Chemical Imaging of Spatial Heterogeneities in Catalytic Solids at Different Length and Time Scales

Catalytic solids in the spotlight: Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally new ones. Such insight can be provided by making use of chemical imaging techniques, which yield spatiotemporal information about the workings...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) Jg. 48; H. 27; S. 4910 - 4943
1. Verfasser: Weckhuysen, Bert M
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Weinheim Wiley-VCH Verlag 22.06.2009
WILEY‐VCH Verlag
Schlagworte:
ISSN:1433-7851, 1521-3773, 1521-3773
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Catalytic solids in the spotlight: Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally new ones. Such insight can be provided by making use of chemical imaging techniques, which yield spatiotemporal information about the workings of catalytic solids at different length scales: at the level of reactors, catalyst bodies, catalyst grains, and nanoparticles.Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic processes. Heterogeneities resulting in space- and time-dependent phenomena occur at different length scales; that is, at the level of catalytic reactors (mm to m), catalyst bodies (μm to mm), catalyst grains (nm to μm), and active sites and metal (oxide) particles (Å to nm). This Review documents the recent advances in the development of space- and time-resolved spectroscopic methods for imaging spatial heterogeneities within catalytic processes at these four length scales. Particular emphasis will be on the use of magnetic resonance, optical, and synchrotron-based methods, their capabilities in providing spatial resolution (1D and 2D imaging) and depth profiling (3D imaging) as well as on their time-resolved application, potential for single-molecule and nanoparticle detection, and use under reaction conditions. The Review ends with future prospects on spectroscopic markers for catalytic activity, label-free spectroscopy, tomography at the nanoscale, and correlative microscopic approaches.
AbstractList Catalytic solids in the spotlight : Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally new ones. Such insight can be provided by making use of chemical imaging techniques, which yield spatiotemporal information about the workings of catalytic solids at different length scales: at the level of reactors, catalyst bodies, catalyst grains, and nanoparticles. magnified image Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic processes. Heterogeneities resulting in space‐ and time‐dependent phenomena occur at different length scales; that is, at the level of catalytic reactors (mm to m), catalyst bodies (μm to mm), catalyst grains (nm to μm), and active sites and metal (oxide) particles (Å to nm). This Review documents the recent advances in the development of space‐ and time‐resolved spectroscopic methods for imaging spatial heterogeneities within catalytic processes at these four length scales. Particular emphasis will be on the use of magnetic resonance, optical, and synchrotron‐based methods, their capabilities in providing spatial resolution (1D and 2D imaging) and depth profiling (3D imaging) as well as on their time‐resolved application, potential for single‐molecule and nanoparticle detection, and use under reaction conditions. The Review ends with future prospects on spectroscopic markers for catalytic activity, label‐free spectroscopy, tomography at the nanoscale, and correlative microscopic approaches.
Catalytic solids in the spotlight: Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally new ones. Such insight can be provided by making use of chemical imaging techniques, which yield spatiotemporal information about the workings of catalytic solids at different length scales: at the level of reactors, catalyst bodies, catalyst grains, and nanoparticles.Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic processes. Heterogeneities resulting in space- and time-dependent phenomena occur at different length scales; that is, at the level of catalytic reactors (mm to m), catalyst bodies (μm to mm), catalyst grains (nm to μm), and active sites and metal (oxide) particles (Å to nm). This Review documents the recent advances in the development of space- and time-resolved spectroscopic methods for imaging spatial heterogeneities within catalytic processes at these four length scales. Particular emphasis will be on the use of magnetic resonance, optical, and synchrotron-based methods, their capabilities in providing spatial resolution (1D and 2D imaging) and depth profiling (3D imaging) as well as on their time-resolved application, potential for single-molecule and nanoparticle detection, and use under reaction conditions. The Review ends with future prospects on spectroscopic markers for catalytic activity, label-free spectroscopy, tomography at the nanoscale, and correlative microscopic approaches.
Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic processes. Heterogeneities resulting in space- and time-dependent phenomena occur at different length scales; that is, at the level of catalytic reactors (mm to m), catalyst bodies (microm to mm), catalyst grains (nm to microm), and active sites and metal (oxide) particles (A to nm). This Review documents the recent advances in the development of space- and time-resolved spectroscopic methods for imaging spatial heterogeneities within catalytic processes at these four length scales. Particular emphasis will be on the use of magnetic resonance, optical, and synchrotron-based methods, their capabilities in providing spatial resolution (1D and 2D imaging) and depth profiling (3D imaging) as well as on their time-resolved application, potential for single-molecule and nanoparticle detection, and use under reaction conditions. The Review ends with future prospects on spectroscopic markers for catalytic activity, label-free spectroscopy, tomography at the nanoscale, and correlative microscopic approaches.
Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic processes. Heterogeneities resulting in space- and time-dependent phenomena occur at different length scales; that is, at the level of catalytic reactors (mm to m), catalyst bodies (microm to mm), catalyst grains (nm to microm), and active sites and metal (oxide) particles (A to nm). This Review documents the recent advances in the development of space- and time-resolved spectroscopic methods for imaging spatial heterogeneities within catalytic processes at these four length scales. Particular emphasis will be on the use of magnetic resonance, optical, and synchrotron-based methods, their capabilities in providing spatial resolution (1D and 2D imaging) and depth profiling (3D imaging) as well as on their time-resolved application, potential for single-molecule and nanoparticle detection, and use under reaction conditions. The Review ends with future prospects on spectroscopic markers for catalytic activity, label-free spectroscopy, tomography at the nanoscale, and correlative microscopic approaches.Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic processes. Heterogeneities resulting in space- and time-dependent phenomena occur at different length scales; that is, at the level of catalytic reactors (mm to m), catalyst bodies (microm to mm), catalyst grains (nm to microm), and active sites and metal (oxide) particles (A to nm). This Review documents the recent advances in the development of space- and time-resolved spectroscopic methods for imaging spatial heterogeneities within catalytic processes at these four length scales. Particular emphasis will be on the use of magnetic resonance, optical, and synchrotron-based methods, their capabilities in providing spatial resolution (1D and 2D imaging) and depth profiling (3D imaging) as well as on their time-resolved application, potential for single-molecule and nanoparticle detection, and use under reaction conditions. The Review ends with future prospects on spectroscopic markers for catalytic activity, label-free spectroscopy, tomography at the nanoscale, and correlative microscopic approaches.
Catalytic solids in the spotlight: Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally new ones. Such insight can be provided by making use of chemical imaging techniques, which yield spatiotemporal information about the workings of catalytic solids at different length scales: at the level of reactors, catalyst bodies, catalyst grains, and nanoparticles. Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic processes. Heterogeneities resulting in space‐ and time‐dependent phenomena occur at different length scales; that is, at the level of catalytic reactors (mm to m), catalyst bodies (μm to mm), catalyst grains (nm to μm), and active sites and metal (oxide) particles (Å to nm). This Review documents the recent advances in the development of space‐ and time‐resolved spectroscopic methods for imaging spatial heterogeneities within catalytic processes at these four length scales. Particular emphasis will be on the use of magnetic resonance, optical, and synchrotron‐based methods, their capabilities in providing spatial resolution (1D and 2D imaging) and depth profiling (3D imaging) as well as on their time‐resolved application, potential for single‐molecule and nanoparticle detection, and use under reaction conditions. The Review ends with future prospects on spectroscopic markers for catalytic activity, label‐free spectroscopy, tomography at the nanoscale, and correlative microscopic approaches. Catalytic solids in the spotlight: Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally new ones. Such insight can be provided by making use of chemical imaging techniques, which yield spatiotemporal information about the workings of catalytic solids at different length scales: at the level of reactors, catalyst bodies, catalyst grains, and nanoparticles.
Catalytic solids in the spotlight: Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally new ones. Such insight can be provided by making use of chemical imaging techniques, which yield spatiotemporal information about the workings of catalytic solids at different length scales: at the level of reactors, catalyst bodies, catalyst grains, and nanoparticles.Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic processes. Heterogeneities resulting in space- and time-dependent phenomena occur at different length scales; that is, at the level of catalytic reactors (mm to m), catalyst bodies (µm to mm), catalyst grains (nm to µm), and active sites and metal (oxide) particles (Ã... to nm). This Review documents the recent advances in the development of space- and time-resolved spectroscopic methods for imaging spatial heterogeneities within catalytic processes at these four length scales. Particular emphasis will be on the use of magnetic resonance, optical, and synchrotron-based methods, their capabilities in providing spatial resolution (1D and 2D imaging) and depth profiling (3D imaging) as well as on their time-resolved application, potential for single-molecule and nanoparticle detection, and use under reaction conditions. The Review ends with future prospects on spectroscopic markers for catalytic activity, label-free spectroscopy, tomography at the nanoscale, and correlative microscopic approaches.
Author Weckhuysen, Bert M
Author_xml – sequence: 1
  fullname: Weckhuysen, Bert M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19536746$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9r2zAYhkXpWNts1x43nXZzJlk_bB9L1q2B0B3SnsVn6bOrYcuZpVDy308lXRmD0pOEeJ4X9L4X5DRMAQm55GzJGSu_QvC4LBlrGBOiOSHnXJW8EFUlTvNdClFUteJn5CLGX5mva6bfkzPeKKErqc-JXT3g6C0MdD1C70NPp45ud5B8frrBhPPUY0CfPEbqA11BguGQvKXbafAuUkj0m-86nDEkusHQpwcKwdE7PyLd5mCMH8i7DoaIH5_PBbn_fn23uik2P3-sV1ebwkotm0JC5RBkZ5mVrVLQOlnpVoPlVe2YAqvLlmsJkmvuupI7gcCVZKKVUjpwYkG-HHN38_R7jzGZ0UeLwwABp300-ccl45q9CUotSq5yoQvy6RnctyM6s5v9CPPB_O0vA_II2HmKccbOWJ9yeVNIM_jBcGaeZjJPM5mXmbK2_E97SX5NaI7Cox_w8AZtrm7X1_-6n49uB5OBfvbR3G9zESJ3obhqavEHxr2uHQ
CitedBy_id crossref_primary_10_1021_ja211492b
crossref_primary_10_1002_anie_201003273
crossref_primary_10_1002_adma_201807381
crossref_primary_10_1039_c3cs35326e
crossref_primary_10_1002_cmtd_202300027
crossref_primary_10_1016_j_cattod_2010_12_034
crossref_primary_10_1016_j_cattod_2013_05_008
crossref_primary_10_1016_j_cattod_2015_05_004
crossref_primary_10_1038_s41929_021_00718_7
crossref_primary_10_1038_ncomms11811
crossref_primary_10_1080_08940886_2010_516739
crossref_primary_10_1039_D4SC03640A
crossref_primary_10_1002_cite_201000208
crossref_primary_10_1038_ncomms14524
crossref_primary_10_1038_nmat3917
crossref_primary_10_1016_j_apcata_2010_06_027
crossref_primary_10_1038_ncomms9633
crossref_primary_10_1088_1361_648X_ac718b
crossref_primary_10_1016_j_micromeso_2013_10_015
crossref_primary_10_3390_app151810269
crossref_primary_10_1002_cctc_201800230
crossref_primary_10_1039_c0cp01227k
crossref_primary_10_1039_c3cp44293d
crossref_primary_10_1002_ange_200906752
crossref_primary_10_1002_ange_202104114
crossref_primary_10_1002_cctc_201500710
crossref_primary_10_1016_j_coche_2016_02_002
crossref_primary_10_1016_j_ultramic_2016_11_005
crossref_primary_10_1021_jacs_6b06083
crossref_primary_10_1016_j_jhazmat_2023_132778
crossref_primary_10_1039_C9CY00464E
crossref_primary_10_1002_anie_201710798
crossref_primary_10_1016_j_jcat_2015_01_002
crossref_primary_10_1016_j_cattod_2023_114255
crossref_primary_10_1364_OE_19_015069
crossref_primary_10_1002_chem_201102949
crossref_primary_10_1021_jacs_5c00167
crossref_primary_10_1016_j_micromeso_2010_03_017
crossref_primary_10_1038_s41467_020_20377_9
crossref_primary_10_1002_ange_201306370
crossref_primary_10_1016_j_cattod_2018_12_020
crossref_primary_10_1021_ja412740p
crossref_primary_10_1002_ange_201712952
crossref_primary_10_1016_j_ccr_2020_213656
crossref_primary_10_1016_j_micromeso_2011_05_024
crossref_primary_10_1002_smll_201600619
crossref_primary_10_1038_nnano_2010_92
crossref_primary_10_1002_cctc_201000066
crossref_primary_10_1021_jacs_2c09159
crossref_primary_10_1021_jacs_7b02177
crossref_primary_10_1002_cctc_201000061
crossref_primary_10_1021_ja401666p
crossref_primary_10_1038_s41929_023_00913_8
crossref_primary_10_1038_nchem_1148
crossref_primary_10_1002_anie_201712952
crossref_primary_10_1002_anie_201410016
crossref_primary_10_1021_ja907329j
crossref_primary_10_1134_S096554411714002X
crossref_primary_10_1016_j_ccr_2014_05_008
crossref_primary_10_1002_cphc_201701090
crossref_primary_10_1016_j_apcata_2011_08_002
crossref_primary_10_1039_c2cp22848c
crossref_primary_10_1002_smll_201901979
crossref_primary_10_1039_C1CP22586C
crossref_primary_10_1007_s10562_014_1416_0
crossref_primary_10_1021_ja201415j
crossref_primary_10_1038_s41467_020_17355_6
crossref_primary_10_1002_cphc_201300529
crossref_primary_10_1039_c0cs00089b
crossref_primary_10_1016_j_micromeso_2012_08_007
crossref_primary_10_1002_anie_201409482
crossref_primary_10_1016_j_apcata_2012_01_016
crossref_primary_10_1002_ange_201410016
crossref_primary_10_1002_smll_202004289
crossref_primary_10_1016_j_apcata_2014_01_018
crossref_primary_10_1002_ange_201506954
crossref_primary_10_1002_cctc_201900441
crossref_primary_10_1002_ange_201506718
crossref_primary_10_1002_cctc_201100333
crossref_primary_10_1016_j_jcat_2018_04_013
crossref_primary_10_1107_S0021889812042781
crossref_primary_10_1021_jacs_3c14305
crossref_primary_10_1016_j_jcat_2014_12_031
crossref_primary_10_1002_cctc_201200356
crossref_primary_10_1002_cctc_201700026
crossref_primary_10_1021_ja105517d
crossref_primary_10_1002_anie_200904282
crossref_primary_10_1039_b909052p
crossref_primary_10_1017_S1431927615015573
crossref_primary_10_1002_anie_201506954
crossref_primary_10_1002_anie_201606046
crossref_primary_10_1016_j_nantod_2018_04_004
crossref_primary_10_3390_catal8090356
crossref_primary_10_1002_anie_201506718
crossref_primary_10_1021_jacs_2c03088
crossref_primary_10_1021_ja102566b
crossref_primary_10_1002_cctc_200900329
crossref_primary_10_1038_s41563_021_01118_9
crossref_primary_10_1002_cctc_201900659
crossref_primary_10_1002_cphc_201700583
crossref_primary_10_1039_c3cp52587b
crossref_primary_10_1002_cphc_201402340
crossref_primary_10_1002_anie_201210030
crossref_primary_10_1002_anie_201902859
crossref_primary_10_1021_jacs_5b01698
crossref_primary_10_1107_S160057751900660X
crossref_primary_10_1107_S1600576722011359
crossref_primary_10_1039_C5CS00029G
crossref_primary_10_1002_adma_202104530
crossref_primary_10_1016_j_surfrep_2015_01_001
crossref_primary_10_1088_2752_5724_ade39c
crossref_primary_10_1016_j_cattod_2018_02_007
crossref_primary_10_1039_b919711g
crossref_primary_10_1155_2010_401854
crossref_primary_10_1039_C4CS00146J
crossref_primary_10_1002_ange_201606046
crossref_primary_10_1002_ange_200904944
crossref_primary_10_1002_ange_201210030
crossref_primary_10_1007_s10450_020_00292_7
crossref_primary_10_1002_anie_200904944
crossref_primary_10_1017_S1431927613013731
crossref_primary_10_1039_c0cs00088d
crossref_primary_10_1107_S1600577523001613
crossref_primary_10_1002_chem_201101361
crossref_primary_10_1038_nnano_2012_131
crossref_primary_10_1093_nsr_nwac151
crossref_primary_10_1002_adfm_202307518
crossref_primary_10_1016_j_pnmrs_2023_11_001
crossref_primary_10_1002_ange_201409482
crossref_primary_10_1016_j_micromeso_2013_11_023
crossref_primary_10_1039_c0cs00064g
crossref_primary_10_1002_anie_200905181
crossref_primary_10_1038_s41929_018_0024_6
crossref_primary_10_1002_cphc_201201015
crossref_primary_10_1002_cnma_201700301
crossref_primary_10_1016_j_powtec_2018_03_062
crossref_primary_10_1039_b919540h
crossref_primary_10_1002_ange_200904282
crossref_primary_10_1002_ange_201410738
crossref_primary_10_1007_s12200_014_0423_5
crossref_primary_10_1038_s41578_018_0044_5
crossref_primary_10_1016_j_apcata_2011_06_030
crossref_primary_10_1002_ange_201708284
crossref_primary_10_1002_cctc_201100094
crossref_primary_10_1038_s41929_022_00842_y
crossref_primary_10_1002_chem_201000995
crossref_primary_10_1039_C6CC07862A
crossref_primary_10_1007_s11244_016_0689_5
crossref_primary_10_1002_anie_202408668
crossref_primary_10_1002_ange_201902859
crossref_primary_10_1016_j_cattod_2016_02_030
crossref_primary_10_1021_ja309948y
crossref_primary_10_1021_ja2088025
crossref_primary_10_1002_cctc_201600996
crossref_primary_10_1021_ja405283k
crossref_primary_10_1038_nmat2530
crossref_primary_10_1063_1_4807020
crossref_primary_10_1002_ange_200905039
crossref_primary_10_1002_anie_202104114
crossref_primary_10_1021_jacs_4c12145
crossref_primary_10_1002_anie_201004976
crossref_primary_10_1039_c0cs00100g
crossref_primary_10_1016_j_trechm_2021_04_003
crossref_primary_10_1021_ja410044r
crossref_primary_10_1038_s41524_020_00376_6
crossref_primary_10_1016_j_cattod_2010_06_026
crossref_primary_10_3390_catal10111331
crossref_primary_10_1038_s41570_021_00340_y
crossref_primary_10_1039_b919698f
crossref_primary_10_1002_cphc_201201023
crossref_primary_10_1073_pnas_1502005112
crossref_primary_10_1515_pac_2023_1126
crossref_primary_10_1002_chem_201503551
crossref_primary_10_1039_C9CY00948E
crossref_primary_10_1002_cphc_200901023
crossref_primary_10_1007_s10450_020_00290_9
crossref_primary_10_1107_S1600576719013839
crossref_primary_10_1002_cctc_201200131
crossref_primary_10_1002_anie_200905039
crossref_primary_10_1016_j_trechm_2020_02_003
crossref_primary_10_1039_b919541f
crossref_primary_10_1002_ange_201004976
crossref_primary_10_1002_ange_201502069
crossref_primary_10_1016_j_jcat_2014_09_006
crossref_primary_10_1039_D1NR01272J
crossref_primary_10_1039_b919689g
crossref_primary_10_1002_cctc_201600657
crossref_primary_10_1002_anie_200906752
crossref_primary_10_1039_c2cc30597f
crossref_primary_10_1002_cphc_200900489
crossref_primary_10_1039_b926886c
crossref_primary_10_1002_ange_202408668
crossref_primary_10_1002_ange_201710798
crossref_primary_10_1002_smll_201303166
crossref_primary_10_1002_cctc_201100506
crossref_primary_10_1002_cctc_201402897
crossref_primary_10_1038_nchem_1478
crossref_primary_10_1002_cphc_201000065
crossref_primary_10_1039_c1cp21324e
crossref_primary_10_1002_cite_201500037
crossref_primary_10_1038_nnano_2012_18
crossref_primary_10_1002_anie_201502069
crossref_primary_10_1007_s11705_018_1740_9
crossref_primary_10_1002_anie_201306370
crossref_primary_10_1021_ja2085405
crossref_primary_10_3390_catal11040459
crossref_primary_10_1039_b919543m
crossref_primary_10_1088_1674_1056_23_8_087801
crossref_primary_10_1103_PhysRevLett_126_126001
crossref_primary_10_1039_c3fd00024a
crossref_primary_10_1016_j_pnmrs_2011_12_001
crossref_primary_10_1002_ange_200905181
crossref_primary_10_1039_C5CP06477E
crossref_primary_10_1002_anie_201708284
crossref_primary_10_1002_cctc_202400352
crossref_primary_10_1007_s10562_014_1436_9
crossref_primary_10_1002_anie_201203105
crossref_primary_10_1039_B915753K
crossref_primary_10_1002_chem_201500473
crossref_primary_10_1039_C9SC01666J
crossref_primary_10_1039_D1CY00258A
crossref_primary_10_1002_chem_201002624
crossref_primary_10_1016_j_jcat_2018_06_014
crossref_primary_10_1039_c0cs00047g
crossref_primary_10_1007_s11244_013_0049_7
crossref_primary_10_1002_chem_201203491
crossref_primary_10_1002_cctc_201700753
crossref_primary_10_1021_ja108625z
crossref_primary_10_1021_ja9107512
crossref_primary_10_1039_C5CS00396B
crossref_primary_10_1002_ange_201003273
crossref_primary_10_1002_cctc_201801378
crossref_primary_10_1039_c2jm31357j
crossref_primary_10_1002_anie_201711314
crossref_primary_10_1002_cite_202200082
crossref_primary_10_1002_smll_201001745
crossref_primary_10_1039_c2cc31260c
crossref_primary_10_1016_j_ces_2011_08_049
crossref_primary_10_1002_ange_201203105
crossref_primary_10_1016_j_matchemphys_2021_124674
crossref_primary_10_1002_chem_201203351
crossref_primary_10_1021_es2010946
crossref_primary_10_1039_c0cs00036a
crossref_primary_10_1039_C5CC09220E
crossref_primary_10_1039_C7CP02344H
crossref_primary_10_1002_ange_201711314
crossref_primary_10_1038_nchem_453
crossref_primary_10_1002_anie_201410738
crossref_primary_10_1017_S1431927617000332
crossref_primary_10_1021_ja110320y
crossref_primary_10_1016_j_micromeso_2011_04_037
crossref_primary_10_1039_c0cs00080a
Cites_doi 10.1038/458844a
10.1002/ange.200604336
10.1021/jp051066p
10.1021/jp051037e
10.1002/anie.200801327
10.1143/APEX.1.117003
10.1016/j.cattod.2006.09.034
10.1081/CR-120015739
10.1021/j100007a039
10.1529/biophysj.106.091116
10.1016/S0360-0564(06)51001-6
10.1021/ja029684w
10.1002/anie.200800480
10.1016/j.jcat.2006.06.004
10.1038/nature07516
10.1002/anie.200705562
10.1126/science.1150124
10.1021/ja804158n
10.1021/ja001429t
10.1016/S0360-0564(06)51005-3
10.1016/j.cattod.2006.10.001
10.1002/anie.200806003
10.1021/jp060371n
10.1002/chem.200700990
10.1039/B306045B
10.1002/anie.200705597
10.1002/ange.200701419
10.1080/08940880701631344
10.1002/ange.200601184
10.1038/nmat2319
10.1126/science.275.5303.1102
10.1016/j.micron.2007.09.010
10.1002/ange.200602593
10.1016/S0022-0728(03)00242-0
10.1364/OL.22.000742
10.1021/ja0689233
10.1016/j.cattod.2004.06.152
10.1021/jp055767y
10.1021/jp045206r
10.1039/b414427a
10.1007/s11244-005-2908-3
10.1021/ja044460u
10.1016/S0039-6028(96)01346-5
10.1002/1521-4095(200109)13:18<1374::AID-ADMA1374>3.0.CO;2-A
10.1002/1521-3757(20010817)113:16<3040::AID-ANGE3040>3.0.CO;2-1
10.1146/annurev.anchem.1.031207.112754
10.1016/S0030-4018(96)00771-7
10.1021/ja7113147
10.1002/ange.200700830
10.1016/j.cattod.2006.08.065
10.1016/j.jsb.2008.02.003
10.1016/j.jcat.2003.11.002
10.1103/PhysRevLett.82.4142
10.1002/cphc.200700202
10.1016/j.jcat.2007.02.013
10.1126/science.1151787
10.1016/j.ultramic.2008.04.014
10.1366/0003702021954665
10.1002/anie.200250351
10.1002/chem.200701591
10.1021/cr940044o
10.1002/ange.200702473
10.1080/08940880802667924
10.1063/1.2912503
10.1002/ange.200703085
10.1016/S0926-860X(02)00064-9
10.1021/ja801120u
10.1039/b107686h
10.1039/b820052a
10.1002/anie.200703673
10.1021/ja804606m
10.1002/ange.200801433
10.1002/ange.200801605
10.1002/anie.200702473
10.1016/j.jcat.2006.07.022
10.1038/nmeth929
10.1063/1.2949389
10.1002/anie.200462473
10.1016/j.jcat.2007.09.003
10.1016/j.tcb.2005.02.003
10.1016/j.cattod.2005.11.006
10.1038/nnano.2008.399
10.1006/jmre.2000.2212
10.1016/S0167-2991(08)64149-X
10.1002/anie.200801605
10.1007/BF03161992
10.1038/nmat1924
10.1021/ja0739887
10.1021/jp810428e
10.1126/science.1146598
10.1201/b21367
10.1002/1438-5171(200211)3:5/6<285::AID-SIMO285>3.0.CO;2-X
10.1016/j.cej.2006.06.014
10.1002/ange.200702012
10.1103/PhysRevLett.92.096101
10.1016/S1381-1169(03)00335-2
10.1002/ange.200700980
10.1016/0926-860X(93)80180-X
10.1126/science.1153529
10.1002/chem.200801380
10.1107/S0909049507047966
10.1038/439548a
10.1039/b602311h
10.1007/978-1-59745-294-6_12
10.1038/456454a
10.1002/aic.10731
10.1002/anie.200701399
10.1016/j.cattod.2005.11.076
10.1006/jcat.2002.3639
10.1002/chem.200801293
10.1039/b504027b
10.1016/j.jcat.2006.12.018
10.1002/anie.200700980
10.1021/ac034296d
10.1103/PhysRevLett.78.1667
10.1002/anie.200702012
10.1002/ange.200701399
10.1021/ar800121r
10.1016/S0920-5861(01)00328-5
10.1039/b501698c
10.1016/j.jcat.2004.08.003
10.1039/b707746g
10.1039/b405694a
10.1038/nature03719
10.1039/B512780G
10.1002/cphc.200800065
10.1063/1.1517146
10.1002/anie.200602892
10.1002/ange.200602892
10.1039/b315779b
10.1016/j.cattod.2007.03.003
10.1016/j.jsb.2008.07.003
10.1091/mbc.E03-07-0522
10.1002/anie.200801433
10.1006/jsbi.1998.4037
10.1016/S0920-5861(99)00046-2
10.1107/S0909049508023327
10.1021/ar700217y
10.1021/ja8048767
10.1021/la703406d
10.1080/08940880701631369
10.1016/j.nimb.2005.07.177
10.1002/ange.200800480
10.1021/jp711527v
10.1016/j.sbi.2005.08.008
10.1002/anie.200701419
10.1023/B:CATL.0000014338.20674.bf
10.1016/j.nima.2007.08.083
10.1016/j.cattod.2007.03.007
10.1021/jp035693v
10.1021/jp801562g
10.1002/ange.200801327
10.1039/b107005c
10.1039/b313208k
10.1002/ange.200806003
10.1039/b706294j
10.1002/anie.200602593
10.1002/ange.200803427
10.1002/chem.200600678
10.1021/jp8039737
10.1006/jcat.2000.2930
10.1002/ange.200805994
10.1016/j.jcat.2005.11.005
10.1002/anie.200604336
10.1126/science.1158573
10.1021/jp710676v
10.1002/ange.200705562
10.1016/j.ces.2004.07.103
10.1016/j.cattod.2007.06.037
10.1016/j.jsb.2007.07.011
10.1039/b210679p
10.1002/anie.200601184
10.1002/anie.200700830
10.1039/b309650p
10.1021/jp040708q
10.1038/nature06398
10.1021/nl802086x
10.1016/S0920-5861(99)00047-4
10.1021/cc049957e
10.1016/j.jcat.2008.01.033
10.1002/ange.200703673
10.1002/(SICI)1521-3757(19991216)111:24<3800::AID-ANGE3800>3.0.CO;2-1
10.1021/jp010777u
10.1016/S0360-0564(06)51002-8
10.1002/(SICI)1521-3773(19991216)38:24<3588::AID-ANIE3588>3.0.CO;2-4
10.1002/9783527611348
10.1088/0957-0233/16/1/040
10.1038/nm0297-235
10.1007/s10562-005-7522-2
10.1016/S0167-2991(06)80905-5
10.1016/S0360-0564(06)50001-X
10.1016/j.jcat.2004.10.016
10.1126/science.1062883
10.1002/chem.200700568
10.1023/A:1018956520929
10.1038/nbt899
10.1364/OL.24.000954
10.1021/ja062580r
10.1002/anie.200703085
10.1021/cr040083s
10.1021/jp030989m
10.1126/science.1063597
10.1002/ange.200462473
10.1002/ange.200250351
10.1038/nmat1861
10.1039/b305264h
10.1007/BF00772594
10.1111/j.1365-2818.2008.01893.x
10.1021/ac015513i
10.1021/ja808335b
10.1364/OL.19.000780
10.1073/pnas.0812068106
10.1002/anie.200804077
10.1126/science.1161183
10.1021/ja053456v
10.1016/S0920-5861(02)00337-1
10.1126/science.1137395
10.1016/j.cattod.2004.12.017
10.1002/anie.200803427
10.1002/anie.200803122
10.1002/ange.200800977
10.1002/anie.200700246
10.1038/354465a0
10.1073/pnas.97.15.8206
10.1038/456185a
10.1016/j.cattod.2006.07.034
10.1002/anie.200800977
10.1126/science.1143093
10.1016/j.micromeso.2007.05.028
10.1016/S0021-9517(02)00133-1
10.1039/B305786K
10.1016/j.apcata.2004.02.040
10.1002/ange.200700246
10.1002/1521-3773(20010817)40:16<2954::AID-ANIE2954>3.0.CO;2-#
10.1016/j.apcata.2008.02.034
10.1002/ange.200804077
10.1021/cm0401645
10.1021/ja040107c
10.1021/jp802827t
10.1002/ange.200705597
10.1126/science.1059478
10.1021/ja075927e
10.1002/cphc.200800757
10.1021/jp062618m
10.1126/science.1140484
10.1016/j.ccr.2007.06.008
10.1073/pnas.0708066104
10.1016/j.bbamem.2006.06.008
10.1039/b706637f
10.1002/anie.200805994
10.1557/mrs2007.213
10.1039/B418790C
10.1366/000370202321274944
10.1002/chem.200500116
10.1016/j.cattod.2004.12.019
10.1039/b604515d
10.1126/science.1165758
10.1016/j.cattod.2005.11.015
10.1002/ange.200803122
10.1016/S0360-0564(06)50005-7
10.1038/nnano.2008.100
10.1038/nature04502
10.1073/pnas.0610755104
10.1038/nbt895
ContentType Journal Article
Copyright Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID FBQ
AAYXX
CITATION
NPM
7S9
L.6
7X8
DOI 10.1002/anie.200900339
DatabaseName AGRIS
CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
EndPage 4943
ExternalDocumentID 19536746
10_1002_anie_200900339
ANIE200900339
US201301651598
Genre reviewArticle
Journal Article
GrantInformation_xml – fundername: Toyota
– fundername: Total
– fundername: Albemarle Catalysts
– fundername: Dow Chemicals
– fundername: Netherlands Organization for Scientific Research
– fundername: Advanced Chemical Technology for Sustainability program
– fundername: Top Research School Combination Catalysis
– fundername: SK Energy
– fundername: BASF
– fundername: Shell
GroupedDBID ---
-DZ
-~X
.3N
.GA
.GJ
.HR
.Y3
05W
0R~
0ZS
10A
186
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYJJ
AAYOK
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABIJN
ABLJU
ABPPZ
ABPVW
ABTAH
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFDAS
AFFNX
AFFPM
AFGKR
AFMIJ
AFPWT
AFRAH
AFVGU
AFZJQ
AGCDD
AGJLS
AHMBA
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
G8K
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NNB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWH
RWI
RX1
RYL
S10
SAMSI
SUPJJ
TN5
UB1
UPT
UQL
V2E
VH1
VQA
W8V
W99
WBFHL
WBKPD
WH7
WHG
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSR
WXSBR
WYISQ
XFK
XG1
XOL
XPP
XSW
XV2
YCJ
YYP
YZZ
ZCG
ZE2
ZGI
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AHBTC
AITYG
ALVPJ
HGLYW
OIG
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGQPQ
AGYGG
CITATION
O8X
ABDPE
AGHNM
NPM
7S9
L.6
7X8
ID FETCH-LOGICAL-c4649-4a7dea4fc0c4b55abd476b6ac178d05ac62b164a4161df21d3ea15403b444dad3
IEDL.DBID DRFUL
ISICitedReferencesCount 301
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000267713800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Sun Nov 09 13:25:19 EST 2025
Sun Nov 09 11:51:44 EST 2025
Thu Apr 03 07:04:06 EDT 2025
Tue Nov 18 22:11:20 EST 2025
Sat Nov 29 05:36:53 EST 2025
Wed Jan 22 16:25:46 EST 2025
Wed Dec 27 19:19:22 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4649-4a7dea4fc0c4b55abd476b6ac178d05ac62b164a4161df21d3ea15403b444dad3
Notes http://dx.doi.org/10.1002/anie.200900339
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19536746
PQID 46321503
PQPubID 24069
PageCount 34
ParticipantIDs proquest_miscellaneous_67420160
proquest_miscellaneous_46321503
pubmed_primary_19536746
crossref_citationtrail_10_1002_anie_200900339
crossref_primary_10_1002_anie_200900339
wiley_primary_10_1002_anie_200900339_ANIE200900339
fao_agris_US201301651598
PublicationCentury 2000
PublicationDate June 22, 2009
PublicationDateYYYYMMDD 2009-06-22
PublicationDate_xml – month: 06
  year: 2009
  text: June 22, 2009
  day: 22
PublicationDecade 2000
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie (International ed.)
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2009
Publisher Wiley-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: Wiley-VCH Verlag
– name: WILEY‐VCH Verlag
References 2006 2007; 91 104
2004 2006 2007 2008; 113 105 9
2008 2008 2001 2001 2001; 120 47 294 293 292
2005 2007; 109 13
2008 2008; 8 456
2007 2007; 104 126
2002; 56
2004 2006 2008; 126 162 130
2008; 39
2005 2006; 109 110
2008; 108
2005 2005; 127 109
2008; 3
2008 2008 2007 2007 2007 2007 2007 2008 2008 2007 2006 2006 2008 2007 2007 2008 2005 2005; 120 47 251 119 46 119 46 120 47 129 118 45 340 252 247 41 117 44
1997 1991 1993 2000; 44 354 20 194
2000 2001 2002 2003 2008 2006 2001 2004 2004 2005; 122 73 56 75 79 52 67 6 222 16
2007 2007 2006 1997 1997; 20 20 1758 22 3
2005 2005; 241 32
2008 2007 2006 2004 2008 2007 2006 2005 2003 2005 2004 2003 2006 2003 2006 2008 2003 2007 2008 2008 2003 2003; 112 126 118 96 112 246 110 100 78 109 108 8 204 237 255 125 9 120 47 115 42
2006 2006; 118 45
2009 2009; 106 458
2007 2007 2007 2007; 316 316 119 46
1994 1999 2000 2007; 19 24 97 316
2005 2008 2004 2008; 15 162 15 15
2001 2004; 227
2007 2007 2006; 160 121
2001; 105
1999 2004 2008 2008 2007; 82 108 112 1 8
2002 2000; 73 147
2002 2003 2001 2001 2005 2007 2007 2002 1999 1999 2003; 5 113 40 100 51 51 111 38 216
2009; 10
2003; 92
2008 2009; 7 11
2000
2007 2007 2004; 126 130 267
2003 2006 2009; 45 113 22
2005; 103
2008; 319
2007; 450
1998 2005; 123 15
2005 2006; 229 50
2006; 242
2007; 6
2003; 5
1999; 51
2003 2005 2006; 5 7 8
2008; 112
2002 2006; 232 50
2001; 13
2006; 243
2009; 15
2007; 126
1993; 106
1997 2003; 137 21
2006 2007 2008 2009; 8 318 24 4
2005 2006 2007; 113 51
2002 2004
2008; 14
2008
1997
2007
2006; 110
2008 1997 1997; 41 275 78
2005
2009; 131
2008; 322
2007 2005 2008 2008; 582 435 92 1
2008; 164
2007; 13
2009 2009; 121 48
2006 2005
1999
2008 2008; 321 321
2004; 16
2006 2008 2009; 128 15 113
2004; 59
2005; 127
2006 2006; 439 439
2004 2007 2007 2007 2007 2007 2008 2008; 126 6 119 46 32 37 138
2003 2002 2008 2008 2004 2008; 554–555 3 120 47 92 229
1991 1995 1997; 99 12
2008 2008 2008 2008; 120 47 120 47
1994 2002 1997 2004 2007 2008 2008; 84 209 377–379 129 120 47
2007 2007; 119 46
2008 2008; 120 47
2006 2007; 3 317
2005; 11
2008; 130
2003; 21
1996 1999 2005 2007 2007; 96 51 105 119 46
2008 2008 2009 2009; 456 456 121 48
e_1_2_5_46_2
e_1_2_5_101_2
e_1_2_5_23_2
e_1_2_5_84_5
e_1_2_5_84_4
e_1_2_5_109_2
e_1_2_5_69_2
e_1_2_5_109_3
e_1_2_5_69_3
e_1_2_5_69_4
e_1_2_5_61_2
e_1_2_5_84_3
e_1_2_5_84_2
e_1_2_5_7_6
e_1_2_5_11_5
e_1_2_5_7_5
e_1_2_5_11_4
e_1_2_5_7_4
e_1_2_5_11_7
e_1_2_5_7_3
e_1_2_5_11_6
e_1_2_5_57_2
e_1_2_5_7_2
e_1_2_5_34_2
e_1_2_5_11_3
e_1_2_5_11_2
e_1_2_5_11_9
e_1_2_5_11_8
e_1_2_5_19_2
(e_1_2_5_104_3) 2005
e_1_2_5_72_2
e_1_2_5_95_2
e_1_2_5_68_6
e_1_2_5_45_3
e_1_2_5_22_2
e_1_2_5_45_2
e_1_2_5_100_3
e_1_2_5_100_2
e_1_2_5_83_5
e_1_2_5_68_2
e_1_2_5_108_3
e_1_2_5_68_3
e_1_2_5_108_4
e_1_2_5_68_4
e_1_2_5_68_5
e_1_2_5_108_2
e_1_2_5_108_5
e_1_2_5_60_2
e_1_2_5_60_3
e_1_2_5_83_2
e_1_2_5_83_3
e_1_2_5_83_4
e_1_2_5_9_12
e_1_2_5_9_10
e_1_2_5_9_11
e_1_2_5_10_6
e_1_2_5_10_5
e_1_2_5_10_8
e_1_2_5_10_7
e_1_2_5_10_2
e_1_2_5_33_2
e_1_2_5_56_2
e_1_2_5_10_4
e_1_2_5_10_3
e_1_2_5_71_6
e_1_2_5_18_2
e_1_2_5_79_2
e_1_2_5_10_9
e_1_2_5_18_4
e_1_2_5_18_3
e_1_2_5_71_2
e_1_2_5_94_2
e_1_2_5_71_3
e_1_2_5_71_4
e_1_2_5_71_5
e_1_2_5_94_3
e_1_2_5_48_2
e_1_2_5_25_2
e_1_2_5_86_3
e_1_2_5_86_2
e_1_2_5_107_4
e_1_2_5_107_5
e_1_2_5_107_2
e_1_2_5_107_3
e_1_2_5_107_6
e_1_2_5_107_7
(e_1_2_5_1_2) 2008
e_1_2_5_63_2
e_1_2_5_40_3
e_1_2_5_40_2
e_1_2_5_13_2
e_1_2_5_59_2
e_1_2_5_36_2
e_1_2_5_111_3
e_1_2_5_111_2
e_1_2_5_74_3
e_1_2_5_97_3
e_1_2_5_74_4
e_1_2_5_97_2
e_1_2_5_74_5
e_1_2_5_97_5
e_1_2_5_97_4
e_1_2_5_74_2
e_1_2_5_51_2
Thomas J. M. (e_1_2_5_5_2) 1997
(e_1_2_5_4_2) 2005
e_1_2_5_47_3
e_1_2_5_24_2
e_1_2_5_47_2
Zu Y. (e_1_2_5_37_2) 1991
e_1_2_5_106_2
e_1_2_5_62_2
e_1_2_5_85_2
e_1_2_5_62_3
e_1_2_5_12_4
e_1_2_5_12_3
e_1_2_5_12_6
e_1_2_5_35_2
e_1_2_5_58_2
e_1_2_5_12_5
e_1_2_5_35_3
e_1_2_5_6_2
e_1_2_5_12_2
e_1_2_5_110_2
e_1_2_5_96_4
e_1_2_5_96_3
e_1_2_5_73_2
e_1_2_5_96_2
e_1_2_5_50_3
e_1_2_5_50_2
e_1_2_5_27_2
e_1_2_5_42_3
e_1_2_5_42_2
e_1_2_5_105_2
e_1_2_5_65_2
e_1_2_5_105_3
e_1_2_5_88_3
e_1_2_5_88_2
(e_1_2_5_8_3) 2004
e_1_2_5_88_5
e_1_2_5_105_6
e_1_2_5_88_4
e_1_2_5_105_7
e_1_2_5_105_4
e_1_2_5_105_5
e_1_2_5_80_2
e_1_2_5_105_8
e_1_2_5_38_2
e_1_2_5_15_3
e_1_2_5_15_2
e_1_2_5_53_3
e_1_2_5_53_2
e_1_2_5_3_2
e_1_2_5_76_2
e_1_2_5_76_3
e_1_2_5_99_3
e_1_2_5_99_2
e_1_2_5_15_5
e_1_2_5_15_4
e_1_2_5_91_3
e_1_2_5_91_2
e_1_2_5_91_5
e_1_2_5_91_4
Kaupp G. (e_1_2_5_104_2) 2006
e_1_2_5_30_2
e_1_2_5_26_2
e_1_2_5_49_2
e_1_2_5_26_3
e_1_2_5_41_3
e_1_2_5_64_2
e_1_2_5_87_2
e_1_2_5_64_3
e_1_2_5_64_4
e_1_2_5_87_4
e_1_2_5_64_5
e_1_2_5_87_3
e_1_2_5_41_2
e_1_2_5_16_11
e_1_2_5_16_10
e_1_2_5_10_12
e_1_2_5_14_2
e_1_2_5_10_13
e_1_2_5_37_3
e_1_2_5_10_10
e_1_2_5_10_11
e_1_2_5_14_3
e_1_2_5_10_16
e_1_2_5_10_17
e_1_2_5_52_5
e_1_2_5_10_14
e_1_2_5_52_4
e_1_2_5_10_15
e_1_2_5_52_3
e_1_2_5_75_2
e_1_2_5_98_2
e_1_2_5_75_3
e_1_2_5_10_18
e_1_2_5_10_19
e_1_2_5_98_3
e_1_2_5_37_4
e_1_2_5_90_2
Hagen J. (e_1_2_5_2_2) 1999
e_1_2_5_90_4
e_1_2_5_90_3
e_1_2_5_52_2
e_1_2_5_11_14
e_1_2_5_11_13
e_1_2_5_11_12
e_1_2_5_11_11
e_1_2_5_11_18
e_1_2_5_21_3
e_1_2_5_11_17
e_1_2_5_44_2
e_1_2_5_11_16
e_1_2_5_11_15
e_1_2_5_21_2
e_1_2_5_103_2
e_1_2_5_11_19
e_1_2_5_67_2
e_1_2_5_67_3
e_1_2_5_29_2
e_1_2_5_82_2
e_1_2_5_82_3
e_1_2_5_11_21
e_1_2_5_11_20
e_1_2_5_9_4
e_1_2_5_9_3
e_1_2_5_9_2
Takizawa T. (e_1_2_5_100_4) 2006; 121
e_1_2_5_32_3
e_1_2_5_55_2
e_1_2_5_32_2
e_1_2_5_93_7
e_1_2_5_93_6
e_1_2_5_93_9
e_1_2_5_78_2
e_1_2_5_93_8
e_1_2_5_17_3
e_1_2_5_78_3
e_1_2_5_17_2
e_1_2_5_70_2
e_1_2_5_93_3
e_1_2_5_93_2
e_1_2_5_93_5
e_1_2_5_93_4
e_1_2_5_9_9
e_1_2_5_9_8
e_1_2_5_11_10
e_1_2_5_9_7
e_1_2_5_9_6
e_1_2_5_9_5
e_1_2_5_102_2
e_1_2_5_20_2
e_1_2_5_43_2
e_1_2_5_66_2
e_1_2_5_89_2
e_1_2_5_66_3
e_1_2_5_89_3
e_1_2_5_28_2
e_1_2_5_81_2
e_1_2_5_11_23
e_1_2_5_16_2
e_1_2_5_11_22
e_1_2_5_31_4
e_1_2_5_31_2
e_1_2_5_54_2
e_1_2_5_31_3
e_1_2_5_16_8
e_1_2_5_16_7
e_1_2_5_77_2
e_1_2_5_16_9
e_1_2_5_77_3
e_1_2_5_16_4
e_1_2_5_16_3
e_1_2_5_16_6
e_1_2_5_39_2
e_1_2_5_16_5
e_1_2_5_92_2
(e_1_2_5_8_2) 2002
References_xml – volume: 137 21
  start-page: 127 1369
  year: 1997 2003
  publication-title: Opt. Commun. Nat. Biotechnol.
– volume: 112
  start-page: 7201
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 1661
  year: 2009
  publication-title: Chem. Eur. J.
– volume: 106
  start-page: 239
  year: 1993
  publication-title: Appl. Catal. A
– year: 2005
– volume: 128 15 113
  start-page: 12386 632 4890
  year: 2006 2008 2009
  publication-title: J. Am. Chem. Soc. J. Synchrotron Radiat. J. Phys. Chem. C
– volume: 73 147
  start-page: 4329 371
  year: 2002 2000
  publication-title: Rev. Sci. Instrum. J. Magn. Reson.
– volume: 3
  start-page: 261
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 4441
  year: 2003
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 303
  year: 2007
  publication-title: Nat. Mater.
– volume: 21
  start-page: 1347
  year: 2003
  publication-title: Nat. Biotechnol.
– volume: 104 126
  start-page: 12603 44
  year: 2007 2007
  publication-title: Proc. Natl. Acad. Sci. USA Catal. Today
– volume: 582 435 92 1
  start-page: 96 1210 221114 117003
  year: 2007 2005 2008 2008
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Nature Appl. Phys. Lett. Appl. Phys. Express
– volume: 103
  start-page: 1
  year: 2005
  publication-title: Catal. Lett.
– volume: 554–555 3 120 47 92 229
  start-page: 293 285 8298 8178 096101 240
  year: 2003 2002 2008 2008 2004 2008
  publication-title: J. Electroanal. Chem. Single Mol. Angew. Chem. Angew. Chem. Int. Ed. Phys. Rev. Lett. J. Microsc.
– volume: 105
  start-page: 10217
  year: 2001
  publication-title: J. Phys. Chem. B
– volume: 127
  start-page: 11916
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 99 12
  start-page: 293 2038 68
  year: 1991 1995 1997
  publication-title: Chem. Lett. J. Phys. Chem. Appl. Magn. Reson.
– volume: 243
  start-page: 292
  year: 2006
  publication-title: J. Catal.
– volume: 119 46
  start-page: 7366 7228
  year: 2007 2007
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 19 24 97 316
  start-page: 780 954 8206 1153
  year: 1994 1999 2000 2007
  publication-title: Opt. Lett. Opt. Lett. Proc. Natl. Acad. Sci. USA Science
– year: 2008
– volume: 319
  start-page: 442
  year: 2008
  publication-title: Science
– volume: 91 104
  start-page: 4258 17370
  year: 2006 2007
  publication-title: Biophys. J. Proc. Natl. Acad. Sci. USA
– volume: 110
  start-page: 8674
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 112
  start-page: 9548
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 242
  start-page: 287
  year: 2006
  publication-title: J. Catal.
– volume: 11
  start-page: 4591
  year: 2005
  publication-title: Chem. Eur. J.
– volume: 84 209 377–379 129 120 47
  start-page: 485 385 140 907 15192 5407 5327
  year: 1994 2002 1997 2004 2007 2008 2008
  publication-title: Stud. Surf. Sci. Catal. J. Catal. Surf. Sci. Chem. Commun. J. Am. Chem. Soc. Angew. Chem. Angew. Chem. Int. Ed.
– volume: 8 456
  start-page: 3766 454
  year: 2008 2008
  publication-title: Nano Lett. Nature
– volume: 10
  start-page: 625
  year: 2009
  publication-title: ChemPhysChem
– volume: 5 113 40 100 51 51 111 38 216
  start-page: 97 4351 3040 2954 71 1 75 2921 3800 3588 155
  year: 2002 2003 2001 2001 2005 2007 2007 2002 1999 1999 2003
  publication-title: Chem. Commun. Phys. Chem. Chem. Phys. Angew. Chem. Angew. Chem. Int. Ed. Catal. Today Adv. Catal. Adv. Catal. Chem. Commun. Angew. Chem. Angew. Chem. Int. Ed. J. Catal.
– volume: 456 456 121 48
  start-page: 222 185 3962 3904
  year: 2008 2008 2009 2009
  publication-title: Nature Nature Angew. Chem. Angew. Chem. Int. Ed.
– year: 2007
– volume: 44 354 20 194
  start-page: 23 465 23 452
  year: 1997 1991 1993 2000
  publication-title: Catal. Lett. Nature Catal. Lett. J. Catal.
– volume: 227
  start-page: 2122 384
  year: 2001 2004
  publication-title: Chem. Commun. J. Catal.
– volume: 119 46
  start-page: 7362 7224
  year: 2007 2007
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 130
  start-page: 1638
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 223
  year: 1999
  publication-title: Catal. Today
– volume: 41 275 78
  start-page: 1742 1102 1667
  year: 2008 1997 1997
  publication-title: Acc. Chem. Res. Science Phys. Rev. Lett.
– volume: 119 46
  start-page: 4142 4064
  year: 2007 2007
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 16
  start-page: 3552
  year: 2004
  publication-title: Chem. Mater.
– volume: 439 439
  start-page: 572 548
  year: 2006 2006
  publication-title: Nature Nature
– volume: 113 51
  start-page: 1761 16 265
  year: 2005 2006 2007
  publication-title: Chem. Commun. Catal. Today Adv. Catal.
– volume: 7 11
  start-page: 992 2767
  year: 2008 2009
  publication-title: Nat. Mater. Phys. Chem. Chem. Phys.
– volume: 13
  start-page: 1374
  year: 2001
  publication-title: Adv. Mater.
– volume: 126 6 119 46 32 37 138
  start-page: 2382 64 528 5452 5356 1038 2644 287
  year: 2004 2007 2007 2007 2007 2007 2008 2008
  publication-title: Chem. Commun. Catal. Today Nat. Mater. Angew. Chem. Angew. Chem. Int. Ed. MRS Bull. Chem. Soc. Rev. Faraday Discuss.
– volume: 130
  start-page: 7188
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 20 20 1758 22 3
  start-page: 13 25 814 742 235
  year: 2007 2007 2006 1997 1997
  publication-title: Synchrotron Radiat. News Synchrotron Radiat. News Biochim. Biophys. Acta Biomembr. Opt. Lett. Nat. Med.
– volume: 14
  start-page: 11320
  year: 2008
  publication-title: Chem. Eur. J.
– volume: 120 47 120 47
  start-page: 3599 3543 9328 9188
  year: 2008 2008 2008 2008
  publication-title: Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed.
– volume: 120 47
  start-page: 4018 3954
  year: 2008 2008
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– year: 2006 2005
– volume: 450
  start-page: 705
  year: 2007
  publication-title: Nature
– volume: 56
  start-page: 192
  year: 2002
  publication-title: Appl. Spectrosc.
– start-page: 2741
  year: 2005
  publication-title: Chem. Commun.
– volume: 112 126 118 96 112 246 110 100 78 109 108 8 204 237 255 125 9 120 47 115 42
  start-page: 11441 96 279 251 11363 370 9593 79 13 8987 2345 2082 2453 527 220 153 7629 4854 3578 3524 1558 1520
  year: 2008 2007 2006 2004 2008 2007 2006 2005 2003 2005 2004 2003 2006 2003 2006 2008 2003 2007 2008 2008 2003 2003
  publication-title: J. Phys. Chem. C Catal. Today Catal. Today Catal. Today J. Phys. Chem. C J. Catal. J. Phys. Chem. B Catal. Today Catal. Today J. Phys. Chem. B J. Phys. Chem. B Chem. Commun. Phys. Chem. Chem. Phys. J. Mol. Catal. A J. Catal. J. Catal. J. Am. Chem. Soc. Phys. Chem. Chem. Phys. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed.
– volume: 96 51 105 119 46
  start-page: 3327 215 115 1487 1465
  year: 1996 1999 2005 2007 2007
  publication-title: Chem. Rev. Catal. Today Chem. Rev. Angew. Chem. Angew. Chem. Int. Ed.
– volume: 321 321
  start-page: 379 352
  year: 2008 2008
  publication-title: Science Science
– volume: 122 73 56 75 79 52 67 6 222 16
  start-page: 7422 4434 1044 4676 074101 1516 357 420 174 302
  year: 2000 2001 2002 2003 2008 2006 2001 2004 2004 2005
  publication-title: J. Am. Chem. Soc. Anal. Chem. Appl. Spectrosc. Anal. Chem. Rev. Sci. Instrum. AIChE J. Catal. Today J. Comb. Chem. J. Catal. Meas. Sci. Technol.
– volume: 126
  start-page: 54
  year: 2007
  publication-title: Catal. Today
– volume: 319
  start-page: 810
  year: 2008
  publication-title: Science
– volume: 92
  start-page: 93
  year: 2003
  publication-title: Catal. Lett.
– volume: 120 47 294 293 292
  start-page: 3578 3524 134 1635 1357
  year: 2008 2008 2001 2001 2001
  publication-title: Angew. Chem. Angew. Chem. Int. Ed. Science Science Science
– volume: 82 108 112 1 8
  start-page: 4142 827 1576 883 2156
  year: 1999 2004 2008 2008 2007
  publication-title: Phys. Rev. Lett. J. Phys. Chem. B J. Phys. Chem. B Annu. Rev. Anal. Chem. ChemPhysChem
– volume: 131
  start-page: 934
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 15 162 15 15
  start-page: 593 380 957 26
  year: 2005 2008 2004 2008
  publication-title: Curr. Opin. Struct. Biol. J. Struct. Biol. Mol. Biol. Cell J. Synchrotron Radiat.
– year: 1997
– volume: 109 110
  start-page: 4042 17671
  year: 2005 2006
  publication-title: J. Phys. Chem. B J. Phys. Chem. B
– volume: 130
  start-page: 11592
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 109 13
  start-page: 12663 2440
  year: 2005 2007
  publication-title: J. Phys. Chem. B Chem. Eur. J.
– volume: 14
  start-page: 1718
  year: 2008
  publication-title: Chem. Eur. J.
– volume: 108
  start-page: 993
  year: 2008
  publication-title: Ultramicroscopy
– volume: 106 458
  start-page: 1313 844
  year: 2009 2009
  publication-title: Proc. Nat. Acad. Sci. Nature
– volume: 118 45
  start-page: 8010 7846
  year: 2006 2006
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 160 121
  start-page: 135 229 351
  year: 2007 2007 2006
  publication-title: J. Struct. Biol. Methods Mol. Med.
– volume: 120 47
  start-page: 5719 5637
  year: 2008 2008
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 14
  start-page: 2363
  year: 2008
  publication-title: Chem. Eur. J.
– volume: 130
  start-page: 13192
  year: 2008
  publication-title: J. Am. Chem. Soc.
– year: 2002 2004
– volume: 5 7 8
  start-page: 4361 211 2413
  year: 2003 2005 2006
  publication-title: Phys. Chem. Chem. Phys. Phys. Chem. Chem. Phys. Phys. Chem. Chem. Phys.
– start-page: 3015
  year: 2005
  publication-title: Chem. Commun.
– volume: 123 15
  start-page: 236 207
  year: 1998 2005
  publication-title: J. Struct. Biol. Trends Cell Biol.
– volume: 45 113 22
  start-page: 97 3 22
  year: 2003 2006 2009
  publication-title: Catal. Rev. Sci. Eng. Catal. Today Synchrotron Radiat. News
– volume: 120 47
  start-page: 9396 9256
  year: 2008 2008
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– year: 2000
– volume: 127 109
  start-page: 5024 14513
  year: 2005 2005
  publication-title: J. Am. Chem. Soc. J. Phys. Chem. B
– volume: 126 162 130
  start-page: 14548 175 117
  year: 2004 2006 2008
  publication-title: J. Am. Chem. Soc. Stud. Surf. Sci. Catal. Catal. Today
– volume: 119 46
  start-page: 8988 8832
  year: 2007 2007
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 130
  start-page: 13516
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 7057
  year: 2007
  publication-title: Chem. Eur. J.
– volume: 229 50
  start-page: 55 227
  year: 2005 2006
  publication-title: J. Catal. Adv. Catal.
– volume: 120 47 251 119 46 119 46 120 47 129 118 45 340 252 247 41 117 44
  start-page: 9392 9252 2702 9413 9253 7358 7220 9400 9260 8094 4767 4651 196 18 277 708 6614 6456
  year: 2008 2008 2007 2007 2007 2007 2007 2008 2008 2007 2006 2006 2008 2007 2007 2008 2005 2005
  publication-title: Angew. Chem. Angew. Chem. Int. Ed. Coord. Chem. Rev. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. J. Am. Chem. Soc. Angew. Chem. Angew. Chem. Int. Ed. Appl. Catal. A J. Catal. J. Catal. Acc. Chem. Res. Angew. Chem. Angew. Chem. Int. Ed.
– volume: 119 46
  start-page: 3726 3652
  year: 2007 2007
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 164
  start-page: 183
  year: 2008
  publication-title: J. Struct. Biol.
– volume: 8 318 24 4
  start-page: 753 1750 6946 153
  year: 2006 2007 2008 2009
  publication-title: Phys. Chem. Chem. Phys. Science Langmuir Nat. Nanotechnol.
– volume: 126 130 267
  start-page: 37 101 143
  year: 2007 2007 2004
  publication-title: Catal. Today Chem. Eng. J. Appl. Catal. A
– volume: 121 48
  start-page: 3686 3632
  year: 2009 2009
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 39
  start-page: 741
  year: 2008
  publication-title: Micron
– volume: 113 105 9
  start-page: 584 102 132 1107
  year: 2004 2006 2007 2008
  publication-title: Chem. Commun. Catal. Today Microporous Mesoporous Mater. ChemPhysChem
– volume: 316 316 119 46
  start-page: 732 699 7291 7157
  year: 2007 2007 2007 2007
  publication-title: Science Science Angew. Chem. Angew. Chem. Int. Ed.
– volume: 130
  start-page: 5763
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 3 317
  start-page: 793 1749
  year: 2006 2007
  publication-title: Nat. Methods Science
– volume: 232 50
  start-page: 29 1
  year: 2002 2006
  publication-title: Appl. Catal. A Adv. Catal.
– volume: 322
  start-page: 1857
  year: 2008
  publication-title: Science
– volume: 241 32
  start-page: 331 263
  year: 2005 2005
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Top. Catal.
– volume: 59
  start-page: 5487
  year: 2004
  publication-title: Chem. Eng. Sci.
– volume: 119 46
  start-page: 1736 1706
  year: 2007 2007
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– year: 1999
– ident: e_1_2_5_97_4
– ident: e_1_2_5_111_3
  doi: 10.1038/458844a
– ident: e_1_2_5_45_2
  doi: 10.1002/ange.200604336
– ident: e_1_2_5_14_2
  doi: 10.1021/jp051066p
– volume-title: In‐Situ Spectroscopy in Heterogeneous Catalysis
  year: 2002
  ident: e_1_2_5_8_2
– ident: e_1_2_5_32_3
  doi: 10.1021/jp051037e
– ident: e_1_2_5_52_5
  doi: 10.1002/anie.200801327
– ident: e_1_2_5_84_5
  doi: 10.1143/APEX.1.117003
– ident: e_1_2_5_93_3
  doi: 10.1016/j.cattod.2006.09.034
– ident: e_1_2_5_87_2
  doi: 10.1081/CR-120015739
– ident: e_1_2_5_37_3
  doi: 10.1021/j100007a039
– ident: e_1_2_5_75_2
  doi: 10.1529/biophysj.106.091116
– ident: e_1_2_5_9_7
  doi: 10.1016/S0360-0564(06)51001-6
– ident: e_1_2_5_11_18
  doi: 10.1021/ja029684w
– ident: e_1_2_5_11_21
  doi: 10.1002/anie.200800480
– ident: e_1_2_5_38_2
  doi: 10.1016/j.jcat.2006.06.004
– ident: e_1_2_5_64_2
  doi: 10.1038/nature07516
– ident: e_1_2_5_52_3
  doi: 10.1002/anie.200705562
– ident: e_1_2_5_108_3
  doi: 10.1126/science.1150124
– ident: e_1_2_5_72_2
  doi: 10.1021/ja804158n
– ident: e_1_2_5_16_2
  doi: 10.1021/ja001429t
– ident: e_1_2_5_96_4
  doi: 10.1016/S0360-0564(06)51005-3
– ident: e_1_2_5_18_2
  doi: 10.1016/j.cattod.2006.10.001
– ident: e_1_2_5_66_3
  doi: 10.1002/anie.200806003
– ident: e_1_2_5_23_2
  doi: 10.1021/jp060371n
– ident: e_1_2_5_36_2
  doi: 10.1002/chem.200700990
– ident: e_1_2_5_92_2
  doi: 10.1039/B306045B
– ident: e_1_2_5_42_3
  doi: 10.1002/anie.200705597
– ident: e_1_2_5_93_5
  doi: 10.1002/ange.200701419
– ident: e_1_2_5_68_2
  doi: 10.1080/08940880701631344
– ident: e_1_2_5_10_12
  doi: 10.1002/ange.200601184
– ident: e_1_2_5_62_2
  doi: 10.1038/nmat2319
– ident: e_1_2_5_69_3
  doi: 10.1126/science.275.5303.1102
– ident: e_1_2_5_81_2
  doi: 10.1016/j.micron.2007.09.010
– ident: e_1_2_5_7_5
  doi: 10.1002/ange.200602593
– ident: e_1_2_5_107_2
  doi: 10.1016/S0022-0728(03)00242-0
– ident: e_1_2_5_68_5
  doi: 10.1364/OL.22.000742
– ident: e_1_2_5_10_11
  doi: 10.1021/ja0689233
– ident: e_1_2_5_11_5
  doi: 10.1016/j.cattod.2004.06.152
– ident: e_1_2_5_11_8
  doi: 10.1021/jp055767y
– ident: e_1_2_5_98_2
  doi: 10.1021/jp045206r
– volume-title: Principles and Practice of Heterogeneous Catalysis
  year: 1997
  ident: e_1_2_5_5_2
– ident: e_1_2_5_90_3
  doi: 10.1039/b414427a
– ident: e_1_2_5_82_3
  doi: 10.1007/s11244-005-2908-3
– ident: e_1_2_5_32_2
  doi: 10.1021/ja044460u
– ident: e_1_2_5_105_4
  doi: 10.1016/S0039-6028(96)01346-5
– ident: e_1_2_5_48_2
  doi: 10.1002/1521-4095(200109)13:18<1374::AID-ADMA1374>3.0.CO;2-A
– ident: e_1_2_5_9_4
  doi: 10.1002/1521-3757(20010817)113:16<3040::AID-ANGE3040>3.0.CO;2-1
– ident: e_1_2_5_71_5
  doi: 10.1146/annurev.anchem.1.031207.112754
– ident: e_1_2_5_77_2
  doi: 10.1016/S0030-4018(96)00771-7
– ident: e_1_2_5_49_2
  doi: 10.1021/ja7113147
– ident: e_1_2_5_21_2
  doi: 10.1002/ange.200700830
– ident: e_1_2_5_24_2
  doi: 10.1016/j.cattod.2006.08.065
– ident: e_1_2_5_83_3
  doi: 10.1016/j.jsb.2008.02.003
– ident: e_1_2_5_16_10
  doi: 10.1016/j.jcat.2003.11.002
– ident: e_1_2_5_71_2
  doi: 10.1103/PhysRevLett.82.4142
– ident: e_1_2_5_71_6
  doi: 10.1002/cphc.200700202
– ident: e_1_2_5_10_16
  doi: 10.1016/j.jcat.2007.02.013
– ident: e_1_2_5_22_2
  doi: 10.1126/science.1151787
– ident: e_1_2_5_12_3
  doi: 10.1002/anie.200800480
– ident: e_1_2_5_65_2
  doi: 10.1016/j.ultramic.2008.04.014
– ident: e_1_2_5_106_2
  doi: 10.1366/0003702021954665
– ident: e_1_2_5_11_23
  doi: 10.1002/anie.200250351
– ident: e_1_2_5_54_2
  doi: 10.1002/chem.200701591
– ident: e_1_2_5_7_2
  doi: 10.1021/cr940044o
– ident: e_1_2_5_15_4
  doi: 10.1002/ange.200702473
– ident: e_1_2_5_87_4
  doi: 10.1080/08940880802667924
– ident: e_1_2_5_84_4
  doi: 10.1063/1.2912503
– ident: e_1_2_5_10_5
  doi: 10.1002/ange.200703085
– ident: e_1_2_5_17_2
  doi: 10.1016/S0926-860X(02)00064-9
– ident: e_1_2_5_101_2
  doi: 10.1021/ja801120u
– ident: e_1_2_5_9_2
  doi: 10.1039/b107686h
– ident: e_1_2_5_62_3
  doi: 10.1039/b820052a
– ident: e_1_2_5_40_3
  doi: 10.1002/anie.200703673
– ident: e_1_2_5_61_2
  doi: 10.1021/ja804606m
– ident: e_1_2_5_53_2
  doi: 10.1002/ange.200801433
– ident: e_1_2_5_107_4
  doi: 10.1002/ange.200801605
– ident: e_1_2_5_15_5
  doi: 10.1002/anie.200702473
– ident: e_1_2_5_39_2
  doi: 10.1016/j.jcat.2006.07.022
– ident: e_1_2_5_76_2
  doi: 10.1038/nmeth929
– ident: e_1_2_5_16_6
  doi: 10.1063/1.2949389
– ident: e_1_2_5_10_19
  doi: 10.1002/anie.200462473
– ident: e_1_2_5_10_15
  doi: 10.1016/j.jcat.2007.09.003
– ident: e_1_2_5_78_3
  doi: 10.1016/j.tcb.2005.02.003
– ident: e_1_2_5_96_3
  doi: 10.1016/j.cattod.2005.11.006
– ident: e_1_2_5_108_5
  doi: 10.1038/nnano.2008.399
– ident: e_1_2_5_99_3
  doi: 10.1006/jmre.2000.2212
– ident: e_1_2_5_105_2
  doi: 10.1016/S0167-2991(08)64149-X
– ident: e_1_2_5_107_5
  doi: 10.1002/anie.200801605
– ident: e_1_2_5_37_4
  doi: 10.1007/BF03161992
– ident: e_1_2_5_93_4
  doi: 10.1038/nmat1924
– ident: e_1_2_5_105_6
  doi: 10.1021/ja0739887
– ident: e_1_2_5_97_5
  doi: 10.1021/jp810428e
– ident: e_1_2_5_76_3
  doi: 10.1126/science.1146598
– ident: e_1_2_5_3_2
  doi: 10.1201/b21367
– ident: e_1_2_5_107_3
  doi: 10.1002/1438-5171(200211)3:5/6<285::AID-SIMO285>3.0.CO;2-X
– start-page: 293
  year: 1991
  ident: e_1_2_5_37_2
  publication-title: Chem. Lett.
– ident: e_1_2_5_18_3
  doi: 10.1016/j.cej.2006.06.014
– ident: e_1_2_5_47_2
  doi: 10.1002/ange.200702012
– ident: e_1_2_5_107_6
  doi: 10.1103/PhysRevLett.92.096101
– ident: e_1_2_5_11_15
  doi: 10.1016/S1381-1169(03)00335-2
– ident: e_1_2_5_10_7
  doi: 10.1002/ange.200700980
– ident: e_1_2_5_30_2
  doi: 10.1016/0926-860X(93)80180-X
– ident: e_1_2_5_80_2
  doi: 10.1126/science.1153529
– ident: e_1_2_5_59_2
  doi: 10.1002/chem.200801380
– ident: e_1_2_5_83_5
  doi: 10.1107/S0909049507047966
– ident: e_1_2_5_60_3
  doi: 10.1038/439548a
– ident: e_1_2_5_90_4
  doi: 10.1039/b602311h
– ident: e_1_2_5_100_3
  doi: 10.1007/978-1-59745-294-6_12
– ident: e_1_2_5_109_3
  doi: 10.1038/456454a
– ident: e_1_2_5_16_7
  doi: 10.1002/aic.10731
– ident: e_1_2_5_35_3
  doi: 10.1002/anie.200701399
– ident: e_1_2_5_87_3
  doi: 10.1016/j.cattod.2005.11.076
– ident: e_1_2_5_105_3
  doi: 10.1006/jcat.2002.3639
– ident: e_1_2_5_55_2
  doi: 10.1002/chem.200801293
– ident: e_1_2_5_95_2
  doi: 10.1039/b504027b
– ident: e_1_2_5_11_7
  doi: 10.1016/j.jcat.2006.12.018
– ident: e_1_2_5_10_8
  doi: 10.1002/anie.200700980
– ident: e_1_2_5_16_5
  doi: 10.1021/ac034296d
– ident: e_1_2_5_69_4
  doi: 10.1103/PhysRevLett.78.1667
– ident: e_1_2_5_47_3
  doi: 10.1002/anie.200702012
– ident: e_1_2_5_35_2
  doi: 10.1002/ange.200701399
– ident: e_1_2_5_69_2
  doi: 10.1021/ar800121r
– ident: e_1_2_5_16_8
  doi: 10.1016/S0920-5861(01)00328-5
– ident: e_1_2_5_19_2
  doi: 10.1039/b501698c
– ident: e_1_2_5_89_3
  doi: 10.1016/j.jcat.2004.08.003
– ident: e_1_2_5_93_8
  doi: 10.1039/b707746g
– ident: e_1_2_5_93_2
  doi: 10.1039/b405694a
– volume-title: Industrial Catalysis: A Practical Approach
  year: 1999
  ident: e_1_2_5_2_2
– ident: e_1_2_5_84_3
  doi: 10.1038/nature03719
– ident: e_1_2_5_108_2
  doi: 10.1039/B512780G
– ident: e_1_2_5_91_5
  doi: 10.1002/cphc.200800065
– ident: e_1_2_5_99_2
  doi: 10.1063/1.1517146
– ident: e_1_2_5_41_3
  doi: 10.1002/anie.200602892
– ident: e_1_2_5_41_2
  doi: 10.1002/ange.200602892
– ident: e_1_2_5_91_2
  doi: 10.1039/b315779b
– ident: e_1_2_5_11_3
  doi: 10.1016/j.cattod.2007.03.003
– ident: e_1_2_5_102_2
  doi: 10.1016/j.jsb.2008.07.003
– ident: e_1_2_5_83_4
  doi: 10.1091/mbc.E03-07-0522
– ident: e_1_2_5_53_3
  doi: 10.1002/anie.200801433
– ident: e_1_2_5_78_2
  doi: 10.1006/jsbi.1998.4037
– ident: e_1_2_5_25_2
– volume-title: Atomic Force Microscopy, Scanning Near‐Field Optical Microscopy and Nanoscratching
  year: 2006
  ident: e_1_2_5_104_2
– ident: e_1_2_5_7_3
  doi: 10.1016/S0920-5861(99)00046-2
– ident: e_1_2_5_97_3
  doi: 10.1107/S0909049508023327
– ident: e_1_2_5_10_17
  doi: 10.1021/ar700217y
– ident: e_1_2_5_46_2
  doi: 10.1021/ja8048767
– ident: e_1_2_5_108_4
  doi: 10.1021/la703406d
– volume: 121
  start-page: 351
  year: 2006
  ident: e_1_2_5_100_4
  publication-title: Methods Mol. Med.
– ident: e_1_2_5_68_3
  doi: 10.1080/08940880701631369
– ident: e_1_2_5_82_2
  doi: 10.1016/j.nimb.2005.07.177
– volume-title: Handbook of Heterogeneous Catalysis
  year: 2008
  ident: e_1_2_5_1_2
– ident: e_1_2_5_11_20
  doi: 10.1002/ange.200800480
– ident: e_1_2_5_71_4
  doi: 10.1021/jp711527v
– ident: e_1_2_5_85_2
– ident: e_1_2_5_83_2
  doi: 10.1016/j.sbi.2005.08.008
– ident: e_1_2_5_93_6
  doi: 10.1002/anie.200701419
– ident: e_1_2_5_70_2
  doi: 10.1023/B:CATL.0000014338.20674.bf
– ident: e_1_2_5_84_2
  doi: 10.1016/j.nima.2007.08.083
– ident: e_1_2_5_67_3
  doi: 10.1016/j.cattod.2007.03.007
– ident: e_1_2_5_71_3
  doi: 10.1021/jp035693v
– ident: e_1_2_5_11_6
  doi: 10.1021/jp801562g
– ident: e_1_2_5_52_4
  doi: 10.1002/ange.200801327
– ident: e_1_2_5_89_2
  doi: 10.1039/b107005c
– ident: e_1_2_5_105_5
  doi: 10.1039/b313208k
– ident: e_1_2_5_12_2
  doi: 10.1002/ange.200800480
– ident: e_1_2_5_66_2
  doi: 10.1002/ange.200806003
– volume-title: Handbook of Microscopy for Nanotechology
  year: 2005
  ident: e_1_2_5_104_3
– ident: e_1_2_5_93_9
  doi: 10.1039/b706294j
– ident: e_1_2_5_7_6
  doi: 10.1002/anie.200602593
– ident: e_1_2_5_10_9
  doi: 10.1002/ange.200803427
– ident: e_1_2_5_14_3
  doi: 10.1002/chem.200600678
– ident: e_1_2_5_28_2
  doi: 10.1021/jp8039737
– ident: e_1_2_5_88_5
  doi: 10.1006/jcat.2000.2930
– ident: e_1_2_5_64_4
  doi: 10.1002/ange.200805994
– ident: e_1_2_5_11_16
  doi: 10.1016/j.jcat.2005.11.005
– ident: e_1_2_5_45_3
  doi: 10.1002/anie.200604336
– ident: e_1_2_5_86_2
  doi: 10.1126/science.1158573
– ident: e_1_2_5_33_2
  doi: 10.1021/jp710676v
– ident: e_1_2_5_52_2
  doi: 10.1002/ange.200705562
– ident: e_1_2_5_27_2
  doi: 10.1016/j.ces.2004.07.103
– volume-title: Supported Metals in Catalysis
  year: 2005
  ident: e_1_2_5_4_2
– ident: e_1_2_5_31_4
  doi: 10.1016/j.cattod.2007.06.037
– ident: e_1_2_5_100_2
  doi: 10.1016/j.jsb.2007.07.011
– ident: e_1_2_5_9_9
  doi: 10.1039/b210679p
– ident: e_1_2_5_10_13
  doi: 10.1002/anie.200601184
– ident: e_1_2_5_21_3
  doi: 10.1002/anie.200700830
– ident: e_1_2_5_9_3
  doi: 10.1039/b309650p
– ident: e_1_2_5_11_11
  doi: 10.1021/jp040708q
– ident: e_1_2_5_56_2
  doi: 10.1038/nature06398
– ident: e_1_2_5_109_2
  doi: 10.1021/nl802086x
– ident: e_1_2_5_13_2
  doi: 10.1016/S0920-5861(99)00047-4
– ident: e_1_2_5_16_9
  doi: 10.1021/cc049957e
– ident: e_1_2_5_11_17
  doi: 10.1016/j.jcat.2008.01.033
– ident: e_1_2_5_40_2
  doi: 10.1002/ange.200703673
– ident: e_1_2_5_9_10
  doi: 10.1002/(SICI)1521-3757(19991216)111:24<3800::AID-ANGE3800>3.0.CO;2-1
– ident: e_1_2_5_44_2
  doi: 10.1021/jp010777u
– ident: e_1_2_5_9_8
  doi: 10.1016/S0360-0564(06)51002-8
– ident: e_1_2_5_9_11
  doi: 10.1002/(SICI)1521-3773(19991216)38:24<3588::AID-ANIE3588>3.0.CO;2-4
– ident: e_1_2_5_6_2
  doi: 10.1002/9783527611348
– ident: e_1_2_5_16_11
  doi: 10.1088/0957-0233/16/1/040
– ident: e_1_2_5_68_6
  doi: 10.1038/nm0297-235
– ident: e_1_2_5_20_2
  doi: 10.1007/s10562-005-7522-2
– ident: e_1_2_5_31_3
  doi: 10.1016/S0167-2991(06)80905-5
– ident: e_1_2_5_17_3
  doi: 10.1016/S0360-0564(06)50001-X
– ident: e_1_2_5_94_2
  doi: 10.1016/j.jcat.2004.10.016
– ident: e_1_2_5_12_5
  doi: 10.1126/science.1062883
– ident: e_1_2_5_51_2
  doi: 10.1002/chem.200700568
– ident: e_1_2_5_88_2
  doi: 10.1023/A:1018956520929
– ident: e_1_2_5_77_3
  doi: 10.1038/nbt899
– ident: e_1_2_5_74_3
  doi: 10.1364/OL.24.000954
– ident: e_1_2_5_97_2
  doi: 10.1021/ja062580r
– ident: e_1_2_5_10_6
  doi: 10.1002/anie.200703085
– ident: e_1_2_5_7_4
  doi: 10.1021/cr040083s
– ident: e_1_2_5_11_12
  doi: 10.1021/jp030989m
– ident: e_1_2_5_12_4
  doi: 10.1126/science.1063597
– ident: e_1_2_5_10_18
  doi: 10.1002/ange.200462473
– ident: e_1_2_5_11_22
  doi: 10.1002/ange.200250351
– ident: e_1_2_5_58_2
  doi: 10.1038/nmat1861
– ident: e_1_2_5_11_13
  doi: 10.1039/b305264h
– ident: e_1_2_5_88_4
  doi: 10.1007/BF00772594
– ident: e_1_2_5_107_7
  doi: 10.1111/j.1365-2818.2008.01893.x
– ident: e_1_2_5_16_3
  doi: 10.1021/ac015513i
– ident: e_1_2_5_63_2
  doi: 10.1021/ja808335b
– ident: e_1_2_5_74_2
  doi: 10.1364/OL.19.000780
– ident: e_1_2_5_111_2
  doi: 10.1073/pnas.0812068106
– ident: e_1_2_5_26_3
  doi: 10.1002/anie.200804077
– ident: e_1_2_5_86_3
  doi: 10.1126/science.1161183
– ident: e_1_2_5_34_2
  doi: 10.1021/ja053456v
– ident: e_1_2_5_11_10
  doi: 10.1016/S0920-5861(02)00337-1
– ident: e_1_2_5_74_5
  doi: 10.1126/science.1137395
– ident: e_1_2_5_9_6
  doi: 10.1016/j.cattod.2004.12.017
– ident: e_1_2_5_10_10
  doi: 10.1002/anie.200803427
– ident: e_1_2_5_10_3
  doi: 10.1002/anie.200803122
– ident: e_1_2_5_105_7
  doi: 10.1002/ange.200800977
– ident: e_1_2_5_50_3
  doi: 10.1002/anie.200700246
– ident: e_1_2_5_88_3
  doi: 10.1038/354465a0
– ident: e_1_2_5_74_4
  doi: 10.1073/pnas.97.15.8206
– ident: e_1_2_5_64_3
  doi: 10.1038/456185a
– ident: e_1_2_5_11_4
  doi: 10.1016/j.cattod.2006.07.034
– ident: e_1_2_5_105_8
  doi: 10.1002/anie.200800977
– ident: e_1_2_5_15_3
  doi: 10.1126/science.1143093
– ident: e_1_2_5_91_4
  doi: 10.1016/j.micromeso.2007.05.028
– ident: e_1_2_5_9_12
  doi: 10.1016/S0021-9517(02)00133-1
– ident: e_1_2_5_90_2
  doi: 10.1039/B305786K
– ident: e_1_2_5_18_4
  doi: 10.1016/j.apcata.2004.02.040
– ident: e_1_2_5_50_2
  doi: 10.1002/ange.200700246
– ident: e_1_2_5_9_5
  doi: 10.1002/1521-3773(20010817)40:16<2954::AID-ANIE2954>3.0.CO;2-#
– ident: e_1_2_5_10_14
  doi: 10.1016/j.apcata.2008.02.034
– ident: e_1_2_5_26_2
  doi: 10.1002/ange.200804077
– ident: e_1_2_5_43_2
  doi: 10.1021/cm0401645
– ident: e_1_2_5_31_2
  doi: 10.1021/ja040107c
– ident: e_1_2_5_11_2
  doi: 10.1021/jp802827t
– ident: e_1_2_5_42_2
  doi: 10.1002/ange.200705597
– ident: e_1_2_5_12_6
  doi: 10.1126/science.1059478
– ident: e_1_2_5_57_2
  doi: 10.1021/ja075927e
– ident: e_1_2_5_110_2
  doi: 10.1002/cphc.200800757
– ident: e_1_2_5_98_3
  doi: 10.1021/jp062618m
– ident: e_1_2_5_15_2
  doi: 10.1126/science.1140484
– ident: e_1_2_5_10_4
  doi: 10.1016/j.ccr.2007.06.008
– ident: e_1_2_5_75_3
  doi: 10.1073/pnas.0708066104
– ident: e_1_2_5_68_4
  doi: 10.1016/j.bbamem.2006.06.008
– ident: e_1_2_5_11_19
  doi: 10.1039/b706637f
– ident: e_1_2_5_64_5
  doi: 10.1002/anie.200805994
– ident: e_1_2_5_93_7
  doi: 10.1557/mrs2007.213
– ident: e_1_2_5_96_2
  doi: 10.1039/B418790C
– ident: e_1_2_5_16_4
  doi: 10.1366/000370202321274944
– ident: e_1_2_5_29_2
  doi: 10.1002/chem.200500116
– ident: e_1_2_5_11_9
  doi: 10.1016/j.cattod.2004.12.019
– ident: e_1_2_5_11_14
  doi: 10.1039/b604515d
– ident: e_1_2_5_73_2
  doi: 10.1126/science.1165758
– ident: e_1_2_5_91_3
  doi: 10.1016/j.cattod.2005.11.015
– ident: e_1_2_5_10_2
  doi: 10.1002/ange.200803122
– ident: e_1_2_5_94_3
  doi: 10.1016/S0360-0564(06)50005-7
– volume-title: In‐Situ Spectroscopy of Catalysts
  year: 2004
  ident: e_1_2_5_8_3
– ident: e_1_2_5_103_2
  doi: 10.1038/nnano.2008.100
– ident: e_1_2_5_60_2
  doi: 10.1038/nature04502
– ident: e_1_2_5_67_2
  doi: 10.1073/pnas.0610755104
– ident: e_1_2_5_79_2
  doi: 10.1038/nbt895
SSID ssj0028806
Score 2.4619877
SecondaryResourceType review_article
Snippet Catalytic solids in the spotlight: Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally...
Catalytic solids in the spotlight : Detailed insight into the working principles of heterogeneous catalysts is essential for the design of improved or totally...
Knowledge of spatiotemporal gradients in heterogeneous catalysts is of paramount importance for the rational design of new and more sustainable catalytic...
SourceID proquest
pubmed
crossref
wiley
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4910
SubjectTerms heterogeneous catalysis
in situ spectroscopy
nanoparticles
single‐molecule spectroscopy
zeolites
Title Chemical Imaging of Spatial Heterogeneities in Catalytic Solids at Different Length and Time Scales
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.200900339
https://www.ncbi.nlm.nih.gov/pubmed/19536746
https://www.proquest.com/docview/46321503
https://www.proquest.com/docview/67420160
Volume 48
WOSCitedRecordID wos000267713800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LatwwFL10JoV203cbt2mqRaErE1u6luxlmGRIIAyl04HZGb2cDqR2iZ1A_r6SX-lAQiFZGmQhpCPpSFf3HICvjoNr7fapUDG0IarIr4NREiIvlFA2iZgxrdmEWCzS9Tr7_k8Wf6cPMV64-ZnRrtd-gktVH9yKhvoM7DZ5z9uRZRPYoQ68OIWdox_z1dl46HL47DKMGAu9Ef0g3BjRg-0atjamSSGruzjnNoVt96D5y8e3_hW86PknOewA8xqe2PINPJsNtm9vQQ8SAuT0d-tgRKqCeONiB1Ry4h_PVA5zthViJZuSzPz9z42rjSyri42piWzIUe-60pAzW543v4gsDfHJJmTpKrb1O1jNj3_OTsLeiSHUyDELUQpjJRY60qiSRCqDgisudSxSEyVSc6rcuUv605IpaGyYlY6bRUwhopGGvYdpWZV2F4jSHEWR2izODKaJo0coVFQwprKYxUYEEA7DkOtepty7ZVzkncAyzX3X5WPXBfBtLP-nE-i4t-SuG9VcnrvVM18tqY_Zxt4JPksD-DIMde6628dMZGmrqzpHzhwpitj9JbhA6mX6AvjQYeS2GT40LpAHQFso_Kd9-eHi9Hj8-viQnz7B8y7axUNK92DaXF7Zz_BUXzeb-nIfJmKd7vcT5C870gww
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9swFL2s6aB7WffV1eu26mGwJ1PbkiX7saQNCcvCWBrom9CX20Brj8Yd7N9P118lsDIYezTIQkhH0pGu7jkAnzwHN8bvU6GmzIVMR7gORmnIeKGFdmlErW3MJsRikV1e5t-614SYC9PqQwwXbjgzmvUaJzheSJ88qIZiCnaTvYd-ZPkO7DKPpXQEu2ffJ6v5cOryAG1TjCgN0Ym-V26MkpPtGrZ2pp1CVX8indscttmEJvv_ofkv4HnHQMlpC5mX8MSVr2Bv3Bu_vQbTiwiQ2W3jYUSqgqB1sYcqmeLzmcqjzjVSrGRdkjHeAP3ytZFldbO2G6Jqctb5rtRk7sqr-pqo0hJMNyFLX7HbvIHV5PxiPA07L4bQMM7ykClhnWKFiQzTaaq0ZYJrrkwsMhulyvBE-5OXwvOSLZLYUqc8O4uoZoxZZekBjMqqdIdAtOFMFJnL49yyLPUEiQkdFZTqPKaxFQGE_ThI0wmVo1_GjWwllhOJXSeHrgvg81D-RyvR8WjJQz-sUl359VOulglGbWP0gs-zAI77sZa-uzFqokpX3W-kR5WnRRF9vAQXLEGhvgDetiB5aAYGxwXjASQNFv7SPnm6mJ0PX-_-5adj2JtefJ3L-Wzx5QietbEvHibJexjVd_fuAzw1P-v15u5jN09-AwT8Dzg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZNUtpc0nfi9BEdCj2Z2NZYso9hN0uWLkvodiE3oZeThdQOWSfQf1-NX2EhoVB6NMiDkGakTxrN9xHy1WNwY_w-FWoGLgQd4ToYpSHwQgvt0ohZ24hNiPk8u7jIz7vXhFgL0_JDDBduGBnNeo0B7m5scfzAGool2E31HuqR5VtkB9Kc-9jcGf-YLGfDqcs7aFtixFiISvQ9c2OUHG9a2NiZtgpVPQY6NzFsswlNXv2H7r8mex0CpSety7whz1z5lrwc9cJv74jpSQTo9FejYUSrgqJ0sXdVeobPZyrvda6hYqWrko7wBui3t0YX1fXKrqmq6bjTXanpzJWX9RVVpaVYbkIX3rBbvyfLyenP0VnYaTGEBjjkIShhnYLCRAZ0miptQXDNlYlFZqNUGZ5of_JSeF6yRRJb5pRHZxHTAGCVZR_IdlmV7oBQbTiIInN5nFvIUg-QQOioYEznMYutCEjYz4M0HVE56mVcy5ZiOZE4dHIYuoB8G9rftBQdT7Y88NMq1aVfP-VykWDWNkYt-DwLyFE_19IPN2ZNVOmqu7UEzjwsitjTLbiABIn6ArLfOslDNzA5LoAHJGl84S_9kyfz6enwdfgvPx2RF-fjiZxN598_kt029cXDJPlEtuvbO_eZPDf39Wp9-6ULkz93Wg6z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+Imaging+of+Spatial+Heterogeneities+in+Catalytic+Solids+at+Different+Length+and+Time+Scales&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Weckhuysen%2C+Bert%E2%80%85M.&rft.date=2009-06-22&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=48&rft.issue=27&rft.spage=4910&rft.epage=4943&rft_id=info:doi/10.1002%2Fanie.200900339&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_200900339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon