_5_89_2 doi: 10.1039/b107005c – ident: e_1_2_5_105_5 doi: 10.1039/b313208k – ident: e_1_2_5_12_2 doi: 10.1002/ange.200800480 – ident: e_1_2_5_66_2 doi: 10.1002/ange.200806003 – volume-title: Handbook of Microscopy for Nanotechology year: 2005 ident: e_1_2_5_104_3 – ident: e_1_2_5_93_9 doi: 10.1039/b706294j – ident: e_1_2_5_7_6 doi: 10.1002/anie.200602593 – ident: e_1_2_5_10_9 doi: 10.1002/ange.200803427 – ident: e_1_2_5_14_3 doi: 10.1002/chem.200600678 – ident: e_1_2_5_28_2 doi: 10.1021/jp8039737 – ident: e_1_2_5_88_5 doi: 10.1006/jcat.2000.2930 – ident: e_1_2_5_64_4 doi: 10.1002/ange.200805994 – ident: e_1_2_5_11_16 doi: 10.1016/j.jcat.2005.11.005 – ident: e_1_2_5_45_3 doi: 10.1002/anie.200604336 – ident: e_1_2_5_86_2 doi: 10.1126/science.1158573 – ident: e_1_2_5_33_2 doi: 10.1021/jp710676v – ident: e_1_2_5_52_2 doi: 10.1002/ange.200705562 – ident: e_1_2_5_27_2 doi: 10.1016/j.ces.2004.07.103 – volume-title: Supported Metals in Catalysis year: 2005 ident: e_1_2_5_4_2 – ident: e_1_2_5_31_4 doi: 10.1016/j.cattod.2007.06.037 – ident: e_1_2_5_100_2 doi: 10.1016/j.jsb.2007.07.011 – ident: e_1_2_5_9_9 doi: 10.1039/b210679p – ident: e_1_2_5_10_13 doi: 10.1002/anie.200601184 – ident: e_1_2_5_21_3 doi: 10.1002/anie.200700830 – ident: e_1_2_5_9_3 doi: 10.1039/b309650p – ident: e_1_2_5_11_11 doi: 10.1021/jp040708q – ident: e_1_2_5_56_2 doi: 10.1038/nature06398 – ident: e_1_2_5_109_2 doi: 10.1021/nl802086x – ident: e_1_2_5_13_2 doi: 10.1016/S0920-5861(99)00047-4 – ident: e_1_2_5_16_9 doi: 10.1021/cc049957e – ident: e_1_2_5_11_17 doi: 10.1016/j.jcat.2008.01.033 – ident: e_1_2_5_40_2 doi: 10.1002/ange.200703673 – ident: e_1_2_5_9_10 doi: 10.1002/(SICI)1521-3757(19991216)111:24<3800::AID-ANGE3800>3.0.CO;2-1 – ident: e_1_2_5_44_2 doi: 10.1021/jp010777u – ident: e_1_2_5_9_8 doi: 10.1016/S0360-0564(06)51002-8 – ident: e_1_2_5_9_11 doi: 10.1002/(SICI)1521-3773(19991216)38:24<3588::AID-ANIE3588>3.0.CO;2-4 – ident: e_1_2_5_6_2 doi: 10.1002/9783527611348 – ident: e_1_2_5_16_11 doi: 10.1088/0957-0233/16/1/040 – ident: e_1_2_5_68_6 doi: 10.1038/nm0297-235 – ident: e_1_2_5_20_2 doi: 10.1007/s10562-005-7522-2 – ident: e_1_2_5_31_3 doi: 10.1016/S0167-2991(06)80905-5 – ident: e_1_2_5_17_3 doi: 10.1016/S0360-0564(06)50001-X – ident: e_1_2_5_94_2 doi: 10.1016/j.jcat.2004.10.016 – ident: e_1_2_5_12_5 doi: 10.1126/science.1062883 – ident: e_1_2_5_51_2 doi: 10.1002/chem.200700568 – ident: e_1_2_5_88_2 doi: 10.1023/A:1018956520929 – ident: e_1_2_5_77_3 doi: 10.1038/nbt899 – ident: e_1_2_5_74_3 doi: 10.1364/OL.24.000954 – ident: e_1_2_5_97_2 doi: 10.1021/ja062580r – ident: e_1_2_5_10_6 doi: 10.1002/anie.200703085 – ident: e_1_2_5_7_4 doi: 10.1021/cr040083s – ident: e_1_2_5_11_12 doi: 10.1021/jp030989m – ident: e_1_2_5_12_4 doi: 10.1126/science.1063597 – ident: e_1_2_5_10_18 doi: 10.1002/ange.200462473 – ident: e_1_2_5_11_22 doi: 10.1002/ange.200250351 – ident: e_1_2_5_58_2 doi: 10.1038/nmat1861 – ident: e_1_2_5_11_13 doi: 10.1039/b305264h – ident: e_1_2_5_88_4 doi: 10.1007/BF00772594 – ident: e_1_2_5_107_7 doi: 10.1111/j.1365-2818.2008.01893.x – ident: e_1_2_5_16_3 doi: 10.1021/ac015513i – ident: e_1_2_5_63_2 doi: 10.1021/ja808335b – ident: e_1_2_5_74_2 doi: 10.1364/OL.19.000780 – ident: e_1_2_5_111_2 doi: 10.1073/pnas.0812068106 – ident: e_1_2_5_26_3 doi: 10.1002/anie.200804077 – ident: e_1_2_5_86_3 doi: 10.1126/science.1161183 – ident: e_1_2_5_34_2 doi: 10.1021/ja053456v – ident: e_1_2_5_11_10 doi: 10.1016/S0920-5861(02)00337-1 – ident: e_1_2_5_74_5 doi: 10.1126/science.1137395 – ident: e_1_2_5_9_6 doi: 10.1016/j.cattod.2004.12.017 – ident: e_1_2_5_10_10 doi: 10.1002/anie.200803427 – ident: e_1_2_5_10_3 doi: 10.1002/anie.200803122 – ident: e_1_2_5_105_7 doi: 10.1002/ange.200800977 – ident: e_1_2_5_50_3 doi: 10.1002/anie.200700246 – ident: e_1_2_5_88_3 doi: 10.1038/354465a0 – ident: e_1_2_5_74_4 doi: 10.1073/pnas.97.15.8206 – ident: e_1_2_5_64_3 doi: 10.1038/456185a – ident: e_1_2_5_11_4 doi: 10.1016/j.cattod.2006.07.034 – ident: e_1_2_5_105_8 doi: 10.1002/anie.200800977 – ident: e_1_2_5_15_3 doi: 10.1126/science.1143093 – ident: e_1_2_5_91_4 doi: 10.1016/j.micromeso.2007.05.028 – ident: e_1_2_5_9_12 doi: 10.1016/S0021-9517(02)00133-1 – ident: e_1_2_5_90_2 doi: 10.1039/B305786K – ident: e_1_2_5_18_4 doi: 10.1016/j.apcata.2004.02.040 – ident: e_1_2_5_50_2 doi: 10.1002/ange.200700246 – ident: e_1_2_5_9_5 doi: 10.1002/1521-3773(20010817)40:16<2954::AID-ANIE2954>3.0.CO;2-# – ident: e_1_2_5_10_14 doi: 10.1016/j.apcata.2008.02.034 – ident: e_1_2_5_26_2 doi: 10.1002/ange.200804077 – ident: e_1_2_5_43_2 doi: 10.1021/cm0401645 – ident: e_1_2_5_31_2 doi: 10.1021/ja040107c – ident: e_1_2_5_11_2 doi: 10.1021/jp802827t – ident: e_1_2_5_42_2 doi: 10.1002/ange.200705597 – ident: e_1_2_5_12_6 doi: 10.1126/science.1059478 – ident: e_1_2_5_57_2 doi: 10.1021/ja075927e – ident: e_1_2_5_110_2 doi: 10.1002/cphc.200800757 – ident: e_1_2_5_98_3 doi: 10.1021/jp062618m – ident: e_1_2_5_15_2 doi: 10.1126/science.1140484 – ident: e_1_2_5_10_4 doi: 10.1016/j.ccr.2007.06.008 – ident: e_1_2_5_75_3 doi: 10.1073/pnas.0708066104 – ident: e_1_2_5_68_4 doi: 10.1016/j.bbamem.2006.06.008 – ident: e_1_2_5_11_19 doi: 10.1039/b706637f – ident: e_1_2_5_64_5 doi: 10.1002/anie.200805994 – ident: e_1_2_5_93_7 doi: 10.1557/mrs2007.213 – ident: e_1_2_5_96_2 doi: 10.1039/B418790C – ident: e_1_2_5_16_4 doi: 10.1366/000370202321274944 – ident: e_1_2_5_29_2 doi: 10.1002/chem.200500116 – ident: e_1_2_5_11_9 doi: 10.1016/j.cattod.2004.12.019 – ident: e_1_2_5_11_14 doi: 10.1039/b604515d – ident: e_1_2_5_73_2 doi: 10.1126/science.1165758 – ident: e_1_2_5_91_3 doi: 10.1016/j.cattod.2005.11.015 – ident: e_1_2_5_10_2 doi: 10.1002/ange.200803122 – ident: e_1_2_5_94_3 doi: 10.1016/S0360-0564(06)50005-7 – volume-title: In‐Situ Spectroscopy of Catalysts year: 2004 ident: e_1_2_5_8_3 – ident: e_1_2_5_103_2 doi: 10.1038/nnano.2008.100 – ident: e_1_2_5_60_2 doi: 10.1038/nature04502 – ident: e_1_2_5_67_2 doi: 10.1073/pnas.0610755104 – ident: e_1_2_5_79_2 doi: 10.1038/nbt895 |
| SSID | ssj0028806 |
| Score | 2.4619112 |
| SecondaryResourceType | review_article |
| Snippet | Catalytic solids in the spotlight: Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally... Catalytic solids in the spotlight : Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally... Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic... |
| SourceID | proquest pubmed crossref wiley fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4910 |
| SubjectTerms | heterogeneous catalysis in situ spectroscopy nanoparticles single‐molecule spectroscopy zeolites |
| Title | Chemical Imaging of Spatial Heterogeneities in Catalytic Solids at Different Length and Time Scales |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.200900339 https://www.ncbi.nlm.nih.gov/pubmed/19536746 https://www.proquest.com/docview/46321503 https://www.proquest.com/docview/67420160 |
| Volume | 48 |
| WOSCitedRecordID | wos000267713800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB66m0J76buN2zTVodCTiK2HJR_DJksCYSndLuzN6OV0IbVL7ATy7yv5lS4kFJKjQR6E9Ema0Wi-D-Arl4HyziaYe28EM2o0llZbnFlO44IbHhvZik2IxUKu19n3f6r4O36I8cItrIx2vw4LXOn64JY0NFRgt8V7QY4sm8AO8eBlU9g5-jFfnY1Bl8dnV2FEKQ5C9ANxY0wOti1sHUyTQlV3-ZzbLmx7Bs1fPr73r-BF73-iww4wr-GJK9_As9kg-_YWzEAhgE5_twpGqCpQEC72QEUn4fFM5THnWiJWtCnRLNz_3HhraFldbGyNVIOOetWVBp258rz5hVRpUSg2QUtv2NXvYDU__jk7wb0SAzYsZRlmSlinWGFiwzTnSlsmUp0qkwhpY65MSrSPu1SIlmxBEkud8r5ZTDVjzCpL38O0rEq3C0i5jMeFVJbJhAmtpKW2iJWPrKQRBbER4GEactPTlAe1jIu8I1gmeRi6fBy6CL6N7f90BB33ttz1s5qrc7975qslCTnbJCjBZzKCL8NU5364Q85Ela66qnOWUu8UxfT-FqlgJND0RfChw8htN0JqXLA0AtJC4T_9yw8Xp8fj18eH_PQJnnfZrhQTsgfT5vLKfYan5rrZ1Jf7MBFrud8vkL_wWgzn |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB2aTSG9NP1K46ZtdCj0JGLLki0fwybLLt0upZuF3IQsyclCYpesU-i_r8ZfYaGhUHo0yIOQnqQZjeY9gE9CIuWdjajw3gjlscmptLmlmRVxWAgjQiMbsYl0sZCXl9m37jUh1sK0_BDDhRuujGa_xgWOF9InD6yhWILdVO-hHlm2A7vcY0mMYPfs-2Q1H6IuD9C2xCiOKSrR98yNITvZtrB1Mu0UuvqT07ntwzaH0GT_P3T_BTzvPFBy2kLmJTxx5SvYG_fCb6_B9CQCZHbbaBiRqiAoXeyhSqb4fKbyqHMNFStZl2SMN0C_vDWyrG7WdkN0Tc463ZWazF15VV8TXVqC5SZk6Q27zRtYTc4vxlPaaTFQwxOeUa5T6zQvTGh4LoTOLU-TPNEmSqUNhTYJy33kpTFesgWLbOy0987COOecW23jAxiVVekOgWiXibCQ2nIZ8TTX0sa2CLWPraRJC2YDoP08KNMRlaNexo1qKZaZwqFTw9AF8Hlo_6Ol6Hi05aGfVqWv_P6pVkuGWdsIteAzGcBxP9fKDzdmTXTpqvuN8qjyblEYP94iSTlDor4A3rYgeegGJsdTngTAGiz8pX_qdDE7H77e_ctPx7A3vfg6V_PZ4ssRPGtzXwll7D2M6rt79wGemp_1enP3sVsnvwG9gA_v |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB6apLS99N3EfUWHQk8ith62fAy7WbJ0WUK3C7kJWZKThdQO2U2g_74av8JCQ6H0aJDFMJqRZjSa7wP4IhVC3rmEyhCNUMFtQZUrHM2d5HEprYytasgmsvlcnZ_nZ91rQuyFafEhhgs39Ixmv0YH99euPLpHDcUW7KZ7D_nI8h3YEzJPg2_ujb9PlrMh6woG2rYYcU6Rib5HbozZ0fYMWyfTTmnqPwWd2zFscwhNXvwH8V_C8y4CJcetybyCR756DU9HPfHbG7A9iACZ_mw4jEhdEqQuDqZKTvH5TB2szjdQrGRVkRHeAP0Ks5FFfbVya2I2ZNzxrmzIzFcXm0tiKkew3YQswsR-_RaWk5Mfo1PacTFQK1KRU2Ey540obWxFIaUpnMjSIjU2yZSLpbEpK0LmZTBfciVLHPcmRGcxL4QQzjj-DnaruvIHQIzPZVwq44RKRFYY5bgrYxNyK2WzkrkIaL8O2nZA5ciXcaVbiGWmUXV6UF0EX4fx1y1Ex4MjD8KyanMR9k-9XDCs2ibIBZ-rCA77tdZB3Vg1MZWvb9dapDyERTF_eESaCYZAfRHst0ZyLwYWxzORRsAaW_iLfPp4Pj0Zvt7_y0-H8ORsPNGz6fzbB3jWlr5SythH2N3c3PpP8NjebVbrm8-dm_wGLzYPag |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+Imaging+of+Spatial+Heterogeneities+in+Catalytic+Solids+at+Different+Length+and+Time+Scales&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Weckhuysen%2C+Bert%E2%80%85M.&rft.date=2009-06-22&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=48&rft.issue=27&rft.spage=4910&rft.epage=4943&rft_id=info:doi/10.1002%2Fanie.200900339&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_200900339 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |